On the Solutions of Second-Order Differential Equations with Polynomial Coefficients: Theory, Algorithm, Application
Abstract
:1. Introduction
“Under what conditions on the equation parameters , , and does the differential Equation (3) have polynomial solutions? If it does have polynomial solutions, how can we construct them?”
- In Section 3, Scheffé criteria is revised to analyze Equation (3) and to generate exactly solvable equations where the coefficients of their power series solutions are easily computed using a two-term recurrence relation. The closed form solutions of these equations are written in terms of the generalized hypergeometric functions
- In Section 4 we present three theorems corresponding to the cases: (1) , (2) , , and (3) , which are required to establish the polynomial solutions of Equation (3). We shall show that for the mth-degree polynomial solutions, there are conditions that ultimately assemble these polynomials. At the end of the section we briefly discuss the Mathematica® program used to generate the solutions of these equations.
- Lastly, Section 5 demonstrates the validity of these constructions through the application of our results to some problems that have appeared in mathematics and physics literature.
2. A Necessary but Not Sufficient Condition
The Inverse Square-Root Potential
3. Scheffé’s Criteria: Two-Term Recurrence Relation
- In the case of and , Equation (20) reads:The two-term recurrence formula for the solution of Equation (27) isThe closed form solutions in terms of the Gauss hypergeometric functions, respectively, are:
- The two-term recurrence relation for the solutions of Equation (32) reads
4. Theorems and Algorithm
4.1. Theorems
4.2. The Mathematica® Program
5. Applications
5.1. General Case ()
5.2. Two-Dimensional Dirac Equation
5.3. The Heun Equation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Primitivo, B. Acosta-Humánez, David Blázquez-Sanz, Henock Venegas-Gómez, Liouvillian solutions for second order linear differential equations with polynomial coefficients. São Paulo J. Math. Sci. 2020. [Google Scholar] [CrossRef]
- Raposo, A.P.; Weber, H.J.; Alvarez-Castillo, D.E.; Kirchbach, M. Romanovski polynomials in selected physics problems. Centr. Eur. J. Phys. 2007, 5, 253–284. [Google Scholar] [CrossRef] [Green Version]
- Ovsiyuk, E.; Amirfachrian, M.; Veko, O. On Schrödinger equation with potential V(r)=αr−1+βr+kr2 and the biconfluent Heun functions theory. Nonl. Phen. Compl. Sys. 2012, 15, 163. [Google Scholar]
- Caruso, F.; Martins, J.; Oguri, V. Solving a two-electron quantum dot model in terms of polynomial solutions of a biconfluent Heun equation. Ann. Phys. 2014, 347, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Marcilhacy, G.; Pons, R. The Schrödinger equation for the interaction potential x2 + λx2/(1 + gx2), and the first Heun confluent equation. J. Phys. A Math. Gen. 1985, 18, 2441–2449. [Google Scholar] [CrossRef]
- Exton, H. The interaction V(r) = −Ze2/(r + β) and the confluent Heun equation. J. Phys. A Math. Gen. 1991, 24, L329–L330. [Google Scholar] [CrossRef]
- Ciftci, H.; Hall, R.L.; Saad, N.; Dogu, E. Physical applications of second-order linear differential equations that admit polynomial solutions. J. Phys. A Math. Theor. 2010, 43, 415206. [Google Scholar] [CrossRef]
- Hall, R.H.; Saad, N.; Sen, K.D. Soft-core Coulomb potentials and Heun’s differential equation. J. Math. Phys. 2010, 51, 022107. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.L.; Saad, N.; Sen, K.D. Discrete spectra for confined and unconfined −a/r + br2 potentials in d-dimensions. J. Math. Phys. 2011, 52, 092103. [Google Scholar] [CrossRef] [Green Version]
- Hall, R.L.; Saad, N.; Sen, K.D. Spectral characteristics for a spherically confined −a/r + br2 potential. J. Phys. A Math. Theor. 2011, 44, 185307. [Google Scholar] [CrossRef] [Green Version]
- Hortacsu, M. Heun functions and their uses in physics. arXiv 2013, arXiv:1101.0471v1. [Google Scholar]
- Zhang, Y.-Z. Exact polynomial solutions of second order differential equations and their applications. J. Phys. A Math. Theor. 2012, 45, 065206. [Google Scholar] [CrossRef]
- Saad, N.; Hall, R.L.; Trenton, V. Polynomial solutions for a class of second-order linear differential equations. Appl. Math. Comput. 2014, 226, 615–634. [Google Scholar] [CrossRef]
- Wen, F.-K.; Yang, Z.-Y.; Liu, C.; Yang, W.-L.; Zhang, Y.-Z. Exact polynomial solutions of Schrödinger equation with various hyperbolic potentials. Commun. Theor. Phys. 2014, 61, 153. [Google Scholar] [CrossRef]
- Sun, D.; You, Y.; Lu, F.; Chen, C.; Dong, S. The quantum characteristics of a class of complicated double ring-shaped non-central potential. Phys. Scr. 2014, 89, 045002. [Google Scholar] [CrossRef]
- Chiang, C.; Ho, C. Planar Dirac electron in Coulomb and magnetic fields: A Bethe ansatz approach. J. Math. Phys. 2002, 43, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Y.; Lu, F.L.; Sun, D.S.; Dong, S.H. The origin and mathematical characteristics of the Super-Universal Associated-Legendre polynomials. Commun. Theor. Phys. 2014, 62, 331–337. [Google Scholar] [CrossRef]
- Chen, C.Y.; You, Y.; Lu, F.L.; Sun, D.S.; Dong, S.-H. Exact solutions to a class of differential equation and some new mathematical properties for the universal associated-Legendre polynomials. Appl. Math. Lett. 2015, 40, 90–96. [Google Scholar] [CrossRef]
- Chen, C.Y.; Lu, F.L.; Sun, D.S.; You, Y.; Dong, S.-H. Spin-orbit interaction for the double ring-shaped oscillator. Ann. Phys. 2016, 371, 183–198. [Google Scholar] [CrossRef]
- Dong, S.; Sun, G.; Falaye, B.J.; Dong, S.-H. Semi-exact solutions to position-dependent mass Schrödinger problem with a class of hyperbolic potential V0 tanh(ax). Eur. Phys. J. Plus 2016, 131, 176. [Google Scholar] [CrossRef]
- Ishkhanyan, A. Exact solution of the Schrödinger equation for the inverse square root potential. Europhys. Lett. 2015, 112, 10006. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Dai, W. Exact solution of inverse-square-root potential V(x) = −α/r. Ann. Phys. 2016, 373, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Fernández, F.M. Comment on: Exact solution of the inverse-square-root potential V(r)=−α/r. Ann. Phys. 2017, 379, 83–85. [Google Scholar] [CrossRef]
- Ishkhanyan, A.M. Schrödinger potentials solvable in terms of the general Heun functions. Ann. Phys. 2018, 388, 456–471. [Google Scholar] [CrossRef] [Green Version]
- Ishkhanyan, A.M. Exact solution of the Schrödinger equation for a short-range exponential potential with inverse square root singularity. Eur. Phys. J. Plus 2018, 133, 83. [Google Scholar] [CrossRef] [Green Version]
- Maiz, F.; Alqahtani, M.M.; Al Sdran, N.; Ghnaim, I. Sextic and decatic anharmonic oscillator potentials: Polynomial solutions. Phys. B 2018, 530, 101–106. [Google Scholar] [CrossRef]
- Dong, S.; Dong, Q.; Sun, G.-H.; Femmam, S.; Dong, S.-H. Exact solutions of the Razavy Cosine Type potential. Adv. High Energy Phys. 2018, 2018, 5824271. [Google Scholar]
- Dong, Q.; Serrano, F.A.; Sun, G.-H.; Jing, J.; Dong, S.-H. Semi-exact Solutions of the Razavy Potential. Adv. High Energy Phys. 2018, 2018, 9105825. [Google Scholar] [CrossRef]
- Dong, Q.; Dong, S.S.; Hernández-Márquez, E.; Silva-Ortigoza, R.; Sun, G.H.; Dong, S.H. Semi-exact Solutions of Konwent Potential. Commun. Theor. Phys. 2019, 71, 231. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Sun, G.-H.; Jing, J.; Dong, S.-H. New findings for two new type sine hyperbolic potentials. Phys. Lett. A 2019, 383, 270–275. [Google Scholar] [CrossRef]
- Bazighifan, O. Some New Oscillation Results for Fourth-Order Neutral Differential Equations with a Canonical Operator. Math. Probl. Eng. 2020. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 2016, 274, 178–181. [Google Scholar]
- Euler, L. Institutiones Calculi Integralis, Vol. 2; Opera Omnia I: St. Petersburg, Russia, 1769; pp. 221–230. [Google Scholar]
- Scheffé, H. Linear differential equations with two-term recurrence formulas. J. Math. Phys. 1941, 21, 240–249. [Google Scholar] [CrossRef]
- Shore, S.D. On the second order differential equation which has orthogonal polynomial solutions. Bull. Calcutta Math. Soc. 1964, 56, 195–198. [Google Scholar]
- Hahn, W. On differential equations for orthogonal polynomials. Funkcialaj Ekuacioj 1978, 21, 1–9. [Google Scholar]
- Littlejohn, L.; Shore, S. Nonclassical orthogonal polynomials as solutions to second-order differential equations. Can. Math. Bull. 1982, 25, 291–295. [Google Scholar] [CrossRef]
- Littlejohn, L. On the classification of differential equations having orthogonal polynomial solutions. Ann. Mat. Pura Appl. 1984, 138, 35–53. [Google Scholar] [CrossRef]
- Al-Salam, W.A. Characterization Theorems for orthogonal polynomials. In Orthogonal Polynomials: Theory and Practice; Paul, N., Ed.; Springer: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Atakishiyev, N.M.; Rahman, M.; Suslov, S.K. On classical orthogonal polynomials. Constr. Approx. 1995, 11, 181–226. [Google Scholar] [CrossRef]
- Ronveaux, A. Heun’s Differential Equation; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Maier, R.S. The 192 solutions of the Heun equation. Math. Comput. 2007, 76, 811–843. [Google Scholar] [CrossRef]
- El-Jaick, L.J.; Bartolomeu, D.B.; Figueiredo, D.B. On certain solutions for confluent and double-confluent Heun equations. J. Math. Phys. 2008, 49, 082508. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K.H.; Littlejohn, L.L. Sobolev orthogonal polynomials and second-order differential equations. Rocky Mt. J. Math. 1998, 28, 547–594. [Google Scholar] [CrossRef]
- Everitt, W.N.; Kwon, K.H.; Littlejohn, L.L.; Wellman, R. Orthogonal polynomial solutions of linear ordinary differential equations. J. Comput. Appl. Math. 2001, 133, 85–109. [Google Scholar] [CrossRef] [Green Version]
- Bluman, G.; Dridi, R. New solutions for ordinary differential equations. J. Symb. Comput. 2012, 47, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Routh, E.J. On some properties of certain solutions of a differential equation of the second order. Proc. Lond. Math. Soc. 1884, 1, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Bochner, S. Über Sturm-Liouvillesche Polynomsysteme. Math. Z. 1929, 29, 730–736. [Google Scholar] [CrossRef]
- Slavyanov, S.Y.; Lay, W. Special Functions, A Unified Theory Based on Singularities; Oxford Mathematical Monographs: Oxford, UK, 2000. [Google Scholar]
- Ince, E.L. Ordinary Differential Equations; Dover Publications: Mineola, NY, USA, 1956. [Google Scholar]
- Forsyth, A.R. A Treatise on Differential Equations, 6th ed.; Macmillan: London, UK, 1933. [Google Scholar]
- Ciftci, H.; Hall, R.L.; Saad, N. Asymptotic iteration method for eigenvalue problems. J. Phys. A Math. Gen. 2003, 36, 11807–11816. [Google Scholar] [CrossRef] [Green Version]
- Saad, N.; Hall, R.L.; Ciftci, H. Criterion for polynomial solutions to a class of linear differential equations of second order. J. Phys. A Math. Gen. 2005, 38, 1147. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.-H. Wave Equations in Higher Dimensions; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Rovder, J. Zeros of the polynomial solutions of the differential equation xy″ + (β0 + β1x + β2x2)y′ + (γ−nβ2x)y = 0. Mat. Căs. 1974, 24, 15. [Google Scholar]
i | 3 | 2 | 1 | 0 |
---|---|---|---|---|
1 | c | 0 | ||
q |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryenton, K.R.; Cameron, A.R.; Kirk, K.L.A.; Saad, N.; Strongman, P.; Volodin, N. On the Solutions of Second-Order Differential Equations with Polynomial Coefficients: Theory, Algorithm, Application. Algorithms 2020, 13, 286. https://doi.org/10.3390/a13110286
Bryenton KR, Cameron AR, Kirk KLA, Saad N, Strongman P, Volodin N. On the Solutions of Second-Order Differential Equations with Polynomial Coefficients: Theory, Algorithm, Application. Algorithms. 2020; 13(11):286. https://doi.org/10.3390/a13110286
Chicago/Turabian StyleBryenton, Kyle R., Andrew R. Cameron, Keegan L. A. Kirk, Nasser Saad, Patrick Strongman, and Nikita Volodin. 2020. "On the Solutions of Second-Order Differential Equations with Polynomial Coefficients: Theory, Algorithm, Application" Algorithms 13, no. 11: 286. https://doi.org/10.3390/a13110286
APA StyleBryenton, K. R., Cameron, A. R., Kirk, K. L. A., Saad, N., Strongman, P., & Volodin, N. (2020). On the Solutions of Second-Order Differential Equations with Polynomial Coefficients: Theory, Algorithm, Application. Algorithms, 13(11), 286. https://doi.org/10.3390/a13110286