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Abstract

:

We study two-machine shop-scheduling problems provided that lower and upper bounds on durations of n jobs are given before scheduling. An exact value of the job duration remains unknown until completing the job. The objective is to minimize the makespan (schedule length). We address the issue of how to best execute a schedule if the job duration may take any real value from the given segment. Scheduling decisions may consist of two phases: an off-line phase and an on-line phase. Using information on the lower and upper bounds for each job duration available at the off-line phase, a scheduler can determine a minimal dominant set of schedules (DS) based on sufficient conditions for schedule domination. The DS optimally covers all possible realizations (scenarios) of the uncertain job durations in the sense that, for each possible scenario, there exists at least one schedule in the DS which is optimal. The DS enables a scheduler to quickly make an on-line scheduling decision whenever additional information on completing jobs is available. A scheduler can choose a schedule which is optimal for the most possible scenarios. We developed algorithms for testing a set of conditions for a schedule dominance. These algorithms are polynomial in the number of jobs. Their time complexity does not exceed   O (  n 2  )  . Computational experiments have shown the effectiveness of the developed algorithms. If there were no more than 600 jobs, then all 1000 instances in each tested series were solved in one second at most. An instance with 10,000 jobs was solved in 0.4 s on average. The most instances from nine tested classes were optimally solved. If the maximum relative error of the job duration was not greater than   20 %  , then more than   80 %   of the tested instances were optimally solved. If the maximum relative error was equal to   50 %  , then   45 %   of the tested instances from the nine classes were optimally solved.
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1. Introduction


A lot of real-life scheduling problems involve different forms of uncertainties. For dealing with uncertain scheduling problems, several approaches have been developed in the literature. A stochastic approach assumes that durations of the jobs are random variables with specific probability distributions known before scheduling. There are two types of stochastic scheduling problems [1], where one is on stochastic jobs and another is on stochastic machines. In the stochastic job problem, each job duration is assumed to be a random variable following a certain probability distribution. With an objective of minimizing the expected makespan, the flow-shop problem was considered in References [2,3,4]. In the stochastic machine problem, each job duration is a constant, while each completion time of the job is a random variable due to the machine breakdown or nonavailability. In References [5,6,7], flow-shop problems to stochastically minimize the makespan or total completion time have been considered.



If there is no information to determine a probability distribution for each random duration of the job, other approaches have to be used [8,9,10]. In the approach of seeking a robust schedule [8,11,12,13], a decision maker prefers a schedule that hedges against the worst-case scenario. A fuzzy approach [14,15,16] allows a scheduler to find best schedules with respect to fuzzy durations of the jobs. A stability approach [17,18,19,20] is based on the stability analysis of optimal schedules to possible variations of the durations. In this paper, we apply the stability approach to the two-machine job-shop scheduling problem with given segments of job durations. We have to emphasize that uncertainties of the job durations considered in this paper are due to external forces in contrast to scheduling problems with controllable durations [21,22,23], where the objective is to determine optimal durations (which are under the control of a decision maker) and to find an optimal schedule for the jobs with optimal durations.




2. Contributions and New Results


We study the two-machine job-shop scheduling problem with uncertain job durations and address the issue of how to best execute a schedule if each duration may take any value from the given segment. The main aim is to determine a minimal dominant set of schedules (DS) that would contain at least one optimal schedule for each feasible scenario of the distribution of durations of the jobs.



It is shown how an uncertain two-machine job-shop problem may be decomposed into two uncertain two-machine flow-shop problems. We prove several sufficient conditions for the existence of a small dominant set of schedules. In particular, the sufficient and necessary conditions are proven for the existence of a single pair of job permutations, which is optimal for the two-machine job-shop problem with any possible scenario. We investigated properties of the optimal pairs of job permutations for the uncertain two-machine job-shop problem.



In the stability approach, scheduling decisions may consist of two phases: an off-line phase and an on-line phase. Using information on the lower and upper bounds on each job duration available at the off-line phase, a scheduler can determine a small (or minimal) dominant set of schedules based on sufficient conditions for schedule dominance. The DS optimally covers all scenarios in the sense that, for each possible scenario, there exists at least one schedule in the DS that is optimal. The DS enables a scheduler to quickly make an on-line scheduling decision whenever additional information on completing some jobs becomes available. The stability approach enables a scheduler to choose a schedule, which is optimal for the most possible scenarios.



In this paper, we develop algorithms for testing a set of conditions for a schedule dominance. The developed algorithms are polynomial in the number of jobs. Their asymptotic complexities do not exceed   O (  n 2  )  , where n is a number of the jobs. Computational experiments have shown effectiveness of the developed algorithms: if there were no more than 600 jobs, then all 1000 instances in each tested series were solved in no more than one second. For the tested series of instances with 10,000 jobs, all 1000 instances of a series were solved in 344 seconds at most (on average, 0.4 s per one instance).



The paper is organized as follows. In Section 3, we present settings of the uncertain scheduling problems. The related literature and closed results are discussed in Section 4. In Section 4.2, we describe in detail the results published for the uncertain two-machine flow-shop problem. These results are used in Section 5, where we investigate properties of the optimal job permutations used for processing a set of the given jobs. Some proofs of the claims are given in Appendix A. In Section 6, we develop algorithms for constructing optimal schedules if the proven dominance conditions hold. In Section 7, we report on the wide computational experiments for solving a lot of randomly generated instances. Tables with the obtained computational results are presented in Appendix B. The paper is concluded in Section 8, where several directions for further researches are outlined.




3. Problem Settings and Notations


Using the notation   α | β | γ   [24], the two-machine job-shop scheduling problem with minimizing the makespan is denoted as    J 2 |   n i   ≤ 2 |   C  m a x    , where   α = J 2   denotes a job-shop system with two available machines,   n i   is the number of stages for processing a job, and   γ =  C  m a x     denotes the criterion of minimizing the makespan. In the problem    J 2 |   n i   ≤ 2 |   C  m a x    , the set   J = {  J 1  ,  J 2  , … ,  J n  }   of the given jobs have to be processed on machines from the set   M = {  M 1  ,  M 2  }  . All jobs are available for processing from the initial time   t = 0  . Let   O  i j    denote an operation of the job    J i  ∈ J   processed on machine    M j  ∈ M  . Each machine can process a job    J i  ∈ J   no more than once provided that preemption of each operation   O  i j    is not allowed. Each job    J i  ∈ J   has its own processing order (machine route) on the machines in  M .



Let   J  1 , 2    denote a subset of the set  J  of the jobs with the same machine route (   M 1  ,  M 2   ), i.e., each job    J i  ∈  J  1 , 2     has to be processed first on machine   M 1   and then on machine   M 2  . Let    J  2 , 1   ⊆ J   denote a subset of the jobs with the opposite machine route (   M 2  ,  M 1   ). Let    J k  ⊆ J   denote a set of the jobs, which has to be processed only on machine    M k  ∈ M  . The partition   J =  J 1  ⋃  J 2  ⋃  J  1 , 2   ⋃  J  2 , 1     holds. We denote    m h  =  |  J h  |   , where   h ∈ { 1 ; 2 ; 1 ,  2 ; 2 ,  1 }  .



We first assume that the duration   p  i j    of each operation   O  i j    is fixed before scheduling. The considered criterion   C  m a x    is the minimization of the makespan (schedule length) as follows:


   C  m a x   : =  min  s ∈ S    C  m a x    ( s )  =  min  s ∈ S    { max  {  C i   ( s )  :  J i  ∈ J }  }  ,  








where    C i   ( s )    denotes a completion time of the job    J i  ∈ J   in the schedule s and S denotes a set of semi-active schedules existing for the problem    J 2 |   n i   ≤ 2 |   C  m a x    . A schedule is called semi-active if no job (operation) can be processed earlier without changing the processing order or violating some given constraints [1,25,26].



Jackson [27] proved that the problem    J 2 |   n i   ≤ 2 |   C  m a x     is polynomially solvable and that the optimal schedule for this problem may be determined as a pair   (  π ′  ,  π  ″   )   of the job permutations (calling it a Jackson’s pair of permutations) such that    π ′  =  (  π  1 , 2   ,  π 1  ,  π  2 , 1   )    is a sequence of all jobs from the set    J 1  ⋃  J  1 , 2   ⋃  J  2 , 1     processed on machine   M 1   and    π  ″   =  (  π  2 , 1   ,  π 2  ,  π  1 , 2   )    is a sequence of all jobs from the set    J 2  ⋃  J  1 , 2   ⋃  J  2 , 1     processed on machine   M 2  . Job   J j   belongs to the permutation   π h   if    J j  ∈  J h   .



In a Jackson’s pair   (  π ′  ,  π  ″   )   of the job permutations, the order for processing jobs from set   J 1   (from set   J 2  , respectively) may be arbitrary, while for the permutation   π  1 , 2   , the following inequality holds for all indexes k and m,   1 ≤ k < m ≤  m  1 , 2    :


  min  {  p   i k  1   ,  p   i m  2   }  ≤ min  {  p   i m  1   ,  p   i k  2   }   



(1)




(for the permutation   π  2 , 1   , the following inequality holds for all indexes k and m,   1 ≤ k < m ≤  m  2 , 1    ) [28]:


  min  {  p   j k  2   ,  p   j m  1   }  ≤ min  {  p   j m  2    p   j k  1   }   



(2)







The aim of this paper is to investigate the uncertain two-machine job-shop scheduling problem. Therefore, we next assume that duration   p  i j    of each operation   O  i j    is unknown before scheduling; namely, in the realization of a schedule, a value of   p  i j    may be equal to any real number no less than the given lower bound   l  i j    and no greater than the given upper bound   u  i j   . Furthermore, it is assumed that probability distributions of random durations of the jobs are unknown before scheduling. Such a job-shop scheduling problem is denoted as    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    . The problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     is called an uncertain scheduling problem in contrast to the deterministic scheduling problem    J 2 |   n i   ≤ 2 |   C  m a x    . Let a set of all possible vectors   p = (  p  1 , 1   ,  p  1 , 2   , … ,     p  n 1   ,  p  n 2    )    of the job durations be determined as follows:   T = { p   :    l  i j   ≤  p  i j   ≤  u  i j   ,   J i  ∈ J ,   M j  ∈ M } .   Such a vector   p = (  p  1 , 1   ,  p  1 , 2   , … ,     p  n 1   ,  p  n 2    ) ∈ T    of the possible durations of the jobs is called a scenario.



It should be noted that the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     is mathematically incorrect. Indeed, in most cases, a single pair of job permutations which is optimal for all possible scenarios   p ∈ T   for the uncertain problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     does not exist. Therefore, in the general case, one cannot find an optimal solution for this uncertain scheduling problem.



For a fixed scenario   p ∈ T  , the uncertain problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     turns into the deterministic problem    J 2 |   n i   ≤ 2 |   C  m a x     associated with scenario p. The latter deterministic problem is an individual one and we denote it as    J 2 | p ,   n i   ≤ 2 |   C  m a x    . For any fixed scenario   p ∈ T  , there exists a Jackson’s pair of the job permutations that is optimal for the individual deterministic problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     associated with scenario p.



Let   S  1 , 2    denote a set of all permutations of   m  1 , 2    jobs from the set   J  1 , 2   , where    |   S  1 , 2    | =   m  1 , 2   !  . Let   S  2 , 1    denote a set of all permutations of   m  2 , 1    jobs from the set   J  2 , 1   , where    |   S  2 , 1    | =   m  2 , 1   ! .   Let   S = <   S  1 , 2   ,  S  2 , 1    >   be a subset of the Cartesian product    (  S  1 , 2   ,  π 1  ,  S  2 , 1   )  ×  (  S  2 , 1   ,  π 2  ,  S  1 , 2   )    such that each element of the set S is a pair of job permutations   (  π ′  ,  π  ″   ) ∈ S  , where    π ′  =  (  π  1 , 2  i  ,  π 1  ,  π  2 , 1  j  )    and    π  ″   =  (  π  2 , 1  j  ,  π 2  ,  π  1 , 2  i  )   ,   1 ≤ i ≤  m  1 , 2   !  ,   1 ≤ j ≤  m  2 , 1   !  . The set S determines all semi-active schedules and vice versa.



Remark 1.

As an order for processing jobs from set   J 1   (from set   J 2  ) may be arbitrary in the Jackson’s pair of job permutations   (  π ′  ,  π  ″   )  , in what follows, we fix both permutations   π 1   and   π 2   in the increasing order of the indexes of their jobs. Thus, both permutations   π 1   and   π 2   are now fixed, and so their upper indexes are omitted in each permutation from the pair    (  π ′  ,  π  ″   )  =  (  (  π  1 , 2  i  ,  π 1  ,  π  2 , 1  j  )  ,  (  π  2 , 1  j  ,  π 2  ,  π  1 , 2  i  )  )   .





Due to Remark 1, the equality    | S |  =  m  1 , 2   ! ·  m  2 , 1   !   holds. The following definition is used for a J-solution for the uncertain problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    .



Definition 1.

A minimal (with respect to the inclusion) set of pairs of job permutations   S ( T ) ⊆ S   is called a J-solution for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with set  J  of the given jobs if, for each scenario   p ∈ T  , the set   S ( T )   contains at least one pair   (  π ′  ,  π  ″   ) ∈ S   of the job permutations, which is optimal for the individual deterministic problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     associated with scenario p.





From Definition 1, it follows that, for any proper subset   S ′   of the set   S ( T )     S ′  ⊂ S  ( T )   , there exists at least one scenario    p ′  ∈ T   such that set   S ′   does not contain an optimal pair of job permutations for the individual deterministic problem    J 2 |   p ′  ,  n i   ≤ 2 |   C  m a x     associated with scenario   p ′  , i.e., set   S ( T )   is a minimal (with respect to the inclusion) set possessing the property indicated in Definition 1.



The uncertain job-shop problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     is a generalization of the uncertain flow-shop problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x    , where all jobs from the set  J  have the same machine route. Two flow-shop problems are associated with the individual job-shop problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    . In one of these flow-shop problems, an optimal schedule for processing jobs   J  1 , 2    has to be determined, i.e.,    J  2 , 1   =  J 1  =  J 2  = ∅  . In another flow-shop problem, an optimal schedule for processing jobs   J  2 , 1    has to be determined, i.e.,    J  1 , 2   =  J 1  =  J 2  = ∅  . Thus, a solution of the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     may be based on solutions of the two associated problems    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2    and with job set   J  2 , 1   .



The permutation   π  1 , 2    of all jobs from set   J  1 , 2    (the permutation   π  2 , 1    of all jobs from set   J  2 , 1   , respectively) is called a Johnson’s permutation, if the inequality in Equation (1) holds for the permutation   π  1 , 2    (the inequality in Equation (2) holds for the permutation   π  2 , 1   , respectively). As it is proven in Reference [28], a Johnson’s permutation is optimal for the deterministic problem    F 2 | |   C  m a x    .




4. A Literature Review and Closed Results


In this section, we address uncertain shop-scheduling problems if it is impossible to obtain probability distributions for random durations of the given jobs. In particular, we consider the uncertain two-machine flow-shop problem with the objective of minimizing the makespan. This problem is well studied and there are a lot of results published in the literature, unlike the uncertain job-shop problem.



4.1. Uncertain Shop-Scheduling Problems


The stability approach was proposed in Reference [17] and developed in Reference [18,29,30,31] for the   C  m a x    criterion, and in References [19,32,33,34,35] for the total completion time criterion   ∑  C i  : =  min  s ∈ S    ∑   J i  ∈ J    C i   ( s )   . The stability approach combines a stability analysis of the optimal schedules, a multi-stage decision framework, and the solution concept of a minimal dominant set   S ( T )   of schedules, which optimally covers all possible scenarios. The main aim of the stability approach is to construct a schedule which remains optimal for most scenarios of the set T. The minimality of the dominant set   S ( T )   is useful for the two-phase scheduling described in Reference [36].



At the off-line phase, one can construct set   S ( T )  , which enables a scheduler to make a quick scheduling decision at the on-line phase whenever additional local information becomes available. The knowledge of the minimal dominant set   S ( T )   enables a scheduler to execute best a schedule and may end up executing a schedule optimally in many cases of the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     [36]. In Reference [17], a formula for calculating the stability radius of an optimal schedule is proven, i.e., the largest value of independent variations of the job durations in a schedule such that this schedule remains optimal. In Reference [19], a stability analysis of a schedule minimizing the total completion time was exploited in the branch-and-bound method for solving the job-shop problem    J m |   l  i j   ≤  p  i j   ≤  u  i j    | ∑   C i    with m machines. In Reference [29], for the two-machine flow-shop problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x    , sufficient conditions have been identified when the transposition of two jobs minimizes the makespan.



Reference [37] addresses the total completion time objective in the flow-shop problem with uncertain durations of the jobs. A geometrical algorithm has been developed for solving the flow-shop problem    F m |   l  i j   ≤  p  i j   ≤  u  i j    , n = 2 | ∑   C i    with m machines and two jobs. For this problem with two or three machines, sufficient conditions are determined such that the transposition of two jobs minimizes   ∑  C i   . Reference [38] is devoted to the case of separate setup times with the criterion of minimizing the makespan or total completion time. The job durations are fixed while each setup time is relaxed to be a distribution-free random variable within the given lower and upper bounds. Local and global dominance relations have been determined for the flow-shop problem with two machines.



Since, for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     there often does not exist a single permutation of n jobs   J =  J  1 , 2     which remains optimal for all possible scenarios, an additional criterion may be introduced for dealing with uncertain scheduling problems. In Reference [39], a robust solution minimizing the worst-case deviation from optimality was proposed to hedge against uncertainties. While the deterministic problem    F 2 | |   C  m a x     is polynomially solvable (the optimal Johnson’s permutation may be constructed for the problem    F 2 | |   C  m a x     in   O ( n log n )   time), finding a job permutation minimizing the worst-case regret for the uncertain counterpart with a finite set of possible scenarios is NP hard.



In Reference [40], a binary NP hardness has been proven for finding a pair   (  π k  ,  π k  ) ∈ S   of identical job permutations that minimizes the worst-case absolute regret for the uncertain two-machine flow-shop problem with the criterion   C  m a x    even for two possible scenarios. Minimizing the worst-case regret implies a time-consuming search over the set of   n !   job permutations. In order to overcome this computational complexity in some cases, it is useful to consider a minimal dominant set of schedules   S ( T )   instead of the whole set S. To solve the flow-shop problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set  J , one can restrict a search within the set   S ( T )  .



We next describe in detail the results published for the flow-shop problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     since we use them for solving the job-shop problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     in Section 5, Section 6 and Section 7.




4.2. Closed Results


Since each permutation   π ′   uniquely determines a set of the earliest completion times    C i   (  π ′  )    of the jobs    J i  ∈ J   for the problem    F 2 | |   C  m a x    , one can identify the permutation   π ′  , (  (  π ′  ,  π ′  ) ∈ S  ), with the semi-active schedule [1,25,26] determined by the permutation   π ′  . Thus, the set S becomes a set of   n !   pairs   (  π ′  ,  π ′  )   of identical permutations of   n =  m  1 , 2     jobs from the set   J =  J  1 , 2     since the order for processing jobs   J  1 , 2    on both machines may be the same in the optimal schedule [28]. Therefore, the above Definition 1 is supplemented by the following remark.



Remark 2.

For the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     considered in this section, it is assumed that a J-solution   S ( T )   is a minimal dominant set of Johnson’s permutations of all jobs from the set   J  1 , 2   , i.e., for each scenario   p ∈ T  , the set   S ( T )   contains at least one optimal pair   (  π k  ,  π k  )   of identical Johnson’s permutations   π k   such that the inequality in Equation (1) holds.





In Reference [36], it is shown how to delete redundant pairs of (identical) permutations from the set S for constructing a J-solution for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J =  J  1 , 2    . The order of jobs    J v  ∈  J  1 , 2     and    J w  ∈  J  1 , 2     is fixed in the J-solution if there exists at least one Johnson’s permutation of the form    π k  =  (  s 1  ,  J v  ,  s 2  ,  J w  ,  s 3  )    for any scenario   p ∈ T  . In Reference [29], the sufficient conditions are proven for fixing the order of two jobs from set   J =  J  1 , 2    . If one of the following conditions holds, then for each scenario   p ∈ T  , there exists a permutation    π k  =  (  s 1  ,  J v  ,  s 2  ,  J w  ,  s 3  )    that is a Johnson’s one for the problem    F 2 | p |   C  m a x     associated with scenario p:


   u  v 1   ≤  l  v 2      and     u  w 2   ≤  l  w 1   ,  



(3)






   u  v 1   ≤  l  v 2      and     u  v 1   ≤  l  w 1   ,  



(4)






   u  w 2   ≤  l  w 1      and     u  w 2   ≤  l  v 2   .  



(5)







If at least one condition in Inequalities (3)–(5) holds, then there exists a J-solution   S ( T )   for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with fixed order    J v  →  J w    of jobs, i.e., job   J v   has to be located before job   J w   in any permutation   π i  ,    (  π i  ,  π i  )  ∈ S  ( T )   . If both conditions in Inequalities (4) and (5) do not hold, then there is no J-solution   S ( T )   with fixed order    J v  →  J w    in all permutations   π i  ,    (  π i  ,  π i  )  ∈ S  ( T )   . If no analogous condition holds for the opposite order    J w  →  J v   , then at least one permutation with job   J v   located before job   J w   or that with job   J w   located before job   J v   have to be included in any J-solution   S ( T )   for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x    . Theorem 1 is proven in Reference [41].



Theorem 1.

There exists a J-solution   S ( T )   for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with fixed order    J v  →  J w    of the jobs   J v   and   J w   in all permutations   π k  ,    (  π k  ,  π k  )  ∈ S  ( T )    if and only if at least one condition of Inequalities (4) or (5) holds.





In Reference [41], the necessary and sufficient conditions have been proven for the case when a single-element J-solution   S  ( T )  = {  (  π k  ,  π k  )  }   exists for the problem    F 2 |   l  j m   ≤  p  j m   ≤  u  j m    |   C  m a x    . The partition   J =   J  0  ∪   J  1  ∪   J  2  ∪   J  *    of the set   J =  J  1 , 2     is considered, where



     J  0  =  {  J i  ∈ J  :   u  i 1   ≤  l  i 2   ,  u  i 2   ≤  l  i 1   }  ,   



     J  1  =  {  J i  ∈ J  :   u  i 1   ≤  l  i 2   ,  u  i 2   >  l  i 1   }  =  {  J i  ∈ J \   J  0   :   u  i 1   ≤  l  i 2   }  ,   



     J  2  =  {  J i  ∈ J  :   u  i 1   >  l  i 2   ,  u  i 2   ≤  l  i 1   }  =  {  J i  ∈ J \   J  0   :   u  i 2   ≤  l  i 1   }  ,   



     J  *  =  {  J i  ∈ J  :   u  i 1   >  l  i 2   ,  u  i 2   >  l  i 1   }  .   



For each job    J k  ∈   J  0   , inequalities    u  k 1   ≤  l  k 2     and    u  k 2   ≤  l  k 1     imply inequalities    l  k 1   =  u  k 1   =  l  k 2   =  u  k 2    . Since both segments of the possible durations of the job   J k   on machines   M 1   and   M 2   become a point, the durations   p  k 1    and   p  k 2    are fixed and equal for both machines   M 1   and   M 2  :    p  k 1   =  p  k 2   = :  p k   . In Reference [41], Theorems 2 and 3 have been proven.



Theorem 2.

There exists a single-element J-solution   S ( T ) ⊂ S  ,   | S ( T ) |    = 1 ,   for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     if and only if



(a) for any pair of jobs   J i   and   J j   from the set    J  1   (from the set    J  2  , respectively), either    u  i 1   ≤  l  j 1     or    u  j 1   ≤  l  i 1     (either    u  i 2   ≤  l  j 2     or    u  j 2   ≤  l  i 2    ),



(b)    |    J  *   | ≤ 1   ; for job    J  i *   ∈   J  *   , the inequalities    l   i *  1   ≥ max  {  u  i 1    :  J i  ∈   J  1  }  ,      l   i *  2   ≥ max  {  u  j 2    :  J j  ∈   J  2  }    hold; and   max  {  l   i *  1   ,   l   i *  2   }  ≥  p k    for each job    J k  ∈   J  0   .





Theorem 2 characterizes the simplest case of the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     when one permutation   π k   of the jobs   J =  J  1 , 2     dominates all other job permutations. The hardest case of this problem is characterized by the following theorem.



Theorem 3.

If   max  {  l  i k    :   J i  ∈ J ,  M k  ∈ M }  < min  {  u  i k    :   J i  ∈ J ,  M k  ∈ M }   , then   S ( T ) = S  .





The J-solution   S ( T )   may be represented in a compact form using the dominance digraph which may be constructed in   O (  n 2  )   time. Let   J × J   denote the Cartesian product of two sets  J . One can construct the following binary relation    A ⪯  ⊆ J × J   over set   J =  J  1 , 2    .



Definition 2.

For the two jobs    J v  ∈ J   and    J w  ∈ J  , the inclusion    (  J v  ,  J w  )  ∈  A ⪯    holds if and only if there exists a J-solution   S ( T )   for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     such that job    J v  ∈ J   is located before job    J w  ∈ J  ,   v ≠ w  , in all permutations   π k  , where    (  π k  ,  π k  )  ∈ S  ( T )   .





The binary relation    (  J v  ,  J w  )  ∈  A ⪯    is represented as follows:    J v  ⪯  J w   . Due to Theorem 1, if for the jobs    J v  ∈ J   and    J w  ∈ J   the relation    J v  ⪯  J w   ,   v ≠ w  , holds, then for the jobs   J v   and   J w  , at least one of conditions in Inequalities (4) and (5) holds. To construct the binary relation   A ⪯   of the jobs on the set  J , it is sufficient to check Inequalities (4) and (5) for each pair of jobs   J v   and   J w  . The binary relation   A ⪯   determines the digraph   ( J ,  A ⪯  )   with vertex set  J  and arc set   A ⪯  . It takes   O (  n 2  )   time to construct the digraph   ( J ,  A ⪯  )  . In the general case, the binary relation   A ⪯   may be not transitive. In Reference [42], it is proven that, if the binary relation   A ⪯   is not transitive, then     J  0  ≠ ∅  . We next consider the case with the equality     J  0  = ∅  , i.e.,   J =   J  *  ∪   J  1  ∪   J  2    (the case with     J  0  ≠ ∅   has been considered in Reference [41]). For a pair of jobs    J v  ∈   J  1    and    J w  ∈   J  1    (for a pair of jobs    J v  ∈   J  2    and    J w  ∈   J  2   , respectively), it may happen that there exist both J-solution   S ( T )   with job   J v   located before job   J w   in all permutations   π k  ,    (  π k  ,  π k  )  ∈ S  ( T )    and J-solution    S ′   ( T )    with job   J w   located before job   J v   in all permutations   π l  ,    (  π l  ,  π l  )  ∈  S ′   ( T )   .



In Reference [42], the following claim has been proven.



Theorem 4.

The digraph   ( J ,  A ⪯  )   has no circuits if and only if the set   J =   J  *  ∪   J  1  ∪   J  2    includes no pair of jobs    J i  ∈   J  k    and    J j  ∈   J  k    with   k ∈ { 1 , 2 }   such that    l  i k   =  u  i k   =  l  j k   =  u  j k   .  





The binary relation    A ≺  ⊂  A ⪯  ⊆ J × J   is defined as follows.



Definition 3.

For the jobs    J v  ∈ J   and    J w  ∈ J  , the inclusion    (  J v  ,  J w  )  ∈  A ≺    holds if and only if    J v  ⪯  J w    and    J w   ⪯   J v   , or    J v  ⪯  J w    and    J w  ⪯  J v    with   v < w  .





The relation    (  J v  ,  J w  )  ∈  A ≺    is represented as follows:    J v  ≺  J w   . As it is shown in Reference [42], the relation    J v  ≺  J w    implies that    J v  ⪯  J w    and that at least one condition in Inequalities (4) or (5) must hold. The relation    J v  ⪯  J w    implies exactly one of the relations    J v  ≺  J w    or    J w  ≺  J v   .



Since it is assumed that set    J  0   is empty, the binary relation   A ≺   is an antireflective, antisymmetric, and transitive relation, i.e., the binary relation   A ≺   is a strict order. The strict order   A ≺   determines the digraph   G = ( J ,  A ≺  )   with arc set   A ≺  . The digraph   G = ( J ,  A ≺  )   has neither a circuit nor a loop. Properties of the dominance digraph  G  were studied in Reference [42]. The permutation    π k  =  (  J  k 1   ,  J  k 2   , … ,  J  k n   )   ,   (  π k  ,  π k  ) ∈ S ,   may be considered as a total strict order of all jobs of the set  J . The total strict order determined by permutation   π k   is a linear extension of the partial strict order   A ≺   if each inclusion    (  J  k v   ,  J  k w   )  ∈  A ≺    implies inequality   v < w  . Let   Π ( G )   denote a set of permutations    π k  ∈  S  1 , 2     defining all linear extensions of the partial strict order   A ≺  . The cases when   Π  ( G )  =  S  1 , 2     and   Π  ( G )  =  {  π k  }    are characterized in Theorems 2 and 3. In the latter case, the strict order   A ≺   over set  J  can be represented as follows:    J  k 1   ≺ … ≺  J  k i   ≺  J  k  i + 1    ≺ … ≺  J  k  n  1 , 2     .   In Reference [42], the following claims have been proven.



Theorem 5.

Let   J =   J  *  ∪   J  1  ∪   J  2   . For any scenario   p ∈ T  , the set   Π ( G )   contains a Johnson’s permutation for the problem    F 2 | p |   C  m a x    .





Corollary 1.

If   J =   J  *  ∪   J  1  ∪   J  2   , then there exists a J-solution   S ( T )   for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     such that    π ′  ∈ Π  ( G )    for all pairs of job permutations,    {  (  π ′  ,  π ′  )  }  ∈ S  ( T )   .





In Reference [42], it was studied how to construct a minimal dominant set   S  ( T )  = {  (  π ′  ,  π ′  )  }  ,    π ′  ∈ Π  ( G )   . Two types of redundant permutations were examined, and the following claim was proven.



Lemma 1.

Let   J =   J  *  ∪  J 1  ∪  J 2   . If permutation    π t  ∈ Π  ( G )    is redundant in the set   Π ( G )  , then   π t   is a redundant permutation either of type 1 or type 2.





Testing whether set   Π ( G )   contains a redundant permutation of type 1 takes   O (  n 2  )   time, and testing whether permutation    π g  ∈ Π  ( G )    is a redundant permutation of type 2 takes   O ( n )   time. In Reference [42], it is shown how to delete all redundant permutations from the set   Π ( G )  . Let    Π *   ( G )    denote a set of permutations remaining in the set   Π ( G )   after deleting all redundant permutations of type 1 and type 2.



Theorem 6.

Assume the following condition:


   max  {  l  i , 3 − k   ,  l  j , 3 − k   }  <  l  i k   =  u  i k   =  l  j k   =  u  j k   < min  {  u  i , 3 − k   ,  u  j , 3 − k   }  .   



(6)







If set   J =   J  *  ∪   J  1  ∪   J  2    does not contain a pair of jobs    J i  ∈   J  k    and    J j  ∈   J  k   ,   k ∈ { 1 , 2 }  , such that the above condition holds, then   S  ( T )  = <  Π *   ( G )  ,  Π *   ( G )  >  .





To test conditions of Theorem 6 takes   O ( n )   time. Due to Theorem 6 and Lemma 1, if there are no jobs such that condition (6) holds, then a J-solution can be constructed via deleting redundant permutations from set   Π ( G )  . Since the set    Π *   ( G )    is uniquely determined [42], we obtain Corollary 2.



Corollary 2

([42]). If set   J =   J  *  ∪   J  1  ∪   J  2    does not contain a pair of jobs   J i   and   J j   such that condition (6) holds, then the binary relation   A ≺   determines a unique J-solution   S  ( T )  = <  Π *   ( G )  ,  Π *   ( G )  >   for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x    .





The condition of Theorem 6 is sufficient for the uniqueness of a J-solution    Π *   ( G )  = S  ( T )    for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x    . Due to Theorem 1, one can construct a digraph   G = ( J ,  A ≺  )   in   O (  n 2  )   time. The digraph   G = ( J ,  A ≺  )   determines a set   S ( T )   and may be considered a condensed form of a J-solution for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x    . The results presented in this section are used in Section 5 for constructing precedence digraphs for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    .





5. Properties of the Optimal Pairs of Job Permutations


We consider the uncertain job-shop problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     and prove sufficient conditions for determining a small dominant set of schedules for this problem. In what follows, we use Definition 4 of the dominant set   D S ( T ) ⊆ S   along with Definition 1 of the J-solution   S ( T ) ⊆ S  .



Definition 4.

A set of the pairs of job permutations   D S ( T ) ⊆ S   is called a dominant set (of schedules) for the uncertain problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     if, for each scenario   p ∈ T  , the set   D S ( T )   contains at least one optimal pair of job permutations for the individual deterministic problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario p.





Every J-solution (Definition 1) is a dominant set for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    . Before processing jobs of the set  J  (before the realization of a schedule   s ∈ S  ), a scheduler does not know exact values of the job durations. Nevertheless, it is needed to choose a pair of permutations of the jobs  J , i.e., it is needed to determine orders of jobs for processing them on machine   M 1   and machine   M 2  . When all jobs will be processed on machines  M  (a schedule will be realized) and the job durations will take on exact values   p  i j  *  ,    l  i j   ≤  p  i j  *  ≤  u  i j    , and so a factual scenario    p *  ∈ T   will be determined. A schedule s chosen for the realization should be optimal for the obtained factual scenario   p *  . In the stability approach, one can use two phases of scheduling for solving an uncertain scheduling problem: the off-line phase and the on-line phase. The off-line phase of scheduling is finished before starting the realization of a schedule. At this phase, a scheduler knows only given segments of the job durations and the aim is to find a pair of job permutations   (  π ′  ,  π  ″   )   which is optimal for the most scenarios   p ∈ T  . After constructing a small dominant set of schedules   D S ( T )  , a scheduler can choose a pair of job permutations in the set   D S ( T )  , which dominates the most pairs of job permutations   (  π ′  ,  π  ″   ) ∈ S   for the given scenarios T. Note that making a decision at the off-line phase may be time-consuming since the realization of a schedule is not started.



The on-line phase of scheduling can begin once the earliest job in the schedule   (  π ′  ,  π  ″   )   starts. At this phase, a scheduler can use additional on-line information on the job duration since, for each operation   O  i j   , the exact value   p  i j  *   becomes known at the time of the completion of this operation. At the on-line phase, the selection of a next job for processing should be quick.



In Section 5.1, we investigate sufficient conditions for a pair of job permutations   (  π ′  ,  π  ″   )   such that equality   D S  ( T )  = {  (  π ′  ,  π  ″   )  }   holds. In Section 5.2, the sufficient conditions allowing to construct a single optimal schedule dominating all other schedules in the set S are proven. If a single-element dominant set   D S ( T )   does not exist, then one should construct two partial strict orders   A  ≺   1 , 2    and   A  ≺   2 , 1    on the set   J  1 , 2    and on the set   J  2 , 1    of jobs as it is described in Section 4.2. These orders may be constructed in the form of the two precedence digraphs allowing a scheduler to reduce a size of the dominant set   D S ( T )  . Section 5.4 presents Algorithm 1 for constructing a semi-active schedule, which is optimal for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     for all possible scenarios T provided that such a schedule exists. Otherwise, Algorithm 1 constructs the precedence digraphs determining a minimal dominant set of schedules for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x    .



5.1. Sufficient Conditions for an Optimal Pair of Job Permutations


In the proofs of several claims, we use a notion of the main machine, which is introduced within the proof of the following theorem.



Theorem 7.

Consider the following conditions in Inequalities (7) or (8):


    ∑   J i  ∈  J  1 , 2      u  i 1   ≤  ∑   J i  ∈  J  2 , 1   ∪  J 2     l  i 2      a n d     ∑   J i  ∈  J  1 , 2      l  i 2   ≥  ∑   J i  ∈  J  2 , 1   ∪  J 1     u  i 1     



(7)






    ∑   J i  ∈  J  2 , 1      u  i 2   ≤  ∑   J i  ∈  J  1 , 2   ∪  J 1     l  i 1      a n d     ∑   J i  ∈  J  2 , 1      l  i 1   ≥  ∑   J i  ∈  J  1 , 2   ∪  J 2     u  i 2     



(8)







If one of the above conditions holds, then any pair of job permutations   (  π ′  ,  π  ″   ) ∈ S   is a single-element dominant set   D S  ( T )  = {  (  π ′  ,  π  ″   )  }   for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with set   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1     of the given jobs.





Proof. 

Let the condition in Inequalities (7) hold. Then, we consider an arbitrary pair of job permutations   (  π ′  ,  π  ″   ) ∈ S   with any fixed scenario   p ∈ T   and show that this pair of job permutations   (  π ′  ,  π  ″   )   is optimal for the individual deterministic problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario p, i.e.,    C  m a x    (  π ′  ,  π  ″   )  =  C  m a x    .



Let    c 1   (  π ′  )    (   c 2   (  π  ″   )   ) denote a completion time of all jobs    J 1  ∪  J  1 , 2   ∪  J  2 , 1     (jobs    J 2  ∪  J  1 , 2   ∪  J  2 , 1    ) on machine   M 1   (machine   M 2  ) in the schedule   (  π ′  ,  π  ″   )  , where    π ′  =  (  π  1 , 2   ,  π 1  ,  π  2 , 1   )    and    π  ″   =  (  π  2 , 1   ,  π 2  ,  π  1 , 2   )   . For the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x    , the maximal completion time of the jobs in schedule   (  π ′  ,  π  ″   )   may be calculated as follows:    C  m a x    (  π ′  ,  π  ″   )  = max  {  c 1   (  π ′  )  ,  c 2   (  π  ″   )  }   .



Machine   M 1   (machine   M 2  ) is called a main machine for the schedule   (  π ′  ,  π  ″   )   if equality    C  m a x    (  π ′  ,  π  ″   )  =  c 1   (  π ′  )    holds (equality    C  m a x    (  π ′  ,  π  ″   )  =  c 2   (  π  ″   )    holds, respectively).



For schedule   (  π ′  ,  π  ″   ) ∈ S  , the following equality holds:


   c 1   (  π ′  )  =  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 1     p  i 1   +  I 1  ;        c 2   (  π  ″   )  =  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 2     p  i 2   +  I 2  ,  








where   I 1   and   I 2   denote total idle times of machine   M 1   and machine   M 2   in the schedule   (  π ′  ,  π  ″   )  , respectively. We next show that, if the condition in Inequalities (7) holds, then machine   M 2   is a main machine for schedule   (  π ′  ,  π  ″   )   and machine   M 2   has no idle time, i.e., machine   M 2   is completely filled in the segment   [ 0 ,  c 2   (  π  ″   )  ]   for processing jobs from the set    J  1 , 2   ∪  J  2 , 1   ∪  J 2   . At the initial time   t = 0  , machine   M 2   begins to process jobs from the set    J  2 , 1   ∪  J 2    without idle times until the time moment    t 1  =  ∑   J i  ∈  J  2 , 1   ∪  J 2     p  i 2   .  



From the first inequality in (7), we obtain the following relations:


   ∑   J i  ∈  J  1 , 2      p  i 1   ≤  ∑   J i  ∈  J  1 , 2      u  i 1   ≤  ∑   J i  ∈  J  2 , 1   ∪  J 2     l  i 2   ≤  ∑   J i  ∈  J  2 , 1   ∪  J 2     p  i 2   =  t 1  .  











Therefore, at the time moment   t 1  , machine   M 2   begins to process jobs from the set   J  1 , 2    without idle times and we obtain the following equality:    c 2   (  π  ″   )  =  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 2     p  i 2   ,   where    I 2  = 0   and machine   M 2   has no idle time. We next show that machine   M 2   is a main machine for the schedule   (  π ′  ,  π  ″   )  . To this end, we consider the following two possible cases.



(a) Let machine   M 1   have no idle time.



By summing Inequalities (7), we obtain the following inequality:


   ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 1     u  i 1   ≤  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 2     l  i 2   .  











Thus, the following relations hold:


   c 1   (  π ′  )  =  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 1     p  i 1   ≤  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 1     u  i 1   ≤  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 2     l  i 2   ≤  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 2     p  i 2   =  c 2   (  π  ″   )  .  











Hence, machine   M 2   is a main machine for the schedule   (  π ′  ,  π  ″   )  .



(b) Let machine   M 1   have an idle time.



An idle time of machine   M 1   is only possible if some job   J j   from set   J  2 , 1    is processed on machine   M 2   at the time moment   t 2   when this job   J j   could be processed on machine   M 1  .



Obviously, after the time moment    ∑   J i  ∈  J  2 , 1      p  i 2     when machine   M 2   completes all jobs from set   J  2 , 1   , machine   M 1   can process some jobs from set   J  2 , 1    without an idle time. Therefore, the inequality    t 2  +  I 1  ≤  ∑   J i  ∈  J  2 , 1      p  i 2     holds and we obtain the following relations:


   c 1   (  π ′  )  ≤  t 2  +  I 1  +  ∑   J i  ∈  J  2 , 1      p  i 1   ≤  ∑   J i  ∈  J  2 , 1      p  i 2   +  ∑   J i  ∈  J  2 , 1   ∪  J 1     p  i 1   ≤  ∑   J i  ∈  J  2 , 1      p  i 2   +  ∑   J i  ∈  J  2 , 1   ∪  J 1     u  i 1    










  ≤  ∑   J i  ∈  J  2 , 1      p  i 2   +  ∑   J i  ∈  J  1 , 2      l  i 2   ≤  ∑   J i  ∈  J  2 , 1      p  i 2   +  ∑   J i  ∈  J  1 , 2      p  i 2   ≤  ∑   J i  ∈  J  2 , 1   ∪  J 2  ∪  J  1 , 2      p  i 2   =  c 2   (  π  ″   )  .  











We conclude that, in case (b), machine   M 2   is a main machine for the schedule   (  π ′  ,  π  ″   )  . Thus, if the condition in Inequalities (7) holds, then machine   M 2   is a main machine for the schedule   (  π ′  ,  π  ″   )   and machine   M 2   has no idle time, i.e., equality    C  m a x    (  π ′  ,  π  ″   )  =  c 2   (  π  ″   )    holds and machine   M 2   is completely filled in the segment   [ 0 ,  c 2   (  π  ″   )  ]   with processing jobs from the set    J  1 , 2   ∪  J  2 , 1   ∪  J 2   .



Thus, the pair of permutations   (  π ′  ,  π  ″   )   is optimal for scenario   p ∈ T  . Since scenario p was chosen arbitrarily in the set T, we conclude that the pair of job permutations   (  π ′  ,  π  ″   )   is a singleton   D S  ( T )  = {  (  π ′  ,  π  ″   )  }   for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with set   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1     of the given jobs. As a pair of permutations   (  π ′  ,  π  ″   )   is an arbitrary pair of job permutations in the set S, any pair of job permutations   (  π ′  ,  π  ″   ) ∈ S   is a singleton   D S  ( T )  = {  (  π ′  ,  π  ″   )  }   for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1    .



The case when the condition in Inequalities (8) holds may be analyzed similarly via replacing machine   M 1   by machine   M 2   and vice versa. □





If conditions of Theorem 7 hold, then in the optimal pair of job permutations   (  π ′  ,  π  ″   )   existing for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    , the orders of jobs from sets    J  1 , 2   ⊆ J   and    J  2 , 1   ⊆ J   may be chosen arbitrarily. Theorem 7 implies the following two corollaries.



Corollary 3.

If the following inequality holds:


    ∑   J j  ∈  J  1 , 2      u  i 1   ≤  ∑   J j  ∈  J  2 , 1   ∪  J 2     l  i 2   ,   



(9)







then set   <  {  π  1 , 2   }  ,  S  2 , 1   > ⊆ S  , where   π  1 , 2    is an arbitrary permutation in set   S  1 , 2   , is a dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with set   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1     of the given jobs.





Proof. 

We consider an arbitrary vector   p ∈ T   of the job durations and an arbitrary permutation   π  1 , 2    in the set   S  1 , 2   . The set   S  2 , 1    contains at least one Johnson’s permutation   π  2 , 1  *   for the deterministic problem    F 2 |   p  2 , 1    |   C  m a x     with job set   J  2 , 1    and scenario   p  2 , 1    (the components of vector   p  2 , 1    are equal to the corresponding components of vector p). We consider a pair of job permutations   (  π ′  ,  π  ″   )    =  (  (  π  1 , 2   ,  π 1  ,  π  2 , 1  *  )  ,  (  π  2 , 1  *  ,  π 2  ,  π  1 , 2   )  )  ∈   <    {  π  1 , 2   }  ,  S  2 , 1     > ⊆ S   and show that it is an optimal pair of job permutations for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with job set  J  and scenario p. Without loss of generality, both permutations   π 1   and   π 2   are ordered in increasing order of the indexes of their jobs.



Similar to the proof of Theorem 7, one can show that, if the condition in Inequalities (9) holds, then machine   M 2   processes jobs without idle times and equality    c 2   (  π  ″   )  =  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 2     p  i 2     holds, where the value of    c 2   (  π  ″   )    cannot be reduced. If machine   M 1   has no idle time, we obtain equalities


   C  m a x    (  π ′  ,  π  ″   )  = max  {  c 1   (  π ′  )  ,  c 2   (  π  ″   )  }  = max  {  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 1     p  i 1   ,  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 2     p  i 2   }  =  C  m a x   .  











On the other hand, an idle time of machine   M 1   is only possible if some job   J j   from set   J  2 , 1    is processed on machine   M 2   at the time moment   t 2   when job   J j   could be processed on machine   M 1  . In such a case, the value of    c 1   (  π ′  )    is equal to the makespan    C  m a x    (  π  2 , 1  *  )    for the problem    F 2 |   p  2 , 1    |   C  m a x     with job set   J  2 , 1    and scenario   p  2 , 1   . As the permutation   π  2 , 1  *   is a Johnson’s permutation, the value of    C  m a x    (  π  2 , 1  *  )    cannot be reduced and we obtain the following equalities:


   C  m a x    (  π ′  ,  π  ″   )  = max  {  c 1   (  π ′  )  ,  c 2   (  π  ″   )  }  = max  {  C  m a x    (  π  2 , 1  *  )  ,  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 2     p  i 2   }  =  C  m a x   .  











Thus, the pair of job permutation    (  π ′  ,  π  ″   )  =  (  (  π  1 , 2   ,  π 1  ,  π  2 , 1  *  )  ,  (  π  2 , 1  *  ,  π 2  ,  π  1 , 2   )  )  ∈      <   {  π  1 , 2   }  ,  S  2 , 1   > ⊆ S   is optimal for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario   p ∈ T  . The optimal pair of job permutations for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario   p ∈ T   belongs to the set   <    {  π  1 , 2   }  ,  S  2 , 1   >  . As vector p is an arbitrary vector in the set T, the set   <  {  π  1 , 2   }  ,  S  2 , 1   >   contains an optimal pair of job permutations for all scenarios from set T. Due to Definition 4, the set   <  {  π  1 , 2   }  ,  S  2 , 1   > ⊆ S   is a dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J . □





Corollary 4.

Consider the following inequality:


    ∑   J j  ∈  J  2 , 1      u  i 2   ≤  ∑   J j  ∈  J  1 , 2   ∪  J 1     l  i 1   .   











If the above inequality holds, then set   <  S  1 , 2   ,  {  π  2 , 1   }  >  , where   π  2 , 1    is an arbitrary permutation in set   S  2 , 1   , is a dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with set   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1     of the given jobs.





This claim may be proven similar to Corollary 3. If the conditions of Corollary 3 (Corollary 4) hold, then the order for processing jobs from set    J  1 , 2   ⊆ J   (set    J  2 , 1   ⊆ J  , respectively) in the optimal schedule    (  π ′  ,  π  ″   )  =  ( (   π  1 , 2   ,  π 1  ,     π  2 , 1    ) ,  (  π  2 , 1   ,  π 2  ,  π  1 , 2   )  )    for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     may be arbitrary. Since the orders of jobs from the sets   J 1   and   J 2   are fixed in the optimal schedule (Remark 1), we need to determine only orders for processing jobs from set   J  2 , 1    (set   J  1 , 2   , respectively). To do this, we will consider two uncertain problems    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set    J  1 , 2   ⊆ J   and with the machine route   (  M 1  ,  M 2  )   and that with job set    J  2 , 1   ⊆ J   and with the opposite machine route   (  M 2  ,  M 1  )  .



Lemma 2.

If    S  1 , 2  ′  ⊆  S  1 , 2     is a set of permutations from the dominant set for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2   , then   <  S  1 , 2  ′  ,  S  2 , 1   > ⊆ S   is a dominant set for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1    .





The proof of Lemma 2 and those for other statements in this section are given in Appendix A.



Lemma 3.

Let    S  2 , 1  ′  ⊆  S  2 , 1     be a set of permutations from the dominant set for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  2 , 1   ,    S  2 , 1  ′  ⊆  S  2 , 1    . Then,   <  S  1 , 2   ,  S  2 , 1  ′  >   is a dominant set for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J .





The proof of this claim is similar to that for Lemma 2 (see Appendix A).



Theorem 8.

Let    S  1 , 2  ′  ⊆  S  1 , 2     be a set of permutations from the dominant set for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2   , and let    S  2 , 1  ′  ⊆  S  2 , 1     be a set of permutations from the dominant set for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  2 , 1   . Then,   <  S  1 , 2  ′  ,  S  2 , 1  ′  >    ⊆ S   is a dominant set for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1    .





Theorem 9.

Let a pair of identical permutations   (  π  1 , 2   ,  π  1 , 2   )   determine a single-element J-solution for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2   , and let a pair of identical permutations   (  π  2 , 1   ,  π  2 , 1   )   determine a single-element J-solution for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  2 , 1   . Then, the pairs of permutations   {  (  π  1 , 2   ,  π 1  ,  π  2 , 1   )  a n d  (  π  1 , 2   ,  π 2  ,  π  2 , 1   )  }   are a single-element dominant set   D S ( T )   for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1    .





The following claim follows directly from Theorem 9.



Corollary 5.

If the conditions of Theorem 9 hold, then there exists a single pair of job permutations, which is an optimal pair of job permutations for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with job set  J  and any scenario   p ∈ T  .





Theorem 9 implies also the following corollary proven in Appendix A.



Corollary 6.

If the conditions of Theorem 9 hold, then there exists a single pair of job permutations which is a J-solution for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1    .





Note that the criterion for a single-element J-solution for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     is given in Theorem 2.




5.2. Precedence Digraphs Determining a Minimal Dominant Set of Schedules


In Section 4.2, it is assumed that    J  1 , 2   =   J   1 , 2  1  ∪   J   1 , 2  2  ∪   J   1 , 2  *    and    J  2 , 1   =   J   2 , 1  1  ∪   J   2 , 1  2  ∪   J   2 , 1  *   , i.e.,     J   1 , 2  0  =   J   2 , 1  0  = ∅  . Based on the results presented in Section 4.2, we can determine a binary relation   A  ≺   1 , 2    for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2    and a binary relation   A  ≺   2 , 1    for this problem with job set   J  2 , 1   . For job set   J  1 , 2   , the binary relation   A  ≺   1 , 2    determines the digraph    G  1 , 2   =  (  J  1 , 2   ,  A  ≺   1 , 2   )    with the vertex set   J  1 , 2    and the arc set   A  ≺   1 , 2   . For job set   J  2 , 1   , the binary relation   A  ≺   2 , 1    determines the digraph    G  2 , 1   =  (  J  2 , 1   ,  A  ≺   2 , 1   )    with the vertex set   J  2 , 1    and the arc set   A  ≺   2 , 1   .



Let us consider the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2    and the corresponding digraph    G  1 , 2   =  (  J  1 , 2   ,  A  ≺   1 , 2   )    (the same results for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  2 , 1    can be derived in a similar way).



Definition 5.

Two jobs,    J x  ∈  J  1 , 2     and    J y  ∈  J  1 , 2    ,   x ≠ y  , are called conflict jobs if they are not in the relation   A  ≺   1 , 2   , i.e.,    (  J x  ,  J y  )  ∉  A  ≺   1 , 2     and    (  J y  ,  J x  )  ∉  A  ≺   1 , 2    .





Due to Definitions 2 and 3, for the conflict jobs    J x  ∈  J  1 , 2     and    J y  ∈  J  1 , 2    ,   x ≠ y  , Inequalities (4) and (5) do not hold either for the case   v = x   with   w = y   or for the case   v = y   with   w = x  .



Definition 6.

The subset    J x  ⊆  J  1 , 2     is called a conflict set of jobs if, for any job    J y  ∈  J  1 , 2   \  J x   , either relation    (  J x  ,  J y  )  ∈  A  ≺   1 , 2     or relation    (  J y  ,  J x  )  ∈  A  ≺   1 , 2     holds for each job    J x  ∈  J x    (provided that any proper subset of the set   J x   does not possess such a property).





From Definition 6, it follows that the conflict set   J x   is a minimal set (with respect to the inclusion). Obviously, there may exist several conflict sets in the set   J  1 , 2   . (A conflict set of the jobs    J x  ⊆  J  2 , 1     can be determined similarly.) Let the strict order   A  ≺   1 , 2    for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2    be represented as follows:


   J 1  ≺  J 2  ≺ … ≺  J k  ≺  {  J  k + 1   ,  J  k + 2   , … ,  J  k + r   }  ≺  J  k + r + 1   ≺  J  k + r + 2   ≺ … ≺  J  m  1 , 2    ,  



(10)




where all jobs between braces are conflict ones and each of these jobs is in relation   A  ≺   1 , 2    with any job located outside the brackets in Relation (10). In such a case, an optimal order for processing jobs from the set   {  J 1  ,  J 2  , … ,  J k  }   is determined as follows:   (  J 1  ,  J 2  , … ,  J k  )  .



Due to Theorem 5, we obtain that set   Π (  G  1 , 2   )   of the permutations generated by the digraph   G  1 , 2    contains an optimal Johnson’s permutation for each vector   p  1 , 2    of the durations of jobs from the set   J  1 , 2   . Thus, due to Definition 1, the singleton   {  (  π  1 , 2   ,  π  1 , 2   )  }  , where    π  1 , 2   ∈ Π  (  G  1 , 2   )   , is a J-solution for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2   . Analogously, the singleton   {  (  π  2 , 1   ,  π  2 , 1   )  }  , where    π  2 , 1   ∈ Π  (  G  2 , 1   )   , is a J-solution for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  2 , 1   . We can determine a dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J  as follows:   <   Π  (  G  1 , 2   )  , Π  (  G  2 , 1   )    >   ⊆ S  . The following theorems allow us to reduce a dominant set for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    . We use the following notation:    L 2  =  ∑   J i  ∈  J  2 , 1   ∪  J 2     l  i 2   .  



Theorem 10.

Let the strict order   A  ≺   1 , 2    over set    J  1 , 2   =  J  1 , 2  *  ∪  J  1 , 2  1  ∪  J  1 , 2  2    be determined as follows:    J 1  ≺ … ≺  J k  ≺  {  J  k + 1   ,  J  k + 2   , … ,  J  k + r   }  ≺  J  k + r + 1   ≺ … ≺  J  m  1 , 2     . Consider the following inequality:


    ∑  i = 1   k + r    u  i 1    ≤  L 2  +  ∑  i = 1  k   l  i 2   ,   



(11)







If the above inequality holds, then set    S ′  =   <  { π }  , Π  (  G  2 , 1   )  > ⊂ S   with   π ∈ Π (  G  1 , 2   )   is a dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J .





Proof. 

We consider an arbitrary vector   p ∈ T   of the job durations and an arbitrary permutation  π  from the set   Π (  G  1 , 2   )  . The set   Π (  G  2 , 1   )   contains at least one optimal Johnson’s permutation   π  2 , 1  *   for the problem    F 2 |   p  2 , 1    |   C  m a x     with job set   J  2 , 1    and vector   p  2 , 1    of the job durations (components of this vector are equal to the corresponding components of the vector p).



We consider a pair of job permutations    (  π ′  ,  π  ″   )   = (   ( π ,  π 1  ,  π  2 , 1  *  )  ,     (  π  2 , 1  *  ,  π 2  , π )   ) ∈     S ′    and show that it is an optimal pair of job permutations for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with set  J  of the jobs and scenario p. To this end, we show that the value of    C  m a x    (  π ′  ,  π  ″   )  = max  {  c 1   (  π ′  )  ,  c 2   (  π  ″   )  }    cannot be reduced. Indeed, an idle time for machine   M 1   is only possible if some job   J j   from the set   J  2 , 1    is processed on machine   M 2   at the same time when job   J j   could be processed on machine   M 1  . In such a case,    c 1   (  π ′  )    is equal to the makespan    C  m a x    (  π  2 , 1  *  )    for the problem    F 2 |   p  2 , 1    |   C  m a x     with job set   J  2 , 1    and vector   p  2 , 1    of the job durations. As permutation   π  2 , 1  *   is a Johnson’s permutation, the value of


   c 1   (  π ′  )  = max  {  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 1     p  i 1   ,  C  m a x    (  π  2 , 1  *  )  }   








cannot be reduced. In the beginning of the permutation  π , the jobs of set   {  J 1  ,  J 2  , … ,  J k  }   are arranged in the Johnson’s order. Thus, if machine   M 2   has an idle time while processing these jobs, this idle time cannot be reduced. From Inequality (11), it follows that machine   M 2   has no idle time while processing jobs from the conflict set.



In the end of the permutation  π , jobs of set   {  J  k + r + 1   , … ,  J  m  1 , 2    }   are arranged in Johnson’s order. Therefore, if machine   M 2   has an idle time while processing these jobs, this idle time cannot be reduced. Thus, the value of    c 2   (  π  ″   )    cannot be reduced by changing the order of jobs in the conflict set.



We obtain the qualities    C  m a x    (  π ′  ,  π  ″   )  = max  {  c 1   (  π ′  )  ,  c 2   (  π  ″   )  }  =  C  m a x   .   The pair of job permutations    (  π ′  ,  π  ″   )  =  (  ( π ,  π 1  ,  π  2 , 1  *  )  ,  (  π  2 , 1  *  ,  π 2  , π )  )    is optimal for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario   p ∈ T  . Thus, set    S ′  = <    { π }  , Π  (  G  2 , 1   )    >   contains an optimal pair of job permutations for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario   p ∈ T  . As vector p is an arbitrary vector in set T, set   S ′   contains an optimal pair of job permutations for each vector from set T. Due to Definition 4, set   S ′   is a dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J . □





Theorem 11.

Let the partial strict order   A  ≺   1 , 2    over set    J  1 , 2   =  J  1 , 2  *  ∪  J  1 , 2  1  ∪  J  1 , 2  2    be determined as follows:    J 1  ≺ … ≺  J k  ≺  {  J  k + 1   ,  J  k + 2   , … ,  J  k + r   }  ≺  J  k + r + 1   ≺ … ≺  J  m  1 , 2     . Consider the following inequality:


    u  k + s , 1   ≤  L 2  +  ∑  i = 1   k + s − 1    (  l  i 2   −  u  i 1   )    



(12)




If the above inequality holds for all   s ∈ { 1 , 2 , … , r } ,   then the set    S ′  = <  { π }  ,  S  2 , 1   >  , where   π = (  J 1  , … ,  J  k − 1   ,  J k  ,  J  k + 1   ,  J  k + 2   , … ,  J  k + r   ,     J  k + r + 1   , … ,  J  m  1 , 2     ) ∈ Π   (  G  1 , 2   )   , is a dominant set for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J .





Proof. 

We consider an arbitrary scenario   p ∈ T   and a pair of job permutations    (  π ′  ,  π  ″   )   = (   ( π ,  π 1  ,  π  2 , 1  *  )  ,      (  π  2 , 1  *  ,  π 2  , π )   ) ∈   S ′   , where    π  2 , 1  *  ∈  S  2 , 1     is a Johnson’s permutation of the jobs from the set   J  2 , 1    with vector   p  2 , 1    of the job durations (components of this vector are equal to the corresponding components of vector p). We next show that this pair of job permutations   (  π ′  ,  π  ″   )   is optimal for the individual deterministic problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario p, i.e.,    C  m a x    (  π ′  ,  π  ″   )  =  C  m a x    .



If conditions of Theorem 11 hold, then machine   M 2   processes jobs from the conflict set   {  J  k + 1   ,  J  k + 2   , … ,  J  k + r   }   without idle times. At the initial time   t = 0  , machine   M 1   begins to process jobs from the permutation  π  without idle times. Let a time moment   t 1   be as follows:    t 1  =  ∑  i = 1   k + 1    p  i 1   .   At the time moment   t 1  , job   J  k + 1    is ready for processing on machine   M 2  .



On the other hand, at the time   t = 0  , machine   M 2   begins to process jobs from the set    J  2 , 1   ∪  J 2    without idle times and then jobs from the permutation   (  J 1  ,  J 2  , … ,  J  k + 1   )  . Let   t 2   denote the first time moment when machine   M 2   is ready for processing job   J  k + 1   . Obviously, the following inequality holds:    t 2  ≥  L 2  +  ∑  i = 1   k + 1    p  i 2   .   From the condition in Inequality (12) with   s = 1  , we obtain inequality    ∑  i = 1   k + 1    u  i 1   ≤  L 2  +  ∑  i = 1  k   l  i 2   .  



Therefore, the following relations hold:


   t 1  =  ∑  i = 1   k + 1    p  i 1   ≤  ∑  i = 1   k + 1    u  i 1   ≤  L 2  +  ∑  i = 1  k   l  i 2   ≤  L 2  +  ∑  i = 1   k + 1    p  i 2   =  t 2  .  











Machine   M 2   processes job   J  k + 1    without an idle time between job   J k   and job   J  k + 1   .



Analogously, using   s ∈ { 2 , 3 , … , r }  , one can show that machine   M 2   processes jobs from the conflict set   {  J  k + 1   ,  J  k + 2   , … ,  J  k + r   }   without idle times between jobs   J  k + 1    and   J  k + 2   , between jobs   J  k + 2    and   J  k + 3   , and so on to between jobs   J  k + r − 1    and   J  k + r   . To end this proof, we have to show that the value of    C  m a x    (  π ′  ,  π  ″   )  = max  {  c 1   (  π ′  )  ,  c 2   (  π  ″   )  }    cannot be reduced.



An idle time for machine   M 1   is only possible between some jobs from the set   J  2 , 1   . However, the permutation   π  2 , 1  *   is a Johnson’s permutation of the jobs from the set   J  2 , 1    for the vector   p  2 , 1    of the job durations. Therefore, the value of    c 1   (  π ′  )    cannot be reduced. On the other hand, in the permutation  π , all jobs    J 1  ,  J 2  , … ,  J k    and all jobs    J  k + r + 1   , … ,  J  m  1 , 2      are arranged in Johnson’s orders. Therefore, if machine   M 2   has an idle time while processing these jobs, this idle time cannot be reduced. It is clear that machine   M 2   has no idle time while processing jobs from the conflict set. Thus, the value of    c 2   (  π  ″   )    cannot be reduced by changing the order of jobs from the conflict set. We obtain the equalities    C  m a x    (  π ′  ,  π  ″   )  = max  {  c 1   (  π ′  )  ,  c 2   (  π  ″   )  }  =  C  m a x   .  



It is shown that the pair of job permutations    (  π ′  ,  π  ″   )  =  (  ( π ,  π 1  ,  π  2 , 1  *  )  ,  (  π  2 , 1  *  ,  π 2  , π )  )  ∈     S ′    is optimal for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with vector   p ∈ T   of job durations. As vector p is an arbitrary one in set T, the set   S ′   contains an optimal pair of job permutations for each scenario from set T. Due to Definition 4, the set   S ′   is a dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J . □





The proof of the following theorem is given in Appendix A.



Theorem 12.

Let the partial strict order   A  ≺   1 , 2    over set    J  1 , 2   =  J  1 , 2  *  ∪   J   1 , 2  1  ∪   J   1 , 2  2    have the form    J 1  ≺ … ≺  J k  ≺  {  J  k + 1   ,  J  k + 2   , … ,  J  k + r   }  ≺  J  k + r + 1   ≺ … ≺  J  m  1 , 2     . If inequalities


    ∑  i = r − s + 2   r + 1    l  k + i , 1   ≥  ∑  j = r − s + 1  r   u  k + j , 2     



(13)




hold for all indexes   s ∈ { 1 , 2 , … , r }  , then the set    S ′  =   <  { π }  ,  S  2 , 1   >  , where   π = (  J 1  , … ,  J  k − 1   ,  J k  ,     J  k + 1   ,  J  k + 2   , … ,  J  k + r   ,  J  k + r + 1   , … ,  J  m  1 , 2     ) ∈ Π   (  G  1 , 2   )   , is a dominant set of pairs of permutations for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J .





Similarly, one can prove sufficient conditions for the existence of an optimal job permutation for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  2 , 1   , when the partial strict order   A  ≺   2 , 1    on the set    J  2 , 1   =  J  2 , 1  *  ∪  J  2 , 1  1  ∪  J  2 , 1  2    has the following form:    J 1  ≺ … ≺  J k  ≺  {  J  k + 1   ,  J  k + 2   , … ,  J  k + r   }  ≺  J  k + r + 1   ≺ … ≺  J  m  2 , 1     .



To apply Theorems 11 and 12, one can construct a job permutation that satisfies the strict order   A  ≺   1 , 2   . Then, one can check the conditions of Theorems 11 and 12 for the constructed permutation. If the set of jobs   {  J 1  ,  J 2  , … ,  J k  }   is empty in the constructed permutation, one needs to check conditions of Theorem 12. If the set of jobs   {  J  k + r + 1   , … ,  J  m  1 , 2    }   is empty, one needs to check the conditions of Theorem 11. It is needed to construct only one permutation to check Theorem 11 and only one permutation to check Theorem 12.




5.3. Two Illustrative Examples


Example 1.

We consider the uncertain job-shop scheduling problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with lower and upper bounds of the job durations given in Table 1.





These bounds determine the set T of possible scenarios. In Example 1, jobs   J 1  ,   J 2  , and   J 3   have the machine route   (  M 1  ,  M 2  )  ; jobs   J 6  ,   J 7  , and   J 8   have the machine route   (  M 2  ,  M 1  )  ; and job   J 4   (job   J 5  , respectively) has to be processed only on machine   M 1   (on machine   M 2  , respectively). Thus,    J  1 , 2   =  {  J 1  ,  J 2  ,  J 3  }   ,    J  2 , 1   =  {  J 6  ,  J 7  ,  J 8  }   ,    J 1  =  {  J 4  }   ,    J 2  =  {  J 5  }   .



We check the conditions of Theorem 7 for a single pair of job permutations, which is optimal for all scenarios T. For the given jobs, the condition in Inequalities (7) of Theorem 7 holds due to the following relations:



    ∑   J i  ∈  J  1 , 2      u  i 1   =  u  1 , 1   +  u  2 , 1   +  u  3 , 1   = 7 + 9 + 9 = 25 ≤  ∑   J i  ∈  J  2 , 1   ∪  J 2     l  i 2   =  l  6 , 2   +  l  7 , 2   +  l  8 , 2   +  l  5 , 2   = 3 + 3 + 3 + 16 = 25 ;   



    ∑   J i  ∈  J  1 , 2      l  i 2   =  l  1 , 2   +  l  2 , 2   +  l  3 , 2   = 6 + 5 + 5 = 16 ≥  ∑   J i  ∈  J  2 , 1   ∪  J 1     u  i 1   =  u  6 , 1   +  u  7 , 1   +  u  8 , 1   +  u  4 , 1   = 3 + 3 + 3 + 3 = 12 .   



Due to Theorem 7, the order of jobs from the set    J  1 , 2   =  {  J 1  ,  J 2  ,  J 3  }    and the order of jobs from the set    J  2 , 1   =  {  J 6  ,  J 7  ,  J 8  }    may be arbitrary in the optimal pair of job permutations for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     under consideration. Thus, any pair of job permutations   (  π ′  ,  π  ″   ) ∈ S   is a single-element dominant set   D S  ( T )  = {  (  π ′  ,  π  ″   )  }   for Example 1.



Example 2.

Let us now consider the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with numerical input data given in Table 1 with the following two exceptions:    l  5 , 2   = 2   and    u  5 , 2   = 3  .





We check the condition in Inequalities (7) of Theorem 7 and obtain


      ∑   J i  ∈  J  1 , 2      u  i 1   =  u  1 , 1   +  u  2 , 1   +  u  3 , 1   = 7 + 9 + 9 = 25 ≰  ∑   J i  ∈  J  2 , 1   ∪  J 2     l  i 2   =  l  6 , 2   +  l  7 , 2   +  l  8 , 2   +  l  5 , 2   = 3 + 3 + 3 + 2 = 11 .     



(14)







Thus, the condition of Inequalities (7) does not hold for Example 2. We check the condition of Inequalities (8) of Theorem 7 and obtain


      ∑   J i  ∈  J  2 , 1      u  i 2   =  u  6 , 2   +  u  7 , 2   +  u  8 , 2   = 4 + 4 + 4 = 12 ≤  ∑   J i  ∈  J  1 , 2   ∪  J 1     l  i 1   =  l  1 , 1   +  l  2 , 1   +  l  3 , 1   +  l  4 , 1   = 6 + 8 + 7 + 2 = 23 .     



(15)







However, we see that the condition of Equation (8) does not hold:



    ∑   J i  ∈  J  2 , 1      l  i 1   =  l  6 , 1   +  l  7 , 1   +  l  8 , 1   = 1 + 1 + 1 = 3 ≱  ∑   J i  ∈  J  1 , 2   ∪  J 2     u  i 2   =  u  1 , 2   +  u  2 , 2   +  u  3 , 2   +  u  5 , 2   = 7 + 6 + 6 + 3 = 22 .   



From Equation (14), it follows that the condition of Inequalities (9) of Corollary 3 does not hold. On the other hand, due to Equation (15), conditions of Corollary 4 hold. Thus, the order for processing jobs from set    J  2 , 1   ⊆ J   in the optimal schedule    (  π ′  ,  π  ″   )  =  ( (   π  1 , 2   ,  π 1  ,     π  2 , 1    ) ,  (  π  2 , 1   ,  π 2  ,  π  1 , 2   )  )    for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     may be arbitrary. One can fix permutation   π  2 , 1    with the increasing order of the indexes of their jobs:    π  2 , 1   =  (  J 6  ,  J 7  ,  J 8  )   . Since the orders of jobs from the sets   J 1   and   J 2   are fixed in the optimal schedule (Remark 1), i.e.,    π 1  =  (  J 4  )    and    π 2  =  (  J 5  )   , we need to determine the order for processing jobs in set   J  1 , 2   . To this end, we consider the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2   . We see that conditions of Theorem 2 do not hold for the jobs in set   J  1 , 2    since    J 1  ∈  J  1 , 2  *   ,    J 2  ∈  J  1 , 2  2   , and    J 3  ∈  J  1 , 2  2   ; however the following inequalities hold:    u  2 , 2   >  l  3 , 2     and    u  3 , 2   >  l  2 , 2    .



We next construct the binary relation   A  ≺   1 , 2    over set   J  1 , 2    based on Definition 3 and Theorem 1. Due to checking Inequalities (4) and (5), we conclude that the inequality in Equation (5) holds for the pair of jobs   J 1   and   J 2  . We obtain the relation    J 1  ≺  J 2   . Analogously, we obtain the relation    J 1  ≺  J 3   . For the pair of jobs   J 2   and   J 3  , neither Inequality (4) nor Inequality (5) hold. Therefore, the partial strict order   A  ≺   1 , 2    over set   J  1 , 2    has the following form:    J 1  ≺  {  J 2  ,  J 3  }   . The job set   {  J 2  ,  J 3  }   is a conflict set of these jobs (Definition 6).



Let us check whether the sufficient conditions given in Section 5.2 hold.



We check the conditions of Theorem 10 for the jobs from set   J  1 , 2   . For   k = 1   and   r = 2  , we obtain the following equalities:    L 2  =  ∑   J i  ∈  J  2 , 1   ∪  J 2     l  i 2   =  l  6 , 2   +  l  7 , 2   +  l  8 , 2   +  l  5 , 2   = 3 + 3 + 3 + 2 = 11 .   The condition of Theorem 10 does not hold since the following relations hold:


   ∑  i = 1   k + r    u  i 1   =  u  1 , 1   +  u  2 , 1   +  u  3 , 1   = 7 + 9 + 9 = 25 ≰  L 2  +  ∑  i = 1  k   l  i 2   =  L 2  +  l  1 , 2   = 11 + 6 = 17 .  











For checking the conditions of Theorem 11, we need to check both permutations of the jobs from set   J  1 , 2   , which satisfy the partial strict order   A  ≺   1 , 2   :   Π  (  G  1 , 2   )  =  {  π  1 , 2  1  ,  π  1 , 2  2  }   , where    π  1 , 2  1  =  {  J 1  ,  J 2  ,  J 3  }    and    π  1 , 2  2  =  {  J 1  ,  J 3  ,  J 2  }   .



We consider permutation   π  1 , 2  1  . As in the previous case,    L 2  = 11  ,   k = 1  ,   r = 2  , and we must consider two inequalities in the condition in Equaiton (12) with   s = 1   and   s = 2  . For   s = 1  , we obtain the following:


   u  1 + 1 , 1   =  u  2 , 1   = 9 ≤  L 2  +  ∑  i = 1   1 + 1 − 1    (  l  i 2   −  u  i 1   )  =  L 2  +  ∑  i = 1  1   (  l  i 2   −  u  i 1   )  = 11 +  (  l  1 , 2   −  u  1 , 1   )  = 11 +  ( 6 − 7 )  = 10 .  











However, for   s = 2  , we obtain


   u  1 + 2 , 1   =  u  3 , 1   = 9 ≰  L 2  +  ∑  i = 1   1 + 2 − 1    (  l  i 2   −  u  i 1   )  =  L 2  +  ∑  i = 1  2   (  l  i 2   −  u  i 1   )   










  = 11 +  (  l  1 , 2   −  u  1 , 1   )  +  (  l  2 , 2   −  u  2 , 1   )  = 11 +  ( 6 − 7 )  +  ( 5 − 9 )  = 6 .  











Thus, the conditions of Theorem 11 do not hold for permutation   π  1 , 2  1  .



We consider permutation   π  1 , 2  2  , where    J  k + 1   =  J 3    and    J  k + 2   =  J 2   . Again, we must test the two inequalities in Equation (12), where either   s = 1   or   s = 2  . For   s = 1  , we obtain


   u  k + 1 , 1   =  u  3 , 1   = 9 ≤  L 2  +  ∑  i = 1   k + 1 − 1    (  l  i 2   −  u  i 1   )  =  L 2  +  ∑  i = 1  1   (  l  i 2   −  u  i 1   )  = 11 +  (  l  1 , 2   −  u  1 , 1   )  = 11 +  ( 6 − 7 )  = 10 .  











However, for   s = 2  , we obtain


   u  k + 2 , 1   =  u  2 , 1   = 9 ≰  L 2  +  ∑  i = 1   k + 2 − 1    (  l  i 2   −  u  i 1   )  =  L 2  +  ∑  i = 1   k + 1    (  l  i 2   −  u  i 1   )  = 11 +  (  l  1 , 2   −  u  1 , 1   )  +  (  l  3 , 2   −  u  3 , 1   )   










  = 11 + ( 6 − 7 ) + ( 5 − 9 ) = 6 .  











Thus, the conditions of Theorem 11 do not hold for permutation   π  1 , 2  2  .



Note that we do not check the conditions of Theorem 12 since the conflict set of jobs   {  J 2  ,  J 3  }   is located at the end of the partial strict order   A  ≺   1 , 2   . We conclude that none of the proven sufficient conditions are satisfied for a schedule optimality. Thus, there does not exist a pair of permutations of the jobs in set   J =  J  1 , 2   ∪  J  2 , 1   ∪  J 1  ∪  J 2    which is optimal for any scenario   p ∈ T  . The J-solution   S ( T )   for Example 2 consists of the following two pairs of job permutations:    {  (  π 1 ′  ,  π 1  ″   )  ,  (  π 2 ′  ,  π 2  ″   )  }  = S  ( T )   , where


   π 1 ′  =  (  π  1 , 2  1  ,  π 1  ,  π  2 , 1   )  =  (  J 1  ,  J 2  ,  J 3  ,  J 4  ,  J 6  ,  J 7  ,  J 8  )  ,        π 1  ″   =  (  π  2 , 1   ,  π 2  ,  π  1 , 2  1  )  =  (  J 6  ,  J 7  ,  J 8  ,  J 5  ,  J 1  ,  J 2  ,  J 3  )  ,  










   π 2 ′  =  (  π  1 , 2  2  ,  π 1  ,  π  2 , 1   )  =  (  J 1  ,  J 3  ,  J 2  ,  J 4  ,  J 6  ,  J 7  ,  J 8  )  ,        π 2  ″   =  (  π  2 , 1   ,  π 2  ,  π  1 , 2  2  )  =  (  J 6  ,  J 7  ,  J 8  ,  J 5  ,  J 1  ,  J 3  ,  J 2  )  .  











We next show that none of these two pairs of job permutations is optimal for all scenarios   p ∈ T   using the following two scenarios:    p ′  =  ( 7 , 6 , 9 , 5 , 9 , 6 , 2 , 0 , 0 , 2 , 1 , 3 , 1 , 3 , 1 , 3 )  ∈ T   and    p  ″   =  ( 7 , 6 , 9 , 6 , 9 , 5 , 2 , 0 , 0 , 2 , 1 , 3 , 1 , 3 , 1 , 3 )  ∈ T .   For scenario   p ′  , only pair of permutations   (  π 2 ′  ,  π 2  ″   )   is optimal with    C max   (  π 2 ′  ,  π 2  ″   )  = 30   since    C max   (  π 1 ′  ,  π 1  ″   )  = 31 > 30  . On the other hand, for scenario   p  ″   , only the pair of permutations   (  π 1 ′  ,  π 1  ″   )   is optimal with    C max   (  π 1 ′  ,  π 1  ″   )  = 30   since    C max   (  π 2 ′  ,  π 2  ″   )  = 31 > 30  .



Note that the whole set S of the semi-active schedules has the cardinality    | S |  =  m  1 , 2   ! ·  m  2 , 1   ! = 3 ! · 3 ! = 6 · 6 = 36  . Thus, for solving Example 2, one needs to consider only two pairs of job permutations    {  (  π 1 ′  ,  π 1  ″   )  ,  (  π 2 ′  ,  π 2  ″   )  }  = S  ( T )  ⊂ S   instead of 36 semi-active schedules.




5.4. An Algorithm for Checking Conditions for the Existence of a Single-Element Dominant Set


We describe Algorithm 1 for checking the existence of an optimal permutation for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2    if the partial strict order   A  ≺   1 , 2    on the set   J  1 , 2    has the following form:    J 1  ≺ … ≺  J k  ≺  {  J  k + 1   ,  J  k + 2   , … ,  J  k + r   }  ≺  J  k + r + 1   ≺ … ≺  J  m  1 , 2     . Algorithm 1 considers a set of conflict jobs and checks whether the sufficient conditions given in Section 5.2 hold. For a conflict set of jobs, it is needed to construct two permutations and to check the condition in Inequality (12) for the first permutation and the condition in Inequality (13) for the second one. If at least one of these conditions holds, Algorithm 1 constructs a permutation which is optimal for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with any scenario   p ∈ T  .



Obviously, testing the conditions of Theorems 11 and 12 takes   O ( r )  , where the conflict set contains r jobs. The construction of the permutation of r jobs takes   O ( r log r )  . Therefore, the total complexity of Algorithm 1 is   O ( r log r )  .



Remark 3.

If Algorithm 1 is completed at Step 7 (STOP 1), we suggest to consider a set of conflict jobs   {  J  k + 1   ,  J  k + 2   , … ,  J  k + r   }   and construct a Johnson’s permutation for the deterministic problem    F 2 |   p ′   |   C  m a x     with job set     J  ′  =  {  J  k + 1   ,  J  k + 2   , …  J  k + r   }   , where vector    p ′  =  (  p   k + 1  , 1  ′  ,  p   k + 1  , 2  ′  , …  p   k + r  , 1  ′  ,  p   k + r  , 2  ′  )    of the durations of conflict jobs   {  J  k + 1   ,  J  k + 2   , …  J  k + r   }   is calculated for each operation   O  i j    of the conflict job    J i  ∈  {  J  k + 1   ,  J  k + 2   , …  J  k + r   }    on the corresponding machine    M j  ∈ M   as folows:


    p  i j  ′  =  (  u  i j   +  l  i j   )  / 2   



(16)









Theorem 11 and Theorem 12 imply the following claim.



Corollary 7.

Algorithm 1 constructs a permutation   π *   either satisfying conditions of Theorem 11 or Theorem 12 (such permutation   π *   is optimal for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2    and any scenario   p ∈ T  ) or establishes that an optimal job permutation for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with any scenario   p ∈ T   does not exist.





The set of jobs   J  2 , 1    for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J =  J  2 , 1     can be tested similarly to the set of jobs   J  1 , 2   .






	Algorithm 1: Checking conditions for the existence of a single-element dominant set of schedules for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x    



	
	Input: 

	
Segments   [  l  i j   ,  u  i j   ]   for all jobs    J i  ∈ J   and machines    M j  ∈ M  ,



a partial strict order   A  ≺   1 , 2    on the set    J  1 , 2   =  J  1 , 2  *  ∪  J  1 , 2  1  ∪  J  1 , 2  2    in the form



   J 1  ≺ … ≺  J k  ≺    {  J  k + 1   ,  J  k + 2   , … ,     J  k + r    } ≺      J  k + r + 1   ≺ … ≺  J  m  1 , 2     .




	Output: 

	
EITHER an optimal job permutation for the problem



      F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2    and any scenario   p ∈ T  , (see STOP 0)



OR there no permutation   π  1 , 2    of jobs from set   J  1 , 2   , which is optimal



   for all scenarios   p ∈ T  , (see STOP 1).




	Step 1:

	
Set    δ s  =  l  k + s , 2   −  u  k + s , 1     for all   s ∈ { 1 , 2 , … , r }  



  construct a partition of the set of conflicting jobs into two subsets   X 1   and   X 2  ,



  where    J  k + s   ∈  X 1    if    δ s  ≥ 0  , and    J  k + s   ∈  X 2   , otherwise.




	Step 2:

	
Construct a permutation    π 1  =  (  J 1  ,  J 2  , … ,  J k  ,  π 1  ,  π 2  ,  J  k + r + 1   , … ,  J  m  1 , 2    )   , where the permutation



    π 1   contains jobs from the set   X 1   in the non-decreasing order of the values   u  k + i , 1    and the



  permutation   π 2   contains jobs from the set   X 2   in the non-increasing order of the values



    l  k + i , 2   , renumber jobs in the permutations   π 1   and   π 2   based on their orders.




	Step 3:

	
IF for the permutation   π 1   conditions of Theorem 11 hold THEN GOTO step 8.




	Step 4:

	
Set    δ s  =  l  k + s , 1   −  u  k + s , 2     for all   s ∈ { 1 , 2 , … , r }  



  construct a partition of the set of conflicting jobs into two subsets



    Y 1   and   Y 2  , where    J  k + s   ∈  Y 1    if    δ s  ≥   0, and    J  k + s   ∈  Y 2   , otherwise.




	Step 5:

	
Construct a permutation    π 2  =  (  J 1  ,  J 2  , … ,  J k  ,  π 2  ,  π 1  ,  J  k + r + 1   , … ,  J  m  1 , 2    )   , where the permutation



    π 1   contains jobs from the set   Y 1   in the non-increasing order of the values   u  k + i , 2   , and the



  permutation   π 2   contains jobs from the set   Y 2   in the non-decreasing order of the



  values   l  k + i , 1   , renumber jobs in the permutations   π 1   and   π 2   based on their orders.




	Step 6:

	
IF for the permutation   π 2   conditions of Theorem 12 hold THEN GOTO step 9.




	Step 7:

	
ELSE there is no a single dominant permutation for problem



     F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2    and any scenario   p ∈ T   STOP 1.




	Step 8:

	
RETURN permutation    π 1  ,   which is a single dominant permutation



  for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2    STOP 0.




	Step 9:

	
RETURN permutation    π 2  ,   which is a single dominant permutation



  for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2    STOP 0.
















6. Algorithms for Constructing a Small Dominant Set of Schedules for the Problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    


In this section, we describe Algorithm 2 for constructing a small dominant set   D S ( T )   of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    . Algorithm 2 is developed for use at the off-line phase of scheduling (before processing any job from the set  J ). Based on the initial data, Algorithm 2 checks the conditions of Theorem 7 for a single optimal pair of job permutations for the uncertain problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    . If the sufficient conditions of Theorem 7 do not hold, Algorithm 2 proceeds to consider the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2    and the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  2 , 1   . For each of these problems, the conditions of Theorem 2 are checked. If these conditions do not hold, then strict orders of the jobs  J  based on Inequalities (4) and (5) are constructed. In this general case, Algorithm 2 constructs a partial strict order   A  ≺   1 , 2    of the jobs from set   J  1 , 2    and a partial strict order   A  ≺   2 , 1    of the jobs from set   J  2 , 1   . Each of these partial orders may contain one or several conflict sets of jobs. For each such conflict set of jobs, Algorithm 2 checks whether the sufficient conditions given in Section 5.2 hold. Thus, if some sufficient conditions for a schedule optimality presented in Section 4 and Section 5 are satisfied, then there exists a pair of permutations of jobs from set  J  which is optimal for any scenario   p ∈ T  . Algorithm 2 constructs such a pair of job permutations    {  (  π ′  ,  π  ″   )  }  = D S  ( T )   . Otherwise, the precedence digraphs determining a minimal dominant set   D S ( T )   of schedules is constructed by Algorithm 2. The more job pairs are involved in the binary relations   A  ≺   1 , 2    and   A  ≺   2 , 1   , the more job permutations will be deleted from set S while constructing a J-solution   S ( T ) ⊆ S   for the problems    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job sets   J  1 , 2    and   J  2 , 1   .






	Algorithm 2: Construction of a small dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    



	
	Input: 

	
Lower bounds   l  i j    and upper bounds   u  i j   ,   0 <  l  i j   ≤  u  i j    , of the durations



of all operations   O  i j    of jobs    J i  ∈ J   processed on machines    M j  ∈ M =  {  M 1  ,  M 2  }   .




	Output: 

	
EITHER pair of permutations    (  π ′  ,  π  ″   )  =  (  (  π  1 , 2   ,  π 1  ,  π  2 , 1   )  ,  (  π  2 , 1   ,  π 2  ,  π  1 , 2   )  )   ,



   where   π ′   is a permutation of jobs from set    J  1 , 2   ∪  J 1  ∪  J  2 , 1     on machine



     M 1  ,   π  ″    is a permutation of jobs from set    J  1 , 2   ∪  J 2  ∪  J  2 , 1     on machine   M 2  ,



   such that    {  (  π ′  ,  π  ′ ′   )  }  = D S  ( T )   , (see STOP 0),



OR permutation   π  2 , 1    of jobs from set   J  2 , 1    on machines   M 1   and   M 2   and



   a partial strict order   A  ≺   1 , 2    of jobs from set   J  1 , 2   ,



OR permutation   π  1 , 2    of jobs from set   J  1 , 2    on machines   M 1   and   M 2   and



   a partial strict order   A  ≺   2 , 1    of jobs from set   J  2 , 1   ,



OR a partial strict order   A  ≺   1 , 2    of jobs from set   J  1 , 2    and



   a partial strict order   A  ≺   2 , 1    of jobs from set   J  2 , 1   , (see STOP 1).




	Step 1:

	
Determine a partition   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1     of the job set  J ,



  permutation   π 1   of jobs from set   J 1   and permutation   π 2   of jobs from



  set   J 2  , arrange the jobs in the increasing order of their indexes.




	Step 2:

	
IF the first inequality in condition (7) of Theorem 7 holds THEN BEGIN



  Construct a permutation   π  1 , 2    of jobs from set   J  1 , 2   ,



    arrange them in the increasing order of their indexes;



  IF the second inequality in condition (7) of Theorem 7 holds



    THEN construct a permutation   π  2 , 1    of jobs from set   J  2 , 1   ,



    arrange them in the increasing order of their indexes GOTO Step 10 END




	Step 3:

	
IF the first inequality in condition (8) of Theorem 7 holds THEN BEGIN



  Construct a permutation   π  2 , 1    of jobs from set   J  2 , 1   ,



    arrange them in the increasing order of their indexes;



  IF the second inequality in condition (8) of Theorem 7 holds THEN



    construct a permutation   π  1 , 2    of jobs from set   J  1 , 2   ,



    arrange the jobs in the increasing order of their indexes END




	Step 4:

	
IF both permutations   π  1 , 2    and   π  2 , 1    are constructed THEN GOTO Step 10.




	Step 5:

	
IF permutation   π  1 , 2    is not constructed THEN fulfill Algorithm 3.




	Step 6:

	
IF permutation   π  2 , 1    is not constructed THEN fulfill Algorithm 4.




	Step 7:

	
IF both permutations   π  1 , 2    and   π  2 , 1    are constructed THEN GOTO Step 10.




	Step 8:

	
IF permutation   π  2 , 1    is constructed THEN GOTO Step 11.




	Step 9:

	
IF permutation   π  1 , 2    is constructed THEN GOTO Step 12 ELSE GOTO Step 13.




	Step 10:

	
RETURN pair of permutations   (  π ′  ,  π  ″   )  , where   π ′   is the permutation



  of jobs from set    J  1 , 2   ∪  J 1  ∪  J  2 , 1     processed on machine   M 1   and   π  ″    is



  the permutation of jobs from set    J  1 , 2   ∪  J 2  ∪  J  2 , 1     processed



  on machine   M 2   such that    {  (  π ′  ,  π  ′ ′   )  }  = D S  ( T )    STOP 0.




	Step 11:

	
RETURN the permutation   π  2 , 1    of jobs from set   J  2 , 1    processed on machines   M 1   and   M 2  ,



  the partial strict order   A  ≺   1 , 2    of jobs from set   J  1 , 2    GOTO Step 14.




	Step 12:

	
RETURN the permutation   π  1 , 2    of jobs from set   J  1 , 2    processed on machines   M 1   and   M 2  ,



  the partial strict order   A  ≺   2 , 1    of jobs from set   J  2 , 1    GOTO Step 14.




	Step 13:

	
RETURN the partial strict order   A  ≺   1 , 2    of jobs from set   J  1 , 2   



  and the partial strict order   A  ≺   2 , 1    of jobs from set   J  2 , 1   




	Step 14:

	
STOP 1.














Algorithm 2 may be applied for solving the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     exactly or approximately as follows. If at least one of the sufficient conditions proven in Section 5.1 hold, then Algorithm 2 constructs a pair of job permutations    (  π ′  ,  π  ″   )  =  (  (  π  1 , 2   ,  π 1  ,  π  2 , 1   )  ,  (  π  2 , 1   ,  π 2  ,  π  1 , 2   )  )   , which is optimal for any scenario   p ∈ T   (Step 10).



It may happen that the constructed strict order on the set   J  1 , 2    or on the set   J  2 , 1    is not a linear strict order. If for at least one of the sets   J  1 , 2    or   J  2 , 1   , the constructed partial strict order is not a linear one, a heuristic solution for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     is constructed similar to that for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     solved by Algorithm 1 (see Section 5.4). If Algorithm 2 is completed at Steps 11-13 (STOP 1), we consider a set of conflict jobs   {  J  k + 1   ,  J  k + 2   , … ,  J  k + r   }   and construct a Jackson’s pair of job permutation for the deterministic problem    J 2 |   p ′  ,  n i   ≤ 2 |   C  m a x     with job set   J = {  J  k + 1   ,  J  k + 2   , …  J  k + r   }  , where the vector    p ′  =  (  p   k + 1  , 1  ′  ,  p   k + 1  , 2  ′  , …  p   k + r  , 1  ′  ,  p   k + r  , 2  ′  )    of the durations of conflict jobs   {  J  k + 1   ,  J  k + 2   , …  J  k + r   }   is calculated using the equality of Equation (16) for each operation   O  i j    of the conflict job    J i  ∈  {  J  k + 1   ,  J  k + 2   , …  J  k + r   }    on the corresponding machine    M j  ∈ M   (Remark 3).






	Algorithm 3: Construction of a strict order   A  ≺   1 , 2    on the set   J  1 , 2   



	
	Input: 

	
Lower bounds   l  i j    and upper bounds   u  i j   ,   0 <  l  i j   ≤  u  i j    , of the durations



of all operations   O  i j    of jobs    J i  ∈ J   on machines    M j  ∈ M =  {  M 1  ,  M 2  }   .




	Output: 

	
EITHER permutation   π  1 , 2   , which is optimal for the problem



     F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with any scenario   p ∈ T   for the jobs   J  1 , 2   ,



OR partial strict order   A  ≺   1 , 2    on the set   J  1 , 2   .




	Step 1:

	
Construct a partition    J  1 , 2   =  J  1 , 2  1  ∪  J  1 , 2  2  ∪  J  1 , 2  *    of the set   J  1 , 2    of the jobs.




	Step 2:

	
IF conditions of Theorem 2 hold THEN




	Step 3:

	
Construct permutation    π  1 , 2   =  (  π  1 , 2  1  ,  J  1 , 2  *  ,  π  1 , 2  2  )   , where   π  1 , 2  1   is a permutation for



    processing jobs from the set   J  1 , 2  1   in the non-decreasing order of the values   u  i 1   ,



      π  1 , 2  2   is a permutation for processing jobs from the set   J  1 , 2  2  



    in the non-increasing order of the values   u  i 2   GOTO Step 7 ELSE




	Step 4:

	
FOR each pair of jobs    J v  ∈  J  1 , 2     and    J w  ∈  J  1 , 2    ,   v ≠ w  , DO



    IF at least one of two conditions (4) and (5) holds THEN



    determine the relation    J v  ≺  J w   



END FOR




	Step 5:

	
Renumber jobs in the set   J  1 , 2    such that relation   v < w   holds if    J v  ≺  J w   .




	Step 6:

	
FOR each conflict set of jobs DO



    IF condition of Theorem 10 holds THEN



    Order jobs in the conflict set in the increasing order of their indexes GOTO Step 7



    ELSE fulfill Algorithm 1



END FOR




	Step 7:

	
IF the partial strict order   A  ≺   1 , 2    is linear THEN



    construct a permutation   π  1 , 2    generated by the linear order   A  ≺   1 , 2   



STOP.














Algorithm 4 is obtained from the above Algorithm 3 by replacing the set   J  1 , 2    of jobs by the set   J  2 , 1    of jobs, machine   M 1   by machine   M 2  , and vice versa. Obviously, testing the conditions of Theorems 11 and 12 takes   O ( r )  , where conflict set contains r jobs. Construction of permutation of r jobs takes   O ( r log r )  . Therefore, the total complexity of Algorithm 1 is   O ( r log r )  .



Testing the conditions of Theorem 2 takes   O (  m  1 , 2   log  m  1 , 2   )   time. A strict order   A  ≺   1 , 2    on the set   J  1 , 2    is constructed by comparing no more than    m  1 , 2    (  m  1 , 2   − 1 )    pairs of jobs in the set   J  1 , 2   . Thus, it takes   O (  m  1 , 2    (  m  1 , 2   − 1 )  )   time. The complexity of Algorithm 1 is   O ( r log r )   time provided that the conflict set contains r jobs, where   r ≤  m  1 , 2    . Since a strict order   A  ≺   1 , 2    is constructed once in Algorithm 3, we conclude that a total complexity of Algorithm 3 (and Algorithm 4) is   O (  n 2  )   time.



In Algorithm 2, testing the condition of Theorem 7 takes   O ( max  {  m  1 , 2   ,  m  2 , 1   }  )   time. Every Algorithm 3 or Algorithm 4 is fulfilled at most once. Therefore, the complexity of Algorithm 2 is   O (  n 2  )   time.




7. Computational Experiments


We describe the conducted computational experiments and discuss the results obtained for randomly generated instances of the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    . In the computational experiments, each tested series consisted of 1000 randomly generated instances with the same numbers   n ∈ { 10 , 20 , … , 100 , 200 , … , 1000 , 2000 , … , 10.000 }   of jobs in the set  J  provided that a maximum relative length  δ  of the given segment of the possible durations of the operations   O  i j    takes the following values:   { 5 % , 10 % ,    15 % , 20 % , 30 % , 40 % ,   and   50 % }  . The lower bounds   l  i j    and upper bounds   u  i j    for possible values of the durations   p  i j    of the operations   O  i j   ,    p  i j   ∈  [  l  i j   ,  u  i j   ]    using the value  δ  have been determined as follows. First, a value of the lower bound   l  i j    is randomly chosen from the segment   [ 10 , 1000 ]   using a uniform distribution. Then, the upper bound   u  i j    is calculated using the following equality:


   u  i j   =  l  i j    1 +  δ 100    



(17)







For example, we assume that   δ = 5 %  . Then, for the lower bounds    l  i j   = 50   and    l  i j   = 500  , the upper bounds    u  i j   = 52.5   and    u  i j   = 525   are calculated using Reference (17). If   δ = 50 %  , then based on the lower bounds    l  i j   = 50   and    l  i j   = 500   and on Reference (17), we obtain the upper bounds    u  i j   = 75   and    u  i j   = 750  . Thus, rather wide ranges for the tested durations of the jobs  J  were considered.



In the experiments, the bounds   l  i j    and   u  i j    were decimal fractions with the maximum possible number of digits after the decimal point. For all tested instances of the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    , a strict inequality    l  i j   <  u  i j     was guarantied for each job    J i  ∈ J   and each machine    M j  ∈ M  .



We used Algorithms 1 – 4 described in Section 5.4 and Section 6 for solving the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    . These algorithms were coded in C# and tested on a PC with Intel Core i7-7700 (TM) 4 Quad, 3.6 GHz, and 32.00 GB RAM. Since Algorithms 1 – 4 are polynomial in number n jobs in set  J , the calculations were carried out quickly. In the experiments, we tested 15 classes of randomly generated instances of the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with different ratios between numbers   m 1  ,   m 2  ,   m  1 , 2   , and   m  2 , 1    of the jobs in subsets   J 1  ,   J 2  ,   J  1 , 2   , and   J  2 , 1    of the set  J . The obtained computational results are presented in Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, Table A7, Table A8, Table A9, Table A10, Table A11, Table A12, Table A13, Table A14 and Table A15 for 15 classes of the solved instances. Each tested class of the instances of the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     is characterized by the following ratio of the percentages of the number of jobs in the subsets   J 1  ,   J 2  ,   J  1 , 2   , and   J  2 , 1    of the set  J :


    m 1  n  · 100 % :   m 2  n  · 100 % :   m  1 , 2   n  · 100 % :   m  2 , 1   n  · 100 %  



(18)







Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, Table A7, Table A8 and Table A9 present the computational results obtained for classes 1–9 of the tested instances characterized by the following ratios (Equation (18)):



  25 % : 25 % : 25 % : 25 %   (Table A1);       10 % : 10 % : 40 % : 40 %   (Table A2);



  10 % : 40 % : 10 % : 40 %   (Table A3);       10 % : 30 % : 10 % : 50 %   (Table A4);



  10 % : 20 % : 10 % : 60 %   (Table A5);       10 % : 10 % : 10 % : 70 %   (Table A6);



  5 % : 20 % : 5 % : 70 %   (Table A7);             5 % : 15 % : 5 % : 75 %   (Table A8);



  5 % : 5 % : 5 % : 85 %   (Table A9).



Note that all instances from class 1 of the instances with the ratio from Equation (18),   25 % : 25 % : 25 % : 25 %  , were optimally solved by Algorithms 1–4 for all values of   δ ∈ { 5 % , 10 % ,    15 % , 20 % , 30 % , 40 % ,   and   50 % }  . We also tested classes 10–15 of the hard instances of the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     characterized by the following ratios (Equation (18)):



  3 % : 2 % : 5 % : 90 %   (Table A10);      2 % : 3 % : 5 % : 90 %   (Table A11);



  2 % : 2 % : 1 % : 95 %   (Table A12);      1 % : 2 % : 2 % : 95 %   (Table A13);



  1 % : 1 % : 3 % : 95 %   (Table A14);      1 % : 1 % : 1 % : 97 %   (Table A15).



All Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, Table A7, Table A8, Table A9, Table A10, Table A11, Table A12, Table A13, Table A14 and Table A15 are organized as follows. Number n of given jobs  J  in the instances of the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     are presented in column 1. The values of  δ  (a maximum relative length of the given segment of the job durations) in percentages are presented in the first line of each table. For the fixed value of  δ , the obtained computational results are presented in four columns called   O p t  ,   N C  ,   S C  , and t. The column   O p t   determines the percentage of instances from the series of 1000 randomly generated instances which were optimally solved using Algorithms 1–4. For each such instance, an optimal pair   (  π ′  ,  π  ″   )   of the job permutations was constructed in spite of the uncertain durations of the given jobs  J . In other words, the equality    C  m a x    (  π ′  ,  π  ″   )  =  C  m a x    (  π *  ,  π  * *   )    holds, where   (  π *  ,  π  * *   ) ∈ S   is a pair of job permutations which is optimal for the deterministic problem    J 2 |   p *  ,  n i   ≤ 2 |   C  m a x     associated with the factual scenario    p *  ∈ T  . The factual scenario    p *  ∈ T   for the instance of the uncertain problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     is assumed to be unknown until completing the jobs  J .



Column   N C   presents total number of conflict sets of the jobs in the partial strict orders   A  ≺   1 , 2    on the job sets   J  1 , 2    and partial strict orders   A  ≺   2 , 1    on the job sets   J  2 , 1    constructed by Algorithm 2. The value of   N C   is equal to the total number of decision points, where Algorithm 2 has to select an order for processing jobs from the corresponding conflict set. To make a correct decision for such an order means to construct a permutation of all jobs from the conflict set, which is optimal for the factual scenario (which is unknown before scheduling). In particular, if all conflict sets have received correct decisions in Algorithm 2, then the constructed pair of job permutations will be optimal for the problem    J 2 |   p *  ,  n i   ≤ 2 |   C  m a x    , where    p *  ∈ T   is the factual scenario.



Column   S C   presents a percentage of the correct decisions made for determining optimal orders of the conflict jobs by Algorithm 2 with Algorithms 3 and 4. Column t presents a total CPU time (in seconds) for solving all 1000 instances of the corresponding series.



Average percentages of the instances which were optimally solved (  O p t  ) are presented in Figure 1 for classes 1–9 of the tested instances and in Figure 2 for classes 10–15 of the hard-tested instances.



Percentages of the average values of the correct decisions (  S C  ) made for determining optimal orders of the conflict jobs for classes 1–9 are presented in Figure 3. Most instances from these nine classes were optimally solved (Table 2). If the values of  δ  were no greater than   20 %  , i.e.,   δ ∈ { 5 % , 10 % , 15 % , 20 % }  , then more than   80 %   of the tested instances were optimally solved in spite of the data uncertainty. If the value  δ  is increased, the percentage of the optimally solved instances decreased. If the value  δ  was equal to   50 %  , then   45 %   of the tested instances was optimally solved.



For all series of the hard instances presented in Table A10, Table A11, Table A12, Table A13, Table A14 and Table A15 (see the third line in Table 2), only a few instances were optimally solved. If   δ = 5 %  , then   70 %   of the tested instances was optimally solved. If value  δ  belongs to the set   { 20 % , 30 % , 40 % , 50 % }  , then only   1 %   of the tested instances was optimally solved. There were no hard-tested instances optimally solved for the value of   δ = 50 %  .



Percentages of the average values of the correct decisions made for determining optimal orders of the conflict jobs by Algorithm 2, Algorithm 3 and Algorithm 4 for the hard classes 10–15 of the tested instances are presented in Figure 4. Note that there is a correlation between values of   O p t   and   S C   presented in Figure 1 and Figure 3 for classes 1–9 of the tested instances and those presented in Figure 2 and Figure 4 for classes 10–15 of the hard-tested instances.




8. Concluding Remarks and Future Works


The uncertain flow-shop scheduling problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     and its generalization the job-shop problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     attract the attention of researchers since these problems are applicable in many real-life scheduling systems. The optimal scheduling decisions for these problems allow the plant to reduce the costs of productions due to a better utilization of the available machines and other resources. In Section 5, we proved several properties of the optimal pairs   (  π ′  ,  π  ″   )   of job permutations (Theorems 7–12). Using these properties, we derived Algorithms 1–4 for constructing optimal pairs   (  π ′  ,  π  ″   )   of job permutations or a small dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    . If it is impossible to construct a single pair   (  π ′  ,  π  ″   )   of job permutations, which dominates all other pairs of job permutations for all possible scenarios T, then Algorithm 2 determines the partial strict order   A  ≺   1 , 2    on the job set   J  1 , 2    (Algorithm 3) and the partial strict order   A  ≺   2 , 1    on the job set   J  2 , 1    (Algorithm 4). The precedence digraphs   (  J  1 , 2   ,  A  ≺   1 , 2   )   and   (  J  2 , 1   ,  A  ≺   2 , 1   )   determine a minimal dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    .



From the conducted extensive computational experiments, it follows that pairs of job permutations constructed using Algorithm 2 are close to the optimal pairs of job permutations, which may be determined after completing all jobs  J  when factual operation durations become known. We tested 15 classes of the randomly generated instances    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    . Most instances from tested classes 1–9 were optimally solved at the off-line phase of scheduling. If the values of  δ  were no greater than   20 %  , i.e.,   δ ∈ { 5 % , 10 % , 15 % , 20 % }  , then more than   80 %   of the tested instances was optimally solved in spite of the uncertainty of the input data. If   δ = 50 %  , then   45 %   of the tested instances was optimally solved. However, less than   5 %   of the instances with   δ ≥ 20 %   from hard classes 10–15 were optimally solved at the off-line phase of scheduling (Figure 2). There were no tested hard instances optimally solved for the value   δ = 50 %  .



In future research, the on-line phase of scheduling will be studied for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x    . To this end, it will be useful to find sufficient conditions for existing a dominant pair of job permutations at the on-line phase of scheduling. The additional information on the factual value of the job duration becomes available once the processing of the job on the corresponding machine is completed. Using this additional information, a scheduler can determine a smaller dominant set DS of schedules, which is based on sufficient conditions for schedule dominance. The smaller DS enables a scheduler to quickly make an on-line scheduling decision whenever additional information on processing the job becomes available. To solve the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     at the on-line phase, a scheduler needs to use fast (better polynomial) algorithms. The investigation of the on-line phase of scheduling for the uncertain job-shop problem is under development.



We suggest to investigate properties of the optimality box and optimality region for a pair   (  π ′  ,  π  ″   )   of the job permutations and to develop algorithms for constructing a pair   (  π ′  ,  π  ″   )   of the job permutations that have the largest optimality box (or the largest optimality region). We also suggest to apply the stability approach for solving the uncertain flow-shop and job-shop scheduling problems with   | M | > 2   available machines.
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Appendix A. Proofs of the Statements


Appendix A.1. Proof of Lemma 2


We choose an arbitrary vector p in the set T,   p ∈ T  , and show that set   <  S  1 , 2  ′  ,  S  2 , 1   >   contains at least one optimal pair of job permutations for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario   p ∈ T  .



Let    (  π *  ,  π  * *   )  =  (  (  π  1 , 2  *  ,  π 1  ,  π  2 , 1  *  )  ,  (  π  2 , 1  *  ,  π 2  ,  π  1 , 2  *  )  )    be a Jackson’s pair of job permutations for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario   p ∈ T  , i.e.,    C  m a x    (  π *  ,  π  * *   )  =  C  m a x    . Without loss of generality, one can assume that jobs in both permutations   π 1   and   π 2   are ordered in increasing order of their indexes. It is clear that    π  2 , 1  *  ∈  S  2 , 1    . If inclusion    π  1 , 2  *  ∈  S  1 , 2  ′    holds as well, then    (  π *  ,  π  * *   )  ∈   <    S  1 , 2  ′  ,  S  2 , 1      >   and set   <  S  1 , 2  ′  ,  S  2 , 1   >   contains an optimal pair of job permutations for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario   p ∈ T  . We now assume that    π  1 , 2  *  ∉  S  1 , 2  ′   . The set   S  1 , 2  ′   contains at least one optimal permutation for the problem    F 2 |   p  1 , 2    |   C  m a x     with job set   J  1 , 2    and scenario   p  1 , 2    (the components of vector   p  1 , 2    are equal to the corresponding components of vector p). We denote this permutation as   π  1 , 2  ′  . Remember that permutation   π  1 , 2  ′   may be not a Johnson’s permutation for the problem    F 2 |   p  1 , 2    |   C  m a x     with job set   J  1 , 2    and scenario   p  1 , 2   . We consider a pair of job permutations    (  π ′  ,  π  * *   )   = (   (  π  1 , 2  ′  ,  π 1  ,  π  2 , 1  *  )  ,     (  π  2 , 1  *  ,  π 2  ,  π  1 , 2  ′  )   ) ∈   <     S  1 , 2  ′  ,  S  2 , 1     >   and show that equality    C  m a x    (  π ′  ,  π  * *   )  =  C  m a x     holds. We consider the following two possible cases.



(j)   C  m a x    (  π ′  ,  π  * *   )  =  c 1   (  π ′  )   .



If equality    c 1   (  π ′  )  =  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 1     p  i 1     holds, then    c 1   (  π ′  )  ≤  c 1   (  π *  )   .



We now assume that inequality    c 1   (  π ′  )  >  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 1     p  i 1     holds. Then, machine   M 1   has an idle time. As it is mentioned in the proof of Theorem 7, an idle time for machine   M 1   is only possible if some job   J j   from the set   J  2 , 1    is processed on machine   M 2   at the time moment   t 2   when job   J j   could be processed on machine   M 1  . Thus, the value of    c 1   (  π ′  )    is equal to the makespan    C  m a x    (  π  2 , 1  *  )    for the problem    F 2 |   p  2 , 1    |   C  m a x     with job set   J  2 , 1    and scenario   p  2 , 1    (the components of vector   p  2 , 1    are equal to the corresponding components of vector p). As jobs from the set   J  2 , 1    are processed as in the permutation   π  2 , 1  *  , which is a Johnson’s permutation, the value of    c 1   (  π ′  )    cannot be reduced and so    c 1   (  π ′  )  ≤  c 1   (  π *  )   . We obtain the following relations:    C  m a x    (  π ′  ,  π  * *   )  =  c 1   (  π ′  )  ≤  c 1   (  π *  )  ≤ max  {  c 1   (  π *  )  ,  c 2   (  π  * *   )  }  =  C  m a x    (  π *  ,  π  * *   )  =  C  m a x   .   Thus, equality    C  m a x    (  π ′  ,  π  * *   )  =  C  m a x     holds.



(jj)   C  m a x    (  π ′  ,  π  * *   )  =  c 2   (  π  * *   )   .



Similarly to case (j), we obtain the following equality:


   c 2   (  π  * *   )  = max  {  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 2     p  i 2   ,  C  m a x    (  π  1 , 2  ′  )  }  ,  








where    C  m a x    (  π  1 , 2  ′  )    is the makespan for the problem    F 2 |   p  1 , 2    |   C  m a x     with job set   J  1 , 2    and vector   p  1 , 2    of the job durations (it is assumed that   π  1 , 2  ′   is an optimal permutation for this problem). Thus, the value of    c 2   (  π  * *   )    cannot be reduced and equality    C  m a x    (  π ′  ,  π  * *   )  =  C  m a x     holds.



In both considered cases, the pair of job permutations   (  π ′  ,  π  * *   )   is an optimal schedule for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario   p ∈ T  . Therefore, an optimal pair of job permutations for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario   p ∈ T   belongs to the set   <  S  1 , 2  ′  ,  S  2 , 1   >  . As vector p is an arbitrary vector in set T, the set   <  S  1 , 2  ′  ,  S  2 , 1   >   contains an optimal pair of job permutations for each scenario from set T. Due to Definition 4, the set   <  S  1 , 2  ′  ,  S  2 , 1   >   is a dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J .




Appendix A.2. Proof of Theorem 8


We consider an arbitrary vector   p ∈ T   of the job durations from set T and relevant vectors   p  1 , 2    and   p  2 , 1    of the durations of jobs from set   J  1 , 2    and set   J  2 , 1   , respectively. Set   S  1 , 2  ′   contains an optimal permutation   π  1 , 2  ′   for the problem    F 2 |   p  1 , 2    |   C  m a x     with job set   J  1 , 2    and with vector   p  1 , 2    of the job durations. Set   S  2 , 1  ′   contains an optimal permutation   π  2 , 1  ′   for the problem    F 2 |   p  2 , 1    |   C  m a x     with job set   J  2 , 1    and with vector   p  2 , 1    of the job durations. We next show that the pair of job permutations    (  π ′  ,  π  ″   )   = (   (  π  1 , 2  ′  ,  π 1  ,  π  2 , 1  ′  )  ,    (  π  2 , 1  ′  ,  π 2  ,  π  1 , 2  ′  ) )   is an optimal pair of job permutations for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario   p ∈ T   (the jobs in permutations   π 1   and   π 2   are ordered in increasing order of their indexes). From the proofs of Lemmas 2 and 3, we obtain the value of    C  m a x    (  π ′  ,  π  ″   )  = max  {  c 1   (  π ′  )  ,  c 2   (  π  ″   )  }   


  = max { max  {  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 1     p  i 1   ,  C  m a x    (  π  2 , 1  ′  )  }  , max  {  ∑   J i  ∈  J  1 , 2   ∪  J  2 , 1   ∪  J 2     p  i 2   ,  C  m a x    (  π  1 , 2  ′  )  }  } ,  








which cannot be reduced. Therefore,    C  m a x    (  π ′  ,  π  ″   )  =  C  m a x    . An optimal pair of job permutations for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with vector   p ∈ T   of the job durations belongs to the set   <  S  1 , 2  ′  ,  S  2 , 1  ′  >  . As vector p is arbitrary in set T, the set   <  S  1 , 2  ′  ,  S  2 , 1  ′  >   contains an optimal pair of job permutations for all vectors from set T. Due to Definition 4, the set   <  S  1 , 2  ′  ,  S  2 , 1  ′  > ⊆ S   is a dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J .




Appendix A.3. Proof of Theorem 9


We consider an arbitrary scenario   p ∈ T  . Due to Definition 1, the permutation   π  1 , 2    is a Johnson’s permutation for the problem    F 2 |   p  1 , 2    |   C  m a x     with job set   J  1 , 2    and scenario   p  1 , 2    (the components of this vector are equal to the corresponding components of vector p). Due to Definition 4, the singleton   {  (  π  1 , 2   ,  π  1 , 2   )  }   is a minimal dominant set of schedules for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2   .



Similarly, the singleton   {  (  π  2 , 1   ,  π  2 , 1   )  }   is a minimal dominant set of schedules for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  2 , 1   . We consider permutations   π 1   and   π 2   of the jobs   J 1   and   J 2  , respectively (due to Remark 1, the jobs in permutations   π 1   and   π 2   are ordered in increasing order of their indexes). Due to Theorem 8, the pair of permutations   (  (  π  1 , 2   ,  π 1  ,  π  2 , 1   )  ,  (  π  1 , 2   ,  π 2  ,  π  2 , 1   )  )   is a single-element dominant set (DS(T)) for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1    .




Appendix A.4. Proof of Corollary 6


In the proof of Theorem 9, it is shown that the pair of job permutations   (  (  π  1 , 2   ,  π 1  ,  π  2 , 1   )  ,    (  π  1 , 2   ,  π 2  ,  π  2 , 1   ) )   is a single-element dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1    . We next show that the pair of permutations   (  (  π  1 , 2   ,  π 1  ,  π  2 , 1   )  ,  (  π  1 , 2   ,  π 2  ,  π  2 , 1   )  )   satisfies to Definition 1, i.e., this pair of permutations is a Jackson’s pair of job permutations for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J  (the minimality condition is obvious). Indeed, due to conditions of Theorem 9, the permutation   π  1 , 2    is a Johnson’s permutation for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  1 , 2    and the permutation   π  2 , 1    is a Johnson’s permutation for the problem    F 2 |   l  i j   ≤  p  i j   ≤  u  i j    |   C  m a x     with job set   J  2 , 1   . Therefore, pair   (  (  π  1 , 2   ,  π 1  ,  π  2 , 1   )  ,  (  π  1 , 2   ,  π 2  ,  π  2 , 1   )  )   is a Jackson’s pair of permutations for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J . Due to Definition 1, the pair of job permutations   (  (  π  1 , 2   ,  π 1  ,  π  2 , 1   )  ,  (  π  1 , 2   ,  π 2  ,  π  2 , 1   )  )   is a single-element J-solution for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set   J =  J 1  ∪  J 2  ∪  J  1 , 2   ∪  J  2 , 1    .




Appendix A.5. Proof of Theorem 12


We consider any fixed scenario   p ∈ T   and a pair of job permutations    (  π ′  ,  π  ″   )  =  (  ( π ,  π 1  ,  π  2 , 1  *  )  ,  (  π  2 , 1  *  ,  π 2  , π )  )  ∈  S ′   , where    π  2 , 1  *  ∈  S  2 , 1     is a Johnson’s permutation of the jobs from the set   J  2 , 1    with vector   p  2 , 1    of the job durations (components of this vector are equal to the corresponding components of vector p). We next show that this pair of job permutations   (  π ′  ,  π  ″   )   is optimal for the individual problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario p, i.e.,    C  m a x    (  π ′  ,  π  ″   )  =  C  m a x    .



At time   t = 0  , machine   M 1   begins to process jobs from the permutation  π  without idle times. We denote    t 1  =  ∑  i = 1   k + r + 1    p  i 1   .   At time moment   t 1  , job   J  k + r + 1    is ready for processing on machine   M 2  . From the condition of Inequality (13) with   s = 1  , it follows that, even if machine   M 2   has an idle time before processing job   J  k + r + 1   , machine   M 2   is available for processing this job at time   t 1  . If in addition, the condition of Inequality (13) holds with   s ∈ { 2 , 3 , … , r }  , then machine   M 2   may also have idle times between processing jobs from the conflict set   {  J  k + 1   ,  J  k + 2   , … ,  J  k + r   } .   However, machine   M 2   is available for processing job   J  k + r + 1    from the time moment    t 1  =  ∑  i = 1   k + r + 1    p  i 1   .  



In permutation  π , jobs    J  k + r + 1   , … ,  J  m  1 , 2      are arranged in Johnson’s order. Therefore, if machine   M 2   has an idle time while processing these jobs, this idle time cannot be reduced.



Thus, the value of    c 2   (  π  ″   )    cannot be reduced by changing the order of jobs from the conflict set. Note that an idle time for machine   M 1   is only possible between some jobs from the set   J  2 , 1   . Since the permutation   π  2 , 1  *   is a Johnson’s permutation of the jobs from set   J  2 , 1    with scenario   p  2 , 1   , the value of    c 1   (  π ′  )    cannot be reduced. Thus, we obtain    C  m a x    (  π ′  ,  π  ″   )  = max  {  c 1   (  π ′  )  ,  c 2   (  π  ″   )  }  =  C  m a x     and the pair of permutations    (  π ′  ,  π  ″   )  =  (  ( π ,  π 1  ,  π  2 , 1  *  )  ,  (  π  2 , 1  *  ,  π 2  , π )  )  ∈     S ′    is optimal for the problem    J 2 | p ,   n i   ≤ 2 |   C  m a x     with scenario   p ∈ T  . As the vector p is an arbitrary vector in the set T, set   S ′   contains an optimal pair of job permutations for each vector from the set T. Due to Definition 4, set   S ′   is a dominant set of schedules for the problem    J 2 |   l  i j   ≤  p  i j   ≤  u  i j   ,  n i   ≤ 2 |   C  m a x     with job set  J .





Appendix B. Tables with Computations Results
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Table A1. Computational results for randomly generated instances with ratio   25 % : 25 % : 25 % : 25 %   of the number of jobs in the subsets.
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    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
  n  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
20

	
100

	
6

	
100

	
0

	
100

	
19

	
100

	
0

	
100

	
35

	
100

	
0

	
100

	
70

	
100

	
0

	
100

	
139

	
100

	
0

	
100

	
250

	
100

	
0

	
100

	
339

	
100

	
0




	
40

	
100

	
0

	
-

	
0

	
100

	
4

	
100

	
0

	
100

	
20

	
100

	
0

	
100

	
33

	
100

	
0

	
100

	
101

	
100

	
0

	
100

	
136

	
100

	
0

	
100

	
333

	
100

	
0




	
50

	
100

	
7

	
100

	
0

	
100

	
3

	
100

	
0

	
100

	
16

	
100

	
0

	
100

	
8

	
100

	
0

	
100

	
50

	
100

	
0

	
100

	
114

	
100

	
0

	
100

	
224

	
100

	
0




	
70

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
2

	
100

	
0

	
100

	
3

	
100

	
0

	
100

	
11

	
100

	
0

	
100

	
71

	
100

	
0

	
100

	
149

	
100

	
0




	
80

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
3

	
100

	
0

	
100

	
0

	
-

	
0

	
100

	
35

	
100

	
0

	
100

	
122

	
100

	
0




	
100

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
19

	
100

	
0

	
100

	
84

	
100

	
0




	
200

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
5

	
100

	
0




	
300

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
400

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
500

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
600

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
700

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
800

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
900

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
1000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
2000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
3000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
4000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
5000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
6000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0
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100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
8000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0
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100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
10,000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0




	
Aver.

	
100

	
0.54

	
100

	
0

	
100

	
1.08

	
100

	
0

	
100

	
3.04

	
100

	
0

	
100

	
4.88

	
100

	
0

	
100

	
12.54

	
100

	
0

	
100

	
26.04

	
100

	
0

	
100

	
52.33

	
100

	
0











[image: Table] 





Table A2. Computational results for randomly generated instances with ratio   10 % : 10 % : 40 % : 40 %   of the number of jobs in the subsets.
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5%

	
10%
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10

	
100

	
71

	
100

	
0

	
100

	
153

	
100

	
0

	
99.6

	
241

	
98.34

	
0

	
99.4

	
320

	
98.13

	
0

	
98.1

	
481

	
96.05

	
0

	
95.8

	
618

	
93.20

	
0

	
91.9

	
713

	
88.64

	
0




	
20

	
100

	
235

	
100

	
0

	
100

	
531

	
100

	
0

	
100

	
811

	
100

	
0

	
100

	
1032

	
100

	
0

	
100

	
1341

	
100

	
0

	
99.9

	
1450

	
99.93

	
0

	
99.5

	
1424

	
99.65

	
0




	
30

	
100

	
460

	
100

	
0

	
100

	
887

	
100

	
0

	
100

	
1334

	
100

	
0

	
100

	
1643

	
100

	
0

	
100

	
1912

	
100

	
0

	
99.9

	
1893

	
99.95

	
0

	
100

	
1808

	
100

	
0




	
40

	
100

	
636

	
100

	
0

	
100

	
1185

	
100

	
0

	
100

	
1659

	
100

	
0

	
100

	
2068

	
100

	
0

	
100

	
2352

	
100

	
0

	
100

	
2162

	
100

	
0

	
99.9

	
1953

	
99.95

	
0




	
50

	
100

	
824

	
100

	
0

	
100

	
1496

	
100

	
0

	
100

	
2074

	
100

	
0

	
100

	
2411

	
100

	
0

	
100

	
2546

	
100

	
0

	
100

	
2211

	
100

	
0

	
100

	
2009

	
100

	
0




	
60

	
100

	
893

	
100

	
0

	
100

	
1542

	
100

	
0

	
100

	
2222

	
100

	
0

	
100

	
2619

	
100

	
0

	
100

	
2758

	
100

	
0

	
100

	
2440

	
100

	
0

	
100

	
2109

	
100

	
0




	
70

	
100

	
841

	
100

	
0

	
100

	
1589

	
100

	
0

	
100

	
2285

	
100

	
0

	
100

	
2775

	
100

	
0

	
100

	
2935

	
100

	
0

	
100

	
2477

	
100

	
0

	
100

	
2106

	
100

	
0




	
80

	
100

	
981

	
100

	
0

	
100

	
1570

	
100

	
0

	
100

	
2342

	
100

	
0

	
100

	
2896

	
100

	
0

	
100

	
2995

	
100

	
0

	
100

	
2567

	
100

	
0

	
100

	
2249

	
100

	
0




	
90

	
100

	
878

	
100

	
0

	
100

	
1660

	
100

	
0

	
100

	
2310

	
100

	
0

	
100

	
2905

	
100

	
0

	
100

	
3103

	
100

	
0

	
100

	
2598

	
100

	
0

	
100

	
2273

	
100

	
0




	
100

	
100

	
826

	
100

	
0

	
100

	
1633

	
100

	
0

	
100

	
2368

	
100

	
0

	
100

	
3056

	
100

	
0

	
100

	
3114

	
100

	
0

	
100

	
2585

	
100

	
0

	
100

	
2321

	
100

	
0




	
200

	
100

	
411

	
100

	
0

	
100

	
1145

	
100

	
0

	
100

	
1999

	
100

	
0

	
100

	
3065

	
100

	
0

	
100

	
3392

	
100

	
0

	
100

	
2709

	
100

	
0

	
100

	
2250

	
100

	
0




	
300

	
100

	
181

	
100

	
0

	
100

	
721

	
100

	
0

	
100

	
1708

	
100

	
0

	
100

	
2888

	
100

	
0

	
100

	
3365

	
100

	
0

	
100

	
2579

	
100

	
0

	
100

	
2117

	
100

	
0




	
400

	
100

	
51

	
100

	
0

	
100

	
302

	
100

	
0

	
100

	
981

	
100

	
0

	
100

	
2466

	
100

	
0

	
100

	
3263

	
100

	
0

	
100

	
2469

	
100

	
0

	
100

	
1966

	
100

	
0




	
500

	
100

	
11

	
100

	
0

	
100

	
240

	
100

	
0

	
100

	
813

	
100

	
0

	
100

	
2307

	
100

	
0

	
100

	
3138

	
100

	
0

	
100

	
2362

	
100

	
0

	
100

	
1838

	
100

	
0




	
600

	
100

	
0

	
-

	
0

	
100

	
88

	
100

	
0

	
100

	
499

	
100

	
0

	
100

	
2076

	
100

	
0

	
100

	
2951

	
100

	
0

	
100

	
2202

	
100

	
0

	
100

	
1692

	
100

	
0




	
700

	
100

	
0

	
-

	
0

	
100

	
45

	
100

	
0

	
100

	
528

	
100

	
0

	
100

	
1894

	
100

	
0

	
100

	
2779

	
100

	
1

	
100

	
2015

	
100

	
1

	
100

	
1585

	
100

	
1




	
800

	
100

	
0

	
-

	
0

	
100

	
36

	
100

	
0

	
100

	
294

	
100

	
0

	
100

	
1707

	
100

	
0

	
100

	
2656

	
100

	
0

	
100

	
1866

	
100

	
1

	
100

	
1485

	
100

	
1




	
900

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
318

	
100

	
0

	
100

	
1442

	
100

	
0

	
100

	
2392

	
100

	
1

	
100

	
1677

	
100

	
1

	
100

	
1420

	
100

	
1




	
1000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
196

	
100

	
0

	
100

	
1275

	
100

	
0

	
100

	
2255

	
100

	
1

	
100

	
1630

	
100

	
1

	
100

	
1298

	
100

	
1




	
2000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
3

	
100

	
0

	
100

	
441

	
100

	
0

	
100

	
1452

	
100

	
3

	
100

	
1137

	
100

	
3

	
100

	
1044

	
100

	
2




	
3000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
160

	
100

	
0

	
100

	
1127

	
100

	
6

	
100

	
1025

	
100

	
5

	
100

	
1011

	
100

	
4




	
4000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
86

	
100

	
0

	
100

	
1032

	
100

	
9

	
100

	
1005

	
100

	
8

	
100

	
1000

	
100

	
7




	
5000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
34

	
100

	
0

	
100

	
1011

	
100

	
14

	
100

	
1000

	
100

	
12

	
100

	
1000

	
100

	
10




	
6000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
23

	
100

	
0

	
100

	
1002

	
100

	
21

	
100

	
1001

	
100

	
17

	
100

	
1001

	
100

	
14




	
7000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
8

	
100

	
0

	
100

	
1000

	
100

	
28

	
100

	
1000

	
100

	
23

	
100

	
1000

	
100

	
19




	
8000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
6

	
100

	
0

	
100

	
1001

	
100

	
37

	
100

	
1000

	
100

	
31

	
100

	
1000

	
100

	
25




	
9000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
3

	
100

	
0

	
100

	
1000

	
100

	
48

	
100

	
1000

	
100

	
39

	
100

	
1000

	
100

	
32




	
10,000

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
0

	
-

	
0

	
100

	
4

	
100

	
1

	
100

	
1000

	
100

	
61

	
100

	
1000

	
100

	
49

	
100

	
1000

	
100

	
40




	
Aver.

	
100

	
261

	
100

	
0

	
100

	
529

	
100

	
0

	
99.99

	
892

	
99.92

	
0

	
99.98

	
1486

	
99.93

	
0.04

	
99.93

	
2120

	
99.86

	
8.21

	
99.84

	
1774

	
99.75

	
6.82

	
99.69

	
1560

	
99.58

	
5.61
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Table A3. Computational results for randomly generated instances with ratio   10 % : 40 % : 10 % : 40 %   of the number of jobs in the subsets.






Table A3. Computational results for randomly generated instances with ratio   10 % : 40 % : 10 % : 40 %   of the number of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
  n  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
10

	
98.7

	
104

	
87.5

	
0

	
97.3

	
207

	
86.96

	
0

	
96.9

	
287

	
89.20

	
0

	
94.5

	
359

	
84.68

	
0

	
92.5

	
543

	
86.19

	
0

	
88.5

	
597

	
80.74

	
0

	
81.5

	
713

	
74.05

	
0




	
20

	
99.7

	
466

	
99.36

	
0

	
99.6

	
830

	
99.52

	
0

	
99.3

	
1057

	
99.24

	
0

	
98.5

	
1244

	
98.79

	
0

	
95.3

	
1433

	
96.65

	
0

	
91

	
1467

	
93.73

	
0

	
84.6

	
1501

	
89.61

	
0




	
30

	
100

	
1070

	
100

	
0

	
99.8

	
1597

	
99.87

	
0

	
99.7

	
1879

	
99.84

	
0

	
98.2

	
2007

	
99.10

	
0

	
96.7

	
2053

	
98.30

	
0

	
91.4

	
1945

	
95.58

	
0

	
82.1

	
1790

	
89.83

	
0




	
40

	
100

	
1700

	
100

	
0

	
100

	
2355

	
100

	
0

	
99.8

	
2660

	
99.92

	
0

	
99.7

	
2628

	
99.89

	
0

	
97.6

	
2462

	
99.03

	
0

	
92.4

	
2135

	
96.35

	
0

	
85.5

	
1979

	
92.52

	
0




	
50

	
100

	
2425

	
100

	
0

	
99.7

	
3174

	
99.91

	
0

	
99.9

	
3197

	
99.97

	
0

	
99.8

	
3048

	
99.93

	
0

	
97.8

	
2664

	
99.17

	
0

	
92.5

	
2283

	
96.54

	
0

	
82.2

	
2075

	
91.42

	
0




	
60

	
100

	
3218

	
100

	
0

	
100

	
3808

	
100

	
0

	
100

	
3702

	
100

	
0

	
99.9

	
3394

	
99.97

	
0

	
98.5

	
2881

	
99.41

	
0

	
91.9

	
2442

	
96.60

	
0

	
80.5

	
2172

	
90.75

	
0




	
70

	
100

	
3911

	
100

	
0

	
100

	
4385

	
100

	
0

	
99.9

	
4063

	
99.98

	
0

	
99.9

	
3648

	
99.97

	
0

	
98.7

	
2959

	
99.56

	
0

	
91.9

	
2517

	
96.62

	
0

	
78

	
2146

	
89.47

	
0




	
80

	
100

	
4817

	
100

	
0

	
100

	
4902

	
100

	
0

	
99.8

	
4370

	
99.95

	
0

	
99.9

	
3829

	
99.97

	
0

	
98.5

	
3103

	
99.52

	
0

	
92.2

	
2627

	
96.99

	
0

	
77.3

	
2257

	
89.77

	
0




	
90

	
100

	
5518

	
100

	
0

	
100

	
5398

	
100

	
0

	
100

	
4656

	
100

	
0

	
100

	
3910

	
100

	
0

	
97.7

	
3154

	
99.21

	
0

	
92.5

	
2675

	
97.12

	
0

	
79.5

	
2249

	
90.84

	
0




	
100

	
100

	
6195

	
100

	
0

	
100

	
5697

	
100

	
0

	
99.9

	
4853

	
99.98

	
0

	
100

	
4047

	
100

	
0

	
98.2

	
3207

	
99.44

	
0

	
91.3

	
2706

	
96.78

	
0

	
75.6

	
2328

	
89.48

	
0




	
200

	
100

	
10,620

	
100

	
0

	
100

	
7608

	
100

	
0

	
100

	
5717

	
100

	
0

	
100

	
4645

	
100

	
0

	
98.9

	
3320

	
99.64

	
0

	
90.8

	
2717

	
96.61

	
0

	
72.7

	
2281

	
87.90

	
0




	
300

	
100

	
13,110

	
100

	
0

	
100

	
8259

	
100

	
0

	
100

	
6070

	
100

	
0

	
100

	
4782

	
100

	
0

	
99.5

	
3369

	
99.85

	
0

	
94.3

	
2605

	
97.81

	
0

	
74.5

	
2117

	
87.81

	
0




	
400

	
100

	
14,309

	
100

	
1

	
100

	
8634

	
100

	
0

	
100

	
6113

	
100

	
0

	
100

	
4650

	
100

	
0

	
99.8

	
3247

	
99.94

	
0

	
94.3

	
2460

	
97.68

	
0

	
73.1

	
2002

	
86.56

	
0




	
500

	
100

	
14,935

	
100

	
0

	
100

	
8658

	
100

	
0

	
100

	
6102

	
100

	
0

	
100

	
4630

	
100

	
0

	
99.9

	
3137

	
99.97

	
0

	
95.1

	
2297

	
97.87

	
0

	
78.5

	
1808

	
88.11

	
0




	
600

	
100

	
15,780

	
100

	
0

	
100

	
8832

	
100

	
0

	
100

	
6021

	
100

	
0

	
100

	
4492

	
100

	
0

	
100

	
2911

	
100

	
0

	
97.2

	
2153

	
98.70

	
0

	
77.8

	
1705

	
86.98

	
0




	
700

	
100

	
15,971

	
100

	
0

	
100

	
8753

	
100

	
0

	
100

	
5789

	
100

	
0

	
100

	
4379

	
100

	
0

	
100

	
2786

	
100

	
0

	
97.7

	
1996

	
98.85

	
0

	
82.4

	
1613

	
89.09

	
0




	
800

	
100

	
16,439

	
100

	
0

	
100

	
8806

	
100

	
0

	
100

	
5793

	
100

	
0

	
100

	
4176

	
100

	
0

	
100

	
2533

	
100

	
0

	
98.8

	
1846

	
99.35

	
0

	
84

	
1487

	
89.24

	
0




	
900

	
100

	
16,268

	
100

	
0

	
100

	
8574

	
100

	
1

	
100

	
5608

	
100

	
1

	
100

	
4005

	
100

	
1

	
100

	
2379

	
100

	
0

	
98.8

	
1717

	
99.30

	
0

	
89.1

	
1366

	
92.02

	
0




	
1000

	
100

	
16,614

	
100

	
1

	
100

	
8419

	
100

	
1

	
100

	
5400

	
100

	
1

	
100

	
3807

	
100

	
1

	
100

	
2279

	
100

	
1

	
99.6

	
1655

	
99.76

	
1

	
90.9

	
1302

	
93.01

	
0




	
2000

	
100

	
15,539

	
100

	
2

	
100

	
6906

	
100

	
2

	
100

	
3715

	
100

	
2

	
100

	
2422

	
100

	
2

	
100

	
1401

	
100

	
1

	
100

	
1135

	
100

	
1

	
98.4

	
1040

	
98.46

	
1




	
3000

	
100

	
13,884

	
100

	
4

	
100

	
5259

	
100

	
4

	
100

	
2599

	
100

	
4

	
100

	
1624

	
100

	
3

	
100

	
1109

	
100

	
3

	
100

	
1021

	
100

	
3

	
99.8

	
1006

	
99.80

	
3




	
4000

	
100

	
12,302

	
100

	
7

	
100

	
3911

	
100

	
7

	
100

	
1874

	
100

	
6

	
100

	
1291

	
100

	
6

	
100

	
1044

	
100

	
5

	
100

	
1004

	
100

	
4

	
99.8

	
1001

	
99.80

	
4




	
5000

	
100

	
10,421

	
100

	
13

	
100

	
2935

	
100

	
11

	
100

	
1485

	
100

	
10

	
100

	
1126

	
100

	
9

	
100

	
1008

	
100

	
8

	
100

	
1000

	
100

	
6

	
100

	
1000

	
100

	
5




	
6000

	
100

	
8822

	
100

	
17

	
100

	
2299

	
100

	
16

	
100

	
1262

	
100

	
14

	
100

	
1043

	
100

	
13

	
100

	
1004

	
100

	
10

	
100

	
1000

	
100

	
9

	
100

	
1000

	
100

	
8




	
7000

	
100

	
7426

	
100

	
24

	
100

	
1855

	
100

	
22

	
100

	
1145

	
100

	
20

	
100

	
1026

	
100

	
17

	
100

	
1000

	
100

	
14

	
100

	
1001

	
100

	
11

	
100

	
1000

	
100

	
10




	
8000

	
100

	
6346

	
100

	
33

	
100

	
1569

	
100

	
30

	
100

	
1084

	
100

	
26

	
100

	
1007

	
100

	
23

	
100

	
1000

	
100

	
18

	
100

	
1000

	
100

	
15

	
100

	
1000

	
100

	
13




	
9000

	
100

	
5378

	
100

	
42

	
100

	
1362

	
100

	
38

	
100

	
1038

	
100

	
33

	
100

	
1002

	
100

	
30

	
100

	
1000

	
100

	
24

	
100

	
1000

	
100

	
19

	
100

	
1000

	
100

	
17




	
10,000

	
100

	
4529

	
100

	
54

	
100

	
1237

	
100

	
48

	
100

	
1028

	
100

	
42

	
100

	
1000

	
100

	
38

	
100

	
1000

	
100

	
29

	
100

	
1000

	
100

	
24

	
100

	
1000

	
100

	
20




	
Aver.

	
99.94

	
8861

	
99.53

	
7.07

	
99.87

	
4865

	
99.51

	
6.43

	
99.83

	
3520

	
99.57

	
5.68

	
99.66

	
2829

	
99.37

	
5.11

	
98.91

	
2142

	
99.14

	
4.04

	
95.79

	
1786

	
97.61

	
3.32

	
86.71

	
1569

	
92.38

	
2.89
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Table A4. Computational results for randomly generated instances with ratio   10 % : 30 % : 10 % : 50 %   of the number of jobs in the subsets.






Table A4. Computational results for randomly generated instances with ratio   10 % : 30 % : 10 % : 50 %   of the number of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
  n  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
10

	
99.4

	
194

	
96.91

	
0

	
97.4

	
334

	
92.22

	
0

	
95.5

	
474

	
90.51

	
0

	
94.3

	
566

	
89.93

	
0

	
88.3

	
749

	
84.38

	
0

	
79.1

	
849

	
75.03

	
0

	
74.1

	
934

	
71.95

	
0




	
20

	
99.9

	
767

	
99.87

	
0

	
99.4

	
1232

	
99.51

	
0

	
98.4

	
1489

	
98.86

	
0

	
97.5

	
1680

	
98.39

	
0

	
94.7

	
1762

	
96.99

	
0

	
85.6

	
1770

	
91.64

	
0

	
75.1

	
1724

	
85.15

	
0




	
30

	
99.7

	
1532

	
99.80

	
0

	
99.5

	
2150

	
99.77

	
0

	
99.2

	
2399

	
99.67

	
0

	
99

	
2499

	
99.52

	
0

	
96

	
2367

	
98.31

	
0

	
86.8

	
2200

	
93.77

	
0

	
71.7

	
1941

	
85.27

	
0




	
40

	
99.8

	
2422

	
99.92

	
0

	
99.7

	
3151

	
99.90

	
0

	
99.8

	
3295

	
99.94

	
0

	
98.9

	
2972

	
99.63

	
0

	
95.2

	
2581

	
98.06

	
0

	
83

	
2326

	
92.48

	
0

	
69.5

	
2055

	
85.06

	
0




	
50

	
100

	
3422

	
100

	
0

	
99.9

	
4013

	
99.98

	
0

	
99.9

	
3844

	
99.97

	
0

	
99.5

	
3451

	
99.86

	
0

	
95.3

	
2857

	
98.35

	
0

	
82.1

	
2486

	
92.76

	
0

	
64.2

	
2202

	
83.47

	
0




	
60

	
100

	
4425

	
100

	
0

	
100

	
4681

	
100

	
0

	
99.9

	
4189

	
99.98

	
0

	
99.4

	
3750

	
99.84

	
0

	
94.8

	
2981

	
98.26

	
0

	
83.7

	
2566

	
93.53

	
0

	
64

	
2238

	
83.60

	
0




	
70

	
100

	
5338

	
100

	
0

	
100

	
5181

	
100

	
0

	
100

	
4569

	
100

	
0

	
99.3

	
4027

	
99.83

	
0

	
94.3

	
3183

	
98.21

	
0

	
79.6

	
2594

	
92.14

	
0

	
61.1

	
2284

	
82.75

	
0




	
80

	
100

	
6169

	
100

	
0

	
100

	
5770

	
100

	
0

	
99.9

	
4915

	
99.98

	
0

	
99.6

	
4112

	
99.90

	
0

	
95.6

	
3257

	
98.62

	
0

	
80.5

	
2625

	
92.42

	
0

	
58

	
2260

	
81.15

	
0




	
90

	
100

	
6998

	
100

	
0

	
100

	
6018

	
100

	
0

	
100

	
4984

	
100

	
0

	
99.6

	
4213

	
99.91

	
0

	
94.6

	
3332

	
98.38

	
0

	
78.5

	
2680

	
91.87

	
0

	
52.3

	
2270

	
78.72

	
0




	
100

	
100

	
7714

	
100

	
0

	
100

	
6298

	
100

	
0

	
100

	
5197

	
100

	
0

	
99.6

	
4358

	
99.91

	
0

	
94.5

	
3367

	
98.31

	
0

	
75.8

	
2642

	
90.61

	
0

	
54.6

	
2299

	
79.99

	
0




	
200

	
100

	
12,228

	
100

	
0

	
100

	
7920

	
100

	
0

	
100

	
5951

	
100

	
0

	
100

	
4748

	
100

	
0

	
95.7

	
3330

	
98.71

	
0

	
73.5

	
2665

	
90.02

	
0

	
45.4

	
2233

	
75.41

	
0




	
300

	
100

	
14,375

	
100

	
0

	
100

	
8735

	
100

	
0

	
100

	
6096

	
100

	
0

	
100

	
4723

	
100

	
0

	
96.4

	
3285

	
98.90

	
0

	
69.6

	
2464

	
87.66

	
0

	
43.4

	
2064

	
72.53

	
0




	
400

	
100

	
15,022

	
100

	
0

	
100

	
8762

	
100

	
0

	
100

	
6135

	
100

	
0

	
100

	
4712

	
100

	
0

	
96.4

	
3036

	
98.81

	
0

	
70.5

	
2286

	
87.05

	
0

	
48.1

	
1820

	
71.43

	
0




	
500

	
100

	
15,705

	
100

	
0

	
100

	
8823

	
100

	
0

	
100

	
5876

	
100

	
0

	
100

	
4497

	
100

	
0

	
97.5

	
2842

	
99.12

	
0

	
73.5

	
2100

	
87.38

	
0

	
55.1

	
1686

	
73.37

	
0




	
600

	
100

	
16,442

	
100

	
0

	
100

	
8712

	
100

	
0

	
100

	
5753

	
100

	
0

	
100

	
4252

	
100

	
0

	
97.6

	
2674

	
99.10

	
0

	
74.8

	
1941

	
87.02

	
0

	
62.6

	
1530

	
75.56

	
0




	
700

	
100

	
15,910

	
100

	
0

	
100

	
8670

	
100

	
0

	
100

	
5609

	
100

	
0

	
100

	
3976

	
100

	
0

	
99.1

	
2510

	
99.64

	
0

	
76.5

	
1776

	
86.77

	
0

	
69.3

	
1420

	
78.31

	
0




	
800

	
100

	
16,215

	
100

	
1

	
100

	
8419

	
100

	
1

	
100

	
5492

	
100

	
1

	
100

	
3773

	
100

	
1

	
99.3

	
2271

	
99.69

	
1

	
81.9

	
1648

	
89.02

	
1

	
75.9

	
1319

	
81.73

	
1




	
900

	
100

	
16,347

	
100

	
1

	
100

	
8268

	
100

	
1

	
100

	
5254

	
100

	
1

	
100

	
3597

	
100

	
1

	
99.2

	
2173

	
99.63

	
1

	
84.8

	
1575

	
90.35

	
1

	
80.7

	
1245

	
84.50

	
1




	
1000

	
100

	
16,355

	
100

	
1

	
100

	
8133

	
100

	
1

	
100

	
5064

	
100

	
1

	
100

	
3369

	
100

	
1

	
99.7

	
1998

	
99.85

	
1

	
86.8

	
1426

	
90.74

	
1

	
84.9

	
1189

	
87.30

	
1




	
2000

	
100

	
14,679

	
100

	
3

	
100

	
5955

	
100

	
3

	
100

	
3095

	
100

	
3

	
100

	
1972

	
100

	
2

	
100

	
1243

	
100

	
2

	
98.6

	
1056

	
98.67

	
2

	
97.7

	
1017

	
97.74

	
2




	
3000

	
100

	
12,643

	
100

	
6

	
100

	
4207

	
100

	
6

	
100

	
2036

	
100

	
5

	
100

	
1354

	
100

	
5

	
100

	
1038

	
100

	
4

	
99.9

	
1003

	
99.90

	
4

	
100

	
1001

	
100

	
3




	
4000

	
100

	
10,375

	
100

	
12

	
100

	
2927

	
100

	
11

	
100

	
1467

	
100

	
10

	
100

	
1152

	
100

	
9

	
100

	
1011

	
100

	
7

	
100

	
1000

	
100

	
6

	
100

	
1000

	
100

	
6




	
5000

	
100

	
8524

	
100

	
19

	
100

	
2140

	
100

	
18

	
100

	
1205

	
100

	
15

	
100

	
1032

	
100

	
14

	
100

	
1003

	
100

	
11

	
100

	
1000

	
100

	
9

	
100

	
1000

	
100

	
8




	
6000

	
100

	
6942

	
100

	
28

	
100

	
1724

	
100

	
26

	
100

	
1095

	
100

	
23

	
100

	
1014

	
100

	
20

	
100

	
1000

	
100

	
16

	
100

	
1000

	
100

	
14

	
100

	
1000

	
100

	
12




	
7000

	
100

	
5463

	
100

	
40

	
100

	
1398

	
100

	
35

	
100

	
1050

	
100

	
32

	
100

	
1007

	
100

	
28

	
100

	
1002

	
100

	
23

	
100

	
1000

	
100

	
18

	
100

	
1000

	
100

	
16




	
8000

	
100

	
4543

	
100

	
54

	
100

	
1240

	
100

	
48

	
100

	
1028

	
100

	
43

	
100

	
1002

	
100

	
45

	
100

	
1000

	
100

	
30

	
100

	
1000

	
100

	
24

	
100

	
1000

	
100

	
21




	
9000

	
100

	
3751

	
100

	
69

	
100

	
1135

	
100

	
62

	
100

	
1005

	
100

	
55

	
100

	
1001

	
100

	
48

	
100

	
1000

	
100

	
38

	
100

	
1000

	
100

	
32

	
100

	
1000

	
100

	
26




	
10,000

	
100

	
3056

	
100

	
86

	
100

	
1078

	
100

	
77

	
100

	
1003

	
100

	
68

	
100

	
1000

	
100

	
60

	
100

	
1000

	
100

	
48

	
100

	
1000

	
100

	
40

	
100

	
1000

	
100

	
33




	
Aver.

	
99.96

	
8841

	
99.87

	
11.43

	
99.85

	
4896

	
99.69

	
10.32

	
99.74

	
3556

	
99.60

	
9.18

	
99.53

	
2850

	
99.53

	
8.36

	
97.29

	
2138

	
98.62

	
6.50

	
85.90

	
1774

	
92.89

	
5.43

	
75.28

	
1562

	
86.25

	
4.64
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Table A5. Computational results for randomly generated instances with ratio   10 % : 20 % : 10 % : 60 %   of the number of jobs in the subsets.






Table A5. Computational results for randomly generated instances with ratio   10 % : 20 % : 10 % : 60 %   of the number of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
  n  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
10

	
98.8

	
263

	
95.44

	
0

	
97.5

	
491

	
94.91

	
0

	
94.5

	
657

	
91.48

	
0

	
91

	
791

	
88.50

	
0

	
81.5

	
1014

	
81.36

	
0

	
74.9

	
1102

	
76.59

	
0

	
66

	
1186

	
70.49

	
0




	
20

	
99.7

	
1034

	
99.71

	
0

	
98.8

	
1601

	
99.19

	
0

	
98.8

	
1904

	
99.32

	
0

	
97.6

	
1984

	
98.74

	
0

	
89.9

	
2113

	
95.13

	
0

	
80.4

	
1968

	
89.94

	
0

	
63

	
1845

	
79.73

	
0




	
30

	
99.9

	
2131

	
99.95

	
0

	
99.8

	
2778

	
99.93

	
0

	
99

	
3059

	
99.67

	
0

	
98.3

	
2878

	
99.37

	
0

	
89.6

	
2608

	
95.82

	
0

	
74.3

	
2270

	
88.46

	
0

	
60.3

	
2060

	
80.34

	
0




	
40

	
100

	
3224

	
100

	
0

	
99.9

	
3747

	
99.97

	
0

	
99.8

	
3698

	
99.95

	
0

	
98.3

	
3392

	
99.50

	
0

	
90.9

	
2877

	
96.63

	
0

	
71.8

	
2469

	
88.42

	
0

	
52

	
2174

	
77.60

	
0




	
50

	
100

	
4370

	
100

	
0

	
100

	
4704

	
100

	
0

	
99.6

	
4174

	
99.90

	
0

	
99

	
3701

	
99.73

	
0

	
89.4

	
2988

	
96.32

	
0

	
66.6

	
2566

	
86.83

	
0

	
47.1

	
2228

	
75.94

	
0




	
60

	
100

	
5473

	
100

	
0

	
100

	
5368

	
100

	
0

	
99.9

	
4608

	
99.98

	
0

	
98.2

	
3987

	
99.55

	
0

	
89.3

	
3098

	
96.51

	
0

	
67.2

	
2643

	
87.48

	
0

	
42.6

	
2279

	
74.59

	
0




	
70

	
100

	
6454

	
100

	
0

	
100

	
5985

	
100

	
0

	
99.9

	
4968

	
99.98

	
0

	
99.4

	
4125

	
99.85

	
0

	
87.5

	
3214

	
96.02

	
0

	
62.6

	
2669

	
85.69

	
0

	
38.6

	
2291

	
72.85

	
0




	
80

	
100

	
7498

	
100

	
0

	
99.9

	
6235

	
99.98

	
0

	
99.8

	
5194

	
99.94

	
0

	
98.8

	
4333

	
99.70

	
0

	
87.3

	
3372

	
96.14

	
0

	
61.4

	
2716

	
85.64

	
0

	
33.6

	
2260

	
70.40

	
0




	
90

	
99.9

	
8281

	
99.99

	
0

	
100

	
6560

	
100

	
0

	
99.8

	
5243

	
99.96

	
0

	
98.9

	
4502

	
99.76

	
0

	
87.8

	
3388

	
96.40

	
0

	
61.4

	
2757

	
85.78

	
0

	
32

	
2361

	
71.03

	
0




	
100

	
100

	
9169

	
100

	
0

	
100

	
7056

	
100

	
0

	
99.7

	
5507

	
99.95

	
0

	
99.2

	
4586

	
99.83

	
0

	
83.7

	
3360

	
94.97

	
0

	
58.2

	
2689

	
84.27

	
0

	
27.7

	
2287

	
68.21

	
0




	
200

	
100

	
13,366

	
100

	
0

	
100

	
8131

	
100

	
0

	
99.9

	
6029

	
99.98

	
0

	
99

	
4814

	
99.79

	
0

	
83.1

	
3329

	
94.89

	
0

	
43.9

	
2541

	
77.80

	
0

	
10.3

	
2172

	
58.52

	
0




	
300

	
100

	
14,999

	
100

	
0

	
100

	
8869

	
100

	
0

	
100

	
6010

	
100

	
0

	
98.9

	
4675

	
99.76

	
0

	
82

	
3127

	
94.18

	
0

	
32.2

	
2329

	
70.85

	
0

	
4.6

	
1870

	
48.66

	
0




	
400

	
100

	
15,704

	
100

	
0

	
100

	
8848

	
100

	
0

	
100

	
6048

	
100

	
0

	
99.7

	
4490

	
99.93

	
0

	
82.5

	
2899

	
93.96

	
0

	
28.3

	
2120

	
66.08

	
0

	
1.3

	
1710

	
42.28

	
0




	
500

	
100

	
15,775

	
100

	
0

	
100

	
8720

	
100

	
0

	
100

	
5825

	
100

	
0

	
99.7

	
4290

	
99.93

	
0

	
83.2

	
2638

	
93.63

	
0

	
21.6

	
1885

	
58.30

	
0

	
0.7

	
1541

	
35.56

	
0




	
600

	
100

	
16,336

	
100

	
0

	
100

	
8420

	
100

	
1

	
100

	
5582

	
100

	
0

	
100

	
3938

	
100

	
0

	
87.7

	
2420

	
94.88

	
1

	
18

	
1727

	
52.52

	
0

	
0

	
1408

	
28.98

	
0




	
700

	
100

	
16,298

	
100

	
1

	
100

	
8466

	
100

	
1

	
100

	
5360

	
100

	
1

	
100

	
3733

	
100

	
1

	
88.4

	
2203

	
94.73

	
1

	
15

	
1574

	
46.00

	
1

	
0

	
1282

	
22.00

	
1




	
800

	
100

	
16,707

	
100

	
1

	
100

	
8030

	
100

	
1

	
100

	
5023

	
100

	
1

	
99.9

	
3479

	
99.97

	
1

	
88.7

	
2077

	
94.56

	
1

	
12.9

	
1457

	
40.15

	
1

	
0.2

	
1207

	
17.32

	
1




	
900

	
100

	
16,135

	
100

	
1

	
100

	
7936

	
100

	
1

	
100

	
4808

	
100

	
1

	
100

	
3265

	
100

	
1

	
89.5

	
1934

	
94.52

	
1

	
10.8

	
1368

	
34.80

	
1

	
0

	
1172

	
14.68

	
1




	
1000

	
100

	
16,015

	
100

	
1

	
100

	
7665

	
100

	
1

	
100

	
4528

	
100

	
1

	
100

	
3049

	
100

	
1

	
91.6

	
1737

	
95.16

	
1

	
9.6

	
1314

	
31.20

	
1

	
0

	
1144

	
12.59

	
1




	
2000

	
100

	
13,921

	
100

	
4

	
100

	
5101

	
100

	
4

	
100

	
2549

	
100

	
4

	
100

	
1622

	
100

	
3

	
98.6

	
1138

	
98.77

	
3

	
1.2

	
1024

	
3.52

	
3

	
0

	
1002

	
0.20

	
3




	
3000

	
100

	
11,344

	
100

	
9

	
100

	
3400

	
100

	
9

	
100

	
1636

	
100

	
8

	
100

	
1210

	
100

	
7

	
99.8

	
1014

	
99.80

	
6

	
0.4

	
1003

	
0.70

	
5

	
0

	
1000

	
0

	
5




	
4000

	
100

	
8769

	
100

	
17

	
100

	
2283

	
100

	
16

	
100

	
1245

	
100

	
14

	
100

	
1054

	
100

	
13

	
100

	
1003

	
100

	
10

	
0.1

	
1000

	
0.1

	
9

	
0

	
1000

	
0

	
8




	
5000

	
100

	
6948

	
100

	
28

	
100

	
1691

	
100

	
25

	
100

	
1102

	
100

	
27

	
100

	
1023

	
100

	
21

	
100

	
1001

	
100

	
16

	
0

	
1000

	
0

	
14

	
0

	
1000

	
0

	
11




	
6000

	
100

	
5409

	
100

	
42

	
100

	
1362

	
100

	
38

	
100

	
1041

	
100

	
34

	
100

	
1003

	
100

	
30

	
100

	
1000

	
100

	
27

	
0

	
1000

	
0

	
20

	
0

	
1000

	
0

	
17




	
7000

	
100

	
4121

	
100

	
59

	
100

	
1214

	
100

	
53

	
100

	
1016

	
100

	
47

	
100

	
1001

	
100

	
42

	
100

	
1000

	
100

	
34

	
0

	
1000

	
0

	
27

	
0

	
1000

	
0

	
23




	
8000

	
100

	
3368

	
100

	
80

	
100

	
1093

	
100

	
71

	
100

	
1006

	
100

	
62

	
100

	
1000

	
100

	
66

	
100

	
1000

	
100

	
43

	
0

	
1000

	
0

	
36

	
0

	
1000

	
0

	
30




	
9000

	
100

	
2646

	
100

	
102

	
100

	
1048

	
100

	
90

	
100

	
1000

	
100

	
80

	
100

	
1000

	
100

	
71

	
100

	
1000

	
100

	
56

	
0

	
1000

	
0

	
47

	
0

	
1000

	
0

	
39




	
10,000

	
100

	
2248

	
100

	
126

	
100

	
1024

	
100

	
119

	
100

	
1002

	
100

	
100

	
100

	
1000

	
100

	
89

	
100

	
1000

	
100

	
70

	
0

	
1000

	
0

	
63

	
0

	
1000

	
0

	
48




	
Aver.

	
99.94

	
8857

	
99.82

	
16.82

	
99.85

	
4923

	
99.79

	
15.36

	
99.67

	
3565

	
99.65

	
13.57

	
99.14

	
2854

	
99.43

	
12.36

	
91.14

	
2127

	
96.23

	
9.64

	
31.17

	
1757

	
47.90

	
8.14

	
17.14

	
1553

	
36.50

	
6.71
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Table A6. Computational results for randomly generated instances with ratio   10 % : 10 % : 10 % : 70 %   of the number of jobs in the subsets.






Table A6. Computational results for randomly generated instances with ratio   10 % : 10 % : 10 % : 70 %   of the number of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
  n  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
10

	
98.6

	
371

	
96.23

	
0

	
96.2

	
612

	
93.63

	
0

	
93.6

	
853

	
92.15

	
0

	
89.5

	
1015

	
89.06

	
0

	
82.1

	
1231

	
84.73

	
0

	
67.1

	
1301

	
73.10

	
0

	
54.3

	
1348

	
63.65

	
0




	
20

	
99.8

	
1432

	
99.86

	
0

	
99.3

	
1988

	
99.65

	
0

	
97.2

	
2273

	
98.77

	
0

	
95.5

	
2345

	
98.04

	
0

	
85.9

	
2222

	
93.61

	
0

	
67.5

	
2119

	
84.29

	
0

	
50.7

	
1952

	
74.13

	
0




	
30

	
99.7

	
2713

	
99.89

	
0

	
99.6

	
3341

	
99.88

	
0

	
99.2

	
3397

	
99.76

	
0

	
96.9

	
3204

	
99.03

	
0

	
85.9

	
2777

	
94.63

	
0

	
65.2

	
2344

	
84.98

	
0

	
43.5

	
2139

	
72.98

	
0




	
40

	
99.9

	
4056

	
99.98

	
0

	
99.7

	
4439

	
99.93

	
0

	
99.2

	
4015

	
99.80

	
0

	
97.1

	
3722

	
99.19

	
0

	
85

	
2983

	
94.90

	
0

	
58.4

	
2525

	
82.89

	
0

	
36.5

	
2191

	
70.61

	
0




	
50

	
100

	
5231

	
100

	
0

	
99.9

	
5130

	
99.98

	
0

	
99.7

	
4593

	
99.93

	
0

	
97.7

	
3952

	
99.42

	
0

	
80.4

	
3165

	
93.52

	
0

	
55

	
2595

	
82.35

	
0

	
28.6

	
2200

	
67.18

	
0




	
60

	
100

	
6574

	
100

	
0

	
99.9

	
5804

	
99.98

	
0

	
99.3

	
4934

	
99.84

	
0

	
97.1

	
4182

	
99.26

	
0

	
84.1

	
3283

	
94.94

	
0

	
49.9

	
2656

	
80.80

	
0

	
25.6

	
2255

	
66.39

	
0




	
70

	
99.9

	
7444

	
99.99

	
0

	
100

	
6365

	
100

	
0

	
99.4

	
5115

	
99.88

	
0

	
97.8

	
4328

	
99.49

	
0

	
80.4

	
3261

	
93.90

	
0

	
48.3

	
2706

	
80.60

	
0

	
21

	
2330

	
65.75

	
0




	
80

	
100

	
8505

	
100

	
0

	
100

	
6737

	
100

	
0

	
99.7

	
5415

	
99.94

	
0

	
96.5

	
4422

	
99.21

	
0

	
75.3

	
3304

	
92.37

	
0

	
42.7

	
2667

	
78.29

	
0

	
16.8

	
2258

	
63.02

	
0




	
90

	
100

	
9185

	
100

	
0

	
99.8

	
7333

	
99.97

	
0

	
99.8

	
5623

	
99.96

	
0

	
97.7

	
4555

	
99.50

	
0

	
76.4

	
3417

	
92.98

	
0

	
37.6

	
2696

	
76.34

	
0

	
13.3

	
2288

	
61.32

	
0




	
100

	
100

	
9909

	
100

	
0

	
99.9

	
7305

	
99.99

	
0

	
99.6

	
5571

	
99.93

	
0

	
98.2

	
4546

	
99.60

	
0

	
74.4

	
3449

	
92.49

	
0

	
35.8

	
2695

	
75.92

	
0

	
11.8

	
2314

	
61.62

	
0




	
200

	
100

	
13,806

	
100

	
0

	
100

	
8387

	
100

	
0

	
99.8

	
6146

	
99.97

	
0

	
96.2

	
4736

	
99.18

	
0

	
63.5

	
3261

	
88.75

	
0

	
16.1

	
2527

	
66.68

	
0

	
2.7

	
2006

	
51.40

	
0




	
300

	
100

	
15,550

	
100

	
0

	
100

	
8870

	
100

	
0

	
99.9

	
6084

	
99.98

	
0

	
97.3

	
4563

	
99.41

	
0

	
53.6

	
3067

	
84.84

	
0

	
6.9

	
2215

	
57.97

	
0

	
0.6

	
1765

	
43.63

	
0




	
400

	
100

	
15,856

	
100

	
0

	
100

	
8573

	
100

	
0

	
99.9

	
5852

	
99.98

	
0

	
96.9

	
4304

	
99.28

	
0

	
48.3

	
2737

	
81.11

	
0

	
3.4

	
2049

	
52.76

	
0

	
0

	
1596

	
37.34

	
0




	
500

	
100

	
16,158

	
100

	
0

	
100

	
8576

	
100

	
0

	
100

	
5760

	
100

	
0

	
97.9

	
4067

	
99.48

	
1

	
44.9

	
2471

	
77.70

	
0

	
1.8

	
1727

	
43.14

	
0

	
0.1

	
1402

	
28.74

	
0




	
600

	
100

	
16,216

	
100

	
1

	
100

	
8425

	
100

	
1

	
99.9

	
5416

	
99.98

	
1

	
98.8

	
3724

	
99.68

	
1

	
42.9

	
2217

	
74.24

	
1

	
1.6

	
1539

	
36.00

	
1

	
0

	
1279

	
21.81

	
1




	
700

	
100

	
16,338

	
100

	
1

	
100

	
8142

	
100

	
1

	
100

	
5055

	
100

	
1

	
99.1

	
3432

	
99.74

	
1

	
40.4

	
2059

	
71.01

	
1

	
1.4

	
1420

	
30.56

	
1

	
0

	
1197

	
16.46

	
1




	
800

	
100

	
16,548

	
100

	
1

	
100

	
7909

	
100

	
1

	
100

	
4744

	
100

	
1

	
99

	
3206

	
99.69

	
1

	
36.8

	
1821

	
65.29

	
1

	
0.4

	
1319

	
24.49

	
1

	
0

	
1133

	
11.74

	
1




	
900

	
100

	
16,000

	
100

	
1

	
100

	
7494

	
100

	
1

	
100

	
4477

	
100

	
1

	
99

	
2929

	
99.66

	
1

	
30.5

	
1716

	
59.50

	
1

	
0.1

	
1264

	
20.97

	
1

	
0

	
1098

	
8.93

	
1




	
1000

	
100

	
15,806

	
100

	
1

	
100

	
7294

	
100

	
1

	
100

	
4123

	
100

	
1

	
99.3

	
2694

	
99.74

	
1

	
36.1

	
1535

	
58.37

	
1

	
0.1

	
1177

	
15.12

	
1

	
0

	
1057

	
5.39

	
1




	
2000

	
100

	
13,179

	
100

	
6

	
100

	
4424

	
100

	
5

	
100

	
2200

	
100

	
5

	
100

	
1431

	
100

	
4

	
24.3

	
1059

	
28.52

	
4

	
0

	
1007

	
0.70

	
3

	
0

	
1002

	
0.20

	
3




	
3000

	
100

	
9960

	
100

	
13

	
100

	
2746

	
100

	
12

	
100

	
1407

	
100

	
11

	
100

	
1103

	
100

	
10

	
20.2

	
1007

	
20.75

	
8

	
0

	
1000

	
0

	
7

	
0

	
1001

	
0.10

	
7




	
4000

	
100

	
7402

	
100

	
24

	
100

	
1843

	
100

	
22

	
100

	
1130

	
100

	
20

	
100

	
1027

	
100

	
17

	
16.2

	
1000

	
16.2

	
15

	
0

	
1000

	
0

	
12

	
0

	
1000

	
0

	
10




	
5000

	
100

	
5616

	
100

	
40

	
100

	
1450

	
100

	
36

	
100

	
1042

	
100

	
31

	
100

	
1008

	
100

	
28

	
12.2

	
1000

	
12.2

	
23

	
0

	
1000

	
0

	
19

	
0

	
1000

	
0

	
15




	
6000

	
100

	
4234

	
100

	
59

	
100

	
1204

	
100

	
53

	
100

	
1019

	
100

	
56

	
100

	
1000

	
100

	
42

	
9.8

	
1000

	
9.8

	
34

	
0

	
1000

	
0

	
28

	
0

	
1000

	
0

	
23




	
7000

	
100

	
3236

	
100

	
82

	
100

	
1083

	
100

	
64

	
100

	
1007

	
100

	
65

	
100

	
1000

	
100

	
58

	
7.7

	
1000

	
7.7

	
47

	
0

	
1000

	
0

	
38

	
0

	
1000

	
0

	
31




	
8000

	
100

	
2511

	
100

	
121

	
100

	
1040

	
100

	
98

	
100

	
1002

	
100

	
90

	
100

	
1000

	
100

	
76

	
7.6

	
1000

	
7.6

	
61

	
0

	
1000

	
0

	
51

	
0

	
1000

	
0

	
43




	
9000

	
100

	
2059

	
100

	
140

	
100

	
1015

	
100

	
124

	
100

	
1001

	
100

	
110

	
100

	
1000

	
100

	
96

	
6.2

	
1000

	
6.2

	
79

	
0

	
1000

	
0

	
65

	
0

	
1000

	
0

	
52




	
10,000

	
100

	
1728

	
100

	
174

	
100

	
1011

	
100

	
154

	
100

	
1001

	
100

	
159

	
100

	
1000

	
100

	
120

	
5

	
1000

	
5

	
97

	
0

	
1000

	
0

	
80

	
0

	
1000

	
0

	
65




	
Aver.

	
99.93

	
8844

	
99.85

	
23.71

	
99.80

	
4948

	
99.75

	
20.46

	
99.51

	
3581

	
99.64

	
19.71

	
98.13

	
2839

	
99.20

	
16.32

	
47.00

	
2109

	
60.82

	
13.32

	
19.98

	
1734

	
41.00

	
11

	
10.91

	
1529

	
31.87

	
9.07
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Table A7. Computational results for randomly generated instances with ratio   5 % : 20 % : 5 % : 70 %   of the number of jobs in the subsets.






Table A7. Computational results for randomly generated instances with ratio   5 % : 20 % : 5 % : 70 %   of the number of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
  n  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
20

	
98.8

	
1353

	
99.04

	
0

	
96.7

	
1993

	
98.29

	
0

	
93.3

	
2325

	
97.08

	
0

	
86.9

	
2343

	
94.15

	
0

	
71.4

	
2210

	
86.38

	
0

	
52.1

	
2091

	
76.09

	
0

	
34.8

	
1941

	
65.33

	
0




	
40

	
99.2

	
4101

	
99.80

	
0

	
98.7

	
4426

	
99.71

	
0

	
93.5

	
3918

	
98.34

	
0

	
88.8

	
3685

	
96.93

	
0

	
60.9

	
3007

	
86.63

	
0

	
33.2

	
2539

	
73.02

	
0

	
19

	
2189

	
62.27

	
0




	
60

	
99.1

	
6628

	
99.86

	
0

	
98.7

	
5712

	
99.75

	
0

	
93.1

	
4893

	
98.51

	
0

	
82.5

	
4106

	
95.64

	
0

	
48.8

	
3176

	
83.44

	
0

	
21.1

	
2584

	
68.89

	
0

	
10.9

	
2267

	
60.17

	
0




	
80

	
99.5

	
8614

	
99.93

	
0

	
98.3

	
6701

	
99.75

	
0

	
94.7

	
5335

	
98.93

	
0

	
79.5

	
4447

	
95.21

	
0

	
38.9

	
3272

	
80.96

	
0

	
14.5

	
2738

	
68.04

	
0

	
5.7

	
2254

	
57.59

	
0




	
100

	
99.9

	
10,165

	
99.99

	
0

	
98.7

	
7202

	
99.81

	
0

	
92.6

	
5740

	
98.69

	
0

	
76.5

	
4634

	
94.80

	
0

	
29.4

	
3338

	
78.16

	
0

	
10.5

	
2711

	
66.58

	
0

	
2.7

	
2224

	
55.94

	
0




	
200

	
100

	
13,856

	
100

	
0

	
98.6

	
8509

	
99.84

	
0

	
87.5

	
6083

	
97.93

	
0

	
59.5

	
4691

	
91.20

	
0

	
13.4

	
3333

	
73.69

	
0

	
4.8

	
2546

	
62.33

	
0

	
0.7

	
2041

	
51.20

	
0




	
300

	
100

	
15,201

	
100

	
0

	
99.3

	
8705

	
99.92

	
0

	
82.4

	
6187

	
97.07

	
0

	
44.5

	
4566

	
87.69

	
0

	
7.3

	
3025

	
69.16

	
0

	
2.4

	
2287

	
57.24

	
0

	
0.1

	
1833

	
45.50

	
0




	
400

	
99.9

	
15,924

	
99.99

	
0

	
98.4

	
8964

	
99.82

	
0

	
75.3

	
5888

	
95.77

	
0

	
32.3

	
4338

	
84.23

	
0

	
9.2

	
2727

	
66.59

	
0

	
1.9

	
1970

	
50.20

	
0

	
0.1

	
1592

	
37.25

	
0




	
500

	
100

	
16,186

	
100

	
0

	
98

	
8588

	
99.76

	
0

	
71

	
5652

	
94.80

	
0

	
28.6

	
3987

	
81.89

	
1

	
12.6

	
2468

	
64.55

	
0

	
1.5

	
1794

	
45.09

	
0

	
0

	
1379

	
27.48

	
0




	
600

	
100

	
16,531

	
100

	
1

	
97.5

	
8437

	
99.70

	
1

	
65.2

	
5391

	
93.51

	
1

	
26.8

	
3660

	
79.92

	
1

	
16.4

	
2184

	
61.72

	
1

	
0.6

	
1556

	
36.05

	
1

	
0

	
1287

	
22.30

	
1




	
700

	
100

	
16,251

	
100

	
1

	
98.7

	
8282

	
99.84

	
1

	
63.8

	
4967

	
92.65

	
1

	
24.6

	
3441

	
78.00

	
1

	
17.1

	
2087

	
60.28

	
2

	
0.3

	
1452

	
31.34

	
1

	
0

	
1186

	
15.68

	
1




	
800

	
100

	
16,462

	
100

	
1

	
98.3

	
7937

	
99.79

	
1

	
62.1

	
4736

	
91.91

	
1

	
26.5

	
3192

	
76.94

	
1

	
19.3

	
1806

	
55.26

	
1

	
0

	
1338

	
25.26

	
1

	
0

	
1131

	
11.58

	
1




	
900

	
100

	
16,099

	
100

	
1

	
97

	
7613

	
99.61

	
1

	
58.8

	
4439

	
90.70

	
1

	
28.7

	
2885

	
75.22

	
1

	
23.5

	
1694

	
54.84

	
1

	
0.4

	
1237

	
19.48

	
1

	
0

	
1118

	
10.55

	
1




	
1000

	
100

	
15,750

	
100

	
1

	
96.6

	
7157

	
99.52

	
1

	
59.2

	
4186

	
90.18

	
1

	
29.7

	
2708

	
74.04

	
1

	
23

	
1551

	
50.35

	
1

	
0.1

	
1211

	
17.51

	
1

	
0

	
1080

	
7.41

	
1




	
2000

	
100

	
13,055

	
100

	
6

	
97.8

	
4521

	
99.51

	
5

	
65.8

	
2164

	
84.20

	
5

	
76.3

	
1416

	
83.26

	
5

	
23.5

	
1063

	
28.03

	
4

	
0

	
1012

	
1.19

	
3

	
0

	
1003

	
0.30

	
3




	
3000

	
100

	
10,038

	
100

	
13

	
99.5

	
2766

	
99.82

	
12

	
86.4

	
1403

	
90.31

	
11

	
94

	
1109

	
94.59

	
10

	
17.9

	
1007

	
18.47

	
8

	
0

	
1000

	
0

	
7

	
0

	
1000

	
0

	
6




	
4000

	
100

	
7568

	
100

	
25

	
99.6

	
1823

	
99.78

	
22

	
96.3

	
1118

	
96.69

	
20

	
98.5

	
1021

	
98.53

	
18

	
15.9

	
1001

	
15.98

	
14

	
0

	
1000

	
0

	
12

	
0

	
1000

	
0

	
10




	
5000

	
100

	
5613

	
100

	
40

	
100

	
1430

	
100

	
35

	
97.4

	
1056

	
97.54

	
32

	
99.5

	
1008

	
99.50

	
29

	
11.4

	
1000

	
11.4

	
23

	
0

	
1000

	
0

	
19

	
0

	
1000

	
0

	
16




	
6000

	
100

	
4157

	
100

	
59

	
100

	
1187

	
100

	
54

	
99.5

	
1014

	
99.51

	
48

	
99.9

	
1002

	
99.90

	
46

	
10.4

	
1000

	
10.4

	
34

	
0

	
1000

	
0

	
33

	
0

	
1000

	
0

	
23




	
7000

	
100

	
3108

	
100

	
85

	
100

	
1076

	
100

	
74

	
99.7

	
1007

	
99.70

	
66

	
100

	
1000

	
100

	
60

	
8.6

	
1000

	
8.6

	
47

	
0

	
1000

	
0

	
39

	
0

	
1000

	
0

	
31




	
8000

	
100

	
2581

	
100

	
110

	
100

	
1051

	
100

	
98

	
99.7

	
1004

	
99.70

	
88

	
100

	
1000

	
100

	
78

	
6.4

	
1000

	
6.4

	
65

	
0

	
1000

	
0

	
50

	
0

	
1000

	
0

	
41




	
9000

	
100

	
2029

	
100

	
140

	
100

	
1014

	
100

	
131

	
100

	
1000

	
100

	
115

	
100

	
1000

	
100

	
99

	
6.7

	
1000

	
6.7

	
79

	
0

	
1000

	
0

	
63

	
0

	
1000

	
0

	
52




	
10,000

	
100

	
1672

	
100

	
175

	
100

	
1010

	
100

	
166

	
100

	
1000

	
100

	
138

	
100

	
1000

	
100

	
122

	
5.9

	
1000

	
5.9

	
99

	
0

	
1000

	
0

	
80

	
0

	
1000

	
0

	
66




	
Aver.

	
99.84

	
9693

	
99.94

	
28.61

	
98.71

	
5048

	
99.75

	
26.17

	
84.23

	
3500

	
95.81

	
22.96

	
68.85

	
2706

	
90.51

	
20.57

	
21.65

	
1954

	
47.13

	
16.48

	
6.23

	
1612

	
30.36

	
13.52

	
3.22

	
1414

	
23.07

	
11











[image: Table] 





Table A8. Computational results for randomly generated instances with ratio   5 % : 15 % : 5 % : 75 %   of the number of jobs in the subsets.






Table A8. Computational results for randomly generated instances with ratio   5 % : 15 % : 5 % : 75 %   of the number of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
  n  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
20

	
99

	
1475

	
99.32

	
0

	
96.5

	
2242

	
98.44

	
0

	
93.4

	
2450

	
97.18

	
0

	
84.7

	
2514

	
93.52

	
0

	
68.7

	
2340

	
86.07

	
0

	
49.2

	
2103

	
74.99

	
0

	
30.8

	
1952

	
63.73

	
0




	
40

	
99.4

	
4487

	
99.84

	
0

	
98.2

	
4516

	
99.53

	
0

	
93.5

	
4245

	
98.35

	
0

	
85.9

	
3850

	
96.21

	
0

	
52.9

	
3112

	
84.38

	
0

	
30.1

	
2565

	
71.85

	
0

	
13.7

	
2149

	
59.19

	
0




	
60

	
100

	
6924

	
100

	
0

	
97.6

	
5942

	
99.58

	
0

	
91.7

	
4936

	
98.30

	
0

	
80.3

	
4225

	
95.24

	
0

	
43.5

	
3242

	
82.02

	
0

	
17.7

	
2620

	
67.82

	
0

	
5.9

	
2282

	
58.15

	
0




	
80

	
99.8

	
9113

	
99.98

	
0

	
98.7

	
6863

	
99.78

	
0

	
92.2

	
5512

	
98.55

	
0

	
75.3

	
4487

	
94.25

	
0

	
32.8

	
3350

	
79.37

	
0

	
12.3

	
2686

	
66.57

	
0

	
3.1

	
2301

	
57.32

	
0




	
100

	
99.9

	
10,503

	
99.99

	
0

	
98.3

	
7707

	
99.78

	
0

	
91.4

	
5884

	
98.45

	
0

	
73

	
4606

	
93.90

	
0

	
25.9

	
3411

	
77.84

	
0

	
4.4

	
2744

	
64.72

	
0

	
1.1

	
2292

	
56.68

	
0




	
200

	
100

	
14,104

	
100

	
0

	
97.7

	
8731

	
99.73

	
0

	
83.2

	
6090

	
97.14

	
0

	
53

	
4744

	
89.80

	
0

	
10.2

	
3300

	
72.42

	
0

	
0.9

	
2486

	
59.90

	
0

	
0

	
2009

	
50.02

	
0




	
300

	
99.8

	
15,767

	
99.99

	
0

	
98.2

	
8987

	
99.80

	
0

	
77.5

	
6167

	
96.25

	
0

	
36.8

	
4562

	
85.88

	
0

	
2.3

	
2969

	
66.86

	
0

	
0

	
2144

	
53.36

	
0

	
0

	
1739

	
42.50

	
0




	
400

	
99.9

	
15,948

	
99.99

	
0

	
97.5

	
8704

	
99.71

	
0

	
69

	
5775

	
94.53

	
0

	
25.9

	
4239

	
82.33

	
0

	
2.1

	
2675

	
63.18

	
0

	
0

	
1939

	
48.38

	
0

	
0

	
1522

	
34.30

	
0




	
500

	
99.9

	
16,456

	
99.99

	
1

	
96.7

	
8566

	
99.61

	
1

	
63.5

	
5460

	
93.28

	
1

	
20.8

	
3926

	
79.67

	
1

	
1.3

	
2393

	
58.71

	
1

	
0

	
1695

	
40.94

	
0

	
0

	
1357

	
26.31

	
0




	
600

	
100

	
16,327

	
100

	
1

	
96.6

	
8386

	
99.59

	
1

	
58.8

	
5149

	
91.96

	
1

	
17

	
3616

	
76.94

	
1

	
1.5

	
2102

	
53.09

	
1

	
0

	
1510

	
33.77

	
1

	
0

	
1280

	
21.88

	
1




	
700

	
100

	
16,349

	
100

	
1

	
95.8

	
8152

	
99.48

	
1

	
52.1

	
4831

	
90.04

	
1

	
14.2

	
3287

	
73.81

	
1

	
0.6

	
1911

	
47.83

	
1

	
0

	
1373

	
27.17

	
1

	
0

	
1190

	
15.97

	
1




	
800

	
100

	
16,329

	
100

	
1

	
94.8

	
7753

	
99.33

	
1

	
52

	
4584

	
89.49

	
1

	
15.7

	
3044

	
72.17

	
1

	
0.4

	
1732

	
42.44

	
1

	
0

	
1311

	
23.72

	
1

	
0

	
1123

	
10.95

	
1




	
900

	
100

	
16,036

	
100

	
1

	
96.4

	
7430

	
99.52

	
2

	
50.3

	
4206

	
88.11

	
1

	
17.4

	
2760

	
70.04

	
1

	
0.4

	
1550

	
35.68

	
1

	
0

	
1223

	
18.23

	
1

	
0

	
1084

	
7.75

	
1




	
1000

	
100

	
15,802

	
100

	
2

	
94.9

	
7018

	
99.27

	
2

	
50.3

	
3859

	
87.12

	
2

	
18.8

	
2588

	
68.62

	
2

	
0.2

	
1460

	
31.64

	
1

	
0

	
1155

	
13.42

	
1

	
0

	
1057

	
5.39

	
1




	
2000

	
100

	
12,622

	
100

	
6

	
94.3

	
4221

	
98.63

	
6

	
65.2

	
2006

	
82.65

	
6

	
36.5

	
1340

	
52.61

	
5

	
0

	
1044

	
4.21

	
4

	
0

	
1009

	
0.89

	
4

	
0

	
1000

	
0

	
3




	
3000

	
100

	
9378

	
100

	
15

	
97.3

	
2524

	
98.93

	
14

	
84.7

	
1308

	
88.30

	
13

	
36.7

	
1080

	
41.39

	
12

	
0

	
1008

	
0.79

	
11

	
0

	
1000

	
0

	
8

	
0

	
1000

	
0

	
7




	
4000

	
100

	
6813

	
100

	
28

	
99.7

	
1677

	
99.82

	
25

	
96.4

	
1092

	
96.70

	
23

	
40.8

	
1012

	
41.50

	
20

	
0

	
1000

	
0

	
16

	
0

	
1000

	
0

	
14

	
0

	
1000

	
0

	
11




	
5000

	
100

	
4874

	
100

	
48

	
99.8

	
1318

	
99.85

	
42

	
98.6

	
1031

	
98.64

	
38

	
38.1

	
1004

	
38.35

	
33

	
0

	
1000

	
0

	
27

	
0

	
1000

	
0

	
21

	
0

	
1000

	
0

	
18




	
6000

	
100

	
3737

	
100

	
69

	
100

	
1178

	
100

	
62

	
99.4

	
1010

	
99.41

	
55

	
37.8

	
1003

	
37.99

	
49

	
0

	
1000

	
0

	
39

	
0

	
1000

	
0

	
31

	
0

	
1000

	
0

	
26




	
7000

	
100

	
2782

	
100

	
96

	
100

	
1062

	
100

	
84

	
99.8

	
1004

	
99.80

	
77

	
35.9

	
1000

	
35.9

	
68

	
0

	
1000

	
0

	
54

	
0

	
1000

	
0

	
41

	
0

	
1000

	
0

	
36




	
8000

	
100

	
2280

	
100

	
128

	
100

	
1024

	
100

	
112

	
100

	
1000

	
100

	
101

	
33.2

	
1000

	
33.2

	
90

	
0

	
1000

	
0

	
71

	
0

	
1000

	
0

	
57

	
0

	
1000

	
0

	
52




	
9000

	
100

	
1802

	
100

	
163

	
100

	
1006

	
100

	
142

	
99.9

	
1001

	
99.9

	
127

	
33.9

	
1000

	
33.9

	
112

	
0

	
1000

	
0

	
94

	
0

	
1000

	
0

	
73

	
0

	
1000

	
0

	
61




	
10,000

	
100

	
1536

	
100

	
199

	
100

	
1010

	
100

	
176

	
100

	
1000

	
100

	
160

	
31

	
1000

	
31

	
141

	
0

	
1000

	
0

	
114

	
0

	
1000

	
0

	
91

	
0

	
1000

	
0

	
75




	
Aver.

	
99.9

	
9628

	
99.96

	
33

	
97.78

	
5044

	
99.58

	
29.17

	
81.00

	
3461

	
94.96

	
26.39

	
40.99

	
2691

	
66.01

	
23.35

	
10.56

	
1939

	
38.55

	
18.96

	
4.98

	
1590

	
28.95

	
15

	
2.37

	
1406

	
22.18

	
12.78
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Table A9. Computational results for randomly generated instances with ratio   5 % : 5 % : 5 % : 85 %   of the number of jobs in the subsets.






Table A9. Computational results for randomly generated instances with ratio   5 % : 5 % : 5 % : 85 %   of the number of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
  n  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
20

	
98.8

	
1896

	
99.31

	
0

	
94.9

	
2585

	
97.95

	
0

	
90.4

	
2763

	
96.20

	
0

	
82.2

	
2777

	
93.30

	
0

	
61.1

	
2532

	
83.37

	
0

	
41.9

	
2220

	
72.03

	
0

	
24.2

	
2063

	
61.66

	
0




	
40

	
99.5

	
5138

	
99.90

	
0

	
97.4

	
5066

	
99.49

	
0

	
92.9

	
4468

	
98.30

	
0

	
79.9

	
3928

	
94.63

	
0

	
46.8

	
3040

	
81.71

	
0

	
21.4

	
2588

	
68.66

	
0

	
8.7

	
2231

	
58.09

	
0




	
60

	
99.8

	
7963

	
99.97

	
0

	
98

	
6409

	
99.69

	
0

	
91.5

	
5209

	
98.33

	
0

	
72.5

	
4332

	
93.44

	
0

	
35.5

	
3301

	
80.01

	
0

	
11.5

	
2681

	
66.21

	
0

	
3.2

	
2349

	
58.49

	
0




	
80

	
99.7

	
9889

	
99.97

	
0

	
97.8

	
7272

	
99.68

	
0

	
88.7

	
5564

	
97.90

	
0

	
62.9

	
4545

	
91.44

	
0

	
25

	
3415

	
77.39

	
0

	
6.7

	
2718

	
65.16

	
0

	
0.6

	
2273

	
55.70

	
0




	
100

	
99.4

	
11,142

	
99.95

	
0

	
97.5

	
7878

	
99.67

	
0

	
86.9

	
5749

	
97.67

	
0

	
64.1

	
4732

	
92.16

	
0

	
17.4

	
3326

	
74.74

	
0

	
3.5

	
2705

	
64.07

	
0

	
0.2

	
2257

	
55.38

	
0




	
200

	
99.8

	
14,582

	
99.99

	
0

	
96.9

	
8778

	
99.64

	
0

	
73.5

	
6081

	
95.54

	
0

	
38.2

	
4773

	
86.80

	
0

	
2.9

	
3190

	
69.28

	
0

	
0.2

	
2407

	
58.33

	
0

	
0

	
1915

	
47.78

	
0




	
300

	
100

	
15,862

	
100

	
0

	
95.8

	
8856

	
99.51

	
0

	
63.9

	
5907

	
93.84

	
0

	
21.9

	
4440

	
82.27

	
0

	
0.6

	
2808

	
64.32

	
0

	
0

	
2070

	
51.64

	
0

	
0

	
1651

	
39.37

	
0




	
400

	
100

	
16,410

	
100

	
0

	
93.8

	
8685

	
99.25

	
0

	
51.1

	
5715

	
91.32

	
0

	
11.6

	
4129

	
78.40

	
0

	
0.1

	
2496

	
59.90

	
0

	
0

	
1777

	
43.73

	
0

	
0

	
1438

	
30.39

	
0




	
500

	
100

	
16,610

	
100

	
1

	
92.8

	
8433

	
99.13

	
1

	
43.5

	
5286

	
89.14

	
1

	
8.4

	
3665

	
74.92

	
1

	
0

	
2170

	
53.98

	
1

	
0

	
1514

	
33.95

	
1

	
0

	
1280

	
21.88

	
1




	
600

	
100

	
16,129

	
100

	
1

	
90.5

	
8109

	
98.79

	
1

	
37.3

	
4975

	
87.32

	
1

	
4.5

	
3355

	
71.51

	
1

	
0

	
1966

	
49.14

	
1

	
0

	
1407

	
28.86

	
1

	
0

	
1178

	
15.11

	
1




	
700

	
100

	
16,180

	
100

	
1

	
90.6

	
7795

	
98.78

	
1

	
34.7

	
4557

	
85.63

	
1

	
2.6

	
3089

	
68.37

	
1

	
0

	
1757

	
43.09

	
1

	
0

	
1289

	
22.34

	
1

	
0

	
1117

	
10.47

	
1




	
800

	
100

	
15,972

	
100

	
1

	
90.8

	
7404

	
98.76

	
1

	
29.3

	
4281

	
83.44

	
1

	
2.1

	
2723

	
63.90

	
1

	
0

	
1607

	
37.77

	
1

	
0

	
1206

	
17.08

	
1

	
0

	
1090

	
8.26

	
1




	
900

	
100

	
15,602

	
100

	
2

	
88.3

	
6867

	
98.28

	
2

	
24.7

	
3918

	
80.78

	
2

	
0.7

	
2547

	
61.01

	
2

	
0

	
1448

	
30.94

	
1

	
0

	
1145

	
12.66

	
1

	
0

	
1044

	
4.21

	
1




	
1000

	
100

	
15,428

	
100

	
2

	
86.6

	
6570

	
97.95

	
2

	
19.3

	
3586

	
77.44

	
2

	
0.3

	
2279

	
56.16

	
2

	
0

	
1314

	
23.90

	
2

	
0

	
1093

	
8.51

	
2

	
0

	
1031

	
3.01

	
1




	
2000

	
100

	
11,672

	
100

	
8

	
83

	
3610

	
95.29

	
8

	
6.2

	
1716

	
45.34

	
7

	
0

	
1220

	
18.03

	
7

	
0

	
1029

	
2.82

	
6

	
0

	
1010

	
0.99

	
5

	
0

	
1000

	
0

	
4




	
3000

	
100

	
8320

	
100

	
19

	
79.4

	
2171

	
90.51

	
18

	
1.9

	
1186

	
17.28

	
17

	
0

	
1044

	
4.21

	
15

	
0

	
1001

	
0.10

	
12

	
0

	
1000

	
0

	
10

	
0

	
1000

	
0

	
8




	
4000

	
100

	
5648

	
100

	
37

	
80.9

	
1472

	
87.02

	
34

	
1.5

	
1050

	
6.19

	
30

	
0

	
1007

	
0.70

	
27

	
0

	
1000

	
0

	
22

	
0

	
1000

	
0

	
18

	
0

	
1000

	
0

	
15




	
5000

	
100

	
4110

	
100

	
61

	
82.8

	
1186

	
85.50

	
56

	
0.3

	
1019

	
2.16

	
49

	
0

	
1002

	
0.20

	
44

	
0

	
1000

	
0

	
35

	
0

	
1000

	
0

	
29

	
0

	
1000

	
0

	
23




	
6000

	
100

	
2976

	
100

	
91

	
83.8

	
1091

	
85.15

	
80

	
0.3

	
1003

	
0.60

	
72

	
0

	
1000

	
0

	
91

	
0

	
1000

	
0

	
51

	
0

	
1000

	
0

	
44

	
0

	
1000

	
0

	
34




	
7000

	
100

	
2280

	
100

	
125

	
89

	
1036

	
89.38

	
110

	
0.1

	
1001

	
0.20

	
99

	
0

	
1000

	
0

	
88

	
0

	
1000

	
0

	
70

	
0

	
1000

	
0

	
57

	
0

	
1000

	
0

	
53




	
8000

	
100

	
1803

	
100

	
164

	
88.8

	
1010

	
88.91

	
145

	
0

	
1000

	
0

	
136

	
0

	
1000

	
0

	
115

	
0

	
1000

	
0

	
93

	
0

	
1000

	
0

	
75

	
0

	
1000

	
0

	
62




	
9000

	
100

	
1517

	
100

	
209

	
89.5

	
1003

	
89.53

	
184

	
0.1

	
1000

	
0.1

	
164

	
0

	
1000

	
0

	
147

	
0

	
1000

	
0

	
117

	
0

	
1000

	
0

	
96

	
0

	
1000

	
0

	
79




	
10,000

	
100

	
1290

	
100

	
270

	
90.5

	
1003

	
90.53

	
230

	
0

	
1000

	
0

	
204

	
0

	
1000

	
0

	
182

	
0

	
1000

	
0

	
147

	
0

	
1000

	
0

	
119

	
0

	
1000

	
0

	
98




	
Aver.

	
99.87

	
9496

	
99.96

	
43.13

	
90.41

	
4969

	
95.15

	
37.96

	
36.44

	
3393

	
58.47

	
34.17

	
19.65

	
2634

	
49.19

	
31.48

	
8.23

	
1887

	
36.19

	
24.35

	
3.70

	
1558

	
26.70

	
20

	
1.60

	
1388

	
20.43

	
16.61
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Table A10. Computational results for randomly generated instances with ratio   3 % : 2 % : 5 % : 90 %   of the number of jobs in the subsets.






Table A10. Computational results for randomly generated instances with ratio   3 % : 2 % : 5 % : 90 %   of the number of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
  n  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
100

	
99.7

	
11511

	
0.9997

	
0

	
95.4

	
8016

	
0.994

	
0

	
79

	
5914

	
0.963

	
0

	
50.5

	
4697

	
0.892

	
0

	
0.6

	
3217

	
0.688

	
0

	
1

	
2712

	
0.631

	
0

	
0

	
2282

	
0.559

	
0




	
200

	
99.7

	
15,060

	
0.9998

	
0

	
94

	
8798

	
0.993

	
0

	
60.4

	
6244

	
0.935

	
0

	
24.3

	
4606

	
0.833

	
0

	
0.1

	
2812

	
0.643

	
0

	
0

	
2352

	
0.574

	
0

	
0

	
1897

	
0.472

	
0




	
300

	
99.6

	
15,656

	
0.9997

	
0

	
88

	
8797

	
0.986

	
0

	
41

	
5866

	
0.898

	
0

	
10.2

	
4394

	
0.792

	
0

	
0

	
2395

	
0.582

	
1

	
0

	
2002

	
0.499

	
0

	
0

	
1572

	
0.364

	
0




	
400

	
99.5

	
16,208

	
0.9997

	
0

	
81.6

	
8503

	
0.978

	
1

	
26

	
5641

	
0.868

	
1

	
3.5

	
3960

	
0.756

	
1

	
0

	
2142

	
0.533

	
1

	
0

	
1721

	
0.418

	
0

	
0

	
1376

	
0.273

	
1




	
500

	
99.7

	
16,397

	
0.9998

	
1

	
77.2

	
8360

	
0.973

	
1

	
20.3

	
5140

	
0.844

	
1

	
1.4

	
3621

	
0.726

	
1

	
0

	
1868

	
0.464

	
1

	
0

	
1555

	
0.357

	
1

	
0

	
1242

	
0.195

	
1




	
600

	
99.6

	
16,083

	
0.9998

	
1

	
71.9

	
7983

	
0.964

	
1

	
14.2

	
4801

	
0.821

	
1

	
0.7

	
3294

	
0.697

	
1

	
0

	
1688

	
0.408

	
1

	
0

	
1374

	
0.272

	
1

	
0

	
1171

	
0.146

	
1




	
700

	
99.6

	
15,873

	
0.9997

	
1

	
69.1

	
7623

	
0.959

	
1

	
11.2

	
4438

	
0.800

	
1

	
0.4

	
2956

	
0.663

	
1

	
0

	
1525

	
0.344

	
1

	
0

	
1221

	
0.181

	
1

	
0

	
1093

	
0.085

	
1




	
800

	
99.6

	
15,935

	
0.9997

	
2

	
64.6

	
7140

	
0.950

	
2

	
8.1

	
4116

	
0.776

	
2

	
0.5

	
2671

	
0.627

	
2

	
0

	
1403

	
0.287

	
2

	
0

	
1178

	
0.151

	
1

	
0

	
1066

	
0.062

	
1




	
900

	
99.6

	
15,490

	
0.9997

	
2

	
63.6

	
6760

	
0.945

	
2

	
4.9

	
3735

	
0.745

	
2

	
0.1

	
2368

	
0.578

	
2

	
0

	
1324

	
0.245

	
2

	
0

	
1110

	
0.099

	
2

	
0

	
1045

	
0.043

	
1




	
1000

	
99.7

	
15,121

	
0.9998

	
2

	
60.5

	
6413

	
0.937

	
3

	
4.4

	
3405

	
0.719

	
2

	
0

	
2154

	
0.536

	
2

	
0

	
1019

	
0.019

	
7

	
0

	
1091

	
0.083

	
2

	
0

	
1027

	
0.026

	
2




	
2000

	
99.9

	
11,277

	
0.9999

	
10

	
30.5

	
3309

	
0.790

	
9

	
0

	
1624

	
0.384

	
9

	
0

	
1195

	
0.163

	
8

	
0

	
1003

	
0.003

	
14

	
0

	
1004

	
0.004

	
7

	
0

	
1000

	
0

	
5




	
3000

	
99.8

	
7873

	
0.9997

	
25

	
19.2

	
1949

	
0.585

	
21

	
0

	
1154

	
0.133

	
21

	
0

	
1027

	
0.026

	
17

	
0

	
1000

	
0

	
25

	
0

	
1001

	
0.001

	
12

	
0

	
1000

	
0

	
10




	
4000

	
99.7

	
5275

	
0.9994

	
43

	
15.6

	
1380

	
0.388

	
39

	
0

	
1042

	
0.040

	
35

	
0

	
1007

	
0.007

	
31

	
0

	
1000

	
0

	
40

	
0

	
1000

	
0

	
22

	
0

	
1000

	
0

	
17




	
5000

	
99.9

	
3641

	
0.9997

	
70

	
9.8

	
1141

	
0.209

	
64

	
0

	
1008

	
0.008

	
57

	
0

	
1001

	
0.001

	
50

	
0

	
1000

	
0

	
59

	
0

	
1000

	
0

	
33

	
0

	
1000

	
0

	
27




	
6000

	
100

	
2667

	
1

	
102

	
9.1

	
1041

	
0.127

	
98

	
0

	
1001

	
0.001

	
82

	
0

	
1000

	
0

	
73

	
0

	
1000

	
0

	
62

	
0

	
1000

	
0

	
48

	
0

	
1000

	
0

	
39




	
7000

	
100

	
2045

	
1

	
141

	
7.6

	
1024

	
0.098

	
127

	
0

	
1001

	
0.001

	
118

	
0

	
1000

	
0

	
100

	
0

	
1000

	
0

	
92

	
0

	
1000

	
0

	
73

	
0

	
1000

	
0

	
54




	
8000

	
100

	
1633

	
1

	
186

	
6.2

	
1005

	
0.067

	
166

	
0

	
1000

	
0

	
147

	
0

	
1000

	
0

	
163

	
0

	
1000

	
0

	
105

	
0

	
1000

	
0

	
85

	
0

	
1000

	
0

	
71




	
9000

	
100

	
1407

	
1

	
236

	
4.5

	
1003

	
0.048

	
210

	
0

	
1000

	
0

	
186

	
0

	
1000

	
0

	
165

	
0

	
1000

	
0

	
133

	
0

	
1000

	
0

	
109

	
0

	
1000

	
0

	
89




	
10,000

	
100

	
1248

	
1

	
294

	
2.5

	
1000

	
0.025

	
274

	
0

	
1000

	
0

	
231

	
0

	
1000

	
0

	
206

	
0

	
1000

	
0

	
168

	
0

	
1000

	
0

	
137

	
0

	
1000

	
0

	
112




	
Aver.

	
99.77

	
10021

	
1.00

	
58.74

	
45.84

	
4803

	
0.63

	
53.63

	
14.18

	
3112

	
0.47

	
47.16

	
4.82

	
2313

	
0.38

	
43.32

	
0.04

	
1495

	
0.22

	
37.58

	
0.05

	
1333

	
0.17

	
28.11

	
0

	
1198

	
0.12

	
22.74
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Table A11. Computational results for randomly generated instances with ratio   2 % : 3 % : 5 % : 90 %   of the number of jobs in the subsets.






Table A11. Computational results for randomly generated instances with ratio   2 % : 3 % : 5 % : 90 %   of the number of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
  n  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
100

	
99

	
11,556

	
0.999

	
0

	
94

	
7914

	
0.992

	
0

	
75

	
5859

	
0.956

	
0

	
46.8

	
4631

	
0.881

	
0

	
9.3

	
3418

	
0.731

	
0

	
0.9

	
2679

	
0.624

	
0

	
0

	
2206

	
0.544

	
0




	
200

	
99.3

	
14,862

	
1.000

	
0

	
90.1

	
8619

	
0.988

	
0

	
51.3

	
6177

	
0.919

	
0

	
18.5

	
4644

	
0.820

	
0

	
0.4

	
3093

	
0.676

	
0

	
0

	
2324

	
0.567

	
0

	
0

	
1889

	
0.468

	
0




	
300

	
99.4

	
15,924

	
1.000

	
0

	
85.8

	
8892

	
0.984

	
0

	
35.3

	
5901

	
0.888

	
0

	
6.7

	
4360

	
0.783

	
0

	
0.2

	
2749

	
0.635

	
0

	
0

	
2034

	
0.508

	
0

	
0

	
1611

	
0.379

	
0




	
400

	
99.6

	
16,312

	
1.000

	
0

	
77.8

	
8622

	
0.974

	
1

	
22.4

	
5652

	
0.861

	
1

	
2.6

	
3936

	
0.752

	
1

	
0

	
2412

	
0.585

	
1

	
0

	
1733

	
0.422

	
1

	
0

	
1371

	
0.270

	
0




	
500

	
99.7

	
16,305

	
1.000

	
1

	
72.6

	
8415

	
0.967

	
1

	
13.2

	
5135

	
0.829

	
1

	
1.2

	
3653

	
0.728

	
1

	
0

	
2122

	
0.528

	
1

	
0

	
1528

	
0.346

	
1

	
0

	
1232

	
0.188

	
1




	
600

	
99.2

	
16,297

	
1.000

	
1

	
66.1

	
7956

	
0.956

	
1

	
9.5

	
4917

	
0.814

	
1

	
0.5

	
3199

	
0.688

	
1

	
0

	
1850

	
0.459

	
1

	
0

	
1388

	
0.280

	
1

	
0

	
1179

	
0.152

	
1




	
700

	
99.7

	
16,252

	
1.000

	
1

	
58.2

	
7472

	
0.943

	
1

	
7.6

	
4480

	
0.793

	
2

	
0

	
2895

	
0.655

	
1

	
0

	
1660

	
0.398

	
1

	
0

	
1233

	
0.189

	
1

	
0

	
1080

	
0.074

	
1




	
800

	
99.5

	
16,075

	
1.000

	
2

	
51.8

	
7186

	
0.933

	
2

	
3.3

	
4088

	
0.763

	
2

	
0

	
2662

	
0.624

	
2

	
0

	
1506

	
0.336

	
1

	
0

	
1178

	
0.151

	
1

	
0

	
1061

	
0.057

	
1




	
900

	
99.4

	
15,617

	
1.000

	
2

	
48.6

	
6771

	
0.923

	
2

	
2.6

	
3828

	
0.744

	
2

	
0

	
2398

	
0.583

	
2

	
0

	
1379

	
0.275

	
2

	
0

	
1141

	
0.124

	
3

	
0

	
1036

	
0.035

	
1




	
1000

	
99.4

	
15,297

	
1.000

	
2

	
42.5

	
6381

	
0.909

	
3

	
2.2

	
3435

	
0.715

	
4

	
0

	
2114

	
0.527

	
2

	
0

	
1352

	
0.260

	
2

	
0

	
1092

	
0.084

	
3

	
0

	
1025

	
0.024

	
2




	
2000

	
98.8

	
11,349

	
0.999

	
10

	
20.1

	
3332

	
0.760

	
9

	
0

	
1646

	
0.392

	
9

	
0

	
1182

	
0.154

	
8

	
0

	
1024

	
0.023

	
7

	
0

	
1000

	
0

	
6

	
0

	
1001

	
0.001

	
5




	
3000

	
98.1

	
7777

	
0.998

	
23

	
5.4

	
1938

	
0.512

	
21

	
0

	
1166

	
0.142

	
19

	
0

	
1038

	
0.037

	
17

	
0

	
1002

	
0.002

	
14

	
0

	
1000

	
0

	
13

	
0

	
1000

	
0

	
10




	
4000

	
97.4

	
5297

	
0.995

	
45

	
3.9

	
1391

	
0.309

	
47

	
0

	
1037

	
0.036

	
35

	
0

	
1003

	
0.003

	
31

	
0

	
1000

	
0

	
26

	
0

	
1000

	
0

	
20

	
0

	
1000

	
0

	
17




	
5000

	
99.1

	
3802

	
0.998

	
70

	
2.2

	
1131

	
0.135

	
64

	
0

	
1009

	
0.009

	
56

	
0

	
1000

	
0

	
50

	
0

	
1000

	
0

	
46

	
0

	
1000

	
0

	
33

	
0

	
1000

	
0

	
27




	
6000

	
99

	
2686

	
0.996

	
102

	
0.8

	
1047

	
0.053

	
99

	
0

	
1003

	
0.003

	
82

	
0

	
1000

	
0

	
84

	
0

	
1000

	
0

	
58

	
0

	
1000

	
0

	
47

	
0

	
1000

	
0

	
39




	
7000

	
99.6

	
1996

	
0.998

	
142

	
0.5

	
1011

	
0.016

	
126

	
0

	
1001

	
0.001

	
112

	
0

	
1000

	
0

	
100

	
0

	
1000

	
0

	
87

	
0

	
1000

	
0

	
66

	
0

	
1000

	
0

	
54




	
8000

	
99.9

	
1641

	
0.999

	
185

	
0.2

	
1004

	
0.006

	
178

	
0

	
1000

	
0

	
150

	
0

	
1000

	
0

	
132

	
0

	
1000

	
0

	
106

	
0

	
1000

	
0

	
86

	
0

	
1000

	
0

	
70




	
9000

	
99.8

	
1387

	
0.999

	
236

	
0.2

	
1005

	
0.007

	
211

	
0

	
1000

	
0

	
186

	
0

	
1000

	
0

	
180

	
0

	
1000

	
0

	
134

	
0

	
1000

	
0

	
109

	
0

	
1000

	
0

	
89




	
10,000

	
99.9

	
1247

	
0.999

	
293

	
0

	
1001

	
0.001

	
260

	
0

	
1000

	
0

	
231

	
0

	
1000

	
0

	
205

	
0

	
1000

	
0

	
165

	
0

	
1000

	
0

	
134

	
0

	
1000

	
0

	
111




	
Aver.

	
99.25

	
10,088

	
1.00

	
58.68

	
37.94

	
4794

	
0.60

	
54

	
11.71

	
3123

	
0.47

	
47

	
4.02

	
2301

	
0.38

	
43

	
0.52

	
1609

	
0.26

	
34.32

	
0.05

	
1333

	
0.17

	
27.63

	
0

	
1194

	
0.12

	
22.58
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Table A12. Computational results for randomly generated instances with ratio   2 % : 2 % : 1 % : 95 %   of the numbers of jobs in the subsets.






Table A12. Computational results for randomly generated instances with ratio   2 % : 2 % : 1 % : 95 %   of the numbers of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
  n  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
100

	
97.4

	
12,124

	
0.998

	
0

	
86.5

	
7871

	
0.982

	
0

	
58.4

	
5867

	
0.926

	
0

	
27.3

	
4689

	
0.840

	
0

	
2.8

	
3377

	
0.705

	
0

	
0.2

	
2727

	
0.630

	
0

	
0

	
1898

	
0.473

	
0




	
200

	
97.1

	
15,322

	
0.998

	
0

	
74.2

	
8612

	
0.969

	
0

	
30.8

	
6247

	
0.886

	
0

	
6.1

	
4774

	
0.799

	
0

	
0

	
3086

	
0.674

	
0

	
0

	
2326

	
0.568

	
0

	
0

	
1586

	
0.369

	
0




	
300

	
95.5

	
15,872

	
0.997

	
0

	
57

	
8728

	
0.950

	
0

	
10.8

	
5787

	
0.843

	
0

	
0.9

	
4379

	
0.771

	
0

	
0

	
2664

	
0.624

	
0

	
0

	
1969

	
0.492

	
0

	
0

	
1348

	
0.258

	
0




	
400

	
95

	
16,354

	
0.997

	
1

	
40.9

	
8608

	
0.930

	
1

	
5.4

	
5518

	
0.827

	
1

	
0

	
3918

	
0.743

	
1

	
0

	
2334

	
0.570

	
1

	
0

	
1685

	
0.407

	
1

	
0

	
1232

	
0.188

	
1




	
500

	
94.1

	
16,103

	
0.996

	
1

	
30.9

	
8194

	
0.914

	
1

	
1.1

	
5012

	
0.801

	
1

	
0

	
3606

	
0.720

	
1

	
0

	
2076

	
0.518

	
1

	
0

	
1439

	
0.305

	
1

	
0

	
1135

	
0.119

	
1




	
600

	
91.4

	
16,241

	
0.995

	
1

	
21

	
7792

	
0.898

	
1

	
0.7

	
4690

	
0.787

	
1

	
0

	
3096

	
0.677

	
1

	
0

	
1750

	
0.429

	
1

	
0

	
1322

	
0.244

	
2

	
0

	
1067

	
0.063

	
1




	
700

	
92.3

	
16,138

	
0.995

	
1

	
16.7

	
7403

	
0.886

	
2

	
0

	
4265

	
0.765

	
2

	
0

	
2837

	
0.647

	
2

	
0

	
1604

	
0.377

	
1

	
0

	
1201

	
0.167

	
1

	
0

	
1058

	
0.055

	
1




	
800

	
89.6

	
15,785

	
0.993

	
2

	
10.7

	
7081

	
0.873

	
2

	
0.2

	
3909

	
0.744

	
2

	
0

	
2544

	
0.606

	
2

	
0

	
1464

	
0.317

	
2

	
0

	
1150

	
0.130

	
1

	
0

	
1039

	
0.038

	
2




	
900

	
87.3

	
15,368

	
0.992

	
2

	
6.9

	
6505

	
0.856

	
2

	
0

	
3595

	
0.721

	
2

	
0

	
2321

	
0.569

	
2

	
0

	
1347

	
0.258

	
2

	
0

	
1094

	
0.086

	
2

	
0

	
1019

	
0.019

	
2




	
1000

	
84.5

	
15,200

	
0.990

	
3

	
5.2

	
6203

	
0.847

	
3

	
0

	
3266

	
0.694

	
3

	
0

	
2082

	
0.520

	
3

	
0

	
1254

	
0.203

	
2

	
0

	
1069

	
0.065

	
2

	
0

	
1000

	
0

	
6




	
2000

	
48.3

	
10,867

	
0.952

	
11

	
0.1

	
3141

	
0.682

	
11

	
0

	
1536

	
0.349

	
10

	
0

	
1163

	
0.140

	
9

	
0

	
1015

	
0.015

	
7

	
0

	
1002

	
0.002

	
6

	
0

	
1000

	
0

	
11




	
3000

	
27.9

	
7207

	
0.900

	
26

	
0

	
1847

	
0.459

	
24

	
0

	
1124

	
0.110

	
21

	
0

	
1011

	
0.011

	
19

	
0

	
1001

	
0.001

	
16

	
0

	
1000

	
0

	
13

	
0

	
1000

	
0

	
21




	
4000

	
14.1

	
4913

	
0.825

	
49

	
0

	
1304

	
0.233

	
46

	
0

	
1019

	
0.019

	
41

	
0

	
1003

	
0.003

	
35

	
0

	
1000

	
0

	
28

	
0

	
1000

	
0

	
23

	
0

	
1000

	
0

	
30




	
5000

	
6.9

	
3353

	
0.722

	
80

	
0

	
1125

	
0.111

	
71

	
0

	
1002

	
0.002

	
63

	
0

	
1001

	
0.001

	
57

	
0

	
1000

	
0

	
48

	
0

	
1000

	
0

	
36

	
0

	
1000

	
0

	
47




	
6000

	
3.4

	
2359

	
0.591

	
118

	
0

	
1037

	
0.036

	
104

	
0

	
1003

	
0.003

	
92

	
0

	
1000

	
0

	
81

	
0

	
1000

	
0

	
65

	
0

	
1000

	
0

	
53

	
0

	
1000

	
0

	
44




	
7000

	
1.9

	
1895

	
0.482

	
175

	
0

	
1017

	
0.017

	
142

	
0

	
1000

	
0

	
126

	
0

	
1001

	
0.001

	
112

	
0

	
1000

	
0

	
90

	
0

	
1000

	
0

	
73

	
0

	
1000

	
0

	
65




	
8000

	
0.8

	
1509

	
0.343

	
210

	
0

	
1003

	
0.003

	
184

	
0

	
1000

	
0

	
164

	
0

	
1000

	
0

	
146

	
0

	
1000

	
0

	
138

	
0

	
1000

	
0

	
95

	
0

	
1000

	
0

	
78




	
9000

	
0.7

	
1308

	
0.241

	
269

	
0

	
1001

	
0.001

	
235

	
0

	
1000

	
0

	
210

	
0

	
1000

	
0

	
187

	
0

	
1000

	
0

	
150

	
0

	
1000

	
0

	
121

	
0

	
1000

	
0

	
164




	
10,000

	
0.5

	
1155

	
0.139

	
330

	
0

	
1001

	
0.001

	
290

	
0

	
1000

	
0

	
257

	
0

	
1000

	
0

	
230

	
0

	
1000

	
0

	
183

	
0

	
1000

	
0

	
151

	
0

	
1000

	
0

	
123




	
Aver.

	
54.14

	
9951

	
0.80

	
67.32

	
18.43

	
4709

	
0.56

	
58.89

	
5.65

	
3044

	
0.45

	
52.42

	
1.81

	
2286

	
0.37

	
46.74

	
0.15

	
1577

	
0.25

	
38.68

	
0.01

	
1315

	
0.16

	
30.58

	
0

	
1125

	
0.08

	
31.42
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Table A13. Computational results for randomly generated instances with ratio   1 % : 2 % : 2 % : 95 %   of the number of jobs in the subsets.






Table A13. Computational results for randomly generated instances with ratio   1 % : 2 % : 2 % : 95 %   of the number of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
  n  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
100

	
97.3

	
11,883

	
0.998

	
0

	
85.4

	
8060

	
0.981

	
0

	
58.5

	
5861

	
0.928

	
0

	
30.4

	
4718

	
0.846

	
0

	
3.2

	
3449

	
0.714

	
0

	
0.5

	
2646

	
0.621

	
0

	
0

	
2167

	
0.537

	
0




	
200

	
96.1

	
15,255

	
0.997

	
0

	
72.7

	
8727

	
0.968

	
0

	
29

	
6058

	
0.881

	
0

	
4.9

	
4698

	
0.795

	
0

	
0

	
3070

	
0.673

	
0

	
0

	
2301

	
0.565

	
0

	
0

	
1828

	
0.451

	
0




	
300

	
96.9

	
16,030

	
0.998

	
0

	
57.9

	
8787

	
0.950

	
0

	
10.6

	
5869

	
0.845

	
0

	
1.7

	
4304

	
0.770

	
0

	
0

	
2730

	
0.632

	
0

	
0

	
1956

	
0.488

	
0

	
0

	
1545

	
0.353

	
0




	
400

	
93.7

	
15,829

	
0.996

	
1

	
44.7

	
8623

	
0.934

	
1

	
3.9

	
5462

	
0.823

	
1

	
0

	
3931

	
0.745

	
1

	
0

	
2349

	
0.574

	
1

	
0

	
1629

	
0.386

	
1

	
0

	
1389

	
0.280

	
1




	
500

	
92.8

	
16,212

	
0.995

	
1

	
31.2

	
8178

	
0.915

	
1

	
1.4

	
5161

	
0.806

	
1

	
0.2

	
3590

	
0.721

	
1

	
0

	
2038

	
0.508

	
1

	
0

	
1472

	
0.321

	
1

	
0

	
1241

	
0.194

	
1




	
600

	
94

	
16,414

	
0.996

	
1

	
22.9

	
7766

	
0.899

	
1

	
0.8

	
4733

	
0.789

	
1

	
0

	
3212

	
0.687

	
1

	
0

	
1806

	
0.446

	
1

	
0

	
1310

	
0.237

	
1

	
0

	
1160

	
0.138

	
1




	
700

	
91.4

	
15,944

	
0.994

	
1

	
14

	
7296

	
0.880

	
2

	
0.2

	
4171

	
0.760

	
2

	
0

	
2799

	
0.643

	
1

	
0

	
1562

	
0.360

	
1

	
0

	
1235

	
0.190

	
1

	
0

	
1077

	
0.071

	
1




	
800

	
89.7

	
15,772

	
0.993

	
2

	
9.3

	
7079

	
0.870

	
2

	
0.1

	
3918

	
0.745

	
2

	
0

	
2510

	
0.602

	
2

	
0

	
1452

	
0.311

	
2

	
0

	
1135

	
0.119

	
1

	
0

	
1064

	
0.060

	
1




	
900

	
85.4

	
15,267

	
0.990

	
2

	
6.2

	
6618

	
0.858

	
2

	
0

	
3584

	
0.720

	
2

	
0

	
2259

	
0.557

	
2

	
0

	
1314

	
0.239

	
2

	
0

	
1106

	
0.096

	
2

	
0

	
1025

	
0.024

	
2




	
1000

	
84

	
15,005

	
0.989

	
3

	
3.3

	
6135

	
0.841

	
3

	
0

	
3251

	
0.692

	
3

	
0

	
2074

	
0.517

	
3

	
0

	
1263

	
0.208

	
2

	
0

	
1066

	
0.062

	
2

	
0

	
1014

	
0.014

	
2




	
2000

	
48.7

	
10,938

	
0.953

	
13

	
0

	
3157

	
0.683

	
10

	
0

	
1501

	
0.334

	
9

	
0

	
1145

	
0.127

	
9

	
0

	
1007

	
0.007

	
7

	
0

	
1001

	
0.001

	
6

	
0

	
1000

	
0

	
6




	
3000

	
27.6

	
7287

	
0.900

	
28

	
0

	
1792

	
0.441

	
24

	
0

	
1115

	
0.103

	
21

	
0

	
1021

	
0.021

	
22

	
0

	
1001

	
0.001

	
16

	
0

	
1000

	
0

	
13

	
0

	
1000

	
0

	
11




	
4000

	
13.7

	
4925

	
0.825

	
49

	
0

	
1290

	
0.225

	
44

	
0

	
1029

	
0.028

	
39

	
0

	
1006

	
0.006

	
35

	
0

	
1000

	
0

	
28

	
0

	
1000

	
0

	
24

	
0

	
1000

	
0

	
21




	
5000

	
7.9

	
3378

	
0.727

	
80

	
0

	
1102

	
0.093

	
72

	
0

	
1006

	
0.006

	
63

	
0

	
1000

	
0

	
56

	
0

	
1000

	
0

	
45

	
0

	
1000

	
0

	
36

	
0

	
1000

	
0

	
34




	
6000

	
4.4

	
2449

	
0.610

	
117

	
0

	
1049

	
0.047

	
104

	
0

	
1000

	
0

	
91

	
0

	
1000

	
0

	
81

	
0

	
1000

	
0

	
67

	
0

	
1000

	
0

	
53

	
0

	
1000

	
0

	
43




	
7000

	
2.1

	
1878

	
0.479

	
160

	
0

	
1019

	
0.019

	
141

	
0

	
1001

	
0.001

	
126

	
0

	
1000

	
0

	
112

	
0

	
1000

	
0

	
89

	
0

	
1000

	
0

	
74

	
0

	
1000

	
0

	
60




	
8000

	
0.9

	
1514

	
0.345

	
210

	
0

	
1004

	
0.004

	
185

	
0

	
1000

	
0

	
169

	
0

	
1000

	
0

	
147

	
0

	
1000

	
0

	
117

	
0

	
1000

	
0

	
96

	
0

	
1000

	
0

	
78




	
9000

	
0.4

	
1298

	
0.233

	
286

	
0

	
1001

	
0.001

	
236

	
0

	
1000

	
0

	
208

	
0

	
1000

	
0

	
186

	
0

	
1000

	
0

	
149

	
0

	
1000

	
0

	
121

	
0

	
1000

	
0

	
100




	
10,000

	
0.2

	
1165

	
0.143

	
330

	
0

	
1000

	
0

	
290

	
0

	
1000

	
0

	
303

	
0

	
1000

	
0

	
230

	
0

	
1000

	
0

	
184

	
0

	
1000

	
0

	
149

	
0

	
1000

	
0

	
123




	
Aver.

	
54.06

	
9918

	
0.80

	
67.58

	
18.29

	
4720

	
0.56

	
58.84

	
5.50

	
3034

	
0.45

	
54.79

	
1.96

	
2277

	
0.37

	
46.79

	
0.17

	
1581

	
0.25

	
37.47

	
0.03

	
1308

	
0.16

	
30.58

	
0

	
1185

	
0.11

	
25.53
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Table A14. Computational results for randomly generated instances with ratio   1 % : 1 % : 3 % : 95 %   of the number of jobs in the subsets.






Table A14. Computational results for randomly generated instances with ratio   1 % : 1 % : 3 % : 95 %   of the number of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
n

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
100

	
98.6

	
11,377

	
0.999

	
0

	
88.5

	
7897

	
0.985

	
0

	
61.8

	
5894

	
0.933

	
0

	
30

	
4695

	
0.846

	
0

	
3.5

	
3376

	
0.708

	
0

	
0.4

	
2676

	
0.620

	
0

	
0

	
2222

	
0.545

	
0




	
200

	
98

	
15,012

	
0.999

	
0

	
76.8

	
8729

	
0.972

	
0

	
30.8

	
6003

	
0.881

	
0

	
8.4

	
4701

	
0.800

	
0

	
0

	
3170

	
0.682

	
0

	
0

	
2327

	
0.569

	
0

	
0

	
1856

	
0.460

	
0




	
300

	
97.4

	
15,847

	
0.998

	
0

	
67.8

	
8727

	
0.963

	
0

	
14.3

	
5842

	
0.851

	
0

	
1.5

	
4258

	
0.767

	
0

	
0

	
2746

	
0.634

	
0

	
0

	
1959

	
0.489

	
0

	
0

	
1558

	
0.358

	
0




	
400

	
96.7

	
16,261

	
0.998

	
1

	
49.6

	
8486

	
0.939

	
1

	
6.1

	
5500

	
0.828

	
1

	
0.4

	
3922

	
0.745

	
1

	
0

	
2339

	
0.572

	
1

	
0

	
1724

	
0.420

	
1

	
0

	
1330

	
0.248

	
0




	
500

	
95.9

	
16,266

	
0.997

	
1

	
38.1

	
8240

	
0.923

	
1

	
2.7

	
5142

	
0.810

	
1

	
0

	
3540

	
0.716

	
1

	
0

	
2060

	
0.515

	
1

	
0

	
1457

	
0.314

	
1

	
0

	
1230

	
0.187

	
1




	
600

	
95

	
15,911

	
0.997

	
1

	
29.3

	
7829

	
0.909

	
1

	
1.3

	
4759

	
0.791

	
1

	
0

	
3151

	
0.682

	
1

	
0

	
1830

	
0.454

	
1

	
0

	
1325

	
0.245

	
1

	
0

	
1126

	
0.112

	
1




	
700

	
92.6

	
15,922

	
0.995

	
1

	
23.1

	
7315

	
0.894

	
2

	
0.3

	
4317

	
0.769

	
2

	
0

	
2806

	
0.643

	
2

	
0

	
1643

	
0.391

	
1

	
0

	
1208

	
0.172

	
1

	
0

	
1093

	
0.085

	
1




	
800

	
94.4

	
15,727

	
0.996

	
2

	
15.8

	
7005

	
0.879

	
2

	
0.4

	
3906

	
0.745

	
2

	
0

	
2508

	
0.601

	
2

	
0

	
1469

	
0.319

	
2

	
0

	
1154

	
0.133

	
1

	
0

	
1051

	
0.049

	
1




	
900

	
92.4

	
15,311

	
0.995

	
2

	
12.7

	
6628

	
0.868

	
2

	
0

	
3606

	
0.721

	
2

	
0

	
2262

	
0.557

	
2

	
0

	
1380

	
0.275

	
2

	
0

	
1102

	
0.093

	
2

	
0

	
1030

	
0.029

	
2




	
1000

	
90.2

	
14,979

	
0.993

	
3

	
8.1

	
6215

	
0.852

	
3

	
0

	
3231

	
0.690

	
3

	
0

	
2011

	
0.503

	
3

	
0

	
1255

	
0.203

	
3

	
0

	
1060

	
0.057

	
2

	
0

	
1020

	
0.020

	
2




	
2000

	
67.9

	
10,778

	
0.970

	
11

	
0.5

	
3068

	
0.676

	
10

	
0

	
1567

	
0.362

	
9

	
0

	
1147

	
0.128

	
9

	
0

	
1013

	
0.013

	
7

	
0

	
1000

	
0

	
6

	
0

	
1000

	
0

	
5




	
3000

	
51.3

	
7398

	
0.934

	
27

	
0

	
1775

	
0.437

	
24

	
0

	
1129

	
0.114

	
22

	
0

	
1024

	
0.023

	
19

	
0

	
1000

	
0

	
17

	
0

	
1000

	
0

	
13

	
0

	
1000

	
0

	
18




	
4000

	
34.2

	
4903

	
0.866

	
49

	
0

	
1306

	
0.234

	
48

	
0

	
1017

	
0.017

	
39

	
0

	
1003

	
0.003

	
35

	
0

	
1000

	
0

	
28

	
0

	
1000

	
0

	
23

	
0

	
1000

	
0

	
19




	
5000

	
22.9

	
3312

	
0.767

	
79

	
0

	
1113

	
0.102

	
71

	
0

	
1009

	
0.009

	
63

	
0

	
1000

	
0

	
56

	
0

	
1000

	
0

	
45

	
0

	
1000

	
0

	
36

	
0

	
1000

	
0

	
30




	
6000

	
17.6

	
2440

	
0.662

	
116

	
0

	
1030

	
0.029

	
103

	
0

	
1001

	
0.001

	
92

	
0

	
1000

	
0

	
82

	
0

	
1000

	
0

	
65

	
0

	
1000

	
0

	
53

	
0

	
1000

	
0

	
44




	
7000

	
15.4

	
1838

	
0.540

	
160

	
0

	
1016

	
0.016

	
141

	
0

	
1000

	
0

	
125

	
0

	
1000

	
0

	
111

	
0

	
1000

	
0

	
89

	
0

	
1000

	
0

	
73

	
0

	
1000

	
0

	
60




	
8000

	
10

	
1470

	
0.388

	
208

	
0

	
1007

	
0.007

	
185

	
0

	
1000

	
0

	
165

	
0

	
1000

	
0

	
146

	
0

	
1000

	
0

	
117

	
0

	
1000

	
0

	
95

	
0

	
1000

	
0

	
79




	
9000

	
8.4

	
1339

	
0.316

	
266

	
0

	
1000

	
0

	
236

	
0

	
1000

	
0

	
208

	
0

	
1000

	
0

	
185

	
0

	
1000

	
0

	
148

	
0

	
1000

	
0

	
121

	
0

	
1000

	
0

	
100




	
10,000

	
7.8

	
1171

	
0.213

	
331

	
0

	
1000

	
0

	
292

	
0

	
1000

	
0

	
322

	
0

	
1000

	
0

	
229

	
0

	
1000

	
0

	
200

	
0

	
1000

	
0

	
162

	
0

	
1000

	
0

	
124




	
Aver.

	
62.46

	
9856

	
0.82

	
66.21

	
21.59

	
4705

	
0.56

	
59.05

	
6.19

	
3049

	
0.45

	
55.63

	
2.12

	
2265

	
0.37

	
46.53

	
0.18

	
1594

	
0.25

	
38.26

	
0.02

	
1315

	
0.16

	
31.11

	
0

	
1185

	
0.11

	
25.63
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Table A15. Computational results for randomly generated instances with ratio   1 % : 1 % : 1 % : 97 %   of the number of jobs in the subsets.






Table A15. Computational results for randomly generated instances with ratio   1 % : 1 % : 1 % : 97 %   of the number of jobs in the subsets.





	
    δ %    

	
5%

	
10%

	
15%

	
20%

	
30%

	
40%

	
50%






	
n

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  

	
   O p t   

	
   N C   

	
   S C   

	
  t  




	
100

	
96.9

	
12,063

	
0.997

	
0

	
84.9

	
7901

	
0.980

	
0

	
52.5

	
5921

	
0.916

	
0

	
26.1

	
4713

	
0.837

	
0

	
2.4

	
3366

	
0.705

	
0

	
0

	
2618

	
0.612

	
0

	
0

	
2180

	
0.534

	
0




	
200

	
96.1

	
15,300

	
0.997

	
0

	
68.1

	
8663

	
0.962

	
0

	
22.1

	
6051

	
0.868

	
0

	
4.1

	
4665

	
0.791

	
0

	
0

	
3116

	
0.677

	
0

	
0

	
2355

	
0.574

	
0

	
0

	
1837

	
0.456

	
0




	
300

	
93.6

	
15,913

	
0.996

	
0

	
50.4

	
8790

	
0.942

	
0

	
6.9

	
5883

	
0.840

	
0

	
0.8

	
4267

	
0.765

	
0

	
0

	
2741

	
0.634

	
0

	
0

	
1939

	
0.483

	
0

	
0

	
1554

	
0.356

	
0




	
400

	
93.4

	
16,711

	
0.996

	
1

	
32.3

	
8577

	
0.919

	
1

	
3.1

	
5548

	
0.822

	
1

	
0

	
3935

	
0.745

	
1

	
0

	
2357

	
0.576

	
1

	
0

	
1667

	
0.400

	
1

	
0

	
1328

	
0.247

	
1




	
500

	
90.6

	
16,157

	
0.994

	
1

	
20.6

	
8180

	
0.902

	
1

	
1.2

	
5054

	
0.803

	
1

	
0

	
3430

	
0.708

	
1

	
0

	
2048

	
0.512

	
1

	
0

	
1447

	
0.309

	
1

	
0

	
1198

	
0.165

	
1




	
600

	
89.5

	
16,069

	
0.993

	
1

	
13.2

	
7871

	
0.889

	
1

	
0.1

	
4747

	
0.788

	
1

	
0

	
3089

	
0.676

	
1

	
0

	
1808

	
0.447

	
1

	
0

	
1326

	
0.246

	
1

	
0

	
1128

	
0.113

	
1




	
700

	
87.1

	
16,038

	
0.992

	
2

	
8.4

	
7320

	
0.874

	
2

	
0

	
4260

	
0.763

	
2

	
0

	
2710

	
0.630

	
1

	
0

	
1641

	
0.389

	
1

	
0

	
1200

	
0.167

	
1

	
0

	
1093

	
0.085

	
1




	
800

	
84.6

	
15,770

	
0.990

	
2

	
4.5

	
7035

	
0.863

	
2

	
0

	
3760

	
0.733

	
2

	
0

	
2510

	
0.602

	
2

	
0

	
1458

	
0.314

	
2

	
0

	
1148

	
0.129

	
1

	
0

	
1040

	
0.038

	
1




	
900

	
78.4

	
15,360

	
0.986

	
2

	
3.8

	
6525

	
0.851

	
3

	
0

	
3467

	
0.711

	
2

	
0

	
2233

	
0.552

	
2

	
0

	
1354

	
0.261

	
2

	
0

	
1091

	
0.083

	
2

	
0

	
1024

	
0.023

	
2




	
1000

	
73.7

	
15,050

	
0.982

	
3

	
2.1

	
6045

	
0.837

	
3

	
0

	
3186

	
0.686

	
3

	
0

	
2041

	
0.510

	
3

	
0

	
1236

	
0.191

	
2

	
0

	
1073

	
0.068

	
2

	
0

	
1016

	
0.016

	
2




	
2000

	
30.1

	
10,811

	
0.935

	
12

	
0

	
3034

	
0.670

	
11

	
0

	
1538

	
0.350

	
10

	
0

	
1147

	
0.128

	
9

	
0

	
1012

	
0.012

	
8

	
0

	
1003

	
0.003

	
7

	
0

	
1000

	
0

	
6




	
3000

	
11.8

	
7095

	
0.875

	
28

	
0

	
1790

	
0.441

	
25

	
0

	
1110

	
0.099

	
22

	
0

	
1020

	
0.020

	
20

	
0

	
1000

	
0

	
16

	
0

	
1000

	
0

	
13

	
0

	
1000

	
0

	
11




	
4000

	
3.5

	
4711

	
0.795

	
51

	
0

	
1274

	
0.215

	
61

	
0

	
1030

	
0.029

	
41

	
0

	
1001

	
0.001

	
36

	
0

	
1000

	
0

	
29

	
0

	
1000

	
0

	
24

	
0

	
1000

	
0

	
21




	
5000

	
0.7

	
3274

	
0.696

	
84

	
0

	
1104

	
0.094

	
74

	
0

	
1003

	
0.003

	
67

	
0

	
1000

	
0

	
59

	
0

	
1000

	
0

	
47

	
0

	
1000

	
0

	
41

	
0

	
1000

	
0

	
32




	
6000

	
0.3

	
2335

	
0.573

	
121

	
0

	
1039

	
0.038

	
107

	
0

	
1001

	
0.001

	
95

	
0

	
1000

	
0

	
85

	
0

	
1000

	
0

	
68

	
0

	
1000

	
0

	
55

	
0

	
1000

	
0

	
46




	
7000

	
0.1

	
1747

	
0.428

	
166

	
0

	
1009

	
0.009

	
147

	
0

	
1000

	
0

	
130

	
0

	
1000

	
0

	
117

	
0

	
1000

	
0

	
93

	
0

	
1000

	
0

	
76

	
0

	
1000

	
0

	
63




	
8000

	
0

	
1487

	
0.328

	
218

	
0

	
1005

	
0.005

	
194

	
0

	
1000

	
0

	
170

	
0

	
1000

	
0

	
151

	
0

	
1000

	
0

	
123

	
0

	
1000

	
0

	
100

	
0

	
1000

	
0

	
81




	
9000

	
0

	
1281

	
0.219

	
280

	
0

	
1000

	
0

	
266

	
0

	
1000

	
0

	
217

	
0

	
1000

	
0

	
194

	
0

	
1000

	
0

	
155

	
0

	
1000

	
0

	
126

	
0

	
1000

	
0

	
105




	
10,000

	
0

	
1164

	
0.141

	
344

	
0

	
1000

	
0

	
305

	
0

	
1000

	
0

	
268

	
0

	
1000

	
0

	
239

	
0

	
1000

	
0

	
298

	
0

	
1000

	
0

	
156

	
0

	
1000

	
0

	
130




	
Aver.

	
48.97

	
9912

	
0.78

	
69.26

	
15.17

	
4693

	
0.55

	
63.32

	
4.52

	
3029

	
0.44

	
54.32

	
1.63

	
2251

	
0.37

	
48.47

	
0.13

	
1586

	
0.25

	
44.58

	
0

	
1309

	
0.16

	
31.95

	
0

	
1179

	
0.11

	
26.53
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Figure 1. Average percentages of the instances presented in Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, Table A7, Table A8 and Table A9, which were optimally solved at the off-line phase of scheduling. 
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Figure 2. Average percentages of the instances presented in Table A10, Table A11, Table A12, Table A13, Table A14 and Table A15, which were optimally solved at the off-line phase of scheduling. 
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Figure 3. Average percentages of the correct decisions made for constructing permutations of the conflict jobs for the instances presented in Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, Table A7, Table A8, Table A9. 
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Figure 4. Average percentages of the correct decisions made for constructing permutations of the conflict jobs for the hard instances presented in Table A10, Table A11, Table A12, Table A13, Table A14 and Table A15. 
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Table 1. Input data for Example 1.






Table 1. Input data for Example 1.





	    J i    
	    l  i 1     
	    u  i 1     
	    l  i 2     
	    u  i 2     





	   J 1   
	6
	7
	6
	7



	   J 2   
	8
	9
	5
	6



	   J 3   
	7
	9
	5
	6



	   J 4   
	2
	3
	-
	-



	   J 5   
	-
	-
	16
	20



	   J 6   
	1
	3
	3
	4



	   J 7   
	1
	3
	3
	4



	   J 8   
	1
	3
	3
	4
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Table 2. Average percentage of the instances which were optimally solved.






Table 2. Average percentage of the instances which were optimally solved.





	    δ %    
	5%
	10%
	15%
	20%
	30%
	40%
	50%
	Average





	Instances from Table A1, Table A2, Table A3, Table A4, Table A5, Table A6, Table A7, Table A8 and Table A9
	99.93
	98.48
	88.93
	80.66
	63.97
	50.18
	44.10
	75.18



	Instances from Table A10, Table A11, Table A12, Table A13, Table A14 and Table A15
	69.78
	24.89
	7.96
	2.73
	0.20
	0.03
	0.00
	15.08
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