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Abstract: Given a Traveling Salesman Problem solution, the best 3-OPT move requires us to remove
three edges and replace them with three new ones so as to shorten the tour as much as possible.
No worst-case algorithm better than the Θ(n3) enumeration of all triples is likely to exist for this
problem, but algorithms with average case O(n3−ε) are not ruled out. In this paper we describe a
strategy for 3-OPT optimization which can find the best move by looking only at a fraction of all
possible moves. We extend our approach also to some other types of cubic moves, such as some
special 6-OPT and 5-OPT moves. Empirical evidence shows that our algorithm runs in average
subcubic time (upper bounded by O(n2.5)) on a wide class of random graphs as well as Traveling
Salesman Problem Library (TSPLIB) instances.
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1. Introduction

The Traveling Salesman Problem (TSP), in all likelihood the most famous combinatorial
optimization problem, calls for finding the shortest Hamiltonian cycle in a complete graph G = (V, E)
of n nodes, weighted on the arcs. In this paper we consider the symmetric TSP, i.e., the graph is
undirected and the distance between two nodes is the same irrespective of the direction in which we
traverse an edge. Let us denote by c(i, j) = c(j, i) the distance between any two nodes i and j. We call
each solution of the problem a tour. A tour is identified by a permutation of vertices (v1, . . . , vn).
We call {vi, vi+1}, for i = 1, . . . , n − 1, and {vn, v1} the edges of the tour. The length of a tour T,
denoted by c(T) is the sum of the lengths of the edges of the tour. More generally, for any set F of
edges, we denote by c(F) the value ∑e∈F c(e).

A large number of applications over the years have shown that local search is often a very effective
way to tackle hard combinatorial optimization problems, including the TSP. The local search paradigm
applies to a generic optimization problem in which we seek to minimize an objective function f (x)
over a set X. Given a map N : X 7→ 2X which associates to every solution x ∈ X a set N(x) called its
neighborhood, the basic idea is the following: start at any solution x0, set s := x0, and look for a solution
x1 ∈ N(s) better than s. If we find one, we replace s with x1 and iterate the same search. We continue
this way until we get to a solution s such that f (s) = min{ f (x)|x ∈ N(s)}. In this case, we say that s is
a local optimum. Replacing xi with xi+1 is called performing a move of the search, and N(s) is the set
of all solutions reachable with a move from s. The total number of moves performed to get from x0 to
the final local optimum is called the length of the convergence. If x is a solution reachable with a move
from s and f (x) < f (s) we say that the move is an improving move and x is an improving solution.
When searching in the neighborhood of xi we can adopt two main strategies, namely first-improvement
and best-improvement (also called steepest-descent). In the first-improvement strategy, we set xi+1 to
be the first solution that we find in N(xi) such that f (xi+1) < f (xi). In best-improvement, we set xi+1

to be such that f (xi+1) = min{ f (x)|x ∈ N(xi) ∧ f (x) < f (xi)}. For small-size neighborhoods such as
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the one considered in this paper, most local search procedures choose to adopt the best-improvement
strategy, since it causes the largest decrease in the objective function value at any given iteration of the
search. In this paper we will focus precisely on the objective of finding the best possible move for a
popular TSP neighborhood, i.e., the 3-OPT.

The idea of basic local search has been around for a very long time and it is difficult to attribute
it to any particular author. Examples of its use are reported in standard textbooks on combinatorial
optimization, such as [1], or devoted surveys, such as [2]. In time, many variants have been proposed
to make local search more effective by avoiding it to get stuck in local optima. Namely, sometimes a
non-improving move must be performed to keep the search going. Examples of these techniques are
tabu search [3] and simulated annealing [4]. Our results apply to basic local search but can be readily
adapted to use in more sophisticated procedures such as tabu search. This, however, is beyond the
scope of this paper.

1.1. The K-OPT Neighborhood

Let K ∈ N be a constant. A K-OPT move on a tour T consists of first removing a set R of K
edges and then inserting a set I of K edges so as (T \ R) ∪ I is still a tour (we include, possibly,
R ∩ I 6= ∅. This implies that the (K − 1)-OPT moves are a subset of the K-OPT moves). A K-OPT
move is improving if c((T \ R) ∪ I) < c(T) i.e., c(I) < c(R). An improving move is best improving if
c(R)− c(I) is the maximum over all possible choices of R, I.

The standard local search approach for the TSP based on the K-OPT neighborhood starts from
any tour T0 (usually a random permutation of the vertices) and then proceeds along a sequence of
tours T1, T2, . . . , TN where each tour T j is obtained by applying an improving K-OPT move to T j−1.
The final tour TN is such that there are no improving K-OPT moves for it. The hope is that TN is a
good tour (optimistically, a global optimum) but its quality depends on many factors. One of them is
the size of the neighborhood, the rationale being that with a larger-size neighborhood we sample a
larger number of potential solutions, and hence increase the probability of ending up at a really good
one. Clearly, there is a trade-off between the size of a neighborhood and the time required to explore it,
so that most times people resort to the use of small neighborhoods since they are very fast to explore
(for a discussion on how to deal with some very large size, i.e., exponential, neighborhoods for various
combinatorial optimization problems, see [5]).

The exploration of the K-OPT neighborhood, for a fixed K, might be considered “fast” from a
theoretical point of view, since there is an obvious polynomial algorithm (complete enumeration).
However, in practice, complete enumeration makes the use of K-OPT impossible already for K = 3
(if n is large enough, like 3000 or more). There are Θ(nK) choices of K edges to remove which implies
that 3-OPT can be explored in time O(n3) by listing all possibilities. For a given tour n = 6000 nodes,
the time required to try all 3-OPT moves, on a reasonably fast desktop computer, is more than one
hour, let alone converging to a local optimum. For this reason, 3-OPT has never been really adopted
for the heuristic solution of the TSP.

The first use of K-OPT dates back to 1958 with the introduction of 2-OPT for the solution of
the TSP in [6]. In 1965 Lin [7] described the 3-OPT neighborhood, and experimented with the Θ(n3)

algorithm, on which he also introduced a heuristic step fixing some edges of the solution (at risk of
being wrong) with the goal of decreasing the size of the instance. Still, the instances which could be
tackled at the time were fairly small (n ≤ 150). Later in 1968, Steiglitz and Weiner [8] described an
improvement over Lin’s method which made it 2 or 3 times faster, but still cubic in nature.

It was soon realized that the case K ≥ 3 was impractical, and later local search heuristics deviated
from the paradigm of complete exploration of the neighborhood, replacing it with some clever ways
to heuristically move from tour to tour. The best such heuristic is probably Lin and Kernighan’s
procedure [9] which applies a sequence of K-OPT moves for different values of K. Notice that our
objective, and our approach, is fundamentally different from Lin and Kernighan’s in that we always
look for the best K-OPT move, and we keep K constantly equal to 3. On the other hand, Lin and
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Kernighan, besides varying K, apply a heuristic search for the best K-OPT move, which is fast but
cannot guarantee to find the best move, and, indeed, is not guaranteed to find an improving move
even if some exist. For a very good chapter comparing various heuristics for the TSP, including the
3-OPT neighborhood, see Johnson and Mc Geich [10].

An important recent result in [11] proves that, under a widely believed hypothesis similar to the
P 6= NP conjecture, it is impossible to find the best 3-OPT move with a worst-case algorithm of time
O(n3−ε) for any ε > 0 so that complete enumeration is, in a sense, optimal. However, this gives us little
consolation when we are faced with the problem of applying 3-OPT to a large TSP instance. In fact,
for complete enumeration the average case and the worst case coincide, and one might wonder if there
exists a better practical algorithm, much faster than complete enumeration on the majority of instances
but still O(n3) in the worst case. The algorithm described in this paper (of which a preliminary version
appeared in [12]) is such an example. A similar goal, but for problems other than the TSP, is pursued
in [13], which focuses on the alternatives to brute force exploration of polynomial-size neighborhoods
from the point of view of parameterized complexity.

1.2. The Goal of This Paper

The TSP is today very effectively solved, even to optimality, by using sophisticated mathematical
programming-based approaches, such as Concorde [14]. No matter how ingenious, heuristics can
hardly be competitive with these approaches when the latter are given enough running time. It is clear
that simple heuristics, such as local search, are even less effective.

However, simple heuristics have a great quality which lies in their very name: since they are
simple (in all respects, to understand, to implement and to maintain), they are appealing, especially to
the world of practical, real-life application solvers, i.e., in the industrial world where the very vast
majority of in-house built procedures are of heuristic nature. Besides its simplicity, local search has
usually another great appeal: it is in general very fast, so that it can overcome its simplemindedness
by the fact that it is able to sample a huge amount of good solutions (the local optima) in a relatively
small time. Of course, if its speed is too slow, one loses all the interest in using a local search approach
despite its simplicity.

This is exactly the situation for the 3-OPT local search. It is simple, and might be effective, but we
cannot use it in practice for mid-to-large sized instances because it is too slow. The goal of our work
has been to show that, with a clever implementation of the search for improving moves, it can be
actually used since it becomes much faster (even 1000× on the instances we tried) with respect to its
standard implementation.

We remark that our intention in this paper is not that of proving that steepest-descent 3-OPT is
indeed an effective heuristics for the TSP (this would require a separate work with a lot of experiments
and can be the subject of future research). Our goal is to show anyone who is interested in using such
a neighborhood how to implement its exploration so as to achieve a huge reductions in the running
times. While a full discussion of the computational results can be found in Section 5, here is an example
of the type of results that we will achieve with our approach: on a graph of 1000 nodes, we can sample
about 100 local optima in the same time that the enumerative approach would take to reach only one
local optimum.

2. Selections, Schemes and Moves

Let G = (V, E) be a complete graph on n nodes, and c : E 7→ R+ be a cost function for the edges.
Without loss of generality, we assume V = {0, 1, . . . , n̄}, where n̄ = n − 1. In this paper, we will
describe an effective strategy for finding either the best improving or any improving move for a given
current tour (v1, . . . , vn). Without loss of generality, we will always assume that the current tour T is
the tour

(0, 1, . . . , n̄).



Algorithms 2020, 13, 306 4 of 27

We will be using modular arithmetic frequently. For convenience, for each x ∈ V and t ∈ N
we define

x⊕ t := (x + t) mod n, x	 t := (x− t) mod n.

When moving from x to x ⊕ 1, x ⊕ 2 etc. we say that we are moving clockwise, or forward.
In going from x to x	 1, x	 2, . . . we say that we are moving counter-clockwise, or backward.

We define the forward distance d+(x, y) from node x to node y as the t ∈ {0, . . . , n− 1} such that
x⊕ t = y. Similarly, we define the backward distance d−(x, y) from x to y as the t ∈ {0, . . . , n− 1} such
that x	 t = y. Finally, the distance between any two nodes x and y is defined by

d(x, y) := min{d+(x, y), d−(x, y)}.

A 3-OPT move is fully specified by two sets, i.e., the set of removed and of inserted edges.
We call a removal set any set of three tour edges, i.e., three edges of type {i, i ⊕ 1}. A removal set
is identified by a triple S = (i1, i2, i3) with 0 ≤ i1 < i2 < i3 ≤ n̄, where the edges removed are
R(S) := {{ij, ij ⊕ 1} : j = 1, 2, 3}. We call any such triple S a selection. A selection is complete if
d(ij, ih) ≥ 2 for each j 6= h, otherwise we say that S is a partial selection. We denote the set of all
complete selections by S .

Complete selections should be treated differently than partial selections, since it is clear that the
number of choices to make to determine a partial selection is lower than 3. For instance, the number
of selections in which i2 = i1 ⊕ 1 is not cubic but quadratic, since it is enough to pick i1 and i3 in all
possible ways such that d(i1, i3) ≥ 2 and then set i2 = i1 ⊕ 1. We will address the computation of the
number of complete selections for a given K in Section 2.2. Clearly, if we do not impose any special
requirements on the selection then there are (n

3) = Θ(n3) selections.
Let S be a selection and I ⊂ E with |I| = 3. If (T \ R(S)) ∪ I is still a tour then I is called a

reinsertion set. Given a selection S, a reinsertion set I is pure if I ∩ R(S) = ∅, and degenerate otherwise.
Finding the best 3-OPT move when the reinsertions are constrained to be degenerate is O(n2) (in fact,
3-OPT degenerates to 2-OPT in this case). Therefore, the most computationally expensive task is to
determine the best move when the selection is complete and the reinsertion is pure. We refer to these
kind of moves as true 3-OPT. Thus, in the remainder of the paper, we will focus on true 3-OPT moves.

2.1. Reinsertion Schemes and Moves

Let S = (i1, i2, i3) be a complete selection. When the edges R(S) are removed from a tour, the tour
gets broken into three consecutive segments which we can label by {1, 2, 3} (segment j ends at node ij).
Since the selection is pure, each segment is indeed a path of at least one edge. A reinsertion set patches
back the segments into a new tour. If we adopt the convention to start always a tour with segment
1 traversed clockwise, the reinsertion set: (i) determines a new ordering in which the segments are
visited along the tour and (ii) may cause some segments to be traversed counterclockwise. In order
to represent this fact, we use a notation called a reinsertion scheme. A reinsertion scheme is a signed
permutation of {2, 3}. The permutation specifies the order in which the segments 2, 3 are visited after
the move. The signing −s tells that segment s is traversed counterclockwise, while +s tells that it is
traversed clockwise. For example, the third reinsertion set depicted in Figure 1 is represented by the
reinsertion scheme < +3,−2 > since, from the end of segment 1, we jump to the beginning of segment
3 and traverse it forward. We then move to the last element of segment 2 and proceed backward to its
first element. Finally, we close the tour by going back to the first element of segment 1.

There are potentially 22 × 2! = 8 reinsertion schemes, but for some of these the corresponding
reinsertion sets are degenerate. A scheme for a pure reinsertion must not start with “+2”, nor end
with “+3”, nor be < −3,−2 >. This leaves only 4 possible schemes, let them be r1, . . . , r4, depicted in
Figure 1.
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i1 i1 ⊕ 1

i2

i2 ⊕ 1i3

i3 ⊕ 1

r1 =< +3,+2 >

i1 i1 ⊕ 1

i2

i2 ⊕ 1i3

i3 ⊕ 1

r2 =< −2,−3 >

i1 i1 ⊕ 1

i2

i2 ⊕ 1i3

i3 ⊕ 1

r3 =< +3,−2 >

i1 i1 ⊕ 1

i2

i2 ⊕ 1i3

i3 ⊕ 1

r4 =< −3,+2 >

Figure 1. The pure reinsertion schemes of 3-OPT.

Given a selection S, the application of a reinsertion scheme r univocally determines reinsertion
set I(r, S) and clearly for every reinsertion set I there is an r such that I = I(r, S). Therefore, a 3-OPT
move if fully specified by a pair (S, r) where S is a complete selection and r is a reinsertion scheme.
Let us denote the set of all true 3-OPT moves by

M =
{
((i1, i2, i3), r) : (i1, i2, i3) ∈ S , r ∈ {r1, r2, r3, r4}

}
.

The enumeration of all moves can be done as follows: (i) we consider, in turn, each reinsertion
scheme r = r1, . . . , r4; (ii) given r, we consider all complete selections S = (i1, i2, i3), obtaining the
moves (S, r). Since step (ii) is done by complete enumeration, the cost of this procedure is Θ(n3). In the
remainder of the paper we will focus on a method for lowering significantly its complexity.

2.2. The Number of True 3-OPT Moves

For generality, we state here a result which applies to K-OPT for any K ≥ 2.

Theorem 1. For each K = 2, . . . , bn/2c the number of complete K-OPT selections is(
n− K + 1

K

)
−
(

n− K− 1
K− 2

)
Proof. Assume the indices of a selection are 0 ≤ i1 < i2 < . . . < iK ≤ n̄. Consider the tour and
let: x1 be the number of nodes between node 0 (included) and node i1 (excluded); xt, for t = 2, . . . , K,
be the number of nodes between node it−1 (excluded) and node it (excluded); xK+1 be the number of
nodes between node iK (excluded) and node n̄ (included). Then, there are as many complete selections
in a K-OPT move as the nonnegative integer solutions of the equation

x1 + · · ·+ xK+1 = n− K,

subject to the constraints that x1 + xK+1 ≥ 1, and xt ≥ 1 for t = 2, . . . , K. If we ignore the first constraint
and replace xt by yt + 1 for t = 2, . . . , K we get the equation

x1 + y2 + · · ·+ yK + xK+1 = n− 2K + 1,
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in nonnegative integer variables, which, by basic combinatorics, has ((n−2K+1)+K
K ) solutions.

We then have to remove all solutions in which x1 + xK+1 = 0, i.e., the solutions of the equation
y2 + · · ·+ yK = n− 2K + 1, of which there are ((n−2K+1)+K−2

K−2 ).

Corollary 1. The number of true 3-OPT moves is

2n3 − 18n2 + 40n
3

,

i.e., it is, asymptotically, 2
3 n3.

Proof. We know from Theorem 1 that there are (n−2
3 ) − (n − 4) = n3−9n2+20n

6 complete selections,
and from Section 2.1 that there are 4 reinsertion schemes. By multiplying the two values we get
the claim.

In Table 1 we report the number of true moves for various values of n, giving a striking example of
why the exploration of the 3-OPT neighborhood would be impractical unless some effective strategies
were adopted.

Table 1. The number of true 2-OPT and 3-OPT moves for some n.

n 2-OPT 3-OPT

50 1175 69,000

100 4850 608,000

200 19,700 5,096,000

500 124,250 81,840,000

1000 498,500 660,680,000

2000 1,997,000 5,309,360,000

5000 12,492,500 83,183,400,000

10,000 49,985,000 666,066,800,000

3. Speeding-Up the Search: The Basic Idea

The goal of our work is to provide an alternative, much faster, way for finding the best move to
the classical “nested-for” approach over all reinsertion schemes and indices, which is something like

for ( r = r1, r2, r3, r4 )
for ( i1 = 0; i1 ≤ n̄− 4; i1++ )

for ( i2 = i1 + 2; i2 ≤ n̄− 2−P(i1 = 0); i2++ )
for ( i3 = i2 + 2; i3 ≤ n̄−P(i1 = 0); i3++ )

evaluateMove((i1, i2, i3), r); [* check if move is improving. possibly update best *]

and takes time Θ(n3). (The expression P(A), given a predicate A returns 1 if A is true and 0 otherwise).
As opposed to the brute force approach, we will call our algorithm the smart force procedure.

Our idea for speeding-up the search is based on this consideration. Suppose there is a magic box
that knows all the best moves. We can inquire the box, which answers in time O(1) by giving us a
partial move. A partial move is the best move, but one of the selection indices has been deleted (and
the partial move specifies which one). For example, we might get the answer ((4,−, 9), r2), and then
we would know that there is some x such that the selection (4, x, 9), with reinsertion scheme r2, is an
optimal move. How many times should we inquire about the box to quickly retrieve an optimal move?

Suppose there are many optimal moves (e.g., the arc {0, 1} costs 1000 and all other arcs cost 1,
so that the move ((0, x, y), r) is optimal for every (x, y) and r). Then we could call the box O(n2) times
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and get the reply ((−, x, y), r) for all possible x, y, r without ever getting the value of the first index of
an optimal selection. However, it is clear that with just one call to the box, it is possible to compute
an optimal 3-OPT move in time O(n). In fact, after the box has told us the reinsertion scheme to
use and the values of two indices out of three, we can enumerate the values for the missing index
(i.e., expand the two indices into a triple) to determine the best completion possible.

The bulk of our work has then been to simulate, heuristically, a similar magic box, i.e., a data
structure that can be queried and should return a partial move much in a similar way as described
above. In our heuristic version, the box, rather than returning a partial which could certainly be
completed into a best move, returns a partial move which could likely be completed into a best move.
As we will see, this can already greatly reduce the number of possible candidates to be best moves.
In order to assess the likelihood with which a partial move could be completed into a best solution,
we will use suitable functions described in the next sections.

Since there is no guarantee that a partial move suggested by our box can be indeed completed
into an optimal move, we will have to iterate over many suggestions, looking for the best one. If there
are O(n) iterations, given that each iteration costs us O(n) we end up with an O(n2) algorithm.
Some expansions will be winning, in that they produce a selection better than any one seen so far,
while others will be losing, i.e., we enumerate O(n) completions for the partial move but none of them
beats the best move seen so far. Clearly, to have an effective algorithm we must keep the number of
losing iterations small. To achieve this goal, we provide an O(1) strong necessary condition that a
partial move must satisfy for being a candidate to a winning iteration. When no partial move satisfies
this condition, the search can be stopped since the best move found is in fact the optimal move.

The Fundamental Quantities τ+ and τ−

In this section, we define two functions of V × V into R fundamental for our work.
Loosely speaking, these functions will be used to determine, for each pair of indices of a selection,
the contribution of that pair to the value of a move. The rationale is that, the higher the contribution,
the higher the probability that a particular pair is in a best selection.

The two functions are called τ+() and τ−(). For each a, b ∈ {0, . . . , n̄}, we define τ+(a, b) to be
the difference between the cost from a to its successor and to the successor of b, and τ−(a, b) to be the
difference between the cost from a to its predecessor and to the predecessor of b:

τ+(a, b) = c(a, a⊕ 1)− c(a, b⊕ 1), τ−(a, b) = c(a, a	 1)− c(a, b	 1).

Clearly, each of these quantities can be computed in time O(1), and computing their values for a
subset of possible pairs can never exceed time O(n2).

4. Searching the 3-OPT Neighborhood

As discussed in Section 2.1, the pure 3-OPT reinsertion schemes are four (see Figure 1), namely :

r1 =< +3,+2 > r2 =< −2,−3 > r3 =< +3,−2 > r4 =< −3,+2 > (1)

Notice that r3 and r4 are symmetric to r2. Therefore, we can just consider r1 and r2 since all we
say about r2 can be applied, mutatis mutandis (i.e., with a suitable renaming of the indices), to r3 and
r4 as well.

Given a move µ = (S, r) ∈ M, where S = (i1, i2, i3), its value is the difference between the cost of
the set R(S) = {{i1, i1 ⊕ 1}, {i2, i2 ⊕ 1}, {i3, i3 ⊕ 1}} of removed edges and the cost of the reinsertion
set I(r, S). We will denote the value of the move µ by

∆((i1, i2, i3), r).
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A key observation is that we can break-up the function ∆(), that has Θ(n3) possible arguments,
into a sum of functions of two parameters each (each has Θ(n2) arguments). That is, we will have

∆((i1, i2, i3), r) = f 12
r (i1, i2) + f 23

r (i2, i3) + f 13
r (i1, i3), (2)

for suitable functions f 12
r (), f 23

r (), f 13
r (), each representing the contribution of a particular pair of

indices to the value of the move. The domains of these functions are subsets of {0, . . . , n̄} × {0, . . . , n̄}
which limit the valid input pairs to values obtained from two specific elements of a selection.
For a, b ∈ {1, 2, 3}, with a < b, let us define

Sab := {(x, y) : ∃(v1, v2, v3) ∈ S with va = x and vb = y}. (3)

Then the domain of f 12
r is S12, the domain of f 23

r is S23 and the domain of f 13
r is S13.

The functions f 12
r , f 23

r , f 13
r can be obtained through the functions τ+() and τ−() as follows:

[r1: ] We have I(r1) = {{i1, i2 ⊕ 1}, {i2, i3 ⊕ 1}, {i1 ⊕ 1, i3}} (see Figure 1) so that ∆((i1, i2, i3), r1) =

=
[
c(i1, i1 ⊕ 1) + c(i2, i2 ⊕ 1) + c(i3, i3 ⊕ 1)

]
−
[
c(i1, i2 ⊕ 1) + c(i2, i3 ⊕ 1) + c(i1 ⊕ 1, i3)

]
=
[
c(i1, i1 ⊕ 1)− c(i1, i2 ⊕ 1)

]
+
[
c(i2, i2 ⊕ 1)− c(i2, i3 ⊕ 1)

]
+
[
c(i3, i3 ⊕ 1)− c(i3, i1 ⊕ 1)

]
= τ+(i1, i2) + τ+(i2, i3) + τ+(i3, i1). (4)

The three functions are

f 12
r1

: (x, y) ∈ S12 7→ τ+(x, y);

f 23
r1

: (x, y) ∈ S23 7→ τ+(x, y);

f 13
r1

: (x, y) ∈ S13 7→ τ+(y, x).
[r2: ] We have I(r2) = {{i1, i2}, {i2 ⊕ 1, i3 ⊕ 1}, {i1 ⊕ 1, i3}} (see Figure 1) so that ∆((i1, i2, i3), r2) =

=
[
c(i1, i1 ⊕ 1) + c(i2, i2 ⊕ 1) + c(i3, i3 ⊕ 1)

]
−
[
c(i1, i2) + c(i2 ⊕ 1, i3 ⊕ 1) + c(i1 ⊕ 1, i3)

]
=
[
c(i1, i1 ⊕ 1)− c(i1, i2)

]
+
[
c(i2 ⊕ 1, i2)− c(i2 ⊕ 1, i3 ⊕ 1)

]
+
[
c(i3, i3 ⊕ 1)− c(i3, i1 ⊕ 1)

]
= τ+(i1, i2 	 1) + τ−(i2 ⊕ 1, i3 ⊕ 2) + τ+(i3, i1). (5)

The three functions are

f 12
r2

: (x, y) ∈ S12 7→ τ+(x, y	 1);

f 23
r2

: (x, y) ∈ S23 7→ τ−(x⊕ 1, y⊕ 2);

f 13
r2

: (x, y) ∈ S13 7→ τ+(y, x).

(For convenience, these functions, as well as the functions of some other moves described later
on, are also reported in Table 2 of Section 6). The functions f 12

r , f 23
r , f 13

r are used in our procedure in
two important ways. First, we use them to decide which are the most likely pairs of indices to belong
in an optimal selection for r (the rationale being that, the higher a value fr(x, y), the more likely it is
that (x, y) belongs in a good selection).

Secondly, we use them to discard from consideration some moves which cannot be optimal.
These are the moves such that no two of the indices give a sufficiently large contribution to the total.
Better said, we keep in consideration only moves for which at least one contribution of two indices
is large enough. With respect to the strategy outlined in Section 3, this corresponds to a criterion for
deciding if a partial move suggested by our heuristic box is worth expanding into all its completions.
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Assume we want to find the best move overall and the best move we have seen so far (the current
“champion”) is µ∗. We make the key observation that for a move ((i1, i2, i3), r) to beat µ∗ it must be(

f 12
r (i1, i2) >

∆(µ∗)
3

)
∨
(

f 23
r (i2, i3) >

∆(µ∗)
3

)
∨
(

f 13
r (i1, i3) >

∆(µ∗)
3

)
.

These three conditions are not exclusive but possibly overlapping, and in our algorithm, we will
enumerate only moves that satisfy at least one of them. Furthermore, we will not enumerate these
moves with a complete enumeration, but rather from the most promising to the least promising,
stopping as soon as we realize that no move has still the possibility of being the best overall.

Table 2. Expressing ∆((i1, i2, i3), r) as a sum f 12
r (i1, i2) + f 23

r (i2, i3) + f 13
r (i1, i3).

r f 12
r (x, y) f 23

r (x, y) f 13
r (x, y)

r1 τ+(x, y) τ+(x, y) τ+(y, x)

r2 τ+(x, y	 1) τ−(x⊕ 1, y⊕ 2) τ+(y, x)

r3 τ+(x, y) τ+(x, y	 1) τ−(y⊕ 1, x⊕ 2)

r4 τ−(x⊕ 1, y⊕ 2) τ+(x, y) τ+(y, x	 1)

r5 τ+(y, x) + τ−(y, x) τ+(y, x) + τ−(y, x) τ+(x, y) + τ−(x, y)

r6 τ+(x, y) + τ−(x, y) τ+(x, y) + τ−(x, y) τ+(y, x) + τ−(y, x)

r7 τ+(x, y) + τ+(y, x) τ−(x, y) + τ−(y, x) τ+(x	 1, y	 1) + τ−(y⊕ 1, x⊕ 1)

r8 τ−(x⊕ 1, y⊕ 2) + τ−(y, x⊕ 1) τ+(x, y) + τ−(y, x) τ+(x	 1, y	 2) + τ+(y, x	 1)

r9 τ−(x⊕ 1, y⊕ 1) + τ+(x	 1, y	 1) + τ+(y	 1, x	 1) τ−(x⊕ 1, y⊕ 2) τ+(y, x	 1)

The most appropriate data structure for performing this kind of search (which hence be used for
our heuristic implementation of the magic box described in Section 3) is the Max-Heap. A heap is
perfect for taking the highest-valued elements from a set, in decreasing order. It can be built in linear
time with respect to the number of its elements and has the property that the largest element can be
extracted in logarithmic time, while still leaving a heap.

We then build a max-heap H whose elements are records of type

[x, y, f , α, r],

where α ∈ {12, 13, 23}, r ∈ {r1, r2, r3, r4}, (x, y) ∈ Sα, and f := f α
r (x, y). The heap elements correspond

to partial moves. The heap is organized according to the values of f , and the field α is a label identifying
which selection indices are associated to a given heap entry. We initialize H by putting in it an element
for each (x, y), r and α such that f α

r (x, y) > ∆(µ∗)/3. We then start to extract the elements from the
heap. Let us denote by [xj, yj, f j, αj, rj] the j-th element extracted. Heuristically, we might say that x1

and y1 are the most likely values that a given pair of indices (specified by α1) can take in the selection of
a best-improving move, since these values give the largest possible contribution to the move value (2).
We will keep extracting the maximum [xj, yj, f j, αj, rj] from the heap as long as f j > ∆(µ∗)/3. This does
not mean that we will extract all the elements of H, since ∆(µ∗) could change (namely, increase) during
the search and hence the extractions might terminate before the heap is empty.

Each time we extract the heap maximum, we have that xj and yj are two possible indices out of
three for a candidate move to beat µ∗. With a linear-time scan, we then enumerate the third missing
index (identified by αj) and see if we get indeed a better move than µ∗. For example, if αj = 13 then
the missing index is i2 and we run a for-loop over i2, with xj + 2 ≤ i2 ≤ yj − 2, checking each time if
the move ((xj, i2, yj), rj) is a better move than µ∗. Whenever this is the case, we update µ∗. Note that,
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since ∆(µ∗) increases, the number of elements still in the heap for which f > ∆(µ∗)/3 after updating
the champion may be considerably smaller than it was before the update.

Lemma 1. When the procedure outlined above terminates, µ∗ is an optimal move.

Proof. Suppose, by contradiction, that there exists a move µ = ((w1, w2, w3), r) better than µ∗.
Since ∆((w1, w2, w3), r) > ∆(µ∗), there exists at least one pair a < b ∈ {1, 2, 3} such that f ab

r (wa, wb) >

∆(µ∗)/3. Then the partial move (wa, wb, f ab
r (wa, wb), ab, r) would have eventually been popped from

the heap and evaluated, producing a move better than µ∗. Therefore the procedure could not have
ended with the move µ∗.

Assume L denotes the initial size of the heap and M denotes the number of elements that are
extracted from the heap overall. Then the cost of the procedure is O(n2 + L + M(log L + n)) since:
(i) Θ(n2) is the cost for computing the τ values; (ii) Θ(L) is the cost for building the heap; (iii) for each
of the M elements extracted from the heap we must pay O(log L) for re-adjusting the heap, and then
we complete the move in O(n) ways. Worst-case, the procedure has complexity O(n3) like complete
enumeration but, as we will show in our computational experiments, it is much smaller in practice.
In fact, on our tests the complexity was growing slightly faster than a quadratic function of n (see
Section 5). This is because the Mn selections which are indeed evaluated for possibly becoming the
best move have a much bigger probability of being good than a generic selection, since two of the three
indices are guaranteed to help the value of the move considerably.

4.1. Worst-Case Analysis

A theoretical result stated in [11] shows that no algorithm with a less than cubic worst-case
complexity is possible for 3-OPT (under the widely believed ALL-PAIRS SHORTEST PAIR conjecture).
In light of this result, we expected that there should exist some instances which force our algorithm to
require cubic time. In particular, we have found the following example.

Theorem 2. The Smart Force algorithm has a worst-case complexity Θ(n3).

Proof. Clearly, the complexity is O(n3) since there are O(n2) partial moves and the evaluation of each
of them takes O(n) time. To show the lower bound Ω(n3) consider the following instance.

Fix any ε > 0 and, for each 0 ≤ i < j ≤ n̄, define c(i, j) to be

c(i, j) =


1 + 4ε if i = j (mod 2)

1 if i 6= j (mod 2) and |i− j| > 1

1 + ε if |i− j| = 1

(Notice that if ε ≤ 2/3 this instance is in fact metric). For these costs, the current tour (0, . . . , n̄) is
a local optimum. In fact, for each selection, (i1, i2, i3) at least two of the nodes have the same parity
and hence at least one edge of value 1 + 4ε would be introduced by a move. Therefore the inserted
edges would have cost at least 3 + 4ε, while the removed edges have cost 3 + 3ε.

We have

τ+(i, j) = c(i, i + 1)− c(i, j + 1) =

{
1 + ε− 1 = ε if i = j (mod 2)

1 + ε− 1− 4ε = −3ε if i 6= j (mod 2)

Therefore, for each of the Θ(n2) pairs (i, j) such that i and j have the same parity, it is
τ+(i, j) = ε > 0. Since

∆((i1, i2, i3), r1) = τ+(i1, i2) + τ+(i2, i3) + τ+(i3, i1),
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each such pair would be put in the heap and evaluated, fruitlessly, for a total running time of Ω(n3).

4.2. Implementing the Search Procedure

We now describe more formally the procedure that finds the best improving 3-OPT move.
To simplify the description of the code, we will make use of a global variable µ∗ representing the
current champion move. Initially µ∗ is NULL, and we extend the function ∆() by defining ∆(NULL) := 0.

The main procedure is FIND3-OPTMOVE (Procedures 1 and 2). The procedure starts by setting
µ∗ to a solution for which, possibly, ∆(µ∗) > 0. This is not strictly necessary, and setting µ∗ to NULL
would work too, but a little effort in finding a “good” starting champion can yield a smaller heap and
thus a faster, overall, procedure. In our case, we have chosen to just sample 4n random solutions and
keep the best.

Procedure 1 FIND3-OPTMOVE

1. µ∗ ← startingSolution()
2. H ← buildHeap()
3. while

(
H[1].val > ∆(µ∗)/3

)
4. (x, y, α, r)← extractMax(H)
5. for z ∈ range3rd(x, y, α)
6. (i, j, k)← selection(x, y, z, α)
7. if (∆((i, j, k), r) > ∆(µ∗)) then /* update global optimum */
8. µ∗ ← ((i, j, k), r)
9. /* if µ∗ = NULL there are no improving moves */

Procedure 2 STARTINGSOLUTION ()
Output: move µ (such that ∆(µ) ≥ 0)

1. µ← NULL

2. for r = r1, r2, r3, r4
3. for t = 1 to n
4. (i, j, k)← randomSelection()
5. if (∆((i, j, k), r) > ∆(µ)) then
6. µ← ((i, j, k), r)
7. return µ

The procedure then builds a max-heap (see Procedure 3 BUILDHEAP) containing an entry for each
r ∈ r1, . . . , r4, α ∈ {12, 23, 13} and (x, y) ∈ Sα such that f α

r (x, y) > ∆(µ∗)/3. The specific functions f α
r ,

for each α and r, are detailed in Table 2 of Section 6. The heap is implemented by an array H of records
with five fields: x and y, which represent two indices of a selection; alpha which is a label identifying
the two type of indices; val which is the numerical value used as the key to sort the heap; and scheme
which is a label identifying a reinsertion scheme. By using the standard implementation of a heap
(see, e.g., [15]), the array corresponds to a complete binary tree whose nodes are stored in consecutive
entries from 1 to H.SIZE. The left son of node H[t] is H[2t], while the right son is H[2t + 1]. The father
of node H[t] is H[t.div.2]. The heap is such that the key of each node H[t] is the largest among all the
keys of the subtree rooted at H[t].

In the procedure BUILDHEAP we use a function range1st2nd(α) which returns the set of all
values that a pair (x, y) of indices of type α can assume. More specifically,

- range1st2nd(12) := {(x, y) : 0 ≤ x < x + 2 ≤ y ≤ n̄− 2−P(x = 0)} /* x is i1 and y is i2 */
- range1st2nd(23) := {(x, y) : 2 + P(y = n̄) ≤ x < x + 2 ≤ y ≤ n̄} /* x is i2 and y is i3 */
- range1st2nd(13) := {(x, y) : 0 ≤ x < x + 4 ≤ y ≤ n̄−P(x = 0)} /* x is i1 and y is i3 */
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Procedure 3 BUILDHEAP ()
Output: heap H

1. new H
2. c← 0
3. for r = r1, r2, r3, r4
4. for α = 12, 23, 13
5. for (x, y) ∈ range1st2nd(α)
6. if

(
f α
r (x, y) > ∆(µ∗)/3

)
then

7. c← c + 1
8. H[c].x← x
9. H[c].y← y

10. H[c].val← f α
r (x, y)

11. H[c].alpha← α
12. H[c].scheme← r
13. H.SIZE← c
14. for t← bH.SIZE

2 c, . . . , 2, 1
15. heapify(H, t) /* turns the array into a heap */
16. return H

BUILDHEAP terminates with a set of calls to the procedure HEAPIFY (a standard procedure for
implementing heaps), described in Procedure 4. To simplify the code, we assume H[t].val to be defined
also for t > H.SIZE, with value −∞. The procedure HEAPIFY(H, t) requires that the subtree rooted at
t respects the heap structure at all nodes, except, perhaps, at the root. The procedure then adjusts the
keys so that the subtree rooted at t becomes indeed a heap. The cost of HEAPIFY is linear in the height
of the subtree. The loop of line 14 in procedure BUILDHEAP turns the unsorted array H into a heap,
working its way bottom-up, in time O(H.SIZE).

Procedure 4 HEAPIFY (H, t)
Input: array H, integer t ∈ {1, . . . H.SIZE}

1. ls← 2t /* left son */
2. rs← 2t + 1 /* right son */
3. if

(
H[ls].val > H[t].val

)
then large← ls else large← t

4. if
(

H[rs].val > H[large].val
)

then large← rs
5. if (large 6= t) then
6. H[t]↔ H[large] /* swaps H[t] with the largest of its sons */
7. heapify(H, large)

Coming back to FIND3-OPTMOVE, once the heap has been built, a loop (lines 3–8) extracts the
partial moves from the heap, from the most to the least promising, according to their value (field val).
For each partial move popped from the heap we use a function range3rd(x, y, α) to obtain the set of
all values for the missing index with respect to a pair (x, y) of type α. More specifically.

- range3rd(x, y, 12) := {z : y + 2 ≤ z ≤ n̄−P(x = 0)} /* missing index is i3 */
- range3rd(x, y, 23) := {z : 0 + P(y = n̄) ≤ z ≤ x− 2} /* missing index is i1 */
- range3rd(x, y, 13) := {z : x + 2 ≤ z ≤ y− 2} /* missing index is i2 */.

We then complete the partial move in all possible ways, and each way is compared to the champion
to see if there has been an improvement (line 7). Whenever the champion changes, the condition for
loop termination becomes easier to satisfy than before.
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In line 6 we use a function selection(x, y, z, α) that, given three indices x, y, z and a pair type α,
rearranges the indices so as to return a correct selection. In particular, selection(x, y, z, 12) := (x, y, z),
selection(x, y, z, 23) := (z, x, y), and selection(x, y, z, 13) := (x, z, y).

The procedure EXTRACTMAX (in the Procedure 5) returns the element of a maximum value of
the heap (which must be in the root node, i.e., H[1]). It then replaces the root with the leaf H[H.SIZE]
and, by calling heapify(H, 1), it moves it down along the tree until the heap property is again fulfilled.
The cost of this procedure is O(log(H.SIZE)).

Procedure 5 EXTRACTMAX (H)
Input: heap H
Output: the partial move (x, y, α, r) of maximum value in H

1. (x, y, α, r)← (H[1].x, H[1].y, H[1].alpha, H[1].scheme) /* gets the max element */
2. H[1]← H[H.SIZE] /* overwrites it */
3. H.SIZE← H.SIZE− 1
4. heapify(H, 1) /* restores the heap */
5. return (x, y, α, r)

5. Computational Results

In this section, we report on our extensive computational experiments showing the effectiveness of
the approach we propose. All tests were run on a Intel R©CoreTM i7-7700 8CPU under Linux Ubuntu,
equipped with 16 GB RAM at 3.6GHz clock. The programs were implemented in C, compiled under
gcc 5.4.0 and are available upon request,

5.1. Instance Types

The experiments were run on two types of graphs: (i) random graphs generated by us and (ii)
instances from the standard benchmark repository TSPLIB [16]. The random graphs are divided into
three categories:

- Uniform (UNI): complete graphs in which the edge costs are independent random variables
drawn uniformly in the range [0, 1].

- Gaussian (GAU): complete graphs in which the edge costs are independent random variables
drawn according to the Gaussian distribution N(µ, σ) with mean µ = 0.5 and standard deviation
σ = 0.1.

- Geometric (GEO): complete graphs in which the edge costs are the Euclidean distances between
n random points of the plane. In particular, the points are generated within a circle of radius 1 by
drawing, u.a.r. a pair of polar coordinates (d, α), where d ∈ [0, 1] and α ∈ [0, 2π].

Our goal in using more than one type of random distribution was to assess if our method is
sensible, and if so, to what extent, to variation in the type of edge costs involved. The results will show
that the GEO instances are slightly harder to tackle, while UNI and GAU are more or less equivalent.

5.2. Experiment 1: Best Move from a Random Tour

5.2.1. Random Instances

In a first set of experiments we compared our method to the brute force (BF) approach on
random instances of the type described before. In particular, for each type of random graph we
generated instances of sizes n1, . . . , n9 where we set n1 = 400 and ni+1 = d

√
2× nie for i = 1, . . . , 8.

This geometric increase is chosen so that we should see a doubling of the running times in going
from ni to ni+1 with a quadratic method, while the ratio should be about 2

√
2 ' 2.83 with the cubic

BF approach.
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For each given size ni we generated 1000 random instances. Finally, for each random instance,
we generated a random initial tour and found the best 3-OPT move with both smart force (SF) and BF.

In Table 3 we report the results of the experiment. The table is divided vertically into three parts.
The first part reports the average running time of the two approaches (columns BFavg and SFavg) and
the speed-up achieved by smart force over brute force. We can see that in our instances smart force is at
least 70 times faster and as much as 500 times faster than brute force. Similar results are reported in the
second vertical part, in which we focus on the number of triples evaluated by the two methods. Clearly,
the average for the BF method is indeed a constant, since all triples must be evaluated. SF, on the
other hand, evaluates a much smaller number of triples, going from a minimum of 200 times less
up to 7000 times less triples than BF. Notice how the saving in the running time is actually smaller
than the saving in the number of triples evaluated. This is due to the overhead needed for building
and updating the heap. The standard deviations for the SF times (not reported in the table for space
reasons) were in the range 10–25% of the mean value, while for the number of evaluated triples the
standard deviations were between 30% and 40%.

In the final vertical section, we focus on the empirical estimate of a complexity function for the
running time and the number of evaluated triples of the smart force approach. In particular, the column
SFtime reports the ratio between the average time of SF on instances of size nk and nk−1. Given the way
that we defined the nk’s, a value ' 2 on this column would be indicative of a quadratic algorithm,
while a value ' 2

√
2 ' 2.83 would be indicative of a cubic algorithm.

The average ratios for the running time of the SF algorithm were 2.37, 2.31 and 2.47 for the UNI,
GAU and GEO instances respectively. These values are indicative of an algorithm whose empirical
average complexity is definitely sub-cubic, but not quite quadratic. A reasonably good fit with an
experimental upper bound to the time complexity is O(n2.5) (see Figure 2).

The column labeled SFeval reports the same type of ratios but this time relatively to the number of
triples evaluated by SF. We can see that for UNI and GAU graphs the number of triples grows almost
exactly as a quadratic function of n. Notice that evaluating less than a quadratic number of triples
would be impossible, since each edge must be looked at, and there is a quadratic number of edges.
Again, the class of graphs GEO seems to be slightly harder than UNI and GAU.

For completeness, in columns BFtime and BFeval we report the same type of values for the
BF method.

The main message from the table is that while finding the best 3-OPT move for a tour of about
6000 nodes with the classical BF approach can take more than half an hour, with our approach it can
be done in 5 s or so.

5.2.2. TSPLIB Instances

We have then run the same type of experiment on instances from the TSPLIB. For each instance,
we generated 1000 random starting tours and found the best 3-OPT move. The results are reported in
Table 4. The instances are all the Euclidean, Geographical and Explicit instances (according to TSPLIB
categories) with sizes up to 6000 nodes. Smaller-size instances were ignored since the running times are
too little, for both SF and BF, even to be measured precisely. Indeed, for n ≤ 200 finding the best move
by SF yields only a small advantage (in the running time) over the BF approach. The effect increases
with increasing n, and we can get about a factor-50 speed-up for instances with 3000 ≤ n ≤ 6000.
The largest improvement is achieved on one instance of size n = 2319 where SF is 77 times faster than
BF, and finds the best move in about two seconds versus two and a half minutes.
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Table 3. Comparing smart force (SF) and brute force (BF) in finding one Best Improving move starting
from a random tour and using pure 3-OPT moves only (averaged over 1000 attempts).

Type Size Time (S) Number of Evaluated Triples Ratio Against the Previous Size

BF_avg SF_avg Speed-up BF SF_avg Reduction SF_time SF_eval BF_time BF_eval

UNI

400 0.65 0.01 75× 41,712,000 177,247 235×
566 1.80 0.01 136× 118,966,408 352,174 337× 1.53 1.98 2.79 2.85
800 5.08 0.03 187× 337,504,000 689,730 489× 2.05 1.95 2.81 2.83

1131 14.37 0.09 160× 956,827,508 1,378,905 693× 3.31 1.99 2.82 2.83
1600 40.75 0.26 157× 2,715,328,000 2,709,608 1002× 2.89 1.96 2.83 2.83
2262 115.30 0.64 179× 7,685,229,448 5,406,134 1421× 2.47 1.99 2.82 2.83
3200 326.78 1.60 204× 21,783,936,000 10,616,608 2051× 2.48 1.96 2.83 2.83
4524 924.09 3.43 269× 61,604,454,080 21,248,234 2899× 2.14 2.00 2.82 2.82
6400 2617.77 7.33 356× 174,516,992,000 42,114,426 4143× 2.13 1.98 2.83 2.83

Avg 2.37 1.97 2.81 2.83

GAU

400 0.65 0.01 85× 41,712,000 115,939 359×
566 1.79 0.01 156× 118,966,408 226,615 524× 1.50 1.95 2.73 2.85
800 5.13 0.02 221× 337,504,000 426,427 791× 2.02 1.88 2.87 2.83

1131 14.23 0.07 191× 956,827,508 838,088 1141× 3.19 1.96 2.77 2.83
1600 41.16 0.23 181× 2,715,328,000 1,616,552 1679× 3.04 1.92 2.89 2.83
2262 114.15 0.50 227× 7,685,229,448 3,195,748 2404× 2.21 1.97 2.77 2.83
3200 330.05 1.17 282× 21,783,936,000 6,196,979 3515× 2.33 1.93 2.89 2.83
4524 914.85 2.37 386× 61,604,454,080 12,463,367 4942× 2.02 2.01 2.77 2.82
6400 2643.95 5.20 508× 174,516,992,000 23,596,890 7395× 2.19 1.89 2.89 2.83

Avg 2.31 1.93 2.82 2.83

GEO

400 0.64 0.01 73× 41,712,000 195,280 213×
566 1.82 0.01 133× 118,966,408 415,980 285× 1.57 2.13 2.85 2.85
800 5.03 0.03 143× 337,504,000 904,099 373× 2.55 2.17 2.76 2.83

1131 14.52 0.10 143× 956,827,508 1,922,566 497× 2.90 2.12 2.88 2.83
1600 40.34 0.30 133× 2,715,328,000 4,159,708 652× 2.98 2.16 2.77 2.83
2262 116.45 0.79 146× 7,685,229,448 9,338,712 822× 2.62 2.24 2.88 2.83
3200 323.51 2.03 159× 21,783,936,000 21,611,397 1007× 2.56 2.31 2.77 2.83
4524 933.33 4.45 209× 61,604,454,080 48,245,203 1276× 2.19 2.23 2.88 2.82
6400 2591.60 10.84 239× 174,516,992,000 112,442,210 1552× 2.43 2.33 2.77 2.83

Avg 2.47 2.21 2.82 2.83

Table 4. Comparing SF and BF in finding one Best Improving move on Traveling Salesman Problem
Library (TSPLIB) instances starting from a random tour (averaged over 1000 attempts).

Type Name Size Time (S) Number of Evaluated Triples

BF_avg SF_avg Speed-up BF SF_avg Reduction

euc2d kroA100 100 0.01 0.01 1× 608,000 33,124 18×
euc2d kroB100 100 0.01 0.01 1× 608,000 34,449 17×
euc2d kroC100 100 0.01 0.01 1× 608,000 36,688 16×
euc2d kroD100 100 0.01 0.01 1× 608,000 28,025 21×
euc2d kroE100 100 0.01 0.01 1× 608,000 39,838 15×
euc2d rd100 100 0.01 0.01 1× 608,000 20,005 30×
euc2d eil101 101 0.01 0.01 1× 627,008 20,652 30×
euc2d lin105 105 0.01 0.01 1× 707,000 38,662 18×
euc2d pr107 107 0.01 0.01 1× 749,428 99,522 7×
explicit gr120 120 0.02 0.01 2× 1,067,200 52,980 20×
euc2d pr124 124 0.02 0.01 2× 1,180,480 46,661 25×
euc2d bier127 127 0.02 0.01 2× 1,270,508 57,122 22×
euc2d ch130 130 0.02 0.01 2× 1,365,000 31,174 43×
euc2d pr136 136 0.02 0.01 2× 1,567,808 58,883 26×
geo gr137 137 0.02 0.01 2× 1,603,448 86,440 18×
euc2d pr144 144 0.02 0.01 2× 1,868,160 51,295 36×
euc2d ch150 150 0.02 0.01 2× 2,117,000 47,146 44×
euc2d kroA150 150 0.02 0.01 2× 2,117,000 93,533 22×
euc2d kroB150 150 0.02 0.01 2× 2,117,000 120,822 17×
euc2d pr152 152 0.02 0.01 2× 2,204,608 63,987 34×
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Table 4. Cont.

Type Name Size Time (S) Number of Evaluated Triples

BF_avg SF_avg Speed-up BF SF_avg Reduction

euc2d u159 159 0.03 0.01 3× 2,530,220 127,254 19×
explicit si175 175 0.03 0.01 3× 3,391,500 48,981 69×
explicit brg180 180 0.03 0.01 3× 3,696,000 33,125 111×
euc2d rat195 195 0.05 0.01 5× 4,717,700 196,516 24×
euc2d d198 198 0.04 0.02 2× 4,942,344 483,916 10×
euc2d kroA200 200 0.04 0.01 4× 5,096,000 221,364 23×
euc2d kroB200 200 0.04 0.01 4× 5,096,000 189,160 26×
geo gr202 202 0.04 0.01 4× 5,252,808 150,173 34×
euc2d ts225 225 0.05 0.01 5× 7,293,000 110,879 65×
euc2d tsp225 225 0.05 0.01 5× 7,293,000 141,260 51×
euc2d pr226 226 0.06 0.01 6× 7,392,008 215,307 34×
geo gr229 229 0.06 0.01 6× 7,694,400 233,132 33×
euc2d gil262 262 0.09 0.01 9× 11,581,448 190,348 60×
euc2d pr264 264 0.09 0.03 3× 11,851,840 1,248,519 9×
euc2d a280 280 0.10 0.02 5× 14,168,000 465,152 30×
euc2d pr299 299 0.12 0.02 6× 17,288,180 696,974 24×
euc2d lin318 318 0.17 0.02 8× 20,835,784 408,556 50×
euc2d rd400 400 0.31 0.02 15× 41,712,000 579,874 71×
euc2d fl417 417 0.37 0.09 4× 47,303,368 5,164,545 9×
euc2d pr439 439 0.38 0.03 12× 55,252,540 1,528,226 36×
euc2d pcb442 442 0.43 0.03 14× 56,400,968 759,689 74×
euc2d d493 493 0.60 0.06 10× 78,430,384 3,381,605 23×
explicit si535 535 0.73 0.07 10× 100,376,700 4,008,177 25×
geo ali535 535 0.84 0.05 16× 100,376,700 2,472,210 40×
explicit pa561 561 1.11 0.03 37× 115,824,808 1,041,688 111×
euc2d u574 574 1.08 0.05 21× 124,110,280 2,914,483 42×
euc2d rat575 575 0.93 0.08 11× 124,763,500 3,654,861 34×
euc2d p654 654 1.29 0.36 3× 183,926,600 27,434,417 6×
euc2d d657 657 1.37 0.05 27× 186,481,128 2,548,932 73×
geo gr666 666 1.42 0.07 20× 194,286,408 4,045,491 48×
euc2d u724 724 1.86 0.09 20× 249,866,880 5,334,184 46×
euc2d rat783 783 2.41 0.13 18× 316,364,364 8,343,380 37×
euc2d pr1002 1002 6.91 0.24 28× 664,664,008 11,357,581 58×
explicit si1032 1032 8.01 0.10 80× 726,360,128 2,854,805 254×
euc2d u1060 1060 8.90 0.60 14× 787,283,200 31,809,054 24×
euc2d vm1084 1084 9.88 0.42 23× 842,137,920 19,784,522 42×
euc2d pcb1173 1173 13.46 0.31 43× 1,067,736,544 12,760,475 83×
euc2d d1291 1291 19.35 0.39 49× 1,424,473,908 14,188,288 100×
euc2d rl1304 1304 20.30 0.46 44× 1,468,043,200 16,276,240 90×
euc2d rl1323 1323 21.15 0.51 41× 1,533,305,844 18,847,965 81×
euc2d nrw1379 1379 24.52 0.89 27× 1,736,850,500 34,849,494 49×
euc2d fl1400 1400 25.92 6.93 3× 1,817,592,000 243,306,185 7×
euc2d u1432 1432 27.88 0.67 41× 1,945,377,728 25,930,124 75×
euc2d fl1577 1577 39.56 0.93 42× 2,599,690,808 31,376,042 82×
euc2d d1655 1655 46.35 1.09 42× 3,005,645,500 34,926,807 86×
euc2d vm1748 1748 57.55 1.46 39× 3,542,370,944 44,030,401 80×
euc2d u1817 1817 64.49 1.98 32× 3,979,418,968 64,252,642 61×
euc2d rl1889 1889 77.10 2.61 29× 4,472,320,840 75,746,239 59×
euc2d d2103 2103 110.25 2.92 37× 6,173,990,204 83,064,101 74×
euc2d u2152 2152 119.08 4.28 27× 6,616,332,608 124,082,817 53×
euc2d u2319 2319 153.02 1.97 77× 8,281,782,860 64,064,827 129×
euc2d pr2392 2392 169.63 3.90 43× 9,089,848,768 103,550,009 87×
euc2d pcb3038 3038 465.93 9.31 50× 18,637,364,424 198,847,218 93×
euc2d fl3795 3795 908.77 21.84 41× 36,350,761,700 480,093,617 75×
euc2d fnl4461 4461 1476.62 36.08 40× 59,064,805,808 692,003,539 85×
euc2d rl5915 5915 3443.91 69.08 49× 137,756,446,100 1,237,347,739 111×
euc2d rl5934 5934 3477.22 78.93 44× 139,088,885,320 1,460,420,878 95×
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Figure 2. Plots of possible fittings of the time for finding the first best move (GEO instances).
The multiplicative constants are α ' 4.44× 10−8, β ' 0.33× 10−8, and γ ' 0.02× 10−8.

5.3. Experiment 2: Convergence to a Local Optimum

5.3.1. Random Instances

A second set of experiments concerned the behavior of our algorithm over a sequence of iterations,
i.e., in a full local search convergence starting from a random tour until a local optimum is reached.
Since the time required for this experiment is considerable, we ran it only on a subset of the previous
instances, namely the instances with n ≤ 1600.

The goal of the experiment was to assess how much the method is sensible to the quality of the
current tour. Note that for BF the quality of the tour is irrelevant as the time needed for finding the best
move is in practice constant at each step since all moves must be looked at (actually, the number of
times the optimum gets updated is variable and this accounts for tiny differences in the time needed for
a move). With our method, however, the quality of the current tour matters: when the tour is “poor”,
we expect to have a heap with a large number of candidates but we also expect that most extractions
from the heap will be winning (i.e., they determine an improvement of the current champion) so
that the stopping criterion is reached relatively soon. On the other hand, if the tour is “very good”,
we expect to have a small heap, since there are few candidates moves that can be improving, but we also
expect that most extractions from the heap will be losing (i.e., they won’t determine an improvement
of the current champion) so that the stopping criterion will be hard to reach.

We can summarize this idea with the following trade-off:

(i) When there are many improving moves (i.e., at the beginning of local search) we have many
candidates on the heap, but the pruning is effective and we only expand a few of them.

(ii) When there aren’t many improving moves (i.e., near the local optimum) we have very few
candidates on the heap, but the pruning is not effective and we need to expand most of them.

The time for a move is the product between the number M of expansions and the cost Θ(n) of an
expansion and so we are interested in determining how M changes along the convergence.

The experiment was conducted as follows. We used random instances of the families described
before. For each value of n and instance type, we generated 10 random instances and for each of
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them, we started 10 times a convergence from a random tour (a total of 100 runs for each value of n).
For each run we took 10 “snapshots” at 10%, 20%, . . . , 100% of the search. In particular, we divided the
path followed to the local optimum into ten parts and averaged the values over each of these parts
(notice that the paths can have different lengths but this way we normalize them, in the sense that we
consider 10 cases, i.e., “very close to the random starting tour and very far from the local optimum”
(first 10%), then one step farther from the random tour and closer to the optimum, etc., until “very far
to the random starting tour and very close to the local optimum” (last 10%)).

The results are summarized in Table 5. Rows labeled BFtime and SFtime report, respectively,
the average time of BF and SF (in milliseconds, rounded to an integer) for each tenth of the convergence.
The column labeled “Avg time” reports the average time of each convergence and of each move within
the convergence over all 100 tests for each instance size, for both BF and SF. The final column “Speed-up”
reports the speed-up factor of SF over BF.

Rows “SF heap” report the average size of the heap. Rows “SF exps” report the average number
of expansions (i.e., elements popped from the heap). Rows “SF wins” report the average number of
winning expansions (i.e., improvements of the champion).

The behavior of SF seems to be sensible to the type of edge costs involved. While for UNI and
GAU graphs the statistics are very similar, the running times for GEO instances are slightly larger.
If we look at row “SF heap” it can be seen how the numbers along these rows decrease very quickly
during the convergence for all types of instances. One interesting phenomenon, however, is that in
GEO instances we start with a larger heap than for UNI and GAU, but we end with a smaller one,
so that the rate of decrease in the heap size is higher for this type of instance.

The analysis of rows “SF exps” shows how for UNI and GAU instances, the numbers are relatively
stable in the beginning and then start to increase around halfway through the convergence. For GEO
instances, on the other hand, these values start by increasing until they reach a peak at around 20%,
and then they start to drastically decrease.

Finally the rows “SF wins” for all instance types contain numbers which are quite small, stable in
the beginning and then decreasing until the end of the convergence.

From Table 5 we can see that the net effect of having fewer elements on the heap but more
expansions is that SF takes more or less the same time along the convergence. This is particularly true
for UNI and GAU instances, with a little slow down while approaching the local optimum, while for
GEO instances the effectiveness of the method increases when nearing the local optimum.

In Figure 3 we can see a graphic visualization of the aforementioned trade-off effect between the
heap size and the number of expansions. The figure describes the way the heap size and the number
of expansions change during the convergence for the 100 UNI instances of size n = 1600. Since the
lengths of the convergences are different, they have been normalized to 100 steps.

Table 5. Comparing SF and BF in converging to a local optimum starting from a random tour.

Type: UNI Convergence Achievement Percentage (Times in Millisec) Avg Time (S) Speed-Up
Size 0–10% 10–20% 20–30% 30–40% 40–50% 50–60% 60–70% 70–80% 80–90% 90–100% per conv. per move

400 BF time 270 270 270 270 270 270 270 270 270 270 89.706 0.270
SF time 10 10 10 10 10 10 10 10 10 10 3.196 0.010 28×
SF heap 28,323 27,938 24,305 23,474 19,134 12,512 8385 5994 4674 3902
SF exps 1660 1683 1653 1520 1651 1869 2102 2306 2560 2703
SF wins 8 8 8 8 6 6 5 4 3 2

566 BF time 790 790 790 790 790 790 790 790 790 790 384.567 0.789
SF time 10 10 10 10 10 10 20 20 20 20 7.309 0.015 52×
SF heap 50,592 50,104 42,952 40,692 31,349 19,848 13,007 9268 7183 6047
SF exps 2446 2437 2406 2194 2629 2932 3251 3618 3993 4232
SF wins 8 9 9 8 7 6 5 4 4 2

800 BF time 2350 2360 2360 2360 2360 2360 2360 2360 2360 2360 1679.230 2.356
SF time 30 30 30 30 30 40 40 40 40 40 25.876 0.036 64×
SF heap 90,223 89,697 75,887 71,931 51,365 31,304 20,344 14,385 11,160 9386
SF exps 3570 3509 3518 3274 4076 4575 5106 5697 6249 6641
SF wins 9 9 9 8 7 6 5 5 4 3
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Table 5. Cont.

Type: UNI Convergence Achievement Percentage (Times in Millisec) Avg Time (S) Speed-Up
Size 0–10% 10–20% 20–30% 30–40% 40–50% 50–60% 60–70% 70–80% 80–90% 90–100% per conv. per move

1131 BF time 13,920 13,840 13,840 13,900 13,940 13,930 13,930 14,030 13,890 13,810 14,502.100 13.904
SF time 170 170 170 170 190 200 210 220 230 240 204.559 0.196 70×
SF heap 162,645 161,897 134,756 124,316 82,993 49,690 31,861 22,490 17,348 14,658
SF exps 5223 5135 5164 4960 6297 7158 8025 8955 9613 10,466
SF wins 9 10 10 8 7 6 5 5 4 3

1600 BF time 45,220 45,320 45,190 45,220 45,010 45,090 44,860 44,940 44,900 45,020 68,378.500 45.075
SF time 400 400 390 400 450 470 500 540 570 580 714.949 0.473 95×
SF heap 287,797 290,431 235,283 218,438 136,581 79,698 50,224 35,107 27,131 22,714
SF exps 7712 7611 7566 7598 9853 11,000 12,333 14,058 15,254 16,105
SF wins 10 10 11 9 8 7 6 5 4 3

400 BF time 270 270 270 270 270 270 270 270 270 270 72.014 0.269
SF time 10 10 10 10 10 10 10 10 10 10 2.558 0.010 28×
SF heap 21,527 22,403 22,803 22,377 20,184 13,127 7995 5499 4256 3604
SF exps 1373 1642 1714 1723 1674 1806 2013 2267 2483 2602
SF wins 8 8 8 8 8 7 6 5 3 2

566 BF time 790 790 790 790 790 790 790 790 790 790 306.899 0.790
SF time 10 10 10 10 10 10 10 20 20 20 5.672 0.015 54×
SF heap 38,263 39,686 40,622 39,908 34,209 19,657 11764 8049 6168 5141
SF exps 2041 2452 2581 2527 2436 2725 3125 3360 3559 3694
SF wins 8 8 9 9 8 7 6 5 4 2

800 BF time 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 1341.560 2.397
SF time 30 40 40 40 30 40 40 40 40 40 20.177 0.036 66×
SF heap 67,366 68,982 71,086 69,951 57,319 30,939 18,068 12,386 9458 7915
SF exps 3120 3786 3893 3779 3669 4200 4787 5208 5444 5672
SF wins 9 9 9 9 9 7 6 5 4 3

1131 BF time 13,680 13,470 13,630 13,550 13,660 13,360 13,510 13,440 13,670 13,670 11,107.700 13.563
SF time 170 180 190 180 180 190 200 210 210 210 156.108 0.193 71×
SF heap 118,999 120,647 124,113 122,505 92,853 45,953 26,457 18,219 14,015 11,834
SF exps 4665 5685 5958 5627 5562 6517 7244 7869 8268 8644
SF wins 10 10 10 10 9 8 6 5 4 3

1600 BF time 44,800 44,850 44,590 44,370 44,370 44,760 44,570 44,400 44,050 44,590 50,638.800 44.537
SF time 400 440 440 430 420 460 480 500 500 510 535.140 0.459 94×
SF heap 210,066 216,037 217,268 213,260 154,158 70,932 40,621 27,676 21,196 17,722
SF exps 7157 8705 8994 8645 8263 9987 11,196 12,073 12,542 12,765
SF wins 10 10 10 11 10 8 7 5 4 3

400 BF time 270 270 270 270 270 270 270 270 270 270 78.551 0.269
SF time 10 20 10 10 10 10 10 10 10 10 3.046 0.010 25×
SF heap 31,272 32,339 26,571 20,321 15,512 11,252 7283 4500 3022 2346
SF exps 3133 6161 4650 2343 1570 1401 1420 1471 1641 1798
SF wins 8 8 8 8 7 7 7 6 4 3

566 BF time 790 790 790 790 790 790 790 790 790 790 336.166 0.791
SF time 20 30 30 20 10 10 10 10 10 10 7.322 0.017 45×
SF heap 56,204 59,118 47,237 34,456 25,403 17,923 11,397 6730 4321 3324
SF exps 5496 11179 7773 3375 2186 1989 1943 2030 2272 2573
SF wins 9 9 9 8 8 8 7 6 5 3

800 BF time 2380 2380 2380 2380 2380 2380 2380 2380 2380 2380 1481.160 2.379
SF time 60 90 70 40 30 30 30 30 30 30 27.153 0.044 54×
SF heap 101,220 108,105 83,468 57,809 40,901 28,319 17,052 9807 6149 4652
SF exps 9393 21,020 13,175 4982 3113 2774 2778 2901 3213 3595
SF wins 9 10 9 9 8 8 7 6 5 4

1131 BF time 13,830 13,800 13,920 13,790 13,730 13,810 13,830 13,980 13,760 13,820 12,415.400 13.826
SF time 320 600 380 200 160 150 150 160 170 180 222.356 0.247 55×
SF heap 185,437 200,065 149,514 98,606 66,750 46,256 26,951 14,811 8962 6624
SF exps 17,331 40,887 23,214 7841 4417 3879 3930 4007 4483 5079
SF wins 10 10 10 10 9 8 8 6 6 4

1600 BF time 44,440 44,820 44,680 44,400 44,470 44,720 44,520 44,260 44,190 44,650 59,153.900 44.510
SF time 910 1920 1120 470 370 360 350 360 380 410 871.779 0.664 67×
SF heap 335,039 371,782 263,962 166,173 111,092 71,459 40,862 21,573 12,611 9327
SF exps 31,745 80,773 42,948 11,235 6232 5492 5310 5586 6313 7201
SF wins 11 11 10 10 9 9 8 7 6 4
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Figure 3. Uniform (UNI) n = 1600, averages on 100 convergences, each of 100 steps (obtained by
normalizing convergences of different lengths).

That is, for each convergence i = 1, . . . , 100 and step k = 1, . . . , 100 we have determined hi
k (the

average heap size in the interval from k− 1 to k percent of the i-th convergence), ei
k (the average number

of expansions in the same interval) and ti
k (the average time for a move in the interval). Once all the

convergences have been normalized to have the same length, we have taken the average of values h, e
and t over all convergences in each of the 100 intervals. For each interval k, let h̄k be the average of
hi

k over all i, and define similarly the averages ēk and t̄k. The plots of h̄, ē and t̄ are shown in Figure 3.
The x axis is labeled by the 100 intervals. The y-axis is labeled by the number of elements (left) and by
the time in seconds (right). It can be seen that the heap size starts by staying more or less constant
for about 20% of the convergence and then starts to rapidly decrease (with the exception of a peak
at around 40%). The number of expansions stays more or less constant for about one-third of the
convergence and then starts to increase in a linear fashion. The time for each move follows a similar
curve, since t̄ is proportional (with a factor n) to ē. The two curves for h̄ and ē approach each other
until they almost touch at the end, when, basically, all of the heap elements must be expanded and
pruning is ineffective.

Overall, as shown by Table 4, the use of SF over BF allows for speed-up factors of about two
orders of magnitude on instances of 1600 nodes.

5.3.2. TSPLIB Instances

We then performed the same type of experiment on the TSPLIB instances previously described.
For each instance we ran a local search all to way to convergence to a local optimum, starting from 100
random tours.

The results are reported in Table 6. This type of experiment is extremely time-consuming when
BF is run on large graphs. For this reason, not all the times for BF are actual real values, but the results
for graphs with n ≥ 3000 are actually estimates of the running times. In particular, when n ≥ 3000,
BF would have to evaluate more than 18 billion triples at each move. Say the exact number is Tn.
Then we only evaluate the first T0 := 100, 000, 000 triples. Assume this takes time t0 (usually less
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than 2 s on our computer). Then we estimate the actual time of a move as tn := t0(Tn/T0). This is
indeed a lower bound since in computing t0 we do not account for updates to the current best triple
(i.e., we removed the if and its body from the nested for loop of BF).

From Table 6 we can see that SF outperforms BF with improvements that range from 500% faster to
more than 20,000% faster (instance pcb3038). These improvements are smaller than those for random
graphs, but still, the experiment shows how with our method it is now possible to run a local search
by using the 3-OPT neighborhood on TSPLIB instances that were previously impossible to tackle.
For instance, reaching a 3-OPT local optimum for pcb3038 with the BF nested-for procedure would
have taken at least two weeks (!) while with SF it can be done in less than 2 h.

Table 6. Average times needed to perform convergences to a local optimum tour starting from 100
different random tours. Instances are taken from TSPLIB. BruteForce running times are estimated for
sizes larger than 3000.

Type Name Size Time per Convergence Time per Move (S) Evaluated Triples per Move

BF SF Speed-up BF SF BF SF Reduct

euc2d kroA100 100 0.23 s 0.03 s 8× 0.000036 0.000004 608,000 16,136 37×
euc2d kroB100 100 0.23 s 0.03 s 7× 0.000036 0.000004 608,000 16,290 37×
euc2d kroC100 100 0.25 s 0.03 s 7× 0.000038 0.000005 608,000 16,244 37×
euc2d kroD100 100 0.22 s 0.03 s 7× 0.000035 0.000005 608,000 15,758 38×
euc2d kroE100 100 0.23 s 0.03 s 7× 0.000036 0.000004 608,000 17,167 35×
euc2d rd100 100 0.23 s 0.04 s 6× 0.000036 0.000005 608,000 14,681 41×
euc2d eil101 101 0.27 s 0.03 s 10× 0.000044 0.000004 627,008 14,451 43×
euc2d lin105 105 0.33 s 0.04 s 9× 0.000048 0.000005 707,000 20,968 33×
euc2d pr107 107 0.31 s 0.06 s 4× 0.000045 0.000009 749,428 53,947 13×
explicit gr120 120 0.49 s 0.06 s 7× 0.000062 0.000007 1,067,200 27,039 39×
euc2d pr124 124 0.57 s 0.07 s 8× 0.000068 0.000008 1,180,480 30,314 38×
euc2d bier127 127 0.73 s 0.09 s 8× 0.000089 0.000010 1,270,508 44,807 28×
euc2d ch130 130 0.76 s 0.08 s 9× 0.000089 0.000008 1,365,000 26,041 52×
euc2d pr136 136 1.01 s 0.08 s 12× 0.000111 0.000008 1,567,808 34,011 46×
geo gr137 137 1.11 s 0.10 s 11× 0.000117 0.000010 1,603,448 39,818 40×
euc2d pr144 144 1.19 s 0.11 s 10× 0.000116 0.000010 1,868,160 41,718 44×
euc2d ch150 150 1.24 s 0.12 s 10× 0.000125 0.000011 2,117,000 30,511 69×
euc2d kroA150 150 1.36 s 0.11 s 12× 0.000134 0.000010 2,117,000 40,178 52×
euc2d kroB150 150 1.27 s 0.11 s 11× 0.000125 0.000010 2,117,000 44,212 47×
euc2d pr152 152 1.31 s 0.15 s 8× 0.000129 0.000014 2,204,608 66,940 32×
euc2d u159 159 1.62 s 0.15 s 10× 0.000150 0.000013 2,530,220 50,000 50×
explicit si175 175 2.22 s 0.18 s 12× 0.000200 0.000015 3,391,500 43,200 78×
explicit brg180 180 2.55 s 0.14 s 17× 0.000227 0.000012 3,696,000 19,631 188×
euc2d rat195 195 4.91 s 0.30 s 16× 0.000359 0.000021 4,717,700 65,994 71×
euc2d d198 198 4.89 s 0.53 s 9× 0.000346 0.000037 4,942,344 211,876 23×
euc2d kroA200 200 4.27 s 0.29 s 14× 0.000307 0.000020 5,096,000 79,662 63×
euc2d kroB200 200 4.28 s 0.27 s 16× 0.000308 0.000019 5,096,000 74,282 68×
geo gr202 202 4.30 s 0.32 s 13× 0.000312 0.000023 5,252,808 114,969 45×
euc2d ts225 225 7.20 s 0.37 s 19× 0.000436 0.000022 7,293,000 69,747 104×
euc2d tsp225 225 6.87 s 0.37 s 18× 0.000438 0.000023 7,293,000 78,513 92×
euc2d pr226 226 6.93 s 0.45 s 15× 0.000438 0.000028 7,392,008 130,923 56×
geo gr229 229 7.85 s 0.43 s 18× 0.000485 0.000026 7,694,400 113,495 67×
euc2d gil262 262 13.94 s 0.63 s 21× 0.000764 0.000034 11,581,448 107,253 107×
euc2d pr264 264 14.56 s 1.76 s 8× 0.000753 0.000091 11,851,840 582,904 20×
euc2d a280 280 17.47 s 0.86 s 20× 0.000895 0.000043 14,168,000 148,764 95×
euc2d pr299 299 24.69 s 1.31 s 18× 0.001106 0.000058 17,288,180 237,572 72×
euc2d lin318 318 36.14 s 1.48 s 24× 0.001561 0.000063 20,835,784 202,095 103×
euc2d rd400 400 1 min 29.01 s 2.77 s 32× 0.003020 0.000094 41,712,000 272,730 152×
euc2d fl417 417 1 min 49.92 s 7.56 s 14× 0.003488 0.000239 47,303,368 1,223,927 38×
euc2d pr439 439 2 min 3.84 s 4.62 s 26× 0.003662 0.000136 55,252,540 584,003 94×
euc2d pcb442 442 2 min 12.40 s 3.53 s 37× 0.004095 0.000109 56,400,968 333,187 169×
euc2d d493 493 3 min 28.93 s 7.82 s 26× 0.005774 0.000216 78,430,384 1,127,410 69×
explicit si535 535 4 min 18.27 s 10.05 s 25× 0.007114 0.000277 100,376,700 1,565,152 64×
geo ali535 535 5 min 41.66 s 10.73 s 31× 0.008312 0.000261 100,376,700 1,695,421 59×
explicit pa561 561 7 min 3.19 s 5.76 s 73× 0.010472 0.000143 115,824,808 567,301 204×
euc2d u574 574 7 min 35.81 s 8.34 s 54× 0.010323 0.000188 124,110,280 915,879 135×
euc2d rat575 575 6 min 32.08 s 11.08 s 35× 0.009000 0.000256 124,763,500 960,004 129×
euc2d p654 654 10 min 26.77 s 40.87 s 15× 0.012445 0.000812 183,926,600 5,691,973 32×
euc2d d657 657 11 min 8.90 s 12.13 s 55× 0.013224 0.000239 186,481,128 1,129,597 165×
geo gr666 666 11 min 49.99 s 18.80 s 37× 0.013609 0.000360 194,286,408 2,169,157 89×
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Table 6. Cont.

Type Name Size Time per Convergence Time per Move (S) Evaluated Triples per Move

BF SF Speed-up BF SF BF SF Reduct

euc2d u724 724 17 min 7.68 s 18.39 s 55× 0.018141 0.000325 249,866,880 1,508,776 165×
euc2d rat783 783 23 min 32.28 s 25.51 s 55× 0.023419 0.000423 316,364,364 2,074,088 152×

euc2d pr1002 1002 1h 17 min
33.75 s 1 min 10.49 s 66× 5.759591 0.086281 664,664,008 3,309,044 200×

explicit si1032 1032 1 h 19 min
20.40 s 1 min 16.41 s 62× 6.620862 0.106720 726,360,128 4,828,852 150×

euc2d u1060 1060 1 h 42 min
52.56 s 2 min 22.57 s 43× 7.119446 0.158585 787,283,200 6,946,337 113×

euc2d vm1084 1084 2 h 23 min
26.78 s 1 min 57.18 s 73× 9.595072 0.130059 842,137,920 4,662,438 180×

euc2d pcb1173 1173 2 h 49 min
37.60 s 1 min 57.84 s 86× 10.769947 0.125490 1,067,736,544 3,809,648 280×

euc2d d1291 1291 4 h 39 min
48.60 s 3 min 6.53 s 90× 15.030080 0.170189 1,424,473,908 5,350,874 266×

euc2d rl1304 1304 5 h 44 min
46.60 s 3 min 29.59 s 98× 19.189795 0.190365 1,468,043,200 5,014,495 292×

euc2d rl1323 1323 6 h 30.20 s 3 min 41.86 s 97× 19.880698 0.203358 1,533,305,844 5,591,363 274×

euc2d nrw1379 1379 6 h 10 min
16.00 s 4 min 44.64 s 78× 19.419580 0.251897 1,736,850,500 7,465,279 232×

euc2d fl1400 1400 6 h 31 min
4.60 s 22 min 31.22 s 17× 21.063375 1.186321 1,817,592,000 43,868,182 41×

euc2d u1432 1432 6 h 43 min
17.80 s 4 min 16.01 s 94× 22.118647 0.229192 1,945,377,728 6,643,893 292×

euc2d fl1577 1577 11 h 36 min
11.30 s 9 min 28.24 s 73× 30.247139 0.423430 2,599,690,808 13,612,026 190×

euc2d d1655 1655 13 h 18 min
1.80 s 8 min 37.20 s 92× 34.496974 0.376148 3,005,645,500 10,602,602 283×

euc2d vm1748 1748 22 h 42 min
38.40 s 12 min 59.16 s 104× 55.279513 0.527883 3,542,370,944 12,057,284 293×

euc2d u1817 1817 22 h 16 min
40.00 s 14 min 25.74 s 92× 52.247557 0.564738 3,979,418,968 15,075,802 263×

euc2d rl1889 1889 1 day 9 h 41
min 56.00 s 20 min 57.61 s 96× 74.199388 0.769651 4,472,320,840 17,805,568 251×

euc2d d2103 2103 1 day 18 h 55
min 27.00 s 24 min 13.78 s 106× 83.845360 0.776591 6,173,990,204 19,466,626 317×

euc2d u2152 2152 2 day 1 min
17.00 s 33 min 9.13 s 86× 93.903856 1.079289 6,616,332,608 27,790,153 238×

euc2d u2319 2319 2 day 13 h 49
min 18.00 s 20 min 37.50 s 179× 130.379613 0.724956 8,281,782,860 17,871,452 463×

euc2d pr2392 2392 3 day 2 h 35
min 26.00 s 37 min 40.77 s 118× 130.415735 1.083782 9,089,848,768 23,979,044 379×

euc2d pcb3038 3038 15 day 2 h 23
min 35.51s

1 h 41 min
4.11 s 215× 494.172541 2.297011 18,637,364,424 42,689,419 436×

euc2d fl3795 3795 29 day 10 h 49
min 13.32s 8 h 27.90 s 88× 771.778380 8.743676 36,350,761,700 189,013,692 192×

euc2d fnl4461 4461 47 day 20 h 28
min 56.41 s

9 h 21 min
3.70 s 122× 1035.965022 8.434903 59,064,805,808 140,512,377 420×

euc2d rl5915 5915 111 day 14 h
35 min 51.23s

23 h 46 min
57.90 s 112× 1774.558562 15.755962 137,756,446,100 251,517,395 547×

euc2d rl5934 5934 112 day 16 h
30 min 21.97s

1 day 3 h 55 m
5.00 s 96× 1771.510548 18.286935 139,088,885,320 306,301,694 454×

6. Other Types of Cubic Moves

The ideas outlined for the 3-OPT neighborhood and the corresponding successful computational
results have prompted us to investigate the possibility of speeding up in a similar way some other
type of cubic moves. In this section, we just give a few examples to show that indeed this can be done.

Consider, for instance, some special types of K-OPT moves (where K > 3 edges are taken out from
the tour and replaced by K new edges) in which the removed edges are identified by three indexes
i1, i2, i3. For instance, let K = 6 and the removed edges be

{i1 	 1, i1}, {i1, i1 ⊕ 1}, {i2 	 1, i2}, {i2, i2 ⊕ 1}, {i3 	 1, i3}, {i3, i3 ⊕ 1}.

The tour is then reconnected in any way that excludes the removed edges (clearly there are many
possibilities, we’ll just look at a few). To describe the way in which the tour is reconnected we can
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still use the concept of the reinsertion scheme. Let us describe the tour before the move (by default,
clockwise) as

A, i1, B, i2, C, i3,

where A = (i3 ⊕ 1, . . . , i1 	 1), B = (i1 ⊕ 1, . . . , i2 	 1) and C = (i2 ⊕ 1, . . . , i3 	 1). In the new tour,
each segment X ∈ {A, B, C} can be traversed clockwise (denoted by X+) or counter-clockwise (denoted
by X−). A reinsertion scheme is then a permutation of {A+, B, C, i1, i2, i3}, starting with A+ (we adopt
the convention that A is always the first segment and is always traversed clockwise) and with B and
C signed either ’+’ or ’-’. Let us first consider two simple examples of reinsertion schemes, i.e., those
in which the move maintains the pattern “segment, node, segment, node, segment, node” and the
segments keep the clockwise orientation and the original order (i.e., A+, B+, C+). This leaves only two
possible reinsertion schemes for the true moves (as many as the derangements of {1, 2, 3}), namely (see
Figure 4)

r5 :=< A+, i2, B+, i3, C+, i1 >

r6 :=< A+, i3, B+, i1, C+, i2 >

i1 	 1
i1

i1 ⊕ 1

i2 	 1

i2

i2 ⊕ 1i3 	 1

i3

i3 ⊕ 1

r5 =< A+ , i2, B+ , i3, C+ , i1 > r6 =< A+ , i3, B+ , i1, C+ , i2 > r7 =< A+ , i3, B− , i2, C− , i1 >

r8 =< A+ , C− , B+ , i3, i1, i2 > r9 =< A+ , i2, B+ , i1, C− >

i1 	 1
i1

i1 ⊕ 1

i2 	 1

i2

i2 ⊕ 1i3 	 1

i3

i3 ⊕ 1

i1 	 1
i1

i1 ⊕ 1

i2 	 1

i2

i2 ⊕ 1i3 	 1
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i3 ⊕ 1
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i1

i1 ⊕ 1

i2 	 1

i2
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i1 	 1
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i2 	 1
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i2 ⊕ 1

i3 ⊕ 1

i3

Figure 4. The reinsertion schemes of some special cubic moves.

The value of a move ((i1, i2, i3), r5) is ∆((i1, i2, i3), r5) =

= [c(i1 	 1, i1) + c(i1, i1 ⊕ 1) + c(i2 	 1, i2) + c(i2, i2 ⊕ 1) + c(i3 	 1, i3) + c(i3, i3 ⊕ 1)]−
[c(i1, i3 	 1) + c(i1, i3 ⊕ 1) + c(i2, i1 	 1) + c(i2, i1 ⊕ 1) + c(i3, i2 	 1) + c(i3, i2 ⊕ 1)]

=[τ+(i2, i1) + τ−(i2, i1)] + [τ+(i3, i2) + τ−(i3, i2)] + [τ+(i1, i3) + τ−(i1, i3)]

So we have
∆((i1, i2, i3), r5) = f 12

r5
(i1, i2) + f 23

r5
(i2, i3) + f 13

r5
(i1, i3)

if we define the three functions f α
r to be
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f 12
r5

: (x, y) ∈ S12 7→ τ+(y, x) + τ−(y, x)
f 23
r5

: (x, y) ∈ S23 7→ τ+(y, x) + τ−(y, x)
f 13
r5

: (x, y) ∈ S13 7→ τ+(x, y) + τ−(x, y)

Similarly, a move ((i1, i2, i3), r6) has value ∆((i1, i2, i3), r6) =

= [c(i1 	 1, i1) + c(i1, i1 ⊕ 1) + c(i2 	 1, i2) + c(i2, i2 ⊕ 1) + c(i3 	 1, i3) + c(i3, i3 ⊕ 1)]−
[c(i1, i2 	 1) + c(i1, i2 ⊕ 1) + c(i2, i3 	 1) + c(i2, i3 ⊕ 1) + c(i3, i1 	 1) + c(i3, i1 ⊕ 1)]

=[τ+(i1, i2) + τ−(i1, i2)] + [τ+(i2, i3) + τ−(i2, i3)] + [τ+(i3, i1) + τ−(i3, i1)]

= f 12
r6
(i1, i2) + f 23

r6
(i2, i3) + f 13

r6
(i1, i3),

where we have defined the three functions f α
r as

f 12
r6

: (x, y) ∈ S12 7→ τ+(x, y) + τ−(x, y)
f 23
r6

: (x, y) ∈ S23 7→ τ+(x, y) + τ−(x, y)
f 13
r6

: (x, y) ∈ S13 7→ τ+(y, x) + τ−(y, x)

Let us now consider the case of the above move when we keep the order A, B, C, but we also
allow for reversing either B or C. It turns out that, over all the signings of B and C and permutations
of i1, i2, i3, there is only one possible reinsertion scheme, namely (see Figure 4)

r7 :=< A+, i3, B−, i2, C−, i1 > .

The value of a move ((i1, i2, i3), r7) is ∆((i1, i2, i3), r7) =

= [c(i1 	 1, i1) + c(i1, i1 ⊕ 1) + c(i2 	 1, i2) + c(i2, i2 ⊕ 1) + c(i3 	 1, i3) + c(i3, i3 ⊕ 1)]−
[c(i1, i2 ⊕ 1) + c(i1, i3 ⊕ 1) + c(i2, i1 ⊕ 1) + c(i2, i3 	 1) + c(i3, i1 	 1) + c(i3, i2 	 1)]

=[τ+(i1, i2) + τ+(i2, i1)] + [τ−(i2, i3) + τ−(i3, i2)] + [τ+(i1 	 1, i3 	 1) + τ−(i3 ⊕ 1, i1 ⊕ 1)]

= f 12
r7
(i1, i2) + f 23

r7
(i2, i3) + + f 13

r7
(i1, i3),

where we have defined the three functions f α
r as

f 12
r7

: (x, y) ∈ S12 7→ τ+(x, y) + τ+(y, x)
f 23
r7

: (x, y) ∈ S23 7→ τ−(x, y) + τ−(y, x)
f 13
r7

: (x, y) ∈ S13 7→ τ+(x	 1, y	 1) + τ−(y⊕ 1, x⊕ 1)

Finally, let us consider one last example of these special 6-OPT moves, in which we rearrange the
permutation of segments and nodes, namely (see Figure 4)

r8 :=< A+, C−, B+, i3, i1, i2 > .

The value of a move ((i1, i2, i3), r8) is ∆((i1, i2, i3), r8) =

= [c(i1 	 1, i1) + c(i1, i1 ⊕ 1) + c(i2 	 1, i2) + c(i2, i2 ⊕ 1) + c(i3 	 1, i3) + c(i3, i3 ⊕ 1)]−
[c(i1 	 1, i3 	 1) + c(i1, i3) + c(i2 	 1, i3) + c(i2, i3 ⊕ 1) + c(i1, i2) + c(i1 ⊕ 1, i2 ⊕ 1)]

=[τ−(i1 ⊕ 1, i2 ⊕ 2) + τ−(i2, i1 ⊕ 1)] + [τ+(i2, i3) + τ−(i3, i2)] + [τ+(i1 	 1, i3 	 2) + τ+(i3, i1 	 1)]

= f 12
r8
(i1, i2) + f 23

r8
(i2, i3) + + f 13

r8
(i1, i3),

where we have defined the three functions f α
r as

f 12
r8

: (x, y) ∈ S12 7→ τ−(x⊕ 1, y⊕ 2) + τ−(y, x⊕ 1)
f 23
r8

: (x, y) ∈ S23 7→ τ+(x, y) + τ−(y, x)
f 13
r8

: (x, y) ∈ S13 7→ τ+(x	 1, y	 2) + τ+(y, x	 1)



Algorithms 2020, 13, 306 25 of 27

To finish this section let us consider another type of cubic move, for example, a special 5-OPT
move. In particular, let the removed edges be

{i1 	 1, i1}, {i1, i1 ⊕ 1}, {i2 	 1, i2}, {i2, i2 ⊕ 1}, {i3, i3 ⊕ 1}.

The tour is then reconnected in any way that excludes the removed edges (clearly there are many
possibilities, we will just look at one of them). By using the previous notation for the reinsertion
schemes, let us consider the scheme (see Figure 4)

r9 :=< A+, i2, B+, i1, C− > .

The value of a move ((i1, i2, i3), r9) is ∆((i1, i2, i3), r9) =

= [c(i1 	 1, i1) + c(i1, i1 ⊕ 1) + c(i2 	 1, i2) + c(i2, i2 ⊕ 1) + c(i3, i3 ⊕ 1)]−
[c(i1 	 1, i2) + c(i1, i2 	 1) + c(i1 ⊕ 1, i2) + c(i2 ⊕ 1, i3 ⊕ 1) + c(i3, i1)]

=[τ−(i1 ⊕ 1, i2 ⊕ 1) + τ+(i1 	 1, i2 	 1) + τ+(i2 	 1, i1 	 1)] + τ−(i2 ⊕ 1, i3 + 2) + τ+(i3, i1 	 1)

= f 12
r9
(i1, i2) + f 23

r9
(i2, i3) + f 13

r9
(i1, i3),

where we have defined the three functions f α
r as

f 12
r9

: (x, y) ∈ S12 7→ τ−(x⊕ 1, y⊕ 1) + τ+(x	 1, y	 1) + τ+(y	 1, x	 1)
f 23
r9

: (x, y) ∈ S23 7→ τ−(x⊕ 1, y⊕ 2)
f 13
r9

: (x, y) ∈ S13 7→ τ+(y, x	 1)

It should be clear that, to find the best move of the special types described in this section,
we can put the partial moves in a heap and use the same strategy we have developed in Section 4.
The algorithm is the same as before, with the difference that in line 2 of procedure BUILDHEAP we
iterate over the schemes r5, . . . , r9 instead of r1, . . . , r4.

7. Conclusions

In this work, we have described an algorithmic strategy for optimizing the 3-OPT neighborhood
in an effective way. Our strategy relies on a particular order of enumeration of the triples which allows
us to find the best 3-OPT move without having to consider all the possibilities. This is achieved by a
pruning rule and by the use of the max-heap as a suitable data structure for finding in a quick way
good candidates for the best move.

Extensive computational experiments prove that this strategy largely outperforms the classical
Θ(n3) “nested-for” approach on average. In particular, our approach exhibits a time complexity
bounded by O(n2.5) on various types of random graphs.

The goal of our work was to show how the use of the 3-OPT neighborhood can be extended to
graphs of much larger size than before. We did not try to assess the effectiveness of this neighborhood
in finding good-quality tours, nor possible refinements to 3-OPT local search (such as restarts,
perturbations, the effectiveness of the other type of 3-OPT moves we introduced, etc.). These types
of investigations would have required a large set of experiments and further coding, and can be the
matter of future research. We also leave to further investigation the possibility of using our type of
enumeration strategy for other polynomial-size neighborhoods, including some for different problems
than the TSP. In this respect, we have obtained some promising preliminary results for the application
of our approach to the 4-OPT neighborhood [17].

Perhaps the main open question deriving from our work is to prove that the expected time
complexity of our algorithm is subcubic on, for instance, uniform random graphs. Note that the
problem of finding the best 3-OPT move is the same as that of finding the largest triangle in a complete
graph with suitable edge lengths Lij. For instance, for the reinsertion scheme r1 in (4), the length
of an edge (i, j) is Lij := τ+(i, j) = c(i, i⊕ 1)− c(i, j⊕ 1). For a random TSP instance, each random
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variable Lij is therefore the difference of two uniform random variables, and this definitely complicates
a probabilistic analysis of the algorithm. If one makes the simplifying assumption that the lengths
Lij are independent uniform random variables drawn in [0, 1], then it can be shown that finding the
largest triangle in a graph takes quadratic time on average, and this already requires a quite complex
proof [18]. However, since in our case the variables Lij are not independent, nor uniformly distributed,
we were not able to prove that the expected running time is subcubic, and such a proof appears very
difficult to obtain.
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