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Abstract: Although two-dimensional (2D) parabolic integro-differential equations (PIDEs) arise in
many physical contexts, there is no generally available software that is able to solve them numerically.
To remedy this situation, in this article, we provide a compact implementation for solving 2D
PIDEs using the finite element method (FEM) on unstructured grids. Piecewise linear finite element
spaces on triangles are used for the space discretization, whereas the time discretization is based
on the backward-Euler and the Crank–Nicolson methods. The quadrature rules for discretizing
the Volterra integral term are chosen so as to be consistent with the time-stepping schemes; a more
efficient version of the implementation that uses a vectorization technique in the assembly process
is also presented. The compactness of the approach is demonstrated using the software Matrix
Laboratory (MATLAB). The efficiency is demonstrated via a numerical example on an L-shaped
domain, for which a comparison is possible against the commercially available finite element software
COMSOL Multiphysics. Moreover, further consideration indicates that COMSOL Multiphysics
cannot be directly applied to 2D PIDEs containing more complex kernels in the Volterra integral term,
whereas our method can. Consequently, the subroutines we present constitute a valuable open and
validated resource for solving more general 2D PIDEs.

Keywords: parabolic integro-differential equations; backward-Euler; Crank–Nicolson; quadrature
rules; Volterra integral term

1. Introduction

Parabolic integro-differential equations (PIDEs) arise in various physical contexts, such as
heat conduction in materials with memory [1–3], the compression of poro-viscoelastic media [4],
nuclear reactor dynamics [5], epidemic phenomena in biology [6] and drug absorption/release [7,8].
Existing and unique results from such kinds of problems can be found in [9–12].

Inevitably, such equations have to be solved numerically and various approaches have been
developed for this, such as spectral methods, spline and collocation, the method of lines and
finite-element methods [13–21]. Amongst these, one of the most attractive is arguably the finite-element
method (FEM), since it can be applied to irregularly-shaped domains in higher dimensions; moreover,
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convergence (both a priori and a posteriori) analysis for such problems is already well-established,
and for this one may refer to [9,10,12,22–28]. As regards existing software platforms which could
be used for a finite-element implementation without having to resort to lengthy programming from
first principles, the main choices are freefem++ [29], deal.II [30], iFEM [31], FEniCS [32], DUNE [33],
FEATool [34], MATLAB’s Partial Differential Equation Toolbox [35] and COMSOL Multiphysics [36];
however, it is not immediately obvious how to solve PIDEs with any of these. This is perhaps
surprising in the case of MATLAB, which has become increasingly popular in recent years for the
numerical solutions of various partial differential equations (PDEs) in structural mechanics and heat
transfer [37–47], and has proven to be an excellent tool for academic education in general [40].

Against that background, the purpose of this article is to provide a compact formulation for
solving PIDEs in two spatial dimensions (2D) using FEM on unstructured grids (we made the resulting
software, which we programmed in MATLAB, openly available). This is done by extending the already
available FEM formulations for PDEs [40,43,44,48,49] to PIDEs. In particular, we:

• Use piecewise linear finite element spaces on triangles for the space discretization;
• Vase the time discretizations on the backward-Euler and the Crank–Nicolson methods;
• Choose the quadrature rules for discretizing the Volterra integral term so as to be consistent with

the time-stepping schemes.

In addition, we demonstrate that for PDEs, vectorization techniques can be used to speed up
the sets of code for PIDEs. Importantly, these sets of code can be easily extended to more complex
geometries, and to PIDEs with different kernels in the Volterra integral term. A comparison with
results obtained using COMSOL Multiphysics for a test example shows that our method is competitive.
Moreover, further consideration indicates that COMSOL Multiphysics cannot be directly applied to
2D PIDEs containing more complex kernels in the Volterra integral term, whereas our method can.

The rest of the paper is organized as follows. The model problem and its weak formulation
are described in Section 2. The discretization is sketched in Section 3. The data representation of
the triangulation is described in Section 4, together with the discrete space. The assembly of the
stiffness matrix, mass matrix and load vector are presented in Section 5. Improved pseudo-codes using
vectorization is presented in Section 6, and an implementation in MATLAB is discussed in Section 7.
In Section 8, a comparison of the results obtained using the different sets of code is presented; results
obtained using COMSOL Multiphysics are also compared. Conclusions are drawn in Section 9.

2. Model Problem and Weak Formulation

Given a Lebesgue measurable set Ω, we denote by Lp(Ω), 1 ≤ p ≤ ∞ the Lebesgue spaces.
When p = 2, the space L2(Ω) is equipped with an inner product 〈·, ·〉. For an integer m > 0, we use
the standard notation for Sobolev spaces Wm,p(ω) with 1 ≤ p ≤ ∞. When p = 2, we denote Wm,2(Ω)

by Hm(Ω). The function space H1
0(Ω) consists of elements from H1(Ω) that vanish on the boundary

of Ω, where the boundary values are to be interpreted in the sense of a trace.
Consider the following initial-boundary value problem for a linear PIDE of the form

∂u
∂t

(x, t) +Au(x, t) =
∫ t

0
B(t, s)u(x, s)ds + f (x, t), (x, t) ∈ Ω× (0, T], (1)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T], (2)

u(x, 0) = u0(x), x ∈ Ω. (3)

Here, 0 < T < ∞ and Ω ⊂ R2 is a bounded Lipschitz domain with boundary ∂Ω. Further, Au(x, t) =
−∆u(x, t) and

B(t, s)u(x, s) = −∇ · (B(t, s)∇u(x, s)), (4)
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where ∆ denotes the Laplacian and ∇ denotes the spatial gradient. We assume that the coefficient
matrix B(t, s) = {bij(x; t, s)} is 2× 2 in L∞(Ω)2×2. If we assume the initial function u0(x) to be in
H2(Ω) ∩ H1

0(Ω), the source term f (x, t) to be in L2(0; T; L2(Ω)) and

max
Ω̄×{0≤s≤t≤T}

| ∂

∂x
bi,j(x; t, s)| < ∞,

then the problem (1) admits a unique solution

u ∈ L2(0, T; H2(Ω) ∩ H1
0(Ω)) ∩ H1(0, T; L2(Ω)).

The existence results are discussed in detail in Chapter 2 of [9]. For regularity and stability results of
such problems, please refer to [10,28].

Let a(·, ·) : H1
0(Ω)×H1

0(Ω)→ R be the bilinear form corresponding to the operatorA defined by

a(φ, ψ) := 〈∇φ,∇ψ〉 ∀ φ, ψ ∈ H1
0(Ω).

Similarly, let b(t, s; ·, ·) be the bilinear form corresponding to the operator B(t, s) defined on H1
0(Ω)×

H1
0(Ω) by

b(t, s; φ(s), ψ) := 〈B(t, s)∇φ(s),∇ψ〉 ∀ φ(s), ψ ∈ H1
0(Ω).

Then, the weak formulation of the problem (1) may be stated as follows: find u : [0, T]→ H1
0(Ω) such

that, for all t ∈ (0, T],

∫
Ω

∂u
∂t

φ dx′ + a(u, φ) =
∫ t

0
b(t, s; u(s), φ)ds +

∫
Ω

f φ dx′ ∀φ ∈ H1
0(Ω), (5)

u(·, 0) = u0.

3. Galerkin Discretizations

Let T denote a regular partition of the domain Ω ∈ R2 into disjoint triangles K of diameter hK
such that:

• ∪Ki∈T Ki = Ω, and any pair of triangles intersect along a complete edge, at a vertex, or not at all;
• No vertex of any triangle lies on the interior of a side of another triangle.

Let V be the finite element space defined by

V := H1
0(Ω) ∩ {φ ∈ C(Ω) : φ|K ∈ P1 ∀K ∈ Th},

where P1 is the space of polynomials in d variables of degree at most 1.
With N = {z1, · · · , zM} as the set of nodes of T , we consider the nodal basis B = {φ1, · · · , φM},

where the hat function φl ∈ P1 is characterized by φl(zk) = δkl , where δkl is the Kronecker delta.
Let 0 = t0 < t1 < . . . < tN = T be a partition of [0, T] with τn := tn − tn−1. Set f n(·) = f (·, tn)

for t = tn, n ∈ [0, 1, . . . , N]. Now, for n = 1, 2, · · · , N, we define

∂vn :=
vn − vn−1

τn
, tn−1/2 :=

tn + tn−1

2
and vn−1/2 :=

vn + vn−1

2
.

In this article, we consider uniform time steps, i.e., τ = τ1 = . . . = τN .
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3.1. Backward-Euler Scheme

Let Ih be the Lagrange interpolant corresponding to V. Then, the fully discrete backward-Euler
scheme may be stated as follows: given U0, where U0 = Ihu0, find Un ∈ V, n ∈ [1 : N] such that∫

Ω
∂Unφdx′ + a(Un, φ) = σn(b(tn; U, φ)) +

∫
Ω

f nφdx′, ∀φ ∈ V, (6)

where

σn(b(tn; v, φ)) = 〈
n−1

∑
j=0

τj+1B(tn, tj)∇v(tj),∇φ〉, (7)

if the left rectangular rule is used to discretize the integral term, or

σn(b(tn; v, φ)) = 〈
n

∑
j=1

τjB(tn, tj)∇v(tj),∇φ〉, (8)

if the right rectangular rule is used. In any case, both are consistent with the backward-Euler scheme
and the order of accuracy is same.

The discrete problem (6) becomes: find Un = ∑M
j=1 u(zj, tn)φj(x) ∈ Rm such that

(M + τA)Un = MUn−1 + τ2A(B(tn, t0)U0 + . . . + B(tn, tn−1)Un−1) + τbn, (9)

where the mass matrix M, the stiffness matrix A and the load vector bn are given by

M = {Mi,j} =
∫

Ω
φjφidx′, (10)

A = {Ai,j} =
∫

Ω
∇φj · ∇φidx′, (11)

bn = {bn
i } =

∫
Ω

f nφidx′, (12)

respectively.

3.2. Crank–Nicolson Scheme

We now state the Crank–Nicolson scheme as follows: given U0, where U0 = Ihu0, find Un ∈
V, n ∈ [1 : N] such that∫

Ω
∂Unφdx′ + a(Un−1/2, φ) = σn(b(tn−1/2; U, φ)) +

∫
Ω

f n−1/2φdx′ ∀φ ∈ V, (13)

where

σn(b(tn−1/2; v, φ)) :=
〈 n−2

∑
j=0

τj+1

2

[
B(tn−1/2, tj)∇vj + B(tn−1/2, tj+1)∇vj+1

]
,∇φ

〉

+

〈
τn

4

[
B(tn−1/2, tn−1)∇vn−1 + B(tn−1/2, tn−1/2)∇vn−1/2

]
,∇φ

〉
.

Here, the trapezoidal rule is used to discretize the integral term in order to be consistent with the
Crank–Nicolson scheme.
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Using (13), we obtain the following matrix equation for the Crank–Nicolson scheme:

(M +
τ

2
A− τ2

8
B(t 1

2
, t1)A)U1 = (M− τ

2
A)U0 +

3τ2

8
B(t 1

2
, t0)AU0 + τb̂1,

(M +
τ

2
A− τ2

8
B(tn−1/2, tn)A)Un = (M− τ

2
A)Un−1 + τb̂n

+
τ2

2
A

[
B(tn−1/2, t0)U0 + 2

n−2

∑
i=1

B(tn−1/2, ti)Ui

]
+

7τ2

8
B(tn−1/2, tn−1)AUn−1, (14)

for n > 1 and where M is the mass matrix, A is the stiffness matrix and b̂n is the load vector:

b̂n = {bi} =
∫

Ω

f n + f n−1

2
φidx′. (15)

3.3. Remark on More General Boundary Conditions

Problems involving more general boundary conditions can also be addressed in a similar manner.
Suppose that the domain boundary is split into two components ΓD and ΓN such that ΓD ∪ ΓN = ∂Ω
and ΓD ∩ ΓN = ∅, assuming that ΓD is closed and has a nonzero measure. For sufficiently regular
Neumann boundary data gN , consider a problem posed with mixed-type boundary conditions:

∂u
∂t

(x, t) +Au(x, t) =
∫ t

0
B(t, s)u(x, s)ds + f (x, t), (x, t) ∈ Ω× (0, T], (16)

u(x, t) = g(x), (x, t) ∈ ΓD × [0, T],
∂u
∂n

(x, t) = gN(x), (x, t) ∈ ΓN × [0, T],

u(x, 0) = u0(x), x ∈ Ω.

We assume there is a function uD(x, t) ∈ H1(Ω) for t ∈ [0, T] such that uD(x, t) = g(x) for x ∈ ∂Ω, t ∈
[0, T]. Then, the weak form of this problem reads: find u = w + uD : [0, T]→ H1

g,ΓD
(Ω), w ∈ H1

0,ΓD
(Ω)

such that ∫
Ω

∂w
∂t

φ dx′ + a(w, φ) = −
∫

Ω

∂uD
∂t

φ dx′ +
∫ t

0
b(t, s; w(s), φ)ds− a(uD, φ)

+
∫ t

0
b(t, s; uD(s), φ)ds +

∫
Ω

f φ dx′ +
∫

ΓN

gNφ dS

−
∫ t

0

( ∫
ΓN

B(t, s)gN(s)φ dS

)
ds ∀φ ∈ H1

0(Ω), t ∈ (0, T],

u(·, 0) = u0,

where
H1

g,ΓD
(Ω) := {w ∈ H1(Ω) : w = g on ΓD}

and
H1

0,ΓD
(Ω) := {w ∈ H1(Ω) : w = 0 on ΓD}.

4. Data Representation

To fix ideas ahead of benchmark computations, consider the L-shaped domain Ω =

[−1, 1]2\[−1, 0] × [0, 1] with a closed polygonal boundary Γ = ΓD, as shown in Figure 1, where
nodes are represented as blue squares and the exterior continuous line represents the boundary with
Dirichlet boundary condition ΓD; this domain was chosen as it is often used for benchmarking FEM
computations [41,44,50,51].
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In order to represent the relationship between node and spatial coordinates, and between elements
and nodes, it is necessary to define arrays that store this information. Thus, we define the array c4n,
which represents the node-coordinate relation, and the array n4e, which represents the element-node
relation to generate the domain; these are given in Table 1. In addition, the Dirichlet boundary
conditions are represented by a data structure dir which contains nodal information; this is also given
in Table 1. The first columns of the arrays c4n, n4e and dir represent the node number, element
number and edge number, respectively.

−1 −0.5 0.0 0.5 1
−1

−0.5

0.0

0.5

1

z1 z2 z3

z4 z5

z6 z7 z8

z9

z10 z11

ΓD

x

y

Figure 1. Domain representation.

Table 1. Arrays c4n, n4e and dir.

c4n

1 -1.0 -1.0
2 0.0 -1.0
3 1.0 -1.0
4 -0.5 -0.5
5 0.5 -0.5
6 -1.0 0.0
7 0.0 0.0
8 1.0 0.0
9 0.5 0.5

10 0.0 1.0
11 1.0 1.0
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Table 1. Cont.

n4e

1 1 2 4
2 2 3 5
3 3 8 5
4 8 7 5
5 7 2 5
6 7 4 2
7 4 7 6
8 6 1 4
9 6 7 9

10 9 7 11
11 9 11 10
12 9 10 6

dir

1 1 2
2 2 3
3 3 8
4 8 11
5 11 10
6 10 7
7 7 6
8 6 1

5. Assembly

In this section, we assemble the stiffness matrix, the mass matrix, the load vector and the initial
and boundary conditions. The assembly is standard and builds on the ideas for PDEs presented
in [40,44]; however, we include it here for completeness, ensuring that the standard routines and the
non-standard ones related to PIDEs are available in one location. In what follows, we take x = (x, y)
and let (x1, y1), (x2, y2) and (x3, y3) be the vertices of an element K and φ1, φ2 and φ3 the corresponding
local basis functions in V. The sets of code which make use of the subroutines presented in this section
are given in Appendix A.

For the sets of pseudocode that follow, we first need to establish a common notation; this is given
in Table 2.

Table 2. Some common functions and operations.

A(:) All the elements of A, treated as a single column
A(:, j) j-th column of A
A(i, :) i-th row of A

A == k Indices (i, j) where A(i, j) = k
AT Transpose of A

A(α, β) Entry of A at position (α, β)
a← b Assignment
A ∗ B Matrix multiplication
A. ∗ B Element-wise multiplication
A./B Element-wise division
A\B Return, without repeating, elements of A which are not in B

ACCUMARRAY(x, y, s) Return an array with size s (vector containing the dimensions of the output).
The values in the output are sums of the values in y having identical subscripts in x

DET(A) Determinant of A
Id d× d identity matrix

NCOL(A) Number of columns in A
INV(A) Inverse of A

NROW(A) Number of rows in A
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Table 2. Cont.

ONES(m, n) m× n matrix with all entries equal to ones
REPMAT(A, m, n) Returns m× n block matrix with each block equal to A
RESHAPE(A, m, n) Reshape A into m× n matrix provided m ∗ n = NCOL(A)*NROW(A)

SPARSE(m, n) m× n sparse matrix of zeros
SUM(A, k) Sum of elements of A along the index k

UNIQUE(A) Return entries of A without repeating
ZEROS(m, n) m× n matrix with all entries equal to zero

[, ] Horizontal concatenation
[; ] Vertical concatenation

5.1. Assembling the Stiffness Matrix

Since
φj(xk, yk) = δjk, j, k = 1, 2, 3, (17)

a simple calculation reveals

φj(x, y) = det

1 x y
1 xj+1 yj+1
1 xj+2 yj+2

/det

1 xj yj
1 xj+1 yj+1
1 xj+2 yj+2

 . (18)

Hence, we obtain

∇φj(x, y) =
1
K

[
yj+1 − yj+2
xj+2 − xj+1

]
. (19)

Here, the indices are to be understood modulo 3, and K is the area of triangle K. Thus, using (11),
the entries of the stiffness matrix can be computed as

Ajk =
∫

K
∇φj(∇φk)

Tdx′ =
1
K (yj+1 − yj+2, xj+2 − xj+1)

[
yk+1 − yk+2
xk+2 − xk+1

]
, (20)

with indices modulo 3. This can be written as

A = GGT , G :=

 1 1 1
x1 x2 x3

y1 y2 y3


−1 0 0

1 0
0 1

 . (21)

The pseudocode given in Algorithm 1 computes the local stiffness matrix contributions, based on
Equations (17)–(21).

Algorithm 1 Computation of local stiffness matrix contributions.

1: procedure STIMA(c4n)
2: d← NCOL(c4n)
3: M1 ← [ONES(1, d + 1); c4nT ]
4: M2 ← [ZEROS(1, d); Id]
5: G ← INV(M1) ∗M2
6: P1 ← [ONES(1, d + 1); c4nT ]
7: S← DET(P1)∗G∗GT

∏d
j=1 j

8: return S
9: end procedure
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Using the local contributions, one can compute the global contributions using the pseudocode
given in Algorithm 2.

Algorithm 2 Computation of the global contributions.

1: procedure STIFFASSEMB(n4e, c4n)
2: r ← NROW(c4n)
3: A← SPARSE(r, r)
4: for j← 1 to r, do
5: A(n4e(j, :), n4e(j, :))← A(n4e(j, :), n4e(j, :)) + STIMA(c4n(n4e(j, :), :))
6: end for
7: return A
8: end procedure

5.2. Assembling the Mass Matrix

The entries of the mass matrix M can be computed as

Mjk =
∫

K
φjφkdx′. (22)

For triangular, piecewise affine elements, we obtain

∫
K

φjφkdx′ =
1
24

det

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

] 2 1 1
1 2 1
1 1 2

 ; (23)

the pseudocode for M, based on Equations (22) and (23), is given in Algorithm 3.

Algorithm 3 Assembling the mass matrix.

1: procedure MASSASSEMB(n4e, c4n)
2: r ← NROW(c4n)
3: M← SPARSE(r, r)
4: for j← 1 to r do
5: X1 ← [[1 1 1]; (c4n(n4e(j, :), :))T ]
6: X2 ← [[2 1 1]; [1 2 1]; [1 1 2]]
7: M(n4e(j, :), n4e(j, :))← M(n4e(j, :), n4e(j, :)) + ( 1

24 ∗DET(X1) ∗ X2)
8: end for
9: return M

10: end procedure

5.3. Assembling the Load Vector

The volume forces, which are calculated using Algorithm 4, are used for assembling the load vector.
Using the value of f at the center of gravity (xS, yS) of K, the integral

∫
K f φjdx′ is approximated by

∫
K

f φjdx′ ≈ 1
6

det

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
f (xS, yS). (24)

In addition, the load vector contains a contribution from the integral terms containing the kernel B;
this is given in Algorithm 5.
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Algorithm 4 Source function.

1: procedure F(x, t)
2: VolumeForce← (1− 2 ∗ t). ∗ π2. ∗ exp(−π2 ∗ t). ∗ sin(π. ∗ x(:, 1)). ∗ sin(π. ∗ x(:, 2))
3: return VolumeForce
4: end procedure

Algorithm 5 Coefficient function in the kernel.

1: procedure INTGRAL(t, s)
2: BTS← exp(−π2 ∗ (t− s))
3: return BTS
4: end procedure

5.4. Boundary and Initial Conditions

The sets of pseudocode for the boundary and initial conditions given by Equations (2) and (3),
respectively, are given in Algorithms 6 and 7, respectively.

Algorithm 6 Boundary conditions.

1: procedure UD(x, t)
2: DBV(x(:, 1) == −1)← 0
3: DBV(x(:, 1) == 0)← 0
4: DBV(x(:, 1) == 1)← 1
5: DBV(x(:, 2) == −1)← 0
6: DBV(x(:, 2) == 0)← 0
7: DBV(x(:, 2) == 1)← 0
8: return DBV
9: end procedure

Algorithm 7 Initial conditions.

1: procedure U0(c4n)
2: x← c4n(:, 1)
3: y← c4n(:, 2)
4: u0 ← sin(π ∗ x) ∗ sin(π ∗ y)
5: return u0
6: end procedure

6. Improved Assembly

To improve the implementation, we present in this section an optimization of the algorithm that
switches away from a looping approach towards the utilization of vector tools, available in software
such as MATLAB. A brief description of these improvements follows. Similar approaches can be found
in [40,43], and the sets of code supplied are modified versions of those given in [52]; they are included
for completeness. The sets of pseudocode which make use of the subroutines presented in this section
are given in Appendix B.

6.1. Assembling the Stiffness Matrix

The vectorization of the code for the stiffness matrix is done by using the commands SPARSE and
RESHAPE, which allow us to store in the vectors I and J the indices related to the contributions of
each node of each element for building the stiffness matrix A. This provides the possibility to evaluate
the stiffness matrix A in one line, i.e., without a loop, as shown in Algorithm 8.
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Algorithm 8 Assembling the stiffness matrix with vectorization.

1: procedure STIFFASSEMB(n4e, nC, area4, d21, d31, nE)
2: I ← RESHAPE(n4e(:, [1 2 3 1 2 3 1 2 3])T , 9 ∗ nE, 1)
3: J ← RESHAPE(n4e(:, [1 1 1 2 2 2 3 3 3])T , 9 ∗ nE, 1)
4: a← (SUM(d21. ∗ d31, 2)./area4)T

5: b← (SUM(d31. ∗ d31, 2)./area4)T

6: c← (SUM(d21. ∗ d21, 2)./area4)T

7: A← [−2 ∗ a + b + c; a− b; a− c; a− b; b;−a; a− c;−a; c]
8: A← SPARSE(I, J, A(:), nC, nC)
9: return A

10: end procedure

6.2. Assembling the Mass Matrix

Similarly to the previous paragraph, we can build the mass matrix M by using the SPARSE
command. We remark that, in this case, the evaluation of the matrix is reduced to the calculation of
only two vectors, as shown in Algorithm 9.

Algorithm 9 Assembling the mass matrix with vectorization.

1: procedure MASSASSEMB(nC, n4e, area)
2: I ← n4e([1 2 3 1 2 3 1 2 3], :)
3: J ← n4e([1 1 1 2 2 2 3 3 3], :)
4: A6 ← 1

6 ∗ areaT

5: A12 ← 1
12 ∗ areaT

6: Kg ← [A6; A12; A12; A12; A6; A12; A12; A12; A6]
7: M← SPARSE(I(:), J(:), Kg(:), nC, nC)
8: return M
9: end procedure

6.3. Assembling the Load Vector

In order to assemble the right-hand side, we refer to what we have done in Section 5.3 considering
the volume forces and the center of gravity. Here, however, the improvement consists of neglecting
the loop by inserting the MATLAB command ACCUMARRAY, which creates an array of given size,
where the values are collected through the REPMAT command, which in this case returns a 3× 1 array
containing copies of the corresponding evaluation of the element.

6.4. Boundary and Initial Conditions

For the vectorized version also, the sets of pseudocode for the boundary and initial conditions are
given in Algorithms 6 and 7, respectively.

7. Overview of an Implementation in Matlab

A minimal MATLAB implementation of the presented algorithm is available from Supplementary
Materials. There are six zipfiles which contain the necessary MATLAB files therein:

• BE_LRR_unvectorized.zip (backward-Euler, left rectangular rule, unvectorized);
• BE_LRR_vectorized.zip (backward-Euler, left rectangular rule, vectorized);
• BE_RRR_unvectorized.zip (backward-Euler, right rectangular rule, unvectorized);
• BE_RRR_vectorized.zip (backward-Euler, right rectangular rule, vectorized);
• CN_unvectorized.zip (Crank–Nicolson, unvectorized);
• CN_vectorized.zip (Crank–Nicolson, vectorized).

To run the demo program, uncompress the desired zip file and run the Main.m file; this:
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• Specifies the geometry;
• Computes the solution;
• Plots the solution.

In particular, the computation of the solution is carried out by SCHEME_NAME_PIDE.m, which
sets the initial conditions via U0.m, and assembles the stiffness matrix and the mass matrix
via StiffAssemb.m and MassAssemb.m, respectively; thereafter, solve_SCHEME_NAME.m updates the
boundary conditions via Ud.m, assembles the load vector via f.m and obtains the solution at the current
time step. Furthermore, note that whilst most of the subroutines are the same in both the vectorized
and unvectorized versions of the code, those for StiffAssemb.m and MassAssemb.m are necessarily
slightly different, in line with the discussion in Sections 5 and 6.

8. Numerical Results

In this section, we study a numerical example and compare the results obtained using different
versions of the MATLAB-based sets of code; in addition, solutions were obtained using COMSOL
Multiphysics. For the example, we consider the L-shaped domain Ω = [−1, 1]2\[−1, 0] × [0, 1]
mentioned earlier; take

f (x, y, t) = (1− 2t)π2u(x, y, t) (25)

and
B(t, s) = exp(−π2(t− s)), (26)

which is a kernel that occurs in different settings in many of the references given earlier,
and others [2–4,7,14,53,54]; this leads to the following exact solution for u:

u(x, y, t) = exp(−π2t) sin(πx) sin(πy). (27)

Figure 2a shows the exact solution to the problem, whereas Figure 2b corresponds to the
backward-Euler approximation, where the left rectangular rule is applied to treat the Volterra integral
term. Figure 2c,d show the solutions obtained using the backward-Euler approximation with the right
rectangular rule and the Crank–Nicolson approximation with the trapezoidal rule, respectively, to treat
the Volterra integral term. In addition, Figure 3 shows a comparison of the analytical solution with
the solution computed by COMSOL Multiphysics with 66142 P1 elements for t = T, y = −0.5, where
T = 0.1; as expected, the agreement is very good.

To illustrate the advantage of the vectorized code for each numerical scheme over the unvectorized
one, which uses for loops for the assembly process, we have presented a comparison of the runtimes
with respect to the number of elements, N. This is given in Table 3, which also shows the runtimes
for COMSOL Multiphysics. Note that all sets of code were run on an Intel Core i7 Notebook with
a 1.7 GHz processor and 8 GB of RAM. We can note from Table 3 that vectorized versions of the
MATLAB sets of code presented in this article on the finest mesh get close to COMSOL’s performance.
Nevertheless, there are several factors behind the results. On the one hand, in the developed MATLAB
sets of code, we discretize the Volterra integral term; as a result, one has to store the memory term
values at all of the time discretization points. On the other hand, because of the particular form of
the kernel in (26), and as explained in Appendix C, COMSOL Multiphysics does not need to evaluate
the integral at all; even so, the difference in computational time is not decisive. However, and as also
explained in Appendix C, we would not have been able to use COMSOL Multiphysics at all in this
way if the kernel had not had a separable form, whereas the sets of code presented in this article do
not have this limitation.
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Figure 2. (a) The exact solution; (b) the backward-Euler FEM solution with the left rectangular
quadrature rule applied to approximate the Volterra integral term; (c) the backward-Euler FEM solution
with the right rectangular quadrature rule applied to approximate the Volterra integral term; (d) the
Crank–Nicolson FEM solution with the trapezoidal quadrature rule applied to approximate the Volterra
integral term. All plots are for T = 0.1, and the FEM solutions were computed using P1 elements with
τ = 0.00125 and h = 0.05.
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Figure 3. Comparison of the analytical solution with the solution computed by COMSOL Multiphysics
with 66,142 elements for T = 0.1, y = −0.5.
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In addition, we define an efficiency factor, Ce f f , given by Ce f f = tunvec/tvec, where tunvec is the
runtime of the unvectorized code and tvec is the runtime of the vectorized code; the results for this are
shown in Table 4. From the latter, we observe that refining the mesh increases the efficiency factor Ce f f .
This shows that the relative performance of the vectorized code improves significantly as the number
of elements is increased.

Table 3. Quantitative information on the runtimes of the unvectorized and vectorized MATLAB sets
of code with different numerical schemes, and the same for code from COMSOL Multiphysics, when
solving the PIDE. Abbreviations: BELR, backward-Euler scheme with left rectangular rule; BERR,
backward-Euler scheme with right rectangular rule; CN, Crank–Nicolson scheme with trapezoidal
rule; N, number of elements; tSCHEME

unvec , runtime of the unvectorized code in seconds involving loops in
the assembly process, using a particular method SCHEME (= BELR, BERR or CN); tSCHEME

vec , runtime
of the vectorized code in seconds without loops in the assembly process, using a particular method
SCHEME; tC, runtime for COMSOL Multiphysics.

h N tBELR
unvec [s] tBELR

vec [s] tBERR
unvec [s] tBERR

vec [s] tCN
unvec [s] tCN

vec [s] tC [s]

0.2 258 0.81 0.77 0.82 0.77 0.83 0.77 0.31
0.1 978 0.98 0.81 1.00 0.81 1.04 0.82 0.55
0.05 4086 2.06 1.08 1.96 1.08 2.13 1.08 1.73

0.025 16,406 10.26 4.36 10.51 4.40 10.93 4.41 6.93
0.0125 66,142 114.40 38.04 112.86 38.24 114.42 38.36 34.13

Table 4. The efficiency factor, Ce f f , for different MATLAB-based sets of code and different space meshes
with a fixed time step (τ = 0.00125).

h N CBELR
e f f CBERR

e f f CCN
e f f

0.2 258 1.06 1.06 1.07
0.1 978 1.22 1.23 1.27
0.05 4086 1.91 1.82 1.97

0.025 16,406 2.35 2.39 2.48
0.0125 66,142 3.01 2.95 2.98

9. Conclusions

In this paper, we have presented a compact implementation using the finite-element method for
solving linear PIDEs in arbitrary 2D geometries, both in terms of sets of pseudocode and in terms of a
MATLAB code, which we have made openly available; we note that such a code is not available in
other competing FEM software, such as freefem++ or deal.II. In addition, it was found that a vectorized
version of the MATLAB code solves the model problem considered around three times more quickly
than the unvectorized code on finer meshes. Furthermore, because of the particular form of the kernel
in the Volterra integral term, the model problem could be represented in a form that was amenable
to solution using the commercial finite-element software COMSOL Multiphysics. For this particular
problem, in which the kernel has a separable form, COMSOL Multiphysics slightly outperforms even
our vectorized code when using a mesh of around 66,000 elements.

Future development of this work would involve extending the sets of code to handle non-linear
integral terms [55] and to three dimensions.

Supplementary Materials: The sets of MATLAB code used to generate the results presented in this paper are
available online at https://github.com/LucaMeacci/efficient-PIDE-2D.
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Appendix A. Unvectorized Pseudocode

In this section, the unvectorized sets of pseudocode are presented.

• Pseudo-code for Algorithms A1–A6 the backward-Euler scheme with the left rectangular rule,
corresponding to Equation (9) and employing (7):

Algorithm A1 Backward-Euler scheme with left rectangular rule.

Main function

1: procedure BELRFEMPIDE(c4n, n4e, dir, N, dt)
2: r ← NROW(c4n)
3: U ← ZEROS(r, N + 1)
4: FN ← UNIQUE([1 2 . . . r])\UNIQUE(dir)
5: A← STIFFASSEMB(n4e, c4n)
6: B← MASSASSEMB(n4e, c4n)
7: U(:, 1)← U0(c4n)
8: for n← 2 to (N + 1), do
9: U(:, n)← SOLVEBELRR(c4n, n4e, dir, dt, FN, A, B.n, U)

10: end for
11: return U
12: end procedure

Auxiliary function

13: procedure SOLVEBELRR(c4n, n4e, dir, dt, FN, A, B, n, U)
14: r ← NROW(c4n)
15: b← SPARSE(r, 1)
16: for j← 1 to NROW(n4e), do
17: M1 ← [[1 1 1]; c4n(n4e(j, :), :)T ]
18: S← SUM(c4n(n4e(j, :), :))
19: b(n4e(j, :))← b(n4e(j, :)) + DET(M1) ∗ dt ∗ 1

6 ∗ F( S
3 , (n− 1) ∗ dt)

20: end for
21: Int← dt2 ∗ A ∗U(:, 1) ∗ INTGRAL((n− 1) ∗ dt, 0)
22: if n > 2, then
23: for k← 2 to (n− 1), do
24: Int← Int +

(
dt2 ∗ A ∗U(:, k) ∗ INTGRAL((n− 1) ∗ dt, (k− 1) ∗ dt)

)
25: end for
26: end if
27: b← b + (B ∗U(:, n− 1)) + Int
28: u← SPARSE(r, 1)
29: ud ← UNIQUE(dir)
30: u(ud)← UD(c4n(ud, :), (n− 1) ∗ dt)
31: b← b− (dt ∗ A + B) ∗ u
32: u(FN)← INV(dt ∗ A(FN, FN) + B(FN, FN)) ∗ b(FN)
33: solBELR← u
34: return solBELR
35: end procedure
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• Code for the backward-Euler scheme with the right rectangular rule, corresponding to
Equation (9) and employing (8):

Algorithm A2 Backward-Euler scheme with right rectangular rule.

Main function

1: procedure BERRFEMPIDE(c4n, n4e, dir, N, dt)
2: r ← NROW(c4n)
3: U ← ZEROS(r, N + 1)
4: FN ← UNIQUE([1 2 . . . r])\UNIQUE(dir)
5: A← STIFFASSEMB(n4e, c4n)
6: B← MASSASSEMB(n4e, c4n)
7: U(:, 1)← U0(c4n)
8: for n← 2 to (N + 1), do
9: U(:, n)← SOLVEBERRR(c4n, n4e, dir, dt, FN, A, B.n, U)

10: end for
11: return U
12: end procedure

Auxiliary function

13: procedure SOLVEBERRR(c4n, n4e, dir, dt, FN, A, B, n, U)
14: r ← NROW(c4n)
15: b← SPARSE(r, 1)
16: for j← 1 to NROW(n4e), do
17: M1 ← [[1 1 1]; c4n(n4e(j, :), :)T ]
18: S← SUM(c4n(n4e(j, :), :))
19: b(n4e(j, :))← b(n4e(j, :)) + DET(M1) ∗ dt ∗ 1

6 ∗ F( S
3 , (n− 1) ∗ dt)

20: end for
21: Int← 0
22: if n > 2, then
23: Int← dt2 ∗ A ∗U(:, 1) ∗ INTGRAL((n− 1) ∗ dt, dt)
24: for k← 2 to (n− 2), do
25: Int← Int +

(
dt2 ∗ A ∗U(:, k) ∗ INTGRAL((n− 1) ∗ dt, k ∗ dt)

)
26: end for
27: end if
28: b← b + (B ∗U(:, n− 1)) + Int
29: u← SPARSE(r, 1)
30: ud ← UNIQUE(dir)
31: u(ud)← UD(c4n(ud, :), (n− 1) ∗ dt)
32: b← b− (dt ∗ A + B + dt2 ∗ A ∗ INTGRAL((n− 1) ∗ dt, (n− 1) ∗ dt)) ∗ u
33: M1 ← dt ∗ A(FN, FN) + B(FN, FN) + dt2 ∗ A(FN, FN) ∗ INTGRAL((n− 1) ∗ dt, (n− 1) ∗ dt)
34: u(FN)← INV(M1) ∗ b(FN)
35: solBERR← u
36: return solBERR
37: end procedure
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• Code for Crank–Nicolson scheme with trapezoidal rule, corresponding to Equation (14):

Algorithm A3 Crank–Nicolson scheme with the trapezoidal rule.

Main function

1: procedure CNFEMPIDE(c4n, n4e, dir, N, dt)
2: r ← NROW(c4n)
3: U ← ZEROS(r, N + 1)
4: FN ← UNIQUE([1 2 . . . r])\UNIQUE(dir)
5: A← STIFFASSEMB(n4e, c4n)
6: B← MASSASSEMB(n4e, c4n)
7: U(:, 1)← U0(c4n)
8: for j← 2 to (N + 1), do
9: U(:, j)← SOLVECN(c4n, n4e, dir, dt, FN, n, U, A, B)

10: end for
11: return U
12: end procedure

Auxiliary function

13: procedure SOLVECN(c4n, n4e, dir, dt, FN, n, U, A, B)
14: r ← NROW(c4n)
15: b← SPARSE(r, 1)
16: for j← 1 to NROW(n4e), do
17: X1 ← DET([[1 1 1]; c4n(n4e(j, :), :)T ])
18: X2 ← SUM(c4n(n4e(j, :), :))
19: X3 ← SUM(c4n(n4e(j, :), :))
20: b(n4e(j, :))← b(n4e(j, :)) + X1 ∗ dt ∗ 1

12 ∗ (F(X2/3, (n− 1) ∗ dt) + F(X3/3, (n− 2) ∗ dt))
21: end for
22: Int ← 1

8 . ∗ dt2 ∗ A ∗ U(:, 1) ∗ (2 ∗ INTGRAL((n − 1.5) ∗ dt, 0) + INTGRAL((n − 1.5) ∗ dt, (n −
1.5) ∗ dt))

23: if n > 2, then
24: Int← 1

2 ∗ dt2 ∗ A ∗U(:, 1) ∗ INTGRAL((n− 1.5) ∗ dt, 0)
+ 1

8 ∗ dt2 ∗ A ∗U(:, n− 1) ∗ (INTGRAL((n− 1.5) ∗ dt, (n− 1.5) ∗ dt)
+6 ∗ INTGRAL((n− 1.5) ∗ dt, (n− 2) ∗ dt))

25: for k← 2 to (n− 2), do
26: Int← Int + dt2 ∗ A ∗U(:, k) ∗ INTGRAL((n− 1.5) ∗ dt, (k− 1) ∗ dt)
27: end for
28: end if
29: b← b + (B− dt

2 ∗ A) ∗U(:, n− 1) + Int
30: u← SPARSE(r, 1)
31: ud ← UNIQUE(dir)
32: u(ud)← UD(c4n(ud, :), (n− 1) ∗ dt)
33: b← b−

((
dt
2 −

dt2

8 ∗ INTGRAL((n− 1.5) ∗ dt, (n− 1) ∗ dt)
)
∗ A + B

)
∗ u

34: M1 ←
((

dt
2 −

dt2

8 ∗ INTGRAL((n− 1.5) ∗ dt, (n− 1) ∗ dt)
)
∗ A(FN, FN) + B(FN, FN)

)
35: u(FN)← INV(M1) ∗ b(FN)
36: solCN ← u
37: return solCN
38: end procedure
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Appendix B. Vectorized Pseudocode

In this section, the vectorized sets of pseudocode are presented.

• Code for the backward-Euler scheme with the left rectangular rule, corresponding to
Equation (9) and employing (7):

Algorithm A4 Vectorized version of backward-Euler scheme with the left rectangular rule.

Main function

1: procedure BELRFEMPIDE(c4n, n4e, dir, N, dt)
2: nE← NROW(n4e)
3: nC ← NROW(c4n)
4: U ← ZEROS(nC, N + 1)
5: FN ← UNIQUE([1 2 . . . nC])\UNIQUE(dir)
6: c1← c4n(n4e(:, 1), :)
7: d21← c4n(n4e(:, 2), :)− c1
8: d31← c4n(n4e(:, 3), :)− c1
9: area4← 2 ∗ (d21(:, 1). ∗ d31(:, 2)− d21(:, 2). ∗ d31(:, 1))

10: A← STIFFASSEMB(n4e, nC, area4, d21, d31, nE)
11: B← MASSASSEMB(nC, n4eT , 1

4 ∗ area4)
12: U(:, 1)← U0(c4n)
13: for j← 2 to (N + 1), do
14: U(:, j)← SOLVEBELRR(c4n, n4e, dir, dt, FN, A, B, n, U, c1, d21, d31, area4)
15: end for
16: return U
17: end procedure

Auxiliary function

18: procedure SOLVEBELRR(c4n, n4e, dir, dt, FN, A, B, n, U, c1, d21, d31, area4)
19: r ← NROW(c4n)
20: f sT ← F(c1 + d21+d31

3 , (n− 1) ∗ dt)
21: L← REPMAT(dt. ∗ area4. ∗ f sT. ∗ 1

12 , 3, 1)
22: b← ACCUMARRAY(n4e(:), L, [r 1])
23: Int← dt2 ∗ A ∗U(:, 1) ∗ INTGRAL((n− 1) ∗ dt, 0)
24: if n > 2, then
25: for k← 2 to (n− 1), do
26: Int← Int + dt2 ∗ A ∗U(:, k) ∗ INTGRAL((n− 1) ∗ dt, (k− 1) ∗ dt)
27: end for
28: end if
29: b← b + B ∗U(:, n− 1) + Int
30: u← SPARSE(r, 1)
31: ud ← UNIQUE(dir)
32: u(ud)← UD(c4n(ud, :), (n− 1) ∗ dt)
33: b← b− (dt ∗ A + B) ∗ u
34: M1 ← dt ∗ A(FN, FN) + B(FN, FN)
35: u(FN)← INV(M1) ∗ b(FN)
36: solBELR← u
37: return solBELR
38: end procedure
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• Code for the backward-Euler scheme with the right rectangular rule, corresponding to
Equation (9) and employing (8):

Algorithm A5 Vectorized version of backward-Euler scheme with the left rectangular rule.

Main function

1: procedure BERRFEMPIDE(c4n, n4e, dir, N, dt)
2: nE← NROW(n4e)
3: nC ← NROW(c4n)
4: U ← ZEROS(nC, N + 1)
5: FN ← UNIQUE([1 2 . . . nC])\UNIQUE(dir)
6: c1← c4n(n4e(:, 1), :)
7: d21← c4n(n4e(:, 2), :)− c1
8: d31← c4n(n4e(:, 3), :)− c1
9: area4← 2 ∗ (d21(:, 1). ∗ d31(:, 2)− d21(:, 2). ∗ d31(:, 1))

10: A← STIFFASSEMB(n4e, nC, area4, d21, d31, nE)
11: B← MASSASSEMB(nC, n4eT , 1

4 ∗ area4)
12: U(:, 1)← U0(c4n)
13: for j← 2 to (N + 1), do
14: U(:, j)← SOLVEBERRR(c4n, n4e, dir, dt, FN, A, B, n, U, c1, d21, d31, area4)
15: end for
16: return U
17: end procedure

Auxiliary function

18: procedure SOLVEBERRR(c4n, n4e, dir, dt, FN, A, B, n, U, c1, d21, d31, area4)
19: r ← NROW(c4n)
20: f sT ← F(c1 + d21+d31

3 , (n− 1) ∗ dt)
21: L← REPMAT(dt. ∗ area4. ∗ f sT. ∗ 1

12 , 3, 1)
22: b← ACCUMARRAY(n4e(:), L, [r 1])
23: Int← 0
24: if n > 2, then
25: Int← dt2 ∗ A ∗U(:, 1) ∗ INTGRAL((n− 1) ∗ dt, dt)
26: for k← 2 to (n− 2), do
27: Int← Int + dt2 ∗ A ∗U(:, k) ∗ INTGRAL((n− 1) ∗ dt, k ∗ dt)
28: end for
29: end if
30: b← b + B ∗U(:, n− 1) + Int
31: u← SPARSE(r, 1)
32: ud ← UNIQUE(dir)
33: u(ud)← UD(c4n(ud, :), (n− 1) ∗ dt)
34: b← b− (dt ∗ A + B + dt2 ∗ A ∗ INTGRAL((n− 1) ∗ dt, (n− 1) ∗ dt)) ∗ u
35: M1 ← dt ∗ A(FN, FN) + B(FN, FN) + dt2 ∗ A(FN, FN) ∗ INTGRAL((n− 1) ∗ dt, (n− 1) ∗ dt)
36: u(FN)← INV(M1) ∗ b(FN)
37: solBERR← u
38: return solBERR
39: end procedure
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• Code for Crank–Nicolson scheme with trapezoidal rule, corresponding to Equation (14):

Algorithm A6 Crank–Nicolson scheme with the trapezoidal rule.

Main function

1: procedure CNFEMPIDE(c4n, n4e, dir, N, dt)
2: nE← NROW(n4e)
3: nC ← NROW(c4n)
4: U ← ZEROS(nC, N + 1)
5: FN ← UNIQUE([1 2 . . . nC])\UNIQUE(dir)
6: c1← c4n(n4e(:, 1), :)
7: d21← c4n(n4e(:, 2), :)− c1
8: d31← c4n(n4e(:, 3), :)− c1
9: area4← 2 ∗ (d21(:, 1). ∗ d31(:, 2)− d21(:, 2). ∗ d31(:, 1))

10: A← STIFFASSEMB(n4e, nC, area4, d21, d31, nE)
11: B← MASSASSEMB(nC, n4eT , 1

4 ∗ area4)
12: U(:, 1)← U0(c4n)
13: for j← 2 to (N + 1), do
14: U(:, j)← SOLVECN(c4n, n4e, dir, dt, FN, A, B, n, U, c1, d21, d31, area4)
15: end for
16: return U
17: end procedure

Auxiliary function

18: procedure SOLVECN(c4n, n4e, dir, dt, FN, A, B, n, U, c1, d21, d31, area4)
19: r ← NROW(c4n)
20: f sT1 ← F(c1 + d21+d31

3 , (n− 1) ∗ dt)
21: f sT2 ← F(c1 + d21+d31

3 , (n− 2) ∗ dt)
22: f sTmid ← 0.5 ∗ ( f sT1 + f sT2)
23: L← REPMAT(dt. ∗ area4. ∗ f sTmid. ∗ 1

12 , 3, 1)
24: b← ACCUMARRAY(n4e(:), L, [r 1])
25: Int← 1

8 ∗ dt2 ∗ A ∗U(:, 1) ∗
(
2 ∗ INTGRAL((n− 1.5) ∗ dt, 0)

+INTGRAL((n− 1.5) ∗ dt, (n− 1.5) ∗ dt)
)

26: if n > 2, then
27: Int← 1

2 ∗ dt2 ∗ A ∗U(:, 1) ∗ INTGRAL((n− 1.5) ∗ dt, 0)
+ 1

8 ∗ dt2 ∗ A ∗U(:, n− 1) ∗
(

INTGRAL((n− 1.5) ∗ dt, (n− 1.5) ∗ dt)
6 ∗ INTGRAL((n− 1.5) ∗ dt, (n− 2) ∗ dt)

)
28: for j← 2 to (n− 2), do
29: Int← Int + dt2 ∗ A ∗U(:, j) ∗ INTGRAL((n− 1.5) ∗ dt, (j− 1) ∗ dt)
30: end for
31: end if
32: b← b + (B− dt

2 ∗ A) ∗U(:, n− 1) + Int
33: u← SPARSE(r, 1)
34: ud ← UNIQUE(dir)
35: u(ud)← UD(c4n(ud, :), (n− 1) ∗ dt)
36: b← b−

(( dt
2 −

dt2

8 ∗ INTGRAL((n− 1.5) ∗ dt, (n− 1) ∗ dt)
)
∗ A + B

)
∗ u

37: M1 ←
( dt

2 −
dt2

8 ∗ INTGRAL((n− 1.5) ∗ dt, (n− 1) ∗ dt)
)
∗ A(FN, FN) + B(FN, FN)

38: u(FN)← INV(M1) ∗ b(FN)
39: solCN ← u
40: return solCN
41: end procedure
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Appendix C. Solution Using COMSOL Multiphysics

The fact that (26) is separable in t and s implies that the problem can be reformulated as
a hyperbolic initial boundary value problem defined by the so-called telegraph equation [53].
In particular, on using (4) and setting B (t, s) = B0 (t) B1 (s) , Equation (1) becomes

∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 − B0 (t) φ + f , (A1)

where

φ =
∫ t

0
B1 (s)

{
∂2u
∂x2 +

∂2u
∂y2

}
ds, (A2)

which differentiates with respect to t and using (A1) gives

∂φ

∂t
= B1 (t)

(
∂u
∂t

+ B0 (t) φ− f
)

. (A3)

Thus, the system to solve is (A1) and (A3), subject to

u(x, t) = g(x), (x, t) ∈ ∂Ω× [0, T], (A4)

u(x, 0) = u0(x), x ∈ Ω, (A5)

φ(x, 0) = 0, x ∈ Ω. (A6)

This is then a relatively straightforward task in COMSOL Multiphysics, which can be carried
out from the graphical user interface; in particular, PDE General Form and Weak Form (subdomain)

modules are used for Equations (A1) and (A3), respectively. Moreover, we are able to ensure a fair
comparison with the results of the other sets of code by importing into COMSOL Multiphysics the
same meshes as were used for the earlier computations and using the same time step (0.025); in
addition, for the time-stepping, we used the generalized-α method [56,57].

On the other hand, if B (t, s) is not separable, e.g., B(t, s) = exp(−π2(t− s)2) instead of (26), it is
not possible to have a formulation that does not retain an integral sign and we have not, at this point,
found a simple way to solve this problem, although it would no doubt require coupling COMSOL
Multiphysics to a MATLAB script.
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