
algorithms

Article

A Multiobjective Large Neighborhood Search
Metaheuristic for the Vehicle Routing Problem with
Time Windows

Grigorios D. Konstantakopoulos * , Sotiris P. Gayialis , Evripidis P. Kechagias ,
Georgios A. Papadopoulos and Ilias P. Tatsiopoulos

Sector of Industrial Management and Operational Research, School of Mechanical Engineering, National
Technical University of Athens, 15780 Athens, Greece; sotga@central.ntua.gr (S.P.G.);
eurikechagias@mail.ntua.gr (E.P.K.); gpapado@mail.ntua.gr (G.A.P.); itat@central.ntua.gr (I.P.T.)
* Correspondence: gkonpoulos@mail.ntua.gr; Tel.: +30-210-7723516

Received: 5 September 2020; Accepted: 24 September 2020; Published: 26 September 2020 ����������
�������

Abstract: The Vehicle Routing Problem with Time Windows (VRPTW) is an NP-Hard optimization
problem which has been intensively studied by researchers due to its applications in real-life cases
in the distribution and logistics sector. In this problem, customers define a time slot, within which
they must be served by vehicles of a standard capacity. The aim is to define cost-effective routes,
minimizing both the number of vehicles and the total traveled distance. When we seek to minimize
both attributes at the same time, the problem is considered as multiobjective. Although numerous
exact, heuristic and metaheuristic algorithms have been developed to solve the various vehicle routing
problems, including the VRPTW, only a few of them face these problems as multiobjective. In the
present paper, a Multiobjective Large Neighborhood Search (MOLNS) algorithm is developed to
solve the VRPTW. The algorithm is implemented using the Python programming language, and it
is evaluated in Solomon’s 56 benchmark instances with 100 customers, as well as in Gehring and
Homberger’s benchmark instances with 1000 customers. The results obtained from the algorithm
are compared to the best-published, in order to validate the algorithm’s efficiency and performance.
The algorithm is proven to be efficient both in the quality of results, as it offers three new optimal
solutions in Solomon’s dataset and produces near optimal results in most instances, and in terms of
computational time, as, even in cases with up to 1000 customers, good quality results are obtained in
less than 15 min. Having the potential to effectively solve real life distribution problems, the present
paper also discusses a practical real-life application of this algorithm.

Keywords: vehicle routing problem; time windows; VRPTW; metaheuristic; large neighborhood
search; multiobjective optimization; freight transportation

1. Introduction

Vehicle Routing Problems (VRP) have been intensively studied and researched for the last 60
years. The Capacitated VRP was first introduced in the seminal work of Dantzig and Ramser [1],
under the name of “Truck Dispatching Problem”. They generalized the Traveling Salesman Problem
(TSP), adding the parameter of multiple vehicles. Since then, many changes in the initial problem have
been made, and many different variants of the VRP have been created, in an attempt to correlate VRP
variants with real-life distribution problems [2,3]. The Vehicle Routing Problem with Time Windows
(VRPTW) is a well-known variant of the VRP which has received considerable attention in recent
years and reflects many real-world scenarios, as, in distribution operations, the time window of the
delivery is a crucial parameter of the problem. In conjunction with the time windows, multiple other

Algorithms 2020, 13, 243; doi:10.3390/a13100243 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-5447-0399
https://orcid.org/0000-0002-7524-0215
https://orcid.org/0000-0001-9466-6185
http://www.mdpi.com/1999-4893/13/10/243?type=check_update&version=1
http://dx.doi.org/10.3390/a13100243
http://www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 243 2 of 17

parameters, affecting the routing of vehicles and scheduling of deliveries, exist. Time windows become
even more challenging in urban transportation where uncertain traffic conditions exist, meaning that
traveling times change dynamically.

The VRPTW consists of geographically scattered customers that need to be served within a
predetermined time interval (time window), only once and by a single vehicle. The total quantity of
goods distributed in each route cannot exceed the vehicle’s capacity, while each vehicle starts and
ends its route at the depot. A vehicle may arrive at a customer before the opening of the time window
and wait until the agreed service time, but it is not allowed to deliver goods if it arrives after the time
window closes [4–6]. Instead, many research papers [7–12] consider that some or all customers have
soft time windows and may be served before the opening of the time window or after the time window
closes, paying a penalty parameter each time the time window is violated. In the present paper, the
time windows are considered hard and cannot be violated as this is a more realistic scenario for urban
freight transportation, where a possible delay may have severe consequences.

Solving the VRP is of great interest for both the research community and logistics and transportation
companies, as it is crucial for delivering goods cost-effectively and facing customer requirements. The
connection between the two fields is a two-way one, where companies, as well as their associates and
customers, determine the constraints which are transformed into mathematical formulas and modeled
by researchers. Researchers, aided by advanced computer science, propose and develop algorithms
that solve specific variants of the VRP. However, not all algorithms are easy to implement to solve
real-life problems, mainly due to their computational time. According to Arnold and Sörensen [13],
heuristic algorithms provide the best trade-off between solution quality and computation time. This
theory is reinforced by some paradigms of the successful implementation of heuristic algorithms
solving real-life vehicle routing problems [8,14]. Despite this fact, the latest advances in technology
have enabled metaheuristic algorithms to search a wider solution space in limited CPU time, while
offering efficient results [15].

As the solution of real-life problems, VRPTW has to consider various aspects and constraints of
the distribution networks. Researchers have developed and proposed over the years various exact,
heuristic and metaheuristic algorithms. Each algorithm has specific advantages, as well as limitations.
More specifically, exact algorithms compute every possible solution until the best one is reached,
while performing very poorly in terms of computational time, even when dealing with fairly small
instances [16]. However, distribution companies facing the VRPTW need methods capable of producing
high-quality solutions in limited computational time and therefore cannot utilize exact algorithms.
Therefore, multiple heuristic algorithms have been proposed, mainly divided into construction and
local search heuristics. Route construction heuristics, either select nodes sequentially until a feasible
solution is constructed, with respect to vehicle capacity and time windows, or build several solutions
simultaneously with the aid of parallel methods [17]. The time-oriented nearest neighbor method,
which is implemented and applied in the present paper, constructs routes sequentially, by finding
the “closest” customer to the last one served and ends when no more unrouted customers left [18].
Local search methods, on the contrary, modify the initial solution searching for improved neighboring
solutions. The improvement of the solution can be within a route, called intra-route, or between
different routes, called inter-route. Finally, heuristic algorithms are mainly applied for constructing
the initial population in metaheuristic algorithms, as well as implemented in routing and scheduling
software. Their simplicity, as well as their ability to integrate various variants and parameters, have
led them to become widely used and capable of solving complex real-life cases.

In contrast to heuristics, metaheuristics intend to escape from local optimum, as they explore a
more significant subset of the solution space. Metaheuristics are categorized into Population Search
and Local Search. Algorithms that belong in the first category, such as Evolutionary, Ant Colony
Optimization and Particle Swarm Optimization, generate a new solution from a set of existing solutions
either by combining them or by making them cooperate through a learning procedure. On the other
hand, Local Search metaheuristics aim at exploring the solution space by moving the current solution

Algorithms 2020, 13, 243 3 of 17

to another promising one in the neighborhood. Tabu Search (TS) and Simulated Annealing (SA)
are among the most common metaheuristics for solving the VRPTW. In the present paper, a Large
Neighborhood Search (LNS) is proposed. The LNS algorithm was proposed by Shaw [19], and, from
then on, multiple researchers have studied and proposed LNS algorithms, not only for the VRPTW but
for other variants of the problem too. Generally, LNS algorithms work by partially destroying and
then repairing the solution through insertion operators [20], providing the opportunity to explore a
larger neighborhood of the current solution.

The VRPTW in many cases is faced as a single objective as the individual objective functions are
composed into a single one. This approach may significantly simplify the problem; however, it is not
very reliable as a small variation in the weights may lead to different solutions [21]. Tan et al. [22]
and Ombuki et al. [23] are some of the first that considered the VRPTW as multiobjective, while also
applying the Pareto optimality concept. In both articles, evolutionary algorithms were developed and
proposed, and then tested in Solomon’s benchmark instances, offering new Pareto optimal solutions.
Ever since, multiple researchers have studied and considered the multiobjective nature of the problem,
as advances in technology and increasing computing capabilities have emerged. In many cases,
multiobjective evolutionary algorithms (MOEA) are proposed or combined with other methods due to
their search capabilities and their efficiency. Some very efficient multiobjective algorithms, according
to their solutions in Solomon’s database, were proposed by Chiang and Hsu [24], Garcia-Najera and
Bullinaria [25] and Baños et al. [26].

The contribution of this paper is noted in encountering the problem as multiobjective, as well as in
the development of a Multiobjective Large Neighborhood Search (MOLNS) algorithm which exploits
the solution obtained from the construction heuristic algorithm. The proposed MOLNS algorithm
is sufficient in minimizing both the number of vehicles and the total traveled distance by applying
removal and insertion operators while also maintaining the concept of Pareto optimality [27]. To the
best of our knowledge, this is the first time a Large Neighborhood Search algorithm is applied in
the multiobjective VRPTW. The algorithm is tested in Solomon’s 56 benchmark instances with 100
customers as well as in Gehring and Homberger’s benchmark instances with 1000 customers, and
the results of the algorithm are compared to the best-published results of the literature, indicating a
very efficient algorithm. The proposed algorithm considers the problem as multiobjective and can
offer more competitive solutions with a viable trade-off between the quality of the solution and the
computational time.

In the remainder of the paper, the VRPTW is defined and formulated in Section 2, while, in
Section 3, the proposed MOLNS algorithm aiming to solve real-life VRPTW cases is thoroughly
presented. The computational results of the proposed algorithm in Solomon’s and in Gehring and
Homberger’s benchmark instances are presented in Section 4. In the same section, the expected
application of the algorithm in routing and scheduling software is discussed. Finally, Section 5 contains
the conclusions of the paper and highlights the need for further research.

2. Problem Definition and Formulation

The VRPTW is defined by a set of identical vehicles denoted by K and by a direct network G (N,
A), where N is the set of nodes and A = (i, j) : i , j, i, j ∈ N is the set of arcs. Node 0 represents
the central depot, while N∗ = {N/0} represents customers. Every arc (i, j), which is a path from node i
to node j, is characterized by a distance, indicated as di j. ti j stands for the travel time from node i to
node j and has the same value with di j, as the assumption that each distance unit corresponds to one
specific time unit is made. Each customer i is characterized by the demand qi, the service time needed
si and the time window (ei, li), where ei is the opening time and li the closing time. Customers must be
served by exactly one vehicle that may arrive any time within the time window. The arrival time is
given by ti. Additionally, if the vehicle arrives before the beginning of the time window (ei), it must
wait for wk

i time, until service is possible, while no vehicle may arrive after the end of the time interval
(li).

Algorithms 2020, 13, 243 4 of 17

The decision variable xk
i j is equal to 1 if vehicle k drives from node i to node j, and 0 otherwise. The

objective of the VRPTW is to service all customers, minimizing the number of vehicles and the total
traveled distance while simultaneously ensuring that all the constraints are satisfied. The mathematical
model of the VRPTW is presented below:

Objective 1 :
∑
k∈K

∑
j∈N∗

xk
0 j (1)

Objective 2 :
∑
k∈K

∑
(i, j)∈A

di jxk
i j (2)

∑
i∈N

qi

∑
j∈N

xk
i j ≤ qk

max, ∀k ∈ K (3)

∑
k∈K

∑
j∈N

xk
i j = 1, ∀i ∈ N (4)

∑
j∈N∗

xk
0 j = 1, ∀k ∈ K (5)

∑
i∈N

xk
il −

∑
j∈N

xk
l j = 0, ∀l ∈ N, ∀k ∈ K (6)

∑
j∈N∗

xk
j0 = 1, ∀k ∈ K (7)

t0 = wk
0 = s0 = 0 (8)∑

j∈N

xk
i j

(
ti + wk

i + si + ti j
)
≤ t j, ∀i ∈ N, ∀k ∈ K (9)

ei ≤ ti + wk
i ≤ li, ∀i ∈ N, ∀k ∈ K (10)

xk
i j ∈ {0, 1}, ∀ (i, j) ∈ A, ∀k ∈ K (11)

The objective function in Equation (1) states that the total number of vehicles and the total traveled
distance should both be minimized based on the objective function (2). The constraint (3) states that a
vehicle’s capacity cannot be exceeded and (4) that each customer must be served exactly once and by
one vehicle. Constraints (5)–(7) make sure that each vehicle starts from the depot {0}, visits and serves
a certain number of customers and finally returns to the depot {0}. Constraints (8)–(10) indicate that,
for a trip from node i to node j, no vehicle may arrive at customer j after the end of the time window
(li). Simultaneously, the time of arrival to a customer depends on the time of arrival, the waiting time
and the service time of the previous served customer.

3. Problem Solution

The proposed MOLNS algorithm, as a first step, obtains the initial solution by applying the
Time-oriented nearest neighbor algorithm, which is a construction heuristic one. Consequently, in each
iteration, the removal and insertion operators are applied for improving the solution. If the newly
obtained solution is better than the current best one, then the new one replaces it and is used as input
in the next iteration. To evaluate whether a solution is better than another one, the Pareto optimality
concept is applied, which is thoroughly analyzed in Section 3.1. The construction heuristic algorithm
is described in Section 3.2, while, in Section 3.3, the removal and insertion operators of the MOLNS
algorithm, as well as the general framework, are presented.

Algorithms 2020, 13, 243 5 of 17

3.1. Pareto Optimal

Deliveries to end-customers and consumers constitute a key part of supply chain and logistics
operations. Multiple stakeholders are involved, such as third-party logistics (3PL) companies,
transportation companies or even production companies that have their own fleet of vehicles.
Depending on the case, either the number of vehicles or the total traveled distance is more important
or contributes more to the cost. Therefore, it is important to obtain every possible non-dominated
solution, and each stakeholder makes the decision and selects the solution that is most profitable [28].
More specifically, as shown in Figure 1a, when moving from one Pareto optimal solution to another,
there is always a decrease in one objective and a simultaneous increase in the second objective. More
specifically, when comparing solutions X2 and X3 of a minimization problem, it is observed that the
solution X2 has a lower value in Objective 2 and a higher value in Objective 1. Therefore, with no
further information, we cannot decide which solution is more profitable as it depends on the case.

Algorithms 2020, 13, x FOR PEER REVIEW 5 of 17

3.1. Pareto Optimal

Deliveries to end-customers and consumers constitute a key part of supply chain and logistics
operations. Multiple stakeholders are involved, such as third-party logistics (3PL) companies,
transportation companies or even production companies that have their own fleet of vehicles.
Depending on the case, either the number of vehicles or the total traveled distance is more important
or contributes more to the cost. Therefore, it is important to obtain every possible non-dominated
solution, and each stakeholder makes the decision and selects the solution that is most profitable [28].
More specifically, as shown in Figure 1a, when moving from one Pareto optimal solution to another,
there is always a decrease in one objective and a simultaneous increase in the second objective. More
specifically, when comparing solutions X2 and X3 of a minimization problem, it is observed that the
solution X2 has a lower value in Objective 2 and a higher value in Objective 1. Therefore, with no
further information, we cannot decide which solution is more profitable as it depends on the case.

(a) (b)

Figure 1. Pareto Optimal Front. (a) Initial; (b) Updated.

In the present paper, both in the phase of construction and in the phase of the LNS algorithm,
every obtained solution is checked for belonging either to the dominated or the non-dominated
solutions, as shown in Figure 1a. If a solution obtained from the algorithm belongs to the non-
dominated solutions, then the Pareto optimal front is updated. More specifically, in each iteration of
the MOLNS, the set of optimal solutions (X1, X2, X3, X4, X5), that belong in the initial Pareto optimal
front are selected, as presented in Figure 1a. In case solution X3’ is obtained after the implementation
of the removal and insertion operators of the proposed MOLNS algorithm, which improves the value
of Objective 2 compared to solution X3, and the values of both Objective 1 and Objective 2 compared
to solution X2, the Pareto optimal front must be updated, as shown in Figure 1b. Therefore, every
solution obtained from the proposed algorithm is compared to the non-dominated solutions in order
to ensure that optimal solutions are maintained and continuously updated.

3.2. Time-Oriented Nearest Neighbor Algorithm

Several heuristic algorithms have been developed for obtaining solutions for the VRP. In the
present paper, the Time-Oriented Nearest Neighbor (TONN) algorithm is selected for obtaining the
initial solutions, due to its simplicity and speed. The algorithm works by building routes which start
from the depot (Node 0) and, consequently, the “closest” to the last visited node unrouted customer
is added. In the process of searching the “closest” customer, time window as well as capacity
constraints must be respected; otherwise, no customer can be added. A new route is started if no
customer is found, unless no more customers are left to add, meaning that all routes have been
constructed and the process is completed. Solomon [18] proposed this method in an attempt to
optimally solve the VRPTW.

Ob
je

ct
iv

e
1

Objective 2

X1

X2

X3

X4

X5

Dominated Solutions

Pareto Optimal Front
Non-dominated Solutions

Ob
je

ct
iv

e
1

Objective 2

X1

X2

X3

X4

X5

Dominated Solutions
X3’

Pareto Optimal Front
Non-dominated Solutions

Figure 1. Pareto Optimal Front. (a) Initial; (b) Updated.

In the present paper, both in the phase of construction and in the phase of the LNS algorithm, every
obtained solution is checked for belonging either to the dominated or the non-dominated solutions, as
shown in Figure 1a. If a solution obtained from the algorithm belongs to the non-dominated solutions,
then the Pareto optimal front is updated. More specifically, in each iteration of the MOLNS, the set
of optimal solutions (X1, X2, X3, X4, X5), that belong in the initial Pareto optimal front are selected,
as presented in Figure 1a. In case solution X3’ is obtained after the implementation of the removal
and insertion operators of the proposed MOLNS algorithm, which improves the value of Objective 2
compared to solution X3, and the values of both Objective 1 and Objective 2 compared to solution X2,
the Pareto optimal front must be updated, as shown in Figure 1b. Therefore, every solution obtained
from the proposed algorithm is compared to the non-dominated solutions in order to ensure that
optimal solutions are maintained and continuously updated.

3.2. Time-Oriented Nearest Neighbor Algorithm

Several heuristic algorithms have been developed for obtaining solutions for the VRP. In the
present paper, the Time-Oriented Nearest Neighbor (TONN) algorithm is selected for obtaining the
initial solutions, due to its simplicity and speed. The algorithm works by building routes which start
from the depot (Node 0) and, consequently, the “closest” to the last visited node unrouted customer is
added. In the process of searching the “closest” customer, time window as well as capacity constraints
must be respected; otherwise, no customer can be added. A new route is started if no customer is
found, unless no more customers are left to add, meaning that all routes have been constructed and the
process is completed. Solomon [18] proposed this method in an attempt to optimally solve the VRPTW.

Algorithms 2020, 13, 243 6 of 17

The “closeness” of each customer is measured through metric ci j. This metric measures the direct
distance between the two customers di j, the time difference between the completion of service at i and
the beginning of service at j, Ti j, and the urgency of delivery to customer j, ui j.

Ti j =
(
t j + wk

j

)
−

(
ti + wk

i + si
)

ui j = l j −
(
ti + wk

i + si + ti j
)

ci j = a1 × di j + a2 × Ti j + a3 × ui j, a1 + a2 + a3 = 1

3.3. Multiobjective Large Neighborhood Search

As described in Section 3.2, customers are added in each route based on their “closeness” to
the last added customer. However, time windows affect to a great extent the initial solution, which
in many cases deviates from the optimum. Therefore, after the initial solutions are constructed, the
MOLNS algorithm, which partially destroys and then repairs the solution, is applied for simultaneously
minimizing both the number of vehicles and the total distance traveled. The general framework of
the LNS algorithm was designed by Ropke and Pisinger [20]. The removal and insertion moves are
thoroughly analyzed in Sections 3.3.1 and 3.3.2.

3.3.1. Removal Operators

In this section, five different removal operators are described for selecting the customers which
will be removed from their routes. Most operators are adapted from Ropke and Pisinger [20] and
Demir et al. [29], while a new one (distant and waiting-time removal) is presented. From all removal
operators, we manage to select s customers and remove them from their routes.

Route Removal

The specific operator removes an entire route from the solution. In each iteration, the route is
randomly selected and “destroyed” from the solution. In a later phase, and since all customers must
be served, the customers of the “destroyed” route are reinserted according to the insertion operator.

Random Customers Removal

In this operator, a specific number of customers (s) that will be removed from the existing solution
is initially determined. Consequently, an empty list of size s is created and filled with customers
who are randomly selected. The random nature of this operator increases the diversity, as well as the
searching space. As shown in Figure 2, three customers are randomly selected (s = 3) and removed
from the route that each one belongs.

Algorithms 2020, 13, 243 7 of 17Algorithms 2020, 13, x FOR PEER REVIEW 7 of 17

(a) (b)

Figure 2. Removal operator. . (a) Initial Solution; (b) “Destroyed” Solution.

Distant Customers Removal

In this operator, as with the case of random customers removal, the number of customers (s) that
will be removed from the solution is determined. Consequently, for each customer k, we calculate
the metric ܿ݇ = ݀݅݇ + ݆݀݇, where i is the previous delivered customer and j is the next delivered
customer, according to k, while d indicates the distance between two customers. We then sort all
customers according to the metric ck and select the s “worst” customers (highest ܿ݇).

Waiting-Time Removal

For each customer to be served, the metric ݐݓ calculates the difference between the start of the
time window and the time of arrival. More specifically, the metric ݐݓ for customer i is calculated by ݐݓ = max {0, ݁ − is the time of arrival at customer i. Consequently, customers areݐ }, whereݐ
sorted according to metric ݐݓ and s number of customers that have the highest waiting times (ݐݓ)
are selected.

Distant and Waiting-Time Removal

This operator combines in a single metric both the distant customers removal and the waiting-
time removal operators, by assigning weights to both metrics. Similar to the previous operators, a
specific number of customers (s) with the worst metrics is selected.

Regardless of the removal operator, the initial solution is presented as an I list containing all
customers. The sequence of the elements of I determines the order of customer visitations. When a
constraint is violated (capacity or time window), then a new route begins, as shown in Figure 2a. In
addition, after the removal operator is applied, the customers that no longer belong to the route are
saved in another list L, as shown in Figure 2b.

3.3.2. Insertion Operators

After a removal operator has been applied, an insertion operator must be implemented so that
all customers are reinserted in the solution. In the VRPTW, there is a necessary precondition to serve
all customers’ needs. In the present paper, three insertion operators are applied and analyzed for
improving the initial constructed solution.

Figure 2. Removal operator. (a) Initial Solution; (b) “Destroyed” Solution.

Distant Customers Removal

In this operator, as with the case of random customers removal, the number of customers (s) that
will be removed from the solution is determined. Consequently, for each customer k, we calculate the
metric ck = dik + dkj, where i is the previous delivered customer and j is the next delivered customer,
according to k, while d indicates the distance between two customers. We then sort all customers
according to the metric ck and select the s “worst” customers (highest ck).

Waiting-Time Removal

For each customer to be served, the metric wt calculates the difference between the start of the
time window and the time of arrival. More specifically, the metric wt for customer i is calculated
by wti = max{0, ei − ti}, where ti is the time of arrival at customer i. Consequently, customers are
sorted according to metric wtk and s number of customers that have the highest waiting times (wti)
are selected.

Distant and Waiting-Time Removal

This operator combines in a single metric both the distant customers removal and the waiting-time
removal operators, by assigning weights to both metrics. Similar to the previous operators, a specific
number of customers (s) with the worst metrics is selected.

Regardless of the removal operator, the initial solution is presented as an I list containing all
customers. The sequence of the elements of I determines the order of customer visitations. When a
constraint is violated (capacity or time window), then a new route begins, as shown in Figure 2a. In
addition, after the removal operator is applied, the customers that no longer belong to the route are
saved in another list L, as shown in Figure 2b.

3.3.2. Insertion Operators

After a removal operator has been applied, an insertion operator must be implemented so that
all customers are reinserted in the solution. In the VRPTW, there is a necessary precondition to serve
all customers’ needs. In the present paper, three insertion operators are applied and analyzed for
improving the initial constructed solution.

Algorithms 2020, 13, 243 8 of 17

Closer Customer Insertion

This operator cooperates with all removal operators. The selected customers of list L are reinserted
in the routes and more specifically in the sequence of deliveries where the total distance traveled is
minimized. The specific insertion procedure is separated into two different operators. The first one
searches for the minimum distance while the number of vehicles must remain the same as before the
removal operator was applied. The second operator searches for the minimum distance regardless of
the number of vehicles.

Insertion for Minimizing the Number of Vehicles

The specific insertion operator is combined only with the route removal operator in order to
decrease the number of vehicles. If all customers of the selected route can be inserted in the rest of the
routes, then the number of vehicles is reduced by one, as shown in Figure 3. Simultaneously, we seek
to find the best sequence and schedule of deliveries in order to manage the distance traveled as well.
However, the fact that VRPTW is a multi-objective optimization problem does not guarantee us that
both the number of vehicles and the total distance traveled are simultaneously minimized. Instead,
decreasing the number of vehicles by reinserting “destroyed” customers in the best-fitted sequence
of deliveries may cause increased total distance traveled. Figure 3 describes how the route removal
operator is combined with the specific insertion operator. More specifically, among Routes 1 {0→ i-→
i→ i+ → 0}, 2 {0→ n→ m→ 0} and 3 {0→ j- → j→ j+ → 0}, the second one (Route 2) is randomly
selected and “destroyed”. In the search for inserting customers n and m in the rest of the routes, we
form Routes 1’ {0→ i-→ m→ i→ i+→ 0} and 3’ {0→ j-→ n→ j→ j+→ 0}.

Algorithms 2020, 13, x FOR PEER REVIEW 8 of 17

Closer Customer Insertion

This operator cooperates with all removal operators. The selected customers of list L are
reinserted in the routes and more specifically in the sequence of deliveries where the total distance
traveled is minimized. The specific insertion procedure is separated into two different operators. The
first one searches for the minimum distance while the number of vehicles must remain the same as
before the removal operator was applied. The second operator searches for the minimum distance
regardless of the number of vehicles.

Insertion for Minimizing the Number of Vehicles

The specific insertion operator is combined only with the route removal operator in order to
decrease the number of vehicles. If all customers of the selected route can be inserted in the rest of
the routes, then the number of vehicles is reduced by one, as shown in Figure 3. Simultaneously, we
seek to find the best sequence and schedule of deliveries in order to manage the distance traveled as
well. However, the fact that VRPTW is a multi-objective optimization problem does not guarantee us
that both the number of vehicles and the total distance traveled are simultaneously minimized.
Instead, decreasing the number of vehicles by reinserting “destroyed” customers in the best-fitted
sequence of deliveries may cause increased total distance traveled. Figure 3 describes how the route
removal operator is combined with the specific insertion operator. More specifically, among Routes
1 {0 → i- → i → i+ → 0}, 2 {0 → n → m → 0} and 3 {0 → j- → j → j+ → 0}, the second one (Route 2) is
randomly selected and “destroyed”. In the search for inserting customers n and m in the rest of the
routes, we form Routes 1’ {0 → i- → m → i → i+ → 0} and 3’ {0 → j- → n → j → j+ → 0}.

Figure 3. Route Removal and Reinsertion of Customers.

When implementing the removal and insertion operators, it is essential to ensure the diversity
of searching and the global search capabilities. Therefore, after saving the removed customers in list
L, as described in Section 3.3.1, the sequence of insertion must be considered. Repeating the same
sequence of customers insertion may lead to getting stuck in a local optimum. In the presented
insertion operators, a random order for inserting customers is produced, for increasing the search
space of the algorithm.

3.3.3. General Framework

Initially, the Pareto optimal solutions constructed from the TONN algorithm are utilized as an
input to the MOLNS algorithm, as described in Figure 4. In each iteration that the MOLNS algorithm
is implemented, the “removal” and “insertion” operators are applied in each one of the Pareto
optimal solutions. Consequently, for each solution, a new one (Xnew) is obtained. If Xnew solution
constitutes a Pareto optimal solution, as it belongs to the non-dominated solutions, then the Pareto
optimal front is renewed; otherwise, no changes are made.

i -

i +

i j

j +

j –

nm

i -

i +

i j

j +

j –

nm

i -

i +

i j

j +

j –

nm

0 0 0

Route 1

Route 2

Route 3 Route 1 Route 3 Route 1’ Route 3’

Route

Removal

Route

Insertion

Figure 3. Route Removal and Reinsertion of Customers.

When implementing the removal and insertion operators, it is essential to ensure the diversity
of searching and the global search capabilities. Therefore, after saving the removed customers in
list L, as described in Section 3.3.1, the sequence of insertion must be considered. Repeating the
same sequence of customers insertion may lead to getting stuck in a local optimum. In the presented
insertion operators, a random order for inserting customers is produced, for increasing the search
space of the algorithm.

3.3.3. General Framework

Initially, the Pareto optimal solutions constructed from the TONN algorithm are utilized as an
input to the MOLNS algorithm, as described in Figure 4. In each iteration that the MOLNS algorithm
is implemented, the “removal” and “insertion” operators are applied in each one of the Pareto optimal
solutions. Consequently, for each solution, a new one (Xnew) is obtained. If Xnew solution constitutes a
Pareto optimal solution, as it belongs to the non-dominated solutions, then the Pareto optimal front is
renewed; otherwise, no changes are made.

Algorithms 2020, 13, 243 9 of 17

Algorithms 2020, 13, x FOR PEER REVIEW 9 of 17

Figure 4. The general framework of the MOLNS.

4. Experimental Results and Discussion

4.1. Comparisons with Best Known Results

This section describes computational experiments carried out to evaluate the performance of the
proposed algorithm. The algorithm was coded in Python and ran on a personal computer with the
following specifications: Intel Core i7 (Intel Corporation, California, USA)—8550U 1.8 GHz with 16
GB memory. The proposed algorithm was tested in Solomon’s VRPTW benchmark instances with
100 customers (see [18]), as well as in Gehring and Homberger’s instances with 1000 customers (see
[30]). In the specific datasets, C1 and C2 problems have geographically clustered customers; in R1
and R2, geographical data are randomly generated; and in RC1 and RC2, a mix of random and
clustered structures is included. R1, C1 and RC1 have a short scheduling horizon, narrow time
windows and low vehicle capacities, respectively, while R2, C2 and RC2 have a long scheduling
horizon, wide time windows and high vehicle capacities, defining the number of customers serviced
by the same vehicle.

Tables 1 and 2 present a summary of the results obtained from our proposed MOLNS algorithm
in Solomon’s instances, as well as the best-published solutions in the literature. The column labeled
BP gives the best-published results, while column MOLNS the results of our Large Neighborhood
Search algorithm. Each solution is characterized by the number of vehicles (NV) needed and the total
distance traveled (TD). The published work in which the optimum solution is proposed is presented
in column “Reference”, the computational time needed to obtain each solution is given in column
“Time” in seconds and the percentage deviation in the total distance traveled between the BP and the
LNS is presented in column “Deviation”.

Each instance was run three times, while the computational time limit was set to be 5 min, which
is a reasonable time for a logistics company to obtain the routing of their vehicles and the scheduling
of their deliveries. In most cases, the best-obtained results needed less time than the time limit. Since
we face the multiobjective VRPTW in some instances, more than one solution was obtained. In order
for the BP solution and the solution obtained from the MOLNS to be comparable, the number of
vehicles must be the same. Therefore, the deviation is measured in the total distance traveled between
the BP solution and the solution of the MOLNS. It can be easily observed that instances with
geographically clustered customers (C1 and C2) have more efficient results than problems with
random geographical data, as the mean deviation in that case is 0.30%. In randomly generated
geographical data (R), the mean deviation is higher and reaches 3.37%, while in mixed geographical
customers’ data (RC) it is 3.47%. Finally, the mean deviation for all instances is less than 2.85%, which
can be considered very efficient, since the optimal results have emerged from multiple researchers
over time. In total, 32.47% of the comparable solutions have a deviation of less than 1%, most of them

1. Construct solutions with the Time-oriented Nearest Neighbor heuristic
2. Save Pareto optimal solutions in P
3. While stopping criteria not met do
4. For each Pareto optimal solution – Xp do
5. Apply Removal and Insertion operators in Xp
6. New solution is produced – Xnew
7. If Xnew is a Pareto optimal solution then
8. Add Xnew in Pareto optimal solutions (P)
9. Update the Pareto optimal front
10. Else
11. Pareto optimal solutions (P) do not change
12. End If
13. Next
14. End while

Figure 4. The general framework of the MOLNS.

4. Experimental Results and Discussion

4.1. Comparisons with Best Known Results

This section describes computational experiments carried out to evaluate the performance of the
proposed algorithm. The algorithm was coded in Python and ran on a personal computer with the
following specifications: Intel Core i7 (Intel Corporation, California, USA)—8550U 1.8 GHz with 16 GB
memory. The proposed algorithm was tested in Solomon’s VRPTW benchmark instances with 100
customers (see [18]), as well as in Gehring and Homberger’s instances with 1000 customers (see [30]).
In the specific datasets, C1 and C2 problems have geographically clustered customers; in R1 and R2,
geographical data are randomly generated; and in RC1 and RC2, a mix of random and clustered
structures is included. R1, C1 and RC1 have a short scheduling horizon, narrow time windows and
low vehicle capacities, respectively, while R2, C2 and RC2 have a long scheduling horizon, wide time
windows and high vehicle capacities, defining the number of customers serviced by the same vehicle.

Tables 1 and 2 present a summary of the results obtained from our proposed MOLNS algorithm
in Solomon’s instances, as well as the best-published solutions in the literature. The column labeled
BP gives the best-published results, while column MOLNS the results of our Large Neighborhood
Search algorithm. Each solution is characterized by the number of vehicles (NV) needed and the total
distance traveled (TD). The published work in which the optimum solution is proposed is presented in
column “Reference”, the computational time needed to obtain each solution is given in column “Time”
in seconds and the percentage deviation in the total distance traveled between the BP and the LNS is
presented in column “Deviation”.

Each instance was run three times, while the computational time limit was set to be 5 min, which
is a reasonable time for a logistics company to obtain the routing of their vehicles and the scheduling of
their deliveries. In most cases, the best-obtained results needed less time than the time limit. Since we
face the multiobjective VRPTW in some instances, more than one solution was obtained. In order for
the BP solution and the solution obtained from the MOLNS to be comparable, the number of vehicles
must be the same. Therefore, the deviation is measured in the total distance traveled between the BP
solution and the solution of the MOLNS. It can be easily observed that instances with geographically
clustered customers (C1 and C2) have more efficient results than problems with random geographical
data, as the mean deviation in that case is 0.30%. In randomly generated geographical data (R), the
mean deviation is higher and reaches 3.37%, while in mixed geographical customers’ data (RC) it
is 3.47%. Finally, the mean deviation for all instances is less than 2.85%, which can be considered
very efficient, since the optimal results have emerged from multiple researchers over time. In total,

Algorithms 2020, 13, 243 10 of 17

32.47% of the comparable solutions have a deviation of less than 1%, most of them in C instances.
Simultaneously, 98.70% of the results deviate less than 10% from the optimum. Finally, three new
Pareto-optimal solutions are proposed in Solomon’s benchmark instances, in RC202, RC207 and R201.
In RC202 problem, a decrease in the total distance traveled is accomplished, but at the expense of an
increased number of vehicles. In R201 and RC202 instances, we managed to improve the solutions by
decreasing the total distance traveled, while the number of vehicles remains steady. The exact routes
and the schedule of deliveries in each of the three new optimal solutions that are proposed in the
current research are given in Appendix A.

Additionally, when comparing results obtained from algorithms, it is important to take into
consideration the computational time needed. Chiang and Hsu [24] managed to produce high-quality
solutions within 0.5 min and thoroughly presented data related to the computational time for other
algorithms addressing this problem. Ghoseiri and Ghannadpour [31] and Ombuki et al. [23], who also
considered the VRPTW as multiobjective, did not present the computational time needed, while the
proposed algorithm manages to produce high efficiency results in less than a minute (52 s on average).
Of course, the CPU as well as the programming language are also important factors affecting the
computational time needed.

Table 1. Solomon instances with short scheduling horizon: comparison of our MOLNS with the
best-published results.

Problem
Type MOLNSNV MOLNSTD BPNV BPTD Reference Time (sec) Deviation

(%)

C101 10 828.94 10 827.3 [32] 30.5 0.20
C102 10 828.94 10 827.3 [32] 28.2 0.20
C103 10 828.94 10 826.3 [33] 27.6 0.32
C104 10 828.94 10 822.9 [33] 30.3 0.73
C105 10 828.94 10 827.3 [33] 26.9 0.20
C106 10 828.94 10 827.3 [32] 27.5 0.20
C107 10 828.94 10 827.3 [33] 29.1 0.20
C108 10 828.94 10 827.3 [33] 27.8 0.20
C109 10 828.94 10 827.3 [33] 29.8 0.20
R101 19 1654.93 18 1607.7 [32] 65.5 -
R102 18 1475.33 17 1434 [32] 55.5 -
R103 14 1240.44 13 1175.67 [34] 80.5 -
R104 10 1010.72 10 974.2 [22] 65.2 3.75
R105 15 1389.85 15 1346.12 [35] 78.5 3.25
R106 13 1269.14 13 1234.6 [36] 85.6 2.80
R107 11 1102.72 11 1051.84 [35] 87.8 4.84
R108 10 991.57 10 942.9 [24] 95.2 5.16
R109 12 1177.76 12 1101.99 [37] 99.2 6.88
R110 12 1129.60 12 1068 [36] 85.0 5.77
R111 12 1108.70 12 1048.7 [36] 86.3 5.72
R112 10 964.15 10 953.63 [38] 101.6 1.10

RC101 15 1662.56 15 1619.8 [39] 55.6 2.64
RC102 14 1486.35 14 1461.33 [24] 48.6 1.71
RC103 12 1291.95 12 1196.12 [22] 72.1 8.01
RC104 10 1162.53 10 1135.48 [40] 46.3 2.38

RC105
15 1604.53 15 1519.29 [24] 56.3 5.61
16 1575.31 16 1518.6 [41] 56.3 3.73

RC106 13 1400.09 13 1371.69 [22] 62.4 2.07
RC107 12 1259.55 12 1212.83 [41] 47.9 3.85
RC108 11 1205.13 11 1117.53 [41] 43.6 7.84

Algorithms 2020, 13, 243 11 of 17

Table 2. Solomon instances with long scheduling horizon: comparison of our MOLNS with the
best-published results.

Problem Type MOLNSNV MOLNSTD BPNV BPTD Reference Time (sec) Deviation (%)

C201 3 591.56 3 589.1 [36] 18.5 0.42

C202 3 591.56 3 589.1 [36] 19.3 0.42

C203 3 591.56 3 591.17 [42] 25.6 0.07

C204 3 590.6 3 590.6 [43] 21.6 0.00

C205 3 588.88 3 586.4 [36] 22.5 0.42

C206 3 588.49 3 586 [36] 17.8 0.42

C207 3 588.29 3 585.8 [36] 17.2 0.43

C208 3 588.32 3 585.8 [22] 24.5 0.43

R201

4 1305.25 4 1252.37 [44] 82.3 4.22
5 1208.55 5 1193.29 [24] 82.3 1.28
6 1174.98 6 1171.2 [24] 82.3 0.32
7 1156.73 7 1173.75 [23] 82.3 −1.45

R202
4 1093.67 4 1079.39 [24] 78.2 1.32
5 1065.73 5 1041.1 [24] 78.2 2.37

R203
4 915.43 4 901.2 [24] 65.2 1.58
5 901.72 5 890.50 [23] 65.2 1.26

R204
3 775.99 3 749.42 [24] 72.3 3.55
4 750.32 4 743.23 [24] 72.3 0.95

R205
3 1075.1 3 994.43 [45] 68.9 8.11
4 975.21 4 959.74 [25] 68.9 1.61
5 964.23 5 954.1 [23] 68.9 1.06

R206
3 979.21 3 906.14 [46] 62.3 8.06
4 909.83 4 889.39 [23] 62.3 2.30
5 907.35 5 879.89 [47] 62.3 3.12

R207 3 851.89 3 812.76 [24] 61.9 4.81

R208
2 754.99 2 725.75 [48] 68.5 4.03
3 731.84 3 706.86 [47] 68.5 3.53

R209 4 898.23 4 864.15 [24] 58.6 3.94

R210 4 941.58 4 924.79 [24] 52.9 1.82

R211
3 838.14 3 767.82 [49] 56.5 9.16
4 782.75 4 755.82 [50] 56.5 3.56

RC201

4 1497.89 4 1406.91 [48] 38.9 6.47
5 1329.59 5 1279.65 [37] 38.9 3.90
6 1296.83 - - - 38.9 -
7 1284.48 7 1273.51 [24] 38.9 0.86
8 1281.81 8 1272.28 [24] 38.9 0.75

RC202

4 1199.53 4 1162.54 [23] 36.5 3.18
5 1140.2 5 1118.66 [22] 36.5 1.93
7 1109.21 - - - 36.5 -
8 1104.94 8 1099.54 [47] 36.5 0.49

RC203
4 985.54 4 945.08 [24] 32.1 1.42
5 938.04 5 926.82 [24] 32.1 1.21

RC204 3 805.46 3 798.41 [48] 31.8 0.88

RC205
5 1340.38 5 1236.78 [48] 33.6 8.38
6 1223.50 6 1187.98 [24] 33.6 2.99
7 1162.43 7 1161.81 [41] 33.6 0.05

RC206
3 1316.42 3 1146.32 [44] 34.1 14.84
4 1121.83 4 1081.83 [24] 34.1 3.70
5 1097.07 5 1068.77 [24] 34.1 2.65

RC207
4 1031.62 4 1001.85 [25] 32.5 2.97
5 970.78 5 982.58 [23] 32.5 −1.20

RC208
3 859.13 3 828.14 [14] 31.0 3.74
4 810.99 4 783.035 [24] 31.0 3.57

Algorithms 2020, 13, 243 12 of 17

Finally, in Gehring and Homberger’s benchmark instances, the number of customers vary from
200 to 1000. In the current research, the algorithm was tested in instances with 1000 customers in
order to identify its efficiency in terms of quality of results and computational time, when the number
of customers is extremely high. These instances, as in the case of Solomon’s, are categorized into
six cases: C1, C2, R1, R2, RC1 and RC2. In Table 3, the average number of vehicle as well as the
average traveled distance, of both the best-published (BP) solutions and the solutions produced by
the MOLNS algorithm, are presented for each case. In addition, the percentage deviation between
the solutions was calculated for each objective (deviation in the NV and deviation in the TD). More
specifically, the mean deviation for all cases concerning the number of vehicles is 6.63%, and 10.60%
for the traveled distance. On the contrary, the corresponding percentage in the TD in Solomon’s
instances is 2.85%, indicating that the quality of results is affected to a small extent when the number of
customers increases. However, the mean computational time needed (Time column) for each case to be
solved remains reasonable and low, given the volume of customers.

Table 3. Gehring and Homberger’s instances with 1000 customers: comparison of our MOLNS with
the best-published results.

Problem
Case MOLNSNV MOLNSTD BPNV BPTD Time

(sec)
Deviation in
the NV (%)

Deviation in
the TD (%)

C1 100.2 460,310.32 94.2 416,797.49 624 6.37% 10.44%
C2 31.8 181,653.35 28.9 166,304.04 559 10.03% 9.23%
R1 95.8 525,362.56 91.9 470,041.69 800 4.24% 11.77%
R2 20.2 314,856.25 19 288,457.54 810 6.32% 9.15%

RC1 93.6 486,596.35 90 439,493.53 558 4.00% 10.72%
RC2 19.8 268,569.78 18.2 239,221.86 741 8.79% 12.27%

4.2. Discussion on Real-Life Implementation of the Algorithm

Every algorithm presents specific advantages and disadvantages. However, regardless of the
algorithm, when multiple VRP variants are involved in the optimization process, the computation
time is increased. Heuristic algorithms used to be applied and implemented in routing and scheduling
software, due to their ability to perform in a relatively limited search space and simultaneously
produce efficient solutions in limited computing time [51]. On the other hand, metaheuristic algorithms
operate a wider search space, but this does not necessarily mean that the computational time will
significantly increase. The advances of technology and computer science give researchers the ability to
produce near-optimal solutions, and in most cases better than those produced by heuristics. Therefore,
metaheuristics should be considered for implementation in routing software solutions due to offering
reliable and on-time deliveries to transportation companies.

Gayialis et al. [52], Rincon-Garcia et al. [53] and Veres et al. [54] described the design and
requirements of various routing and scheduling software that need fast and efficient solutions both for
the initial planning and for the rescheduling of deliveries. It is clear that practitioners and companies
are looking for efficient algorithms to integrate into their software solutions for logistics operations.
According to Tables 1–3, the proposed MOLNS algorithm offers near-optimal solutions in a reasonable
time, while also having the ability to solve cases with a higher number of customers and rendering the
algorithm ideal for the routing of vehicles and scheduling of deliveries in real-life cases. Therefore, the
proposed algorithm can be implemented in a software solution, to solve the problem of routing and
scheduling of deliveries effectively. That was the scope of the developed algorithm from the beginning
and the current research proves that it is in line with this scope.

As noted in the Introduction, information available to the planner commonly changes in real-life
cases after the completion of the initial routing and scheduling. Consequently, a rapid rescheduling
procedure that is fed with dynamic data becomes a necessity to create a viable real-life routing and
rescheduling system. This becomes even more clear when considering that, in real-life cases, changes

Algorithms 2020, 13, 243 13 of 17

may even occur while vehicles are on the road to deliver the orders, and, therefore, rapid rescheduling
becomes mandatory. The algorithm presented in this paper can also support the dynamic aspect of
the VRPTW, as the removal and insertion operators of the MOLNS algorithm can handle changes of
the input data, such as travel times between nodes. Hence, the algorithm can be applied for both the
initial plan and the rescheduling procedure by applying some minor modifications.

5. Conclusions and Further Research

The results obtained from the MOLNS algorithm were compared to both the best-published
solutions in Solomon’s dataset, as well as to those of other multiobjective algorithms, providing us
significant insights about this method. Based on the conducted research, as it becomes clear, no
algorithm can obtain all Pareto optimal solutions in each instance in Solomon’s dataset. Instead, the
results have been conjunctly obtained from multiple algorithms since the VRPTW first appeared.
The results of the proposed MOLNS algorithm are near-optimal, with only small deviations from
the optimal, and even include three new non-dominated solutions. The computational experiments
indicate that the results are efficient and are obtained in a very realistic time. As both efficiency and
speed are critical factors when implementing an algorithm in software solutions, the proposed MOLNS
algorithm can be examined for implementation in such software, and this will in fact be the next step
of our research.

In real-life scenarios, performing an initial plan of routes and deliveries does not necessarily fulfill
the purpose of distribution services. Unforeseen events and traffic congestion, in many cases and
especially in the urban environment, cause delays and generate the need for rescheduling, in order
to ensure that all deliveries are executed and served on-time. The presented algorithm can be easily
adapted and applied in dynamic routing cases to calculate new schedules of deliveries efficiently and
quickly. The implementation of the proposed algorithm in a software solution for logistics operations,
therefore, needs to be further researched. Additionally, the potential reinforcement of the algorithm to
solve cases that require the dynamic rescheduling of deliveries should also be studied. Recent advances
in technology, such as traffic management sensors, real-time traffic data and the Internet of things
technology, can provide data to enhance such rescheduling procedures and deal with the dynamic
nature of the real-life problems. In addition, the algorithm could be further enhanced by applying
multicriteria decision making approaches such as the one presented by Kechagias et al. [55] to optimize
its function in accordance with different use-case scenarios. Finally, provided the aforementioned
technologies are successfully combined with the proposed algorithm, in the next step of our research,
an advanced software solution that can support the distribution processes of logistics companies, in the
urban environment, while, at the same time, focusing on the fulfillment of time-window restrictions,
will be created.

Author Contributions: Conceptualization, G.D.K. and S.P.G.; methodology, G.D.K. and E.P.K.; software, G.D.K.
and E.P.K.; validation, G.D.K, S.P.G and E.P.K.; formal analysis, G.D.K.; investigation, G.D.K. and E.P.K.;
resources, S.P.G., G.A.P. and I.P.T.; data curation, G.D.K.; writing—original draft preparation, G.D.K and S.P.G.;
writing—review and editing, G.D.K, S.P.G, E.P.K. and I.P.T.; visualization, G.D.K and G.A.P.; supervision, S.P.G.,
I.P.T. and G.A.P.; project administration, S.P.G. and I.P.T.; and funding acquisition, S.P.G., I.P.T. and G.A.P. All
authors have read and agreed to the published version of the manuscript.

Funding: The present work was co-funded by the European Union and Greek national funds through
the Operational Program “Competitiveness, Entrepreneurship and Innovation” (EPAnEK), under the call
“RESEARCH-CREATEINNOVATE” (Project Code: T1EDK-00527 and Acronym: SMARTRANS).

Acknowledgments: In this section you can acknowledge any support given which is not covered by the author
contribution or funding sections. This may include administrative and technical support, or donations in kind
(e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflict of interest.

Algorithms 2020, 13, 243 14 of 17

Appendix A

Solutions in Solomon’s instances which improve the results and offer new Pareto-optimal solutions
are given below:

Appendix A.1 RC202: Number of Vehicles = 7, Total Distance Traveled = 1117.41

Route 1: 0→ 65 - 83→ 64→ 23→ 21→ 48→ 18→ 19→ 49→ 22→ 20→ 24→ 25→ 77→ 75→
58→ 52→ 82→ 0
Route 2: 0→ 69→ 68→ 88→ 53→ 99→ 57→ 86→ 87→ 9→ 10→ 97→ 59→ 74→ 13→ 17→
60→ 100→ 70→ 0
Route 3: 0→ 14→ 47→ 16→ 15→ 11→ 12→ 78→ 73→ 79→ 7→ 6→ 8→ 46→ 4→ 2→ 55→ 0
Route 4: 0→ 71→ 67→ 62→ 76→ 51→ 84→ 56→ 66→ 0
Route 5: 0→ 92→ 95→ 85→ 63→ 33→ 34→ 31→ 29→ 27→ 26→ 28→ 30→ 32→ 89→ 50→
93→ 96→ 94→ 91→ 80→ 0
Route 6: 0→ 45→ 5→ 3→ 1→ 42→ 39→ 37→ 36→ 44→ 41→ 38→ 40→ 43→ 35→ 72→ 54
→ 68→ 0
Route 7: 0→ 81→ 61→ 90→ 0

Appendix A.2 RC207: Number of Vehicles = 5, Total Distance Traveled = 970.78

Route 1: 0→ 92→ 95→ 67→ 31→ 29→ 28→ 30→ 63→ 85→ 76→ 18→ 21→ 23→ 19→ 49→
22→ 51→ 84→ 62→ 50→ 34→ 27→ 26→ 32→ 33→ 89→ 56→ 91→ 80→ 0
Route 2: 0→ 69→ 98→ 88→ 78→ 73→ 79→ 7→ 6→ 2→ 8→ 5→ 3→ 1→ 45→ 4→ 46→ 60
→ 55→ 100→ 70→ 68→ 0
Route 3: 0→ 61→ 72→ 71→ 93→ 94→ 81→ 42→ 44→ 40→ 36→ 35→ 37→ 38→ 39→ 43→
41→ 54→ 96→ 0
Route 4: 0→ 64→ 83→ 99→ 52→ 86→ 75→ 59→ 87→ 74→ 57→ 65→ 90→ 0
Route 5: 0→ 82→ 53→ 12→ 14→ 47→ 17→ 16→ 15→ 11→ 10→ 9→ 13→ 97→ 58→ 77→
25→ 48→ 20→ 24→ 66→ 0

Appendix A.3 R201: Number of Vehicles = 7, Total Distance Traveled = 1156.73

Route 1: 0→ 5→ 83→ 45→ 82→ 47→ 36→ 19→ 11→ 64→ 49→ 46→ 48→ 0
Route 2: 0→ 95→ 59→ 92→ 42→ 15→ 14→ 98→ 61→ 16→ 44→ 38→ 86→ 85→ 99→ 6→
94→ 53→ 26→ 0
Route 3: 0→ 28→ 12→ 29→ 76→ 21→ 73→ 40→ 87→ 57→ 43→ 37→ 97→ 96→ 13→ 58→ 0
Route 4: 0→ 33→ 65→ 71→ 30→ 51→ 9→ 81→ 79→ 78→ 34→ 50→ 3→ 68→ 54→ 0
Route 5: 0→ 2→ 72→ 39→ 67→ 23→ 75→ 22→ 41→ 56→ 74→ 4→ 55→ 25→ 24→ 80→
77→ 0
Route 6: 0→ 52→ 69→ 31→ 88→ 7→ 18→ 8→ 84→ 17→ 91→ 100→ 93→ 60→ 89→ 0
Route 7: 0→ 27→ 62→ 63→ 90→ 10→ 20→ 66→ 35→ 32→ 70→ 1→ 0

References

1. Dantzig, G.B.; Ramser, J.H. The truck dispatching problem. Manag. Sci. 1959, 6. [CrossRef]
2. Lin, C.; Choy, K.L.; Ho, G.T.S.; Chung, S.H.; Lam, H.Y. Survey of Green Vehicle Routing Problem: Past and

future trends. Expert Syst. Appl. 2014, 41, 1118–1138. [CrossRef]
3. Konstantakopoulos, G.D.; Gayialis, S.P.; Kechagias, E.P. Vehicle routing problem and related algorithms for

logistics distribution: A literature review and classification. Oper. Res. Int. J. 2020. [CrossRef]
4. Juárez Pérez, M.; Pérez Loaiza, R.E.; Quintero Flores, P.M.; Atriano Ponce, O.; Flores Peralta, C. A Heuristic

Algorithm for the Routing and Scheduling Problem with Time Windows: A Case Study of the Automotive
Industry in Mexico. Algorithms 2019, 12, 111. [CrossRef]

http://dx.doi.org/10.1287/mnsc.6.1.80
http://dx.doi.org/10.1016/j.eswa.2013.07.107
http://dx.doi.org/10.1007/s12351-020-00600-7
http://dx.doi.org/10.3390/a12050111

Algorithms 2020, 13, 243 15 of 17

5. Nagata, Y.; Bräysy, O.; Dullaert, W. A penalty-based edge assembly memetic algorithm for the vehicle routing
problem with time windows. Comput. Oper. Res. 2010, 37, 724–737. [CrossRef]

6. Ait Haddadene, S.; Labadie, N.; Prodhon, C. Bicriteria Vehicle Routing Problem with Preferences and Timing
Constraints in Home Health Care Services. Algorithms 2019, 12, 152. [CrossRef]

7. Taş, D.; Jabali, O.; Van Woensel, T. A vehicle routing problem with flexible time windows. Comput. Oper. Res.
2014, 52, 39–54. [CrossRef]

8. Taillard, E.; Badeau, P.; Gendreau, M.; Guertin, F.; Potvin, J.-Y. A Tabu Search Heuristic for the Vehicle
Routing Problem with Soft Time Windows. Transp. Sci. 1997, 31, 170–186. [CrossRef]

9. Iqbal, S.; Rahman, M.S. Vehicle routing problems with soft time windows. In Proceedings of the 2012 7th
International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 20–22 December
2012; pp. 634–638.

10. Wu, L.; He, Z.; Chen, Y.; Wu, D.; Cui, J. Brainstorming-Based Ant Colony Optimization for Vehicle Routing
with Soft Time Windows. IEEE Access 2019, 7, 19643–19652. [CrossRef]

11. Hashimoto, H.; Ibaraki, T.; Imahori, S.; Yagiura, M. The vehicle routing problem with flexible time windows
and traveling times. Discret. Appl. Math. 2006, 154, 2271–2290. [CrossRef]

12. Koskosidis, Y.A.; Powell, W.B.; Solomon, M.M. An optimization-based heuristic for vehicle routing and
scheduling with soft time window constraints. Transp. Sci. 1992, 26, 69–85. [CrossRef]

13. Arnold, F.; Sörensen, K. What makes a VRP solution good? The generation of problem-specific knowledge
for heuristics. Comput. Oper. Res. 2019, 106, 280–288. [CrossRef]

14. Ibaraki, T.; Kubo, M.; Masuda, T.; Uno, T.; Yagiura, M. Effective local search algorithms for the vehicle routing
problem with general time window constraints. In Proceedings of the MIC, Porto, Portugal, 16–20 July 2001.

15. Kalayci, C.B.; Kaya, C. An ant colony system empowered variable neighborhood search algorithm for the
vehicle routing problem with simultaneous pickup and delivery. Expert Syst. Appl. 2016, 66, 163–175.
[CrossRef]

16. El-Sherbeny, N.A. Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic
methods. J. King Saud Univ. Sci. 2010, 22, 123–131. [CrossRef]

17. Bräysy, O.; Gendreau, M. Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local
Search Algorithms. Transp. Sci. 2005, 39, 104–118. [CrossRef]

18. Solomon, M.M. Algorithms for the vehicle routing and scheduling problems with time window constraints.
Oper. Res. 1987, 35, 254–265. [CrossRef]

19. Shaw, P. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems.
In Principles and Practice of Constraint Programming—CP98, Proceedings of the International Conference on
Principles and Practice of Constraint Programming, Pisa, Italy, 26–30 October 1998; Maher, M., Puget, J.-F., Eds.;
Springer: Berlin/Heidelberg, Germany, 1998; pp. 417–431.

20. Ropke, S.; Pisinger, D. An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery
Problem with Time Windows. Transp. Sci. 2006, 40, 455–472. [CrossRef]

21. Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab.
Eng. Syst. Saf. 2006, 91, 992–1007. [CrossRef]

22. Tan, K.C.; Chew, Y.H.; Lee, L.H. A Hybrid Multiobjective Evolutionary Algorithm for Solving Vehicle Routing
Problem. Comput. Optim. Appl. 2006, 34, 115–151. [CrossRef]

23. Ombuki, B.; Ross, B.J.; Hanshar, F. Multi-objective genetic algorithms for vehicle routing problem with time
windows. Appl. Intell. 2006, 24, 17–30. [CrossRef]

24. Chiang, T.C.; Hsu, W.H. A knowledge-based evolutionary algorithm for the multiobjective vehicle routing
problem with time windows. Comput. Oper. Res. 2014, 45, 25–37. [CrossRef]

25. Garcia-Najera, A.; Bullinaria, J.A. An improved multi-objective evolutionary algorithm for the vehicle routing
problem with time windows. Comput. Oper. Res. 2011, 38, 287–300. [CrossRef]

26. Baños, R.; Ortega, J.; Gil, C.; Márquez, A.L.; De Toro, F. A hybrid meta-heuristic for multi-objective Vehicle
Routing Problems with Time Windows. Comput. Ind. Eng. 2013, 65, 286–296. [CrossRef]

27. Yun, Y.; Nakayama, H.; Yoon, M. Generation of Pareto optimal solutions using generalized DEA and PSO. J.
Glob. Optim. 2016, 64, 49–61. [CrossRef]

28. Ehrgott, M. Multicriteria Optimization, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2005.

http://dx.doi.org/10.1016/j.cor.2009.06.022
http://dx.doi.org/10.3390/a12080152
http://dx.doi.org/10.1016/j.cor.2014.07.005
http://dx.doi.org/10.1287/trsc.31.2.170
http://dx.doi.org/10.1109/ACCESS.2019.2894681
http://dx.doi.org/10.1016/j.dam.2006.04.009
http://dx.doi.org/10.1287/trsc.26.2.69
http://dx.doi.org/10.1016/j.cor.2018.02.007
http://dx.doi.org/10.1016/j.eswa.2016.09.017
http://dx.doi.org/10.1016/j.jksus.2010.03.002
http://dx.doi.org/10.1287/trsc.1030.0056
http://dx.doi.org/10.1287/opre.35.2.254
http://dx.doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/10.1016/j.ress.2005.11.018
http://dx.doi.org/10.1007/s10589-005-3070-3
http://dx.doi.org/10.1007/s10489-006-6926-z
http://dx.doi.org/10.1016/j.cor.2013.11.014
http://dx.doi.org/10.1016/j.cor.2010.05.004
http://dx.doi.org/10.1016/j.cie.2013.01.007
http://dx.doi.org/10.1007/s10898-015-0314-3

Algorithms 2020, 13, 243 16 of 17

29. Demir, E.; Bektaş, T.; Laporte, G. An adaptive large neighborhood search heuristic for the Pollution-Routing
Problem. Eur. J. Oper. Res. 2012, 223, 346–359. [CrossRef]

30. Transportation Optimization Portal/VRPTW. Available online: https://www.sintef.no/projectweb/top/vrptw/

homberger-benchmark/ (accessed on 18 September 2020).
31. Ghoseiri, K.; Ghannadpour, S.F. Multi-objective vehicle routing problem with time windows using goal

programming and genetic algorithm. Appl. Soft Comput. 2010, 10, 1096–1107. [CrossRef]
32. Desrochers, M.; Desrosiers, J.; Solomon, M. A new optimization algorithm for the vehicle routing problem

with time windows. Oper. Res. 1992, 40, 342–354. [CrossRef]
33. Tavares, J.; Pereira, F.B.; Machado, P.; Costa, E. On the influence of GVR in vehicle routing. In Proceedings of

the SAC, Melbourne, FL, USA, 9–12 March 2003; Volume 3, pp. 753–758.
34. Lau, H.C.; Lim, Y.F.; Liu, Q.Z. Diversification of search neighborhood via constraint-based local search and

its applications to VRPTW. In Proceedings of the 3rd International Workshop on Integration of AI and OR
Techniques (CP-AI-OR), Kent, UK, 8–10 April 2001; pp. 1–15.

35. Kallehauge, B.; Larsen, J.; Madsen, O.B.G. Lagrangean duality applied on vehicle routing with time windows.
Comput. Oper. Res. 2006, 33, 1464–1487. [CrossRef]

36. Cook, W.; Rich, J.L. A Parallel Cutting-Plane Algorithm for the Vehicle Routing Problem with Time Windows; Rice
University: Houston, TX, USA, 1999.

37. Yu, B.; Yang, Z.Z.; Yao, B.Z. A hybrid algorithm for vehicle routing problem with time windows. Expert Syst.
Appl. 2011, 38, 435–441. [CrossRef]

38. Rochat, Y.; Taillard, É.D. Probabilistic diversification and intensification in local search for vehicle routing. J.
Heuristics 1995, 1, 147–167. [CrossRef]

39. Kohl, N.; Desrosiers, J.; Madsen, O.B.G.; Solomon, M.M.; Soumis, F. 2-Path Cuts for the Vehicle Routing
Problem with Time Windows. Transp. Sci. 1999, 33. [CrossRef]

40. Shaw, P. A New Local Search Algorithm Providing High Quality Solutions to Vehicle Routing Problems.
Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.1273&rep=rep1&type=pdf
(accessed on 25 September 2020).

41. Alvarenga, G.B.; Mateus, G.R.; de Tomi, G. A genetic and set partitioning two-phase approach for the vehicle
routing problem with time windows. Comput. Oper. Res. 2007, 34, 1561–1584. [CrossRef]

42. Li, H.; Lim, A. Local search with annealing-like restarts to solve the VRPTW. Eur. J. Oper. Res. 2003, 150,
115–127. [CrossRef]

43. Potvin, J.Y.; Bengio, S. The Vehicle Routing Problem with Time Windows Part II: Genetic Search. INFORMS J.
Comput. 1996, 8, 165–172. [CrossRef]

44. Homberger, J.; Gehring, H. Two evolutionary metaheuristics for the vehicle routing problem with time
windows. INFOR Inf. Syst. Oper. Res. 1999, 37, 297–318. [CrossRef]

45. Rousseau, L.-M.; Gendreau, M.; Pesant, G. Using constraint-based operators to solve the vehicle routing
problem with time windows. J. Heuristics 2002, 8, 43–58. [CrossRef]

46. Thangiah, S.R.; Osman, I.H.; Sun, T. Hybrid Genetic Algorithm, Simulated Annealing and Tabu Search Methods for
Vehicle Routing Problems with Time Windows; Technical Report No. SRU CpSc-TR-94-27; Computer Science
Department, Slippery Rock University: Slippery Rock, PA, USA, 1994; Volume 69.

47. Labadi, N.; Prins, C.; Reghioui, M. A memetic algorithm for the vehicle routing problem with time windows.
RAIRO-Operations Res. 2008, 42, 415–431. [CrossRef]

48. Mester, D.; Bräysy, O.; Dullaert, W. A multi-parametric evolution strategies algorithm for vehicle routing
problems. Expert Syst. Appl. 2007, 32, 508–517. [CrossRef]

49. Barbucha, D. A cooperative population learning algorithm for vehicle routing problem with time windows.
Neurocomputing 2014, 146, 210–229. [CrossRef]

50. de Oliveira, H.C.; Vasconcelos, G.C. A hybrid search method for the vehicle routing problem with time
windows. Ann. Oper. Res. 2010, 180, 125–144.

51. Gayialis, S.P.; Tatsiopoulos, I.P. Design of an IT-driven decision support system for vehicle routing and
scheduling. Eur. J. Oper. Res. 2004, 152, 382–398. [CrossRef]

52. Gayialis, S.P.; Konstantakopoulos, G.D.; Papadopoulos, G.A.; Kechagias, E.; Ponis, S.T. Developing an
Advanced Cloud-Based Vehicle Routing and Scheduling System for Urban Freight Transportation. In
Proceedings of the IFIP International Conference on Advances in Production Management Systems, Seoul,
Korea, 26–30 August 2018; pp. 190–197.

http://dx.doi.org/10.1016/j.ejor.2012.06.044
https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/
https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/
http://dx.doi.org/10.1016/j.asoc.2010.04.001
http://dx.doi.org/10.1287/opre.40.2.342
http://dx.doi.org/10.1016/j.cor.2004.11.002
http://dx.doi.org/10.1016/j.eswa.2010.06.082
http://dx.doi.org/10.1007/BF02430370
http://dx.doi.org/10.1287/trsc.33.1.101
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.1273&rep=rep1&type=pdf
http://dx.doi.org/10.1016/j.cor.2005.07.025
http://dx.doi.org/10.1016/S0377-2217(02)00486-1
http://dx.doi.org/10.1287/ijoc.8.2.165
http://dx.doi.org/10.1080/03155986.1999.11732386
http://dx.doi.org/10.1023/A:1013661617536
http://dx.doi.org/10.1051/ro:2008021
http://dx.doi.org/10.1016/j.eswa.2005.12.014
http://dx.doi.org/10.1016/j.neucom.2014.06.033
http://dx.doi.org/10.1016/S0377-2217(03)00031-6

Algorithms 2020, 13, 243 17 of 17

53. Rincon-Garcia, N.; Waterson, B.J.; Cherrett, T.J. Requirements from vehicle routing software: Perspectives
from literature, developers and the freight industry. Transp. Rev. 2018, 38, 117–138. [CrossRef]

54. Veres, P.; Bányai, T.; Illés, B. Intelligent Transportation Systems to Support Production Logistics. In Proceedings
of the Vehicle and Automotive Engineering; Jármai, K., Bolló, B., Eds.; Springer International Publishing: Cham,
Switzerland, 2017; pp. 245–256.

55. Kechagias, E.P.; Gayialis, S.P.; Konstantakopoulos, G.D.; Papadopoulos, G.A. An Application of a
Multi-Criteria Approach for the Development of a Process Reference Model for Supply Chain Operations.
Sustainability 2020, 12, 5791. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01441647.2017.1297869
http://dx.doi.org/10.3390/su12145791
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Definition and Formulation
	Problem Solution
	Pareto Optimal
	Time-Oriented Nearest Neighbor Algorithm
	Multiobjective Large Neighborhood Search
	Removal Operators
	Insertion Operators
	General Framework

	Experimental Results and Discussion
	Comparisons with Best Known Results
	Discussion on Real-Life Implementation of the Algorithm

	Conclusions and Further Research
	
	RC202: Number of Vehicles = 7, Total Distance Traveled = 1117.41
	RC207: Number of Vehicles = 5, Total Distance Traveled = 970.78
	R201: Number of Vehicles = 7, Total Distance Traveled = 1156.73

	References

