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Abstract: In anatomy, the lung can be divided by lung fissures into several pulmonary lobe units with
specific functions. Identifying the lung lobes and the distribution of various diseases among different
lung lobes from CT images is important for disease diagnosis and tracking after recovery. In order
to solve the problems of low tubular structure segmentation accuracy and long algorithm time in
segmenting lung lobes based on lung anatomical structure information, we propose a segmentation
algorithm based on lung fissure surface classification using a point cloud region growing approach.
We cluster the pulmonary fissures, transformed into point cloud data, according to the differences in
the pulmonary fissure surface normal vector and curvature estimated by principal component analysis.
Then, a multistage spline surface fitting method is used to fill and expand the lung fissure surface
to realize the lung lobe segmentation. The proposed approach was qualitatively and quantitatively
evaluated on a public dataset from Lobe and Lung Analysis 2011 (LOLA11), and obtained an overall
score of 0.84. Although our approach achieved a slightly lower overall score compared to the deep
learning based methods (LobeNet_V2 and V-net), the inter-lobe boundaries from our approach were
more accurate for the CT images with visible lung fissures.

Keywords: lung lobe segmentation; lung fissure classification; point cloud; region growing;
normal vector and curvature; principal component analysis; multistage spline fitting

1. Introduction

The human lung is divided into five lobes by the lung fissures and lung boundaries. The lung lobe
is a relatively independent unit with regards to anatomical structure and function. Knowledge of the
distribution of lung diseases among the lung lobes is important for treatment planning [1]. Moreover,
lung lobe segmentation is indispensable for quantitative evaluation of lung diseases. Manual lung
lobe segmentation suffers from subjective bias and variance. Therefore, there is a need to develop
an automatic lung lobe segmentation method with high robustness and accuracy for clinical image
data analysis.

Presently, a number of works have been devoted to lung lobe segmentation, which can be divided
into two categories: the supervised machine learning method and the unsupervised traditional medical
image processing method according to [2]. The traditional segmentation methods can be further
classified into two categories: the algorithm based on the fusion of anatomical structure information
and the method without the aid of anatomical structure.
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Some machine learning methods have been used to segment lung lobes in recent years. George et al.
used progressive holistically nested neural networks to predict lung lobe boundaries in 2D slices,
and then combined them with the 3D random walker to achieve lung lobe segmentation [3]. Imran et al.
proposed a fast and reliable progressive dense V-network [4]. In order to prevent over fitting,
Ferreira et al. integrated several regularization methods on the basis of a residual network [5].
These methods based on deep learning can improve the efficiency of lung lobe segmentation to a
certain extent, but they need a large amount of training data to be manually labeled by experts and
high-end Graphics Processing Unit (GPU) equipment for training.

In the unsupervised traditional lung lobe segmentation algorithms, there are two main steps
including lung segmentation and lung fissure detection. The former has been fully studied and is a
stable and reliable algorithm [6–8]. On the other hand, automatic detection of pulmonary fissures is
still challenging. There are some methods that use the local and global knowledge of lung anatomical
structures to locate the lung fissure area, such as using airway and vessel information [9–12], which is
based on the assumption that there are no blood vessels penetrating the pulmonary fissure and the
airway tree can be divided into branch trees belonging to five lung lobes. These methods require
segmentation of the airway and vessel tree, so the algorithm is time-consuming, and its performance
depends on segmentation accuracy. For pathological data, once a segmentation error occurs, detection of
the pulmonary fissure cannot be carried out successfully.

Because the right lung has two types of fissures, the horizontal fissure and the oblique fissure, it is
necessary to classify them before segmenting the lobes correctly. In this paper, a lung lobe segmentation
method based on lung fissure classification is proposed. In order to optimize the calculation and save
space, we represent the pulmonary fissure surface extracted by a directional derivative of plate (DDoP)
filter [13] as the point cloud data structure. Based on this, we can calculate the normal and curvature
differences of the pulmonary fissure surface with high accuracy, and then realize the pulmonary fissure
classification using a region growing approach. For missing pulmonary fissures after classification,
they are interpolated and expanded by the multistage spline surface fitting method, and then combined
fitted fissures with a lung mask to realize lung lobe segmentation. This method does not rely on
anatomical structure information such as airways or vessels, and experiments show that it has higher
reliability for detecting mild or moderate lesions on lung CT images.

2. Lung Lobe Segmentation Algorithm

Figure 1 shows the basic anatomical structures of the human lung. Based on this anatomical
information, we propose a three—step lung lobe segmentation framework, which includes (1)
lung segmentation, (2) lung fissure classification, and (3) lung fissure surface fitting and lung lobe
segmentation. Among them, we adopt a relatively mature method for lung segmentation, which is
briefly summarized. The other steps are more thoroughly described in this section.
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2.1. Lung Segmentation

In order to segment lung lobes, it is necessary to correctly segment and identify the lungs including
the left lung and right lung. We adopted the method proposed in [14], which mainly included coarse
airway segmentation, lung segmentation, separation of left and right lung and pulmonary holes filling
four steps. Firstly, the airway was located automatically by the morphological method after threshold
processing in several cross-sectional slices at the top of the CT image and segmented by using the region
growing method with leakage control, where voxels at the airway were taken as seed points. Secondly,
the region growing method was further used to segment the lung. Then, after the removal of the
airway, the separation of the left and right lung was judged by connectivity analysis. If not successful,
the corrosion operator was run iteratively until the two were separated. Finally, by morphological
closing operation, we filled the vessel holes to obtain the left and right lung masks.

2.2. Pulmonary Fissure Classification

The fissure formed by the bilayer visceral membrane in the lung is called the pulmonary fissure,
which divides the lung into several lobes, as shown in Figure 1. After obtaining the left and right lungs,
further pulmonary fissure extraction and classification are needed. Firstly, we used the DDoP filter and
directional partition denoising and fusion algorithm to enhance and segment the lung fissure region in
the CT image. Then, we used the point cloud to represent the sparse lung fissure surface, and finally
we clustered the lung fissure according to the differences in the normal vector and curvature on the
lung fissure surface.

2.2.1. Pulmonary Fissure Segmentation

We used the method based on DDoP filter in [13] to segment the pulmonary fissure. The basic idea
is to match the local CT image using a series of plate templates with different orientations. When the
lung fissure surface is detected, the matching function obtains a high response and the corresponding
template direction is the surface normal direction. Then, in postprocessing, directional partition
denoising and the fusion algorithm based on the lung fissure’s features, including consistency of the
normal vector and the largest connected area, are used to remove the nonpulmonary fissure surface
structures and extract the lung fissure in 3D space. The segmentation result is shown in Figure 2.
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2.2.2. Lung Fissure Surface Classification Using a Point Cloud Region Growing Approach

The overall process of classifying the lung fissures into the oblique fissure and horizontal fissure
mainly includes two steps: (1) estimating the lung fissure surface’s normal vector and curvature
based on point cloud data; (2) using the point cloud region growing approach to classify the lung
fissure. The basic idea is to fuse the point cloud with similar properties (normal and curvature) in the
neighborhood by the region growth algorithm, and then classify the pulmonary fissure according to
the assumption that the oblique fissure area is greater than the horizontal fissure area.

There are several advantages to representing the lung fissure as a point cloud, including (1)
the point cloud data can better represent the geometry shape, and it is convenient to calculate the
normal vector and curvature more accurately, (2) unordered point cloud data saves memory space
and has high computing efficiency, and (3) mature point cloud processing tools and algorithms can be
used to complete specific pulmonary fissure analysis tasks, such as pulmonary fissure classification.
The specific classification process is as follows.

Because the surface’s local area can be approximated as a plane, the problem of estimating the
normal vector of a point on the surface can be solved by calculating the approximate plane’s normal
vector. Estimating a plane by the least square method can be further simplified to analyze a covariance
matrix formed for each neighborhood using principal component analysis [15]. The relationship
between a covariance matrix and its eigenvalues and eigenvectors is formulated as Equation (1).

C · vi = λi · vi, i ∈ {0, 1, 2}, λ0 ≤ λ1 ≤ λ2. (1)

Each eigenvector of the covariance matrix shows a direction of a principal variation and the one
associated with the smallest eigenvalue corresponds to the direction of the least variation, which is
geometrically perpendicular to the direction of the most variation. This is the normal vector of the
plane we simply estimate.

In order to further estimate the surface curvature, the dispersion of the point cloud along the
normal direction is selected as the measurement criterion. The total dispersion of the neighborhood
point cloud, i.e., the sum of distances from all neighborhood points to their center, can be obtained by

k∑
i=1

‖xi − c‖2 = λ0 + λ1 + λ2, (2)

where c denotes the center of gravity. Therefore, the proportion of the point cloud dispersion along the
normal direction in total dispersion can be used to estimate surface curvature or variance as

c =
λ0

λ0 + λ1 + λ2
. (3)

After obtaining the normal vector and curvature of the lung fissure surface, we could use them
as a smooth constraint to realize the lung fissure clustering by the region growing method [16].
The algorithm is shown in Algorithm 1. The minimal curvature point is selected as the increasing seed
point. If the normal vector intersection angle between the neighborhood point and the seed point is
less than the set threshold, the neighborhood point is fused into the same category as the seed point
and removed from the original point cloud set. If the curvature difference between the neighborhood
point and the seed point is less than the set threshold, the neighborhood point is added to the seed
point set for subsequent growth and the current seed point is removed from the seed point set. When
the seed point set is empty, it indicates that this regional growing has been completed, and enters into
the next region growing. This is repeated until all point clouds are marked. The angle threshold is
set to 3◦ and the curvature threshold is set to 0.1. Figure 3 shows an example result of point cloud
clustering, where the larger area is the oblique fissure and the smaller is the horizontal fissure.
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Algorithm 1 Regional growth clustering

Input:
lung fissure point cloud X, surface normal vector N, surface curvature c,
neighborhood search function Ω, curvature threshold cth, angle threshold θth

Output: regional clustering set R
1: initialization: R← ∅, available point cloud set: {A} ← X ;
2: while A , NULL do
3: current growth region {Rc} ← ∅ ;
4: current seed point set {Sc} ← ∅ ;
5: Pmin = minimum curvature point in A;
6: {Sc} ← {Sc} ∪ Pmin, {Rc} ← {Rc} ∪ Pmin, {A} ← {A}\Pmin ;
7: for i = 1 to size({Sc}) do
8: neighborhood point cloud of current seed {Bc} ← Ω(Sc{i}) ;
9: for j = 0 to size({Bc}) do

10: current neighborhood point P j ← Bc
{
j
}
;

11: if {A} contain P j and cos−1
(∣∣∣∣(N{Sc{i}}, N

{
P j

})∣∣∣∣) < θth then

12: {Rc} ← {Rc} ∪ P j ;
13: {A} ← {A}\P j ;
14: if c

{
P j

}
< cth then

15: {Sc} ← {Sc} ∪ P j ;
16: end if
17: end if
18: end for
19: end for
20: add the current growth region to the cluster set {R} ← {R} ∪ {Rc} ;
21: end while
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2.3. Lung Fissure Surface Fitting and Lung Lobe Segmentation

As shown in Figure 3, there may be an incomplete lung fissure after classification, which results in
the failure to segment adjacent lobes directly. To overcome it, we used the method named multistage
B-spline fitting [17]. On the basis of the existing lung fissure information, we made up the missing lung
fissure and extended it to the lung boundary to form a complete surface that could segment adjacent
lung lobes. This method can take into account both the calculation efficiency and the fitting accuracy.
The specific mathematical principle is as follows.

The fitting function f can be constructed by using the known lung fissure coordinate (x, y, z).
The component (x, y) is defined as the independent variable, while the component z is the function
value, then the missing points’ coordinates can be obtained by the fitting function f (x, y).

However, it is difficult to find a balance point between the shape smoothing and fitting accuracy
in the B-spline fitting algorithm. The multistage B-spline fitting algorithm [17] can effectively overcome
this problem by using top-down hierarchical control grid functions. Firstly, the coarse grid control
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function was used to get a rough estimate, and then the finer control grid function was iteratively used
to fit the previous estimation error, finally giving a more accurate and smooth fitting function.

To verify the surface fitting effect, the incomplete right lung oblique fissure and horizontal fissure
were taken as the fitting objects, their fitting results are shown in Figure 4. It can be seen that the fitting
surface was smooth without deviation, could effectively fill the missing pulmonary fissure and ensure
that it was consistent with the existing pulmonary fissure.
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Through the above steps, the complete oblique fissure and horizontal fissure were fitted, and the
lung could be easily separated into independent lung lobe units by using these surfaces. Since the
right lung contains three lobes, we divided it in two steps. Firstly, the oblique fissure surface was
used to segment the right lung into upper and lower parts, where the lower half was the lower lobe.
Then we used the horizontal fissure surface to segment the upper half into upper lobe and middle lobe.
The segmentation results are shown in Figure 5.
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3. Experimental Results

We used data from 55 CT scans to verify the segmentation performance of the proposed method.
This dataset was provided by the organizers of LOLA11 (Lobe and Lung Analysis 2011 Competition).
It was obtained from a number of clinical institutions using different CT scanning equipment and
covered different degrees of pathological data. At the same time, the competition organizers also
provided the manual segmentation results for the performance evaluation of the segmentation methods.
However, the gold standard data will not be released to the public and the segmentation results can
only be uploaded to the competition website [18] for online evaluation.

In this section, the proposed method’s performance was verified from two aspects, including
visual and quantitative evaluation. Mevislab [19] was used for 3D visualization. The evaluation score
was obtained by observing and quantifying the size of the coincidence area between the segmentation
results and the real lung lobes. The method for evaluating the size is

OV =
Lseg ∩ Lgt

Lseg ∪ Lgt
(4)
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where Lseg is the lung segmentation result and Lgt is the lung lobe gold standard.

3.1. Visual Evaluation

This section shows the representative lung lobe segmentation results, and compares our method
with the segmentation method based on airway or vessel anatomical information.

As shown in Figure 6, five representative lung lobe segmentation examples were selected here.
Rows 1 to 5 are case 05, case 07, case 11, case 13 and case 42 in LOLA11, respectively. Columns 1 to 4
show the pulmonary lobe segmentation 3D results and the effects of superimposing the original data on
the segmentation results’ transverse, coronal and sagittal planes, respectively. It can be seen from the
L05 that although case 05 showed severe deformation due to scoliosis, the segmentation results using
the proposed method were not affected and the boundaries of the lung lobe segmentation results were
close to the real boundaries. Although case 07 was a low-dose CT image and the noise interference was
serious, the segmentation results for L07 show that this method can still obtain a better segmentation
effect. Pulmonary fibrosis was serious in case 11, but because of the strong noise suppression ability of
the detection method, the lung lobe boundaries in L11 were close to the real pulmonary fissure and
were not affected by noise. Case 42, from an emphysema patient, also achieved better segmentation
results, as shown in L42. Experimental results showed that the proposed segmentation method not
only achieved good segmentation performance on high-quality CT data, but also could segment the
lung lobe correctly in pathological cases.
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Compared with the lung lobe segmentation algorithm proposed by Doel et al. in [12], our algorithm
has better performance in detecting visible pulmonary fissures because it is not affected by the
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segmentation accuracy of airways and vessels. The first and second lines in Figure 7 show the
representative effects of superimposing the original data on the segmentation results’ coronal planes
using Doel’s method and ours, respectively. From left to right are the results of case 19, case 26,
case 36, and case 53. For Doel’s method, the areas marked with a red ellipse were the location of error
segmentation. The possible reasons for these errors included two aspects: (1) the pulmonary fissure
candidate areas located by the airway and vessel information were not accurate, and (2) the weak
pulmonary fissures with uneven gray scale were missed.
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Besides, segmentation results for cases with moderate and low scores are shown in Figure 8.
For case 27, the right middle lobe from our method and Doel’s method was inaccurate due to the
incomplete horizontal fissure. For case 31, case 44 and case 45, the lung segmentation results were
poor because of the invisible lung boundaries caused by lung disease, which directly affected the
performance of the lobe segmentation. Furthermore, as demonstrated in L45, Doel’s method had
the ability to construct the right middle lobe for the CT image with invisible lung fissures, while the
proposed method could not deal with this situation.
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3.2. Quantitative Evaluation

The quantitative evaluation results came from the online evaluation system of the competition
website. The 55 LOLA11 cases’ segmentation results were uploaded to the competition website, and the
background evaluation system executed the evaluation procedure and fed back the evaluation results.
Specifically, according to Formula (4), each lung lobe’s coincidence degree in each data object was
calculated, and then the coincidence degree mean value from each type of lung lobe was calculated.
The overall score was the average value of the five lung lobes’ mean coincidence degrees. Furthermore,
we used six other quantitative evaluation indicators based on the mean statistics including variance
(SD), minimum (Min), quarter (Q1), median (Median), three-quarter (Q3) and maximum (Max).

Table 1 presents the total quantitative evaluation results. The proposed method’s overall score was
0.84. The highest and lowest scores of single class assessment were from the left upper lobe (0.93) and
right middle lobe (0.65), respectively. The variance of the right middle lobe was 0.4, which indicated
that the data difference had a great influence on the segmentation performance and the reason was that
there were many incomplete right lung horizontal fissures. For a more comprehensive understanding,
including the effect of each case’s segmentation in the LOLA11 dataset, Figure 9 describes the specific
coincidence degree score of each case.

Table 1. Overall quantitative assessment of lobe segmentation on LOLA11 dataset.

Mean SD Min Q1 Median Q3 Max

Left lower lobe 0.89 0.23 0.0 0.95 0.97 0.98 0.99
Left upper lobe 0.93 0.18 0.02 0.96 0.99 0.99 1

Right upper lobe 0.84 0.27 0.0 0.8 0.96 0.99 1
Right middle lobe 0.65 0.4 0.0 0.06 0.82 0.96 1
Right lower lobe 0.88 0.24 0.0 0.93 0.97 0.98 0.99

Total score 0.84

As shown in Figure 9, many wrong segmentation results exist in the right middle lobes and there
is still a lot of room for improvement. The reason for the poor performance was missing the detection
of the horizontal fissure because it was difficult to image the horizontal fissures in the CT images when
the horizontal fissures were nearly parallel to the CT scanning plane.

To further verify the performance of the proposed method, we compared the average score
from each lung lobe between our method and two representative AI-based methods (a sequence
of convolutional neural networks for marginal learning [20] and progressive dense V-Network [4]).
The quantitative evaluation results on each lung lobe are shown in Table 2 (LobeNet_V2 is the name of
the net in [20] given by authors for LOLA11). It indicates that our proposed method achieved a similar
performance for most lung lobes except the right middle lobe, and there is even better segmentation
performance on the left lung compared with V-net. Moreover, the proposed algorithm does not need a
large number of labeled data for training and has advantages in operating efficiency.

Table 2. Comparison between our proposed method and AI-based methods.

LobeNet_V2 V-Net The Proposed Method

Left lower lobe 0.91 0.88 0.89
Left upper lobe 0.95 0.92 0.93

Right lower lobe 0.96 0.92 0.88
Right middle lobe 0.87 0.76 0.65
Right upper lobe 0.94 0.91 0.84
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Figure 9. Quantitative evaluation results of lung lobe segmentation in the LOLA11 dataset: (a) results
of case 01−case 30, and (b) results of case 31−case 55. The lll, lul, rll, rml and rul are left lower lobe,
left upper lobe, right lower lobe, right middle lobe and right upper lobe, respectively.

4. Discussion

The proposed lung lobe segmentation framework has the following characteristics: (1) it does
not rely on anatomical knowledge such as airways or vessels, but only relies on the assumption that
the lung fissure can be represented as a continuous surface, (2) a fast and highly efficient multistage
B-spline surface-fitting algorithm is used to fill the lung fissure hole and extend the lung fissure to
the lung boundary to form a complete lung fissure surface, and (3) according to the difference in the
normal vector and curvature in different pulmonary fissures, the right pulmonary fissure is classified
as the horizontal and oblique fissure.

A large number of researchers use prior knowledge of lung anatomical structure to locate the
lung fissure area, so as to reduce the false positive detection and estimate the invisible pulmonary
fissure. Although this type of method can improve the detection efficiency, it is limited by the accuracy
of prior anatomical structure knowledge. This limitation can be overcome by directly using the density
distribution and shape features of the pulmonary fissure in 3D images, and better detection results can
be obtained in lung data with visible lung fissures, such as the experimental results of the proposed
method. In addition, compared with the deep learning method, which largely depends on a large
amount of labeled data and uniformity of image acquisition devices, the proposed method has higher
economy and applicability.

Experimental results show that this framework gives a good segmentation performance for most
CT images, but for some others the horizontal fissure may be easily missed during pulmonary fissure
detection. This is because the horizontal fissure often appears invisible in CT images. To solve this
problem, it is necessary to integrate the anatomical information into the lung fissure segmentation and
surface fitting stages, that is, to use the global information to extract the discontinuous pulmonary
fissure surface, which will be a future job. Furthermore, for the deep learning method, we will explore
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integration of prior knowledge, such as global geometry or traditional image processing knowledge,
into a convolution network, and hope to reduce the dependence on labeled data.
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