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Abstract: Simple and easy to use methods are of great practical demand in the design of Proportional,
Integral, and Derivative (PID) controllers. Controller design criteria are to achieve a good set-point
tracking and disturbance rejection with minimal actuator variation. Achieving satisfactory trade-offs
between these performance criteria is not easily accomplished with classical tuning methods. A particle
swarm optimization technique is proposed to design PID controllers. The design method minimizes a
compromise cost function based on both the integral absolute error and control signal total variation
criteria. The proposed technique is tested on an Arduino-based Temperature Control Laboratory
(TCLab) and compared with the Grey Wolf Optimization algorithm. Both TCLab simulation and
physical data show that satisfactory trade-offs between the performance and control effort are enabled
with the proposed technique.
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1. Introduction

Despite the development of more refined control techniques, the Proportional, Integral,
and Derivative (PID) control continues to be ubiquitous for industrial control [1,2]. Given the practical
relevance of this type of control, many design methods have been proposed since the pioneering work
developed by Ziegler and Nichols [3]. PID tuning rules were developed for specific aspects, such as:
Control modes (P, PI, PD, or PID); types of system model characteristics or forms (first order plus time
delay, second order plus time delay, non-minimum phase, oscillatory, etc.); PID controller structure
(parallel, series, with filters, with two-degrees of freedom, etc.); and anti-windup schemes [4–7].
The PID control practical relevance also motivates inclusion in most introductory feedback control
courses, for example [8].

Artificial neural networks, fuzzy logic, and evolutionary computation have been successfully
applied for the PID controller design. The ever-increasing computational power enables a fast
practical implementation of computer-based PID controller design methodologies. Optimization-based
techniques have advantages over classical tuning methodologies, as the former can be used independently
of both system dynamics and PID control structure. Examples of the most well-established
population-based algorithms which seek inspiration from natural phenomena are: Genetic Algorithm
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(GA) [9], Ant-Colony Optimization, (ACO) [10], Genetic Programming (GP) [11], Differential Evolution
(DE) [12], Particle Swarm Optimization (PSO) [13], Cuckoo Search Algorithm (CS) [14], Firefly Algorithm
(FA) [15], Glowworm Swarm Optimization (GSO) [16], Gravitational Search Algorithm (GSA) [17],
Grey Wolf Optimization (GWO) [18–21], and Elephant Herding Optimization (EHO) [22]. From this set,
the ones most used within control design applications are GA [23,24] and more recently the PSO [25,26].
PSO has been improved as a result of significant research effort [27,28].

A commonly used argument against using bio-inspired and nature inspired metaheuristics over
classical PID design methods is that these also require the adjustment of parameters prior to the
optimization procedure. An advantage of the classical PSO algorithm is fewer adjustable heuristic
settings compared with the basic GA. Moreover, PSO is more straightforward to implement than a GA.
As the proposed technique aims to be simple to configure, the PSO algorithm is the selected optimization
tool used in this study. Moreover, the proposed technique control performance is compared with a
more recently introduced metaheuristic: The Grey Wolf Optimization proposed by [18].

There is an increasing pedagogical and research benchmark interest in pocket-sized and portable-based
control experiments, as revealed by the following examples in [29–34]. Microcontrollers enable a wide
range of pocket-size laboratories as common tools both for teaching/learning purposes, as well as for
control engineering practitioners testing controller designs. The paradigm is shifting from monolithic
laboratory experiments that require significant resources to take-home and modular experiments.
The Temperature Control Laboratory (TCLab) proposed by [35–38] is used to teach PID control to
undergraduate engineering students [39,40]. The TCLab is a low-cost Arduino-based lab which is a
pocket-sized, plug-and-play kit, meaning that it does not require the user to perform the assembly.
This is quite advantageous for computer-based control courses in which the primary goal is to test
the identification and control techniques rather than hardware assembly. The TCLab is programmed
using different environments, such as: Python, MATLAB®/SIMULINK®, and GNU Octave. Moreover,
a wide range of open-source supporting materials, including programs, videos, and tutorials are freely
available in [24].

The PSO was applied to identify a first order plus time delay model for the TCLab kit in [39,40].
In this paper, the PSO design of PID controllers based on an additive compromise cost function
involving the Integral Absolute Error (IAE) and Total Variation (TV) is proposed. This technique is
validated both with simulation and practical results obtained with the TCLab. The results obtained
with the proposed technique are compared with the ones obtained with the GWO algorithm and
classical tuning techniques. The novel contributions of this paper are highlighted in the following
points:

• New formulation for an additive compromise (or aggregated) cost function involving the Integral
Absolute Error (IAE) and Total Variation (TV). Major control design criteria concern optimizing
set-point tracking and disturbance rejection, while minimizing the control signal variation.
This proposed technique significantly simplifies the PID controller design procedure combining
these criteria into a single-objective optimization formulation.

• PSO algorithm to design PID controllers that minimize a cost function weighting IAE and TV.
A simple PSO algorithm constitutes an excellent design tool for the PID controller, with practical
interest for control engineers. The proposed technique is compared with the original GWO
algorithm, in a TCLab temperature control case study, providing a similar control performance.

• Both the simulation and practical validation with TCLab tests, show an effectiveness to design
PID controllers by softening the control signal.

The paper remainder is organized as follows: Section 2 introduces the problem statement.
In Section 3, the classical particle swarm optimization algorithm is presented. Sections 4 and 5 discuss
the TCLab main features and results. Finally, Section 6 provides the conclusions and recommendations
for future work.
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2. PID Control Design: Problem Statement

Consider a general block diagram representation of a closed-loop system in Figure 1, assuming
the following representation where r is the reference input (set-point), y is the controlled output, e is
the error signal, u is the control output, d1 is a load disturbance, d2 is an output disturbance, n is a
noise signal, and Gc and Gp are the controller and process transfer functions.
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The ideal feedback control corresponds to obtaining the controlled output equal to the reference
input independent of system disturbances. This ideal control is not possible in practice due to
disturbances, measurement noise, actuator saturation, and a wide range of other physical limitations.
With these limitations, the controlled output should attempt to follow the reference input (Set-Point
Tracking, SPT), while rejecting the system disturbances (Disturbance Rejection, DR). In this work, it is
assumed that a dynamic model of the system can be identified. In addition to the SPT and DR criteria,
it is also important to consider the control effort in the controller design. A relevant research question
is: How can a PID controller be designed to achieve the best possible set-point performance while
minimizing the control effort?

There are many time-domain criteria to evaluate a controller performance. These criteria frequently
involve set-point step responses with the smallest possible values for first overshoot and rise time.
An indirect approach to simultaneously minimize several step response indices is using error-based
criteria. The most common are the following: Integral of Square Error (ISE), Integral of Absolute Error
(IAE), Integral of Time Weighted Absolute Error (ITAE), and Integral Weighted Square Error (ITSE),
represented respectively by the following expressions:

ISE =

∫ tsim

0
e2(t) dt (1)

IAE =

∫ tsim

0

∣∣∣e(t)∣∣∣dt (2)

ITAE =

∫ tsim

0
t
∣∣∣e(t)∣∣∣dt (3)

ITSE =

∫ tsim

0
te2(t)dt (4)

with tsim representing the simulation time, which should be large enough so that the system-controlled
output reaches the steady-state value. Depending on which of these criteria is adopted in the
optimization cost function, different PID controller settings are obtained. Among these criteria the
most widely used are the ISE, IAE, and ITAE. Time weighting the absolute error penalizes the error as
time increases for ITAE, promoting the elimination of small steady-state errors. IAE independently
gives the same relevance to errors over time. For this reason, IAE is adopted in this study. A common
criterion to measure the control effort is:

Eu =

∫ tsim

0

∣∣∣u(t)∣∣∣dt (5)
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with u representing the control signal. The control signal smoothness can be evaluated using a Total
Variation (TV) index (6), approximated by (7):

TVu =

∫ tsim

0

∣∣∣∣∣du
dt

∣∣∣∣∣dt (6)

TVu =

tsim
h∑

k=0

∣∣∣u(k + 1) − u(k)
∣∣∣ (7)

with h representing the measurement sampling interval. The TV criterion is adopted in this study to
minimize the control signal variation. It is worthwhile to mention at this point, that all actuators have
physical limitations, and it is common that the control signal can vary linearly in the interval [umin,umax],
with umin and umax representing the minimum and maximum control signal values, respectively.
A realistic controller design for practical implementation should consider specific actuator saturation
limits. Measurement noise issues are not addressed in this study.

With two performance criteria selected (IAE and TV), a decision regarding how to use these
in the optimization algorithm must be made. The two criteria can be considered as two separate
functions within a multi-objective (or many-objective) optimization problem and solved using a PSO
Pareto-based approach [41]. However, depending on the number of objectives, the computational
burden associated with multicriteria optimization can be significant. After a non-dominated Pareto
front is achieved, a decision support system should be used to help the operator decide the appropriate
trade-offs from the Pareto front. Considering that just two criteria are used (IAE and TV), a simpler
approach uses an additive compromise cost function. This cost function is represented by:

J = α IAE + β TV (8)

with α and β representing weighting factors determining the relative importance of each criterion.
An equivalent single parameter β could also be used if the α value is always fixed to a value of one as
done in this paper.

3. Classical Particle Swarm Optimization

The particle swarm optimization algorithm proposed by Kennedy and Eberhart [13] is inspired
by the animal swarms social behavior, such as bird flocks and fish schools. The basic notion of the
algorithm can be explained using the illustrative example presented in Figure 2.
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variables data representation.

A swarm is represented with m particles. Each generic particle, i, has dynamics which are
characterized by two d-dimension variables x and v, representing respectively, the particle position in
space and the corresponding velocity. The swarm is randomly initialized in the search space unless
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there is specific information regarding the problem. The specific information can be incorporated in
the initialization procedure to improve the convergence rate to an optimal solution. Each PSO iteration,
t, updates every particle position to a new position. The update is from the sum of a velocity term
according to (8) with the velocity evaluated using (9):

xi(t + 1)= xi(t)+vi(t + 1) (9)

vi(t + 1) = ω vi(t) + c1φ1[bi(t) − xi(t)]+c2φ2[g(t) − xi(t)] (10)

where bi represents the best position obtained by particle i until the current iteration, t; g represents
the best position from the full swarm (global best) or a specific neighborhood (local best). In this
study, information is shared among the entire swarm (fully-connected model). As it can be observed
from (9), the new velocity value is evaluated by a sum of three parts. The first part (ω vi(t)) is the
inertia and considers the previous velocity value with a factor,ω, called inertia weight. The second
part (c1φ1[bi(t)−xi(t)]) represents the particle cognitive knowledge update. It is the difference
between the particle i individual best position, bi, and the particle current position, xi, multiplied
by a cognitive constant c1 and a disturbing random value, φ1. The third part (c2φ2[g(t) − xi(t)])
represents the particle social knowledge update: The difference between the swarm global best
position, g, and the particle current position, xi, multiplied by a social constant c2 and a disturbing
random value, φ2. The same relevance is usually given to the cognitive and social knowledge,
and thus, c1 and c2 take the same value (e.g., 2 or 1.49445). The two random numbers, φ1 and φ2,
are uniformly generated in the interval [0, 1]. Algorithm 1 is represented by the following pseudo-code:

Algorithm 1 PSO algorithm

1. t = 0
2. Initiate m,ω
3. Initialize swarm X(t)
4. Evaluate X(t)
while (not (termination criterion))
5. determine personal and global bests
for i = 1 to m

6. Update vi(t + 1)
7. Update xi(t + 1)

endfor
8. Update ω
9. t = t + 1
endwhile

As it can be observed from the PSO pseudo-code, this algorithm is conceptually quite simple.
Regarding the PSO algorithm parametrization, there are three adjustable parameters: The swarm
size, m, the termination criterion and the inertia weight limits. While these parameters are problem
dependent, they can easily be selected for most PID control design cases. The swarm size should be
large enough to guarantee a diverse solution representation across the search space. The termination
criterion is often a pre-defined number of iterations and is adopted in this study. Regarding the inertia
weight, it is commonly accepted that it should assume a higher value at the beginning of the search
(e.g., ωi = 0.7) and then gradually decreased over the search evolution until it reaches a minimum
value (e.g., ωf = 0.4). This inertia weight variation is to establish an important trade-off between space
exploration in an early search stage and gradually transition to a global minimum consensus in a final
search stage. The inertia weight is linearly decayed between the maximum and minimum values over
the search iterations. However, other approaches can also be used (e.g., see [42]).
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4. Temperature Control Laboratory (TCLab)

The Temperature Control Laboratory (TCLab) is an Arduino-based kit developed by [35]. It comes
with the hardware set presented in Figure 3: An Arduino Leonardo; a Printed Circuit Board (PCB) with
two transistors acting as heaters, two thermistors to sense the temperature in each transistor casing,
an Light Emmiting Diode (LED) to indicate when the system is hot, and a connection socket to power
the PCB components (see the white USB adapter shown in Figure 3); and finally, a Universal Serial Bus
(USB) cable connects the Arduino to a computer (see the blue cable shown in Figure 3).
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The TCLab is presented from another perspective in Figure 4. As it can be observed, the transistors
(TIP31C) are the control system actuators and operate as temperature heaters (Q1 and Q2). Two TMP36
sensors measure the temperature in each transistor casing (T1 and T2). As it can also be observed
from Figure 4, the two transistors are connected to heat sinks acting as heat dissipators. The sensors
are glued to the transistor casings using a non-conductive epoxy containing a thermochromic paint.
This paint changes color when the temperature rises above 37 ◦C. The TCLab can be programmed using
MATLAB®/SIMULINK®, Python and GNU Octave, with a wide range of programs freely available
in [22]. This study uses the MATLAB®/SIMULINK® connection. More information regarding TCLab
can also be found in [35–38].
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5. TCLab Results

Designing PID controllers with the proposed PSO technique involves (a) identifying a First-Order
Plus Time Delay (FOPTD) model using an open-loop step response, (b) based on the obtained model in
(a), another PSO algorithm is used to tune the PID controller. These two steps are illustrated in Figure 5
with the TCLab system.
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5.1. First-Order Plus Time Delay Model Identification

The first issue that must be addressed is to identify a dynamic model relating temperature
measured in transistor 1 (T1) with the actuating heater signal (Q1). A FOPTD model was identified
based on an open-loop step response using both the classical two-point and PSO optimization methods
as proposed in [39,40]. The following PSO conditions were used in the model identification tests:

• A swarm with size m = 40 particles.
• Each simulation was run for 50 iterations.
• The search intervals used for the controllers gains K, T, and L are: [0.1 3], [20 s 160 s], and [4 s 45 s],

respectively. The FOPTD model parameters obtained with a classical step-response method
(e.g., two-point method (see [28])) can be used to define the search interval.

• The inertia weight was initial and final values wereωinit = 0.7 andωfin = 0.4. These values were
deemed appropriate with 50 iterations.

Figure 6 is a step response of the TCLab open-loop response. This figure top plot is a step applied to
the system input (heater Q1) with amplitude ranging from 0–80% applied at instant t = 10 s. The bottom
plot is the result obtained with a FOPTD model identified using a PSO. The model [30,40] is:

Gp(s) =
0.78

1 + 152 s
e−19.7s (11)

5.2. PID Controller Tuning

This section presents both simulation and TCLab results regarding the PID controller gains
optimized with the PSO algorithm as depicted in the previous sections. The results are compared with
the Cohen-Coon (CC) settings [43], as previously introduced in [39,40] and a more recent technique:
AMIGO [5], which is well-known to achieve system robustness. For the sake of experiment replication,
these two tuning rule methods for PID controllers are presented in Table 1.

Based on the FOPTD PSO model, PID controllers can be designed using several tuning methods.
In [40], results were presented using the Cohen-Coon (CC) settings as these perform well for the TCLab.
The results obtained with the CC PID settings Kp = 13.47, Ti = 45.99 s, and Td = 7.00 s are presented in
Figure 7. This figure presents the overlapped results between the simulated and TCLab responses.
A step input is applied to the system reference input at t = 0 s to define the TCLab transistor 1 set-point
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temperature at 25 ◦C and another one at t = 100 s increasing the set-point to 60 ◦C. A load disturbance
with a magnitude of −40% is applied to the controller output at t = 380 s. Both the FOPTD model and
the CC PID gains are used in the next section for comparison purposes with the other methods.
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Figure 7. Simulated and TCLab responses using Cohen-Coon settings.

The PSO optimization simulations were carried out in MATLAB®/SIMULINK®. The PSO settings
were defined for all the subsequent PID controller tuning simulations as follows:

• A swarm with size m = 30 particles.
• Each simulation was run for 70 iterations.
• The search intervals used for the controller gains Kp, Ti, and Td are: [0.1 20], [10 s 150 s],

and [1 s 12 s], respectively. The tuning gains obtained with classical tuning rules can be used
(e.g., CC) to define the search interval. The interval used for the integral gain was widened to see
if the PSO converged for slower TCLab control system responses.

• The inertia weight for initial and final values wereωinit = 0.7 andωfin = 0.4. These values were
deemed appropriate considering the number of iterations used, as it can be observed from Figure 8.
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In this figure, four different inertia weight intervals [ωinit, ωfin] were considered: (a) [0.9, 0.2],
(b) [0.9, 0.4], [0.7, 0.4], and [0.4, 0.4].

Algorithms 2020, 13, x FOR PEER REVIEW 9 of 17 

• The inertia weight for initial and final values were ωinit = 0.7 and ωfin = 0.4. These values were 
deemed appropriate considering the number of iterations used, as it can be observed from Figure 
8. In this figure, four different inertia weight intervals [ωinit, ωfin] were considered: (a) [0.9, 0.2], 
(b) [0.9, 0.4], [0.7, 0.4], and [0.4, 0.4]. 

 
Figure 8. PSO evolution of the best integral absolute error (IAE) values and average swarm IAE values 
corresponding to four different inertia weight variation settings. 

Note that the conditions used for conducting the PSO optimization PID tuning tests differ from 
the ones used to perform the FOPTD model identification, particularly in the swarm size and higher 
iteration number. The PSO convergence rate for the PID optimization was found to be slower than 
the FOPTD model identification case. 

The optimizations consider a step response applied at the reference input at t = 0 s assuming an 
ambient temperature of 18 °C and a set-point of 60 °C. The simulation time was 600 s, and a load 
disturbance with amplitude −40% was applied at instant t = 300 s. The optimization test result 
considering just the minimization of IAE is presented in Figures 9–11. In this case, the gains 
converged to the following values: Kp = 13.83, Ti = 39.54 s, and Td = 7.14 s. Figure 9 presents the SPT 
and LDR responses in the top plot and the control signal in the lower plot. As it can be observed, the 
system tracks well with no overshoot and with an acceptable load disturbance rejection. 

 
Figure 9. TCLab set-point tracking (SPT) and disturbance rejection (DR) simulated responses with a 
PID controller optimized with the PSO algorithm (J = IAE). 

Figure 10 shows the best PID gains evolution over 70 iterations. It is possible to observe from 
Figure 10 that the parameters converged to values are very close to the final ones by iteration 40. 
Figure 11 presents the evolution obtained with the best swarm cost value, IAE, and the average of 
the entire swarm particles cost function values. As observed, there is a convergence between the 

Figure 8. PSO evolution of the best integral absolute error (IAE) values and average swarm IAE values
corresponding to four different inertia weight variation settings.

Note that the conditions used for conducting the PSO optimization PID tuning tests differ from
the ones used to perform the FOPTD model identification, particularly in the swarm size and higher
iteration number. The PSO convergence rate for the PID optimization was found to be slower than the
FOPTD model identification case.

The optimizations consider a step response applied at the reference input at t = 0 s assuming
an ambient temperature of 18 ◦C and a set-point of 60 ◦C. The simulation time was 600 s, and a
load disturbance with amplitude −40% was applied at instant t = 300 s. The optimization test result
considering just the minimization of IAE is presented in Figures 9–11. In this case, the gains converged
to the following values: Kp = 13.83, Ti = 39.54 s, and Td = 7.14 s. Figure 9 presents the SPT and LDR
responses in the top plot and the control signal in the lower plot. As it can be observed, the system
tracks well with no overshoot and with an acceptable load disturbance rejection.
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PID controller optimized with the PSO algorithm (J = IAE).

Figure 10 shows the best PID gains evolution over 70 iterations. It is possible to observe from
Figure 10 that the parameters converged to values are very close to the final ones by iteration 40.
Figure 11 presents the evolution obtained with the best swarm cost value, IAE, and the average of the
entire swarm particles cost function values. As observed, there is a convergence between the average
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and the best values in between iterations 40 and 50. These results clearly indicate that 70 iterations are
an adequate stopping criterion, in this case.
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After comparing the relative simulated values obtained for IAE and TV, the following cases
were considered:

• I: α = 1 and β = 0.
• II: α = 1 and β = 70.
• III: α = 1 and β = 80.
• IV: α = 1 and β = 100.

Notice that this selection was done based on several tests performed on the TCLab. For cases with
an additive compromise function, more relevance was given to TV over IAE. Before presenting the
TCLab PSO results, a performance comparison with another swarm optimization algorithm, the original
Grey Wolf Optimization (GWO) [18], is presented. The GWO was compared with the classical PSO
in a benchmark test suit when it was proposed [18]. The GWO swarm size, number of iterations,
and PID controller gains interval are the same as the ones used for the PSO. The GWO algorithm
uses a heuristic parameter, represented by a [18] responsible for the tradeoff swarm exploration and
exploitation. The GWO parameter a is a linearly decreasing vector from amax = 2 to amin = 0 through
the evolutionary process. The simulation results are presented in Table 2 for cases I and II. The best
controller gains from an 11 run set converged to very similar IAE and TV values. This indicates that
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with the appropriate settings the classical PSO performs, as well as the classical GWO for this control
case study. More information regarding a comparison between PSO, GWO, and GSA for the PID
control is reported in [19].

Table 2. TCLab simulation results obtained with the PSO and grey wolf optimization (GWO) algorithms.
The best results are represented in bold.

Method Kp Ti (s) Td (s) IAE TV

PSO-I 13.83 39.54 7.14 4442.0 2843.8
GWO-I 13.82 39.49 7.13 4441.8 2843.8
PSO-II 9.64 49.29 5.70 3831.4 2444.7

GWO-II 10.40 47.55 6.08 3834.4 2429.0
PSO-III 10.36 47.70 6.05 4438.5 2921.4

GWO-III 10.23 47.97 5.97 4437.5 2924.8
PSO-IV 9.53 49.69 5.65 4430.7 2936.6

GWO-IV 10.17 48.14 5.93 4436.8 2927.0

A compilation of the results with the classic tuning rules and PSO optimization is presented in
Table 3. The best PSO gains presented in Table 2 are replicated in Table 3 for comparison. Note also that
as the TCLab tests were performed in different day periods, the initial starting ambient temperature
varies slightly from test to test. To see if this influenced the results analysis, the IAE and TV values
considered only the period [95–620 s] (see Table 4). This interval starting point corresponds to 5 s prior
to the second step change at t = 100 s where all the temperature steady-state values are approximately
equal to 25 ◦C.

Table 3. TCLab physical results obtained for the several methods considering the entire test time.
The best results are represented in bold.

Method Kp Ti (s) Td (s) IAE TV

CC 13.47 45.99 7.00 2389.4 2962.2
AMIGO 4.69 72.96 9.48 3004.9 1972.3

PSO-I 13.83 39.54 7.14 2273.6 3600.4
PSO-II 9.64 49.29 5.70 2298.5 2216.7
PSO-III 10.36 47.70 6.05 2392.5 2164.8
PSO-IV 9.53 49.69 5.65 2482.7 1888.4

Table 4. TCLab physical results obtained for the several methods considering the time interval
[95–620 s]. The best results are represented in bold.

Method IAE TV

CC 2300.9 2647.9
AMIGO 2953.5 1860.6

PSO-I 2235.8 3594.1
PSO-II 2259.9 2102.6
PSO-III 2351.1 2065.8
PSO-IV 2442.0 1788.8

The results obtained with the AMIGO PID settings: Kp = 4.69, Ti = 72.94 s, and Td = 9.48 s are
presented in Figure 12. As it can be observed, the response presents a pronounced overshoot and
worse load rejection disturbance compared with the CC response. The TV value obtained with the
AMIGO settings is clearly better than the one obtained with CC (see Tables 3 and 4).
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The results obtained for PSO with just the ITAE minimization criterion (PSO-I) are presented in
Figure 13. As it can be seen from Tables 3 and 4, only minimizing the IAE results in the best possible
IAE value and worse TV than with the CC and AMIGO methods.
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Figure 16. Simulated and TCLab responses using PSO, case IV (J = IAE + 100 TV).

Observing the values obtained with the four PSO cases, the IAE value increases as expected.
With the increase of the TV factor, β in the cost function, the corresponding TV value decreases.
Depending on the TV requirements, it is possible to obtain better results for both IAE and TV compared
with the CC and AMIGO tuning rules, as expected.

Figure 17 presents the overlap responses obtained with the TCLab regarding the following
methods: CC, AMIGO, and PSO-IV. As it can be observed from the tracking response in the top plot,
CC gains perform slightly better than the PSO-IV gains and these two are much better than AMIGO.
However, regarding the control signals in the bottom plot, the optimized PSO gains result in a less
aggressive and less irregular control signal variation than CC and AMIGO.

The results also consider an output disturbance applied at instant t = 600 s, as presented in
Figure 18. In this case, the disturbance was caused by blowing with a straw near the transistor 1
for 5 s, to decrease the temperature. As it can be observed, the response also tracks well from the
output disturbance.
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Figure 17. TCLab responses overlapping the responses for Cohen-Coon (CC), AMIGO, and PSO,
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Figure 18. TCLab responses using PSO (J = IAE + 60 TV). Output disturbance considered at t � 600 s.

6. Conclusions

The design of Proportional, Integral, and Derivative controllers (PID) using a technique based
on the particle swarm optimization algorithm is presented in this work. Classical PID tuning rules
are dependent of the system dynamics and PID controller structure. Moreover, the PID settings in
most methods differ according to the specific control design objective (e.g., set-point tracking or load
disturbance rejection). The proposed PSO-based PID controller optimization technique holds the
following characteristics which are of great practical interest: (a) To be easily implemented in digital
industrial computers/microcontrollers; (b) to cope simultaneously with several control design criteria;
(c) can be applied to control systems independently of system dynamics; and (d) rely in a reduced
number of heuristic parameters, which can be easily adjusted for control purposes.

The merits of the proposed design technique lie within:

• The use of an additive compromise cost function involving the minimization of two performance
criteria: The Integral Absolute Error (IAE) and the Total Variation (TV). By using a simple
compromise cost function, the proposed PID controller design technique simultaneously considers
the following major control design criteria: Set-point tracking, load disturbance rejection,
and control signal variation.

• By using the proposed cost function, it was shown that it is quite simple to select the PSO heuristic
parameters with a special emphasis on the inertia weight decay.
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• The PSO was used to both perform the TCLab system identification as well as PID controller tuning.
In both optimization problems, the proposed technique blends quite well with classical design
techniques. One of the problems with the use of optimization algorithms in practical problems is
to define appropriate decision variable search intervals. The identification of a first-order plus
time delay model with the PSO technique uses the two-point step response method [39,40] to
define the model parameter search space. The Cohen-Coon PID controller tuning rules were used
to define the controller gain search space.

• The PSO results for the specific TCLab control case performs as well as a much more recently
introduced metaheuristic: The grey wolf optimization.

• The proposed technique was tested with an Arduino Temperature Control Laboratory (TCLab)
and compared with well-established PID tuning methods. Both the simulation as well as physical
TCLab results were presented to provide evidence of improved control performance. The results
show a good agreement between the simulation and measured results to validate the dynamic
model identified with PSO.

• The TCLab Arduino kit was introduced as a simple to use portable laboratory to test simulation
results obtained with the proposed PSO-based technique. The same device has great potential to
test other optimization and artificial intelligence-based techniques.
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