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Abstract: The focus of present research endeavor was to design a robust fractional-order
proportional-integral-derivative (FOPID) controller with specified phase margin (PM) and gain cross
over frequency (ωgc) through the reduced-order model for continuous interval systems. Currently,
this investigation is two-fold: In the first part, a modified Routh approximation technique along
with the matching Markov parameters (MPs) and time moments (TMs) are utilized to derive a stable
reduced-order continuous interval plant (ROCIP) for a stable high-order continuous interval plant
(HOCIP). Whereas in the second part, the FOPID controller is designed for ROCIP by considering
PM and ωgc as the performance criteria. The FOPID controller parameters are tuned based on the
frequency domain specifications using an advanced sine-cosine algorithm (SCA). SCA algorithm
is used due to being simple in implementation and effective in performance. The proposed
SCA-based FOPID controller is found to be robust and efficient. Thus, the designed FOPID controller
is applied to HOCIP. The proposed controller design technique is elaborated by considering a
single-input-single-output (SISO) test case. Validity and efficacy of the proposed technique is
established based on the simulation results obtained. In addition, the designed FOPID controller
retains the desired PM and ωgc when implemented on HOCIP. Further, the results proved the
eminence of the proposed technique by showing that the designed controller is working effectively
for ROCIP and HOCIP.

Keywords: fractional calculus; fractional-order PID controllers; sine-cosine algorithm (SCA);
continuous interval systems; modeling; Routh approximation

1. Introduction

In practical applications, many small modules are congregated to form a major dynamic system.
The study, simulation and comprehensive analysis of such dynamic systems are carried out by
means of mathematical modeling [1,2]. The derived mathematical models for such congregated
systems, generally, turn out to be complex involving higher order transfer functions. The practical
examples of higher order systems are as follows: nuclear reactors, power systems, chemical plants, etc.
The controller design becomes a bit challenging for control engineers in these cases since the order of
system is high [3]. In these cases, approximation of high-order transfer functions is advised to ease
the controller design process [4,5]. The benefits of approximation include reduction in computational
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complexity, simplified understanding of system and minimization in cost while designing hardware
for the controller [6,7].

In industrial control applications, a proportional-integral-derivative (PID) controller is more
popular. PID controller is used extensively due to its simple form and good performance. For tuning the
gains of PID controllers, a large number of methods/algorithms have been developed in the literature.
Over time, a significant development in fractional calculus is seen. Several studies have demonstrated
the capabilities of fractional calculus in the field of pure mathematics [8,9], engineering [10,11],
biological engineering [12] and physics [13]. It motivated the development of designing fractional
order systems and controllers as far as control theory is concerned [14,15].

Many good articles are presented in the literature on the design of fractional-order PID (FOPID)
controllers [16,17]. FOPID controller involves an additional pair of parameters (integral order and
differential order) over an integer-order PID (IOPID) controller. These parameters provide better
control if tuned properly. Similarly, these additional parameters are also seen as helpful in designing a
system having robustness against high frequency noise signals, better disturbance rejection, etc. [18].
In [19], an FOPID controller is developed for fractional-order systems to achieve better performance
over IOPID. An FOPID controller is designed for a five bar linkage robot based on modified PSO
algorithm by Aghababa [20]. In [21], the robust stability analysis of fractional-order interval systems
with multiple time delays and neutral systems is investigated.

Fractional integral-fractional derivative controller using small gain theorem and sensitivity
function analysis to achieve desired PM and (ωgc) is discussed by Azarmi et al. [22]. Liu and
Zhang [23] designed an FOPID controller based on the Bode optimal reference model and flat
phase property that ensures desired transient performance characteristics. This design is also
robust to system parameter variations. Similarly, Saidi et al. [24] developed three new constrained
numerical optimization algorithms for tuning the parameters of FOPID controller for delay-systems
and parameter uncertain systems. In this case, it is seen that the property of iso-damping is
enhanced. Bhookya et al. [25] proposed an FOPID controller based on the sine-cosine algorithm
(SCA) optimization technique [26] for an automatic voltage regulator (AVR) system. Results showed
that SCA tuned FOPID controller performance is superior in improving the transient response and
is robust to external disturbance. An FOPID controller using SCA is designed to handle issues likes
fluctuations in load and frequency, discontinuous power flow from wind turbines, etc. in a hybrid
two-area power system by Khezri et al. [27].

Various strategies are available for model order reduction of higher order continuous and
discrete interval systems. In [28], the low-order interval model is obtained using the stability
equation technique, Kharitonov’s theorem and minimization of integral-square-error (ISE) utilizing
the differential evolution optimization technique. Singh et al. [29] adopted Routh–Pade approximation
for order reduction of interval systems and also proposed two simple expressions for computing
time moments (TMs) and Markov parameters (MPs). A thorough literature survey on model order
reduction (MOR) methods based on Routh approximation for discrete and continuous interval systems
is given in [30]. Later, the order reduction of higher order continuous interval systems is carried out
using frequency domain reduction techniques [31] where the denominator of the model is derived from
a differentiation method and the numerator is achieved using factor division, differentiation and Pade
approximation methods. Another concept of order reduction of interval systems is stated depending
on ISE minimization and impulse response energy using modified particle swarm optimization (PSO)
algorithm by Anand et al. [32].

Model order reduction of linear time-invariant continuous and discrete interval systems
based on Kharitonov’s theorem using the differential method was presented by Potturu and
Prasad [33]. The resulting interval model preserves all the dominant characteristics of original
interval system. The frequency domain fractional-order controllers are designed generally based
on the specifications [34] like phase margin, gain crossover frequency, steady-state error cancellation,
high-frequency noise rejection and good output disturbance rejection. Authors in [35] extended the
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differentiation method for reduced order modeling where the stability of lower order models is always
guaranteed. In addition, it retains the initial TMs of higher order systems. Further, a new approach
of order reduction based on the concept of impulse response gramian is developed in the frequency
domain in [36]. Recently, Dewangan et al. [37] proposed a multipoint Routh–Pade approximation
technique for single-input-single-output (SISO) and multi-input-multi-output (MIMO) interval systems.
These methods assure a stable reduced model for higher order continuous interval systems.

This research presents a design of a robust fractional-order proportional-integral-derivative
(FOPID) controller for reduced-order continuous interval plant (ROCIP) of higher-order continuous
interval plant (HOCIP) based on considered frequency domain specifications using an advanced
sine-cosine algorithm (SCA). Later, this controller is cascaded with HOCIP. Here, PM and ωgc are
considered as performance criteria of HOCIP for tuning the five parameters of FOPID controller.
Since the design of the controller is done in the frequency domain, this approach guarantees the
robustness and stability of the system. An improved Routh–Pade approximation method is utilized
for reduced order modeling of HOCIP. The modified Routh table is utilized to derive the denominator
polynomial of interval model whereas the coefficients of numerator polynomial are obtained by
matching few TMs and MPs of system with those of the model. This order reduction technique
always yields stable ROCIPs for stable HOCIPs. A third order interval plant is considered as an
example to demonstrate the whole procedure of FOPID controller tuning and model order reduction.
The efficiency of the proposed method for design of the FOPID controller is proved from the simulation
results obtained.

The article is structured into seven sections: Section 1 includes the detailed literature survey on
the present investigation. The preliminaries of fractional calculus and the structure of FOPID controller
are given in Section 2. Problem formulation is briefed in Section 3. The design procedure for the
proposed FOPID controller is illustrated in Section 4. In Section 5, the order reduction method for
HOCIP is presented. Section 6 explains the SCA in detail. Section 7 includes the test case and its
simulation results. Finally, the conclusions are reported in Section 8.

2. Preliminaries

2.1. Fractional Order Calculus

Recently, many systems are modeled as fractional-order systems utilizing fractional-order
calculus. The fractional-calculus is found in several applications [34] in areas including
electromagnetic waves [38], chemical engineering [39], signal processing [40], polymer science [41],
electro-chemistry [42], neural networks [43], fluid mechanics [44], bio-engineering and bio sciences [45],
control of power electronics [46], nonlinear control [47], etc.

The generalization of the integration and differentiation operators in fractional calculus [48] of kth

order is defined as

pDk
q =

{ dk

dtk < (k) > 0
1 < (k) = 0
q∫

p
(dτ)−k < (k) < 0

(1)

where p and q are the limits of the operation. The integration and differentiation of any real order can
be performed. The Riemann–Liouville formula [49] for differentiation is given as

pDk
q f (t) =

1
Γ(n− k)

dn

dtn

∫ q

p

f (τ)
(t− τ)k−n+1 dτ (2)

where k can be any value in-between (n− 1) and n, and Γ(.) is a Gamma function.
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The Grünwald–Letnikov’s definition of the fractional-order derivative [34] is expressed as

pDk
q f (t) = lim

h→0
h−k

(q−p)
h

∑
a=0

(−1)a

(
k
a

)
f (t− ah) (3)

where (−1)a

(
k
a

)
are the binomial coefficients C(k)

a , (a = 0, 1, . . .); and [.] denotes the

integer part. The formula given in [48] can be utilized to calculate the binomial coefficients.
The other commonly used formula for differentiation is known as Caputo expression [48].

The Caputo expression is defined as

pDk
q f (t) =

1
Γ(n− k)

∫ q

p

f n(τ)

(t− τ)k−n+1 dτ (4)

where (n− 1) < k < n.

2.2. Fractional-Order PID (FOPID) Controller

The general formula for an FOPID controller [50] is depicted as

∧
C(s)= Ka +

Kb
sα

+ Kcsβ (5)

which is commonly referred to as PIαDβ controller where Ka, Kb, Kc are the proportional, integral
and derivative gains, respectively. The parameters α and β indicate the positive real numbers [51].
In most of the engineering applications [23,50,52] the typical range of α and β variables lies with in
(0, 2) while designing FOPID controller. The primary benefits of the FOPID controller are achieved
with extra tuning parameters namely α (non-integer order of integrator) and β (non-integer order
of differentiation) as compared to conventional PID controller. As a result of these additional two
parameters, FOPID controllers can be tuned in such a way that these may produce better control [53].

3. Problem Formulation

Suppose, an nth-order SISO continuous interval plant Gn(s) for the closed-loop control system [54]
of Figure 1 is expressed as

Gn(s) =
A(s)
B(s)

=
[A−0 , A+

0 ] + · · ·+ [A−n−1, A+
n−1]s

n−1

[B−0 , B+
0 ] + [B−1 , B+

1 ]s + · · ·+ [B−n , B+
n ]sn (6)

The interval coefficients of numerator polynomial A(s) are [A−i , A+
i ] for (i = 0, 1, · · · , n − 1),

with A+
i as upper bounds and A−i as lower bounds, respectively. Likewise, interval coefficients of

denominator polynomial B(s) are [B−i , B+
i ] for (i = 0, 1, · · · , n), with B+

i as upper bounds and B−i
as lower bounds, respectively. The power series [55] form of HOCIP, (6), about s = 0 and s = ∞,
respectively, are expressed as

Gn(s) = λ0 + λ1s + · · ·+ λksk + · · · (7)

Gn(s) = µ1s−1 + µ2s−2 + · · ·+ µks−k + · · · (8)

where λi = [λ−i , λ+
i ] for i = 0, 1, 2, · · · and µi = [µ−i , µ+

i ] for i = 1, 2, 3, · · · are TMs and MPs of the
interval system, respectively.
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∧
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∧
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∧
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λ
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[ ∧
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∧
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+

i

]
for i = 1, 2, , 3, · · · are TMs and MPs

of ROCIP.

Algorithms 2020, xx, 5 5 of 20

C(s) G(s)
U(s)

H(s)

R(s) E(s) Y(s)
−

Figure 1: Block diagram of the closed-loop control system.

Gn(s)

H(s) =
1
s

R(s) Y(s)
−

Figure 2: Closed-loop system of high-order continuous interval plant (HOCIP).

_
Gr (s)

H(s) =
1
s

R(s) Y(s)
−

Figure 3: Closed-loop system of reduced-order continuous interval plant (ROCIP).

Figure 2 represents the closed-loop system without an FOPID controller. Figure 3 depicts the

reduced-order model
_
Gr (s) of HOCIP in place of Gn(s). The desired reduced-order continuous

interval plant (ROCIP)
_
Gr (s) of Gn(s) is represented as

_
Gr (s) =

_
E (s)
_
F (s)

=
[e−0 , e+0 ] + [e−1 , e+1 ]s + · · ·+ [e−r−1, e+r−1]s

r−1

[ f−0 , f+0 ] + [ f−1 , f+1 ]s + · · ·+ [ f−r , f+r ]sr (9)

where r < n. The interval coefficients of numerator polynomial
_
E (s) are [e−i , e+i ] for (i = 0, 1, · · · , r−

1), with e+i as upper bounds and e−i as lower bounds, respectively. Similarly, the interval coefficients

of denominator polynomials
_
F (s) are [ f−i , f+i ] for (i = 0, 1, · · · , r) with f+i as upper bounds and f−i

as lower bounds, respectively. The model, (9), is expressed as

_
Gr (s) =

∧
λ0 +

∧
λ1 s + · · ·+

∧
λk sk + · · ·

(expansion about s = 0)
(10)

_
Gr (s) =

∧
µ1 s−1+

∧
µ2 s−2 + · · ·+

∧
µk s−k + · · ·

(expansion about s = ∞)
(11)

where
∧
λi=

[ ∧
λ
−
i ,
∧
λ
+

i

]
for i = 0, 1, 2, · · · and

∧
µi=

[ ∧
µ
−
i ,
∧
µ
+

i

]
for i = 1, 2, , 3, · · · are TMs and MPs of

ROCIP.

Figure 2. Closed loop system of HOCIP.

Algorithms 2020, xx, 5 5 of 20

C(s) G(s)
U(s)

H(s)

R(s) E(s) Y(s)
−

Figure 1: Block diagram of the closed-loop control system.

Gn(s)

H(s) =
1
s

R(s) Y(s)
−

Figure 2: Closed-loop system of high-order continuous interval plant (HOCIP).

_
Gr (s)

H(s) =
1
s

R(s) Y(s)
−

Figure 3: Closed-loop system of reduced-order continuous interval plant (ROCIP).

Figure 2 represents the closed-loop system without an FOPID controller. Figure 3 depicts the

reduced-order model
_
Gr (s) of HOCIP in place of Gn(s). The desired reduced-order continuous

interval plant (ROCIP)
_
Gr (s) of Gn(s) is represented as

_
Gr (s) =

_
E (s)
_
F (s)

=
[e−0 , e+0 ] + [e−1 , e+1 ]s + · · ·+ [e−r−1, e+r−1]s

r−1

[ f−0 , f+0 ] + [ f−1 , f+1 ]s + · · ·+ [ f−r , f+r ]sr (9)

where r < n. The interval coefficients of numerator polynomial
_
E (s) are [e−i , e+i ] for (i = 0, 1, · · · , r−

1), with e+i as upper bounds and e−i as lower bounds, respectively. Similarly, the interval coefficients

of denominator polynomials
_
F (s) are [ f−i , f+i ] for (i = 0, 1, · · · , r) with f+i as upper bounds and f−i

as lower bounds, respectively. The model, (9), is expressed as

_
Gr (s) =

∧
λ0 +

∧
λ1 s + · · ·+

∧
λk sk + · · ·

(expansion about s = 0)
(10)

_
Gr (s) =

∧
µ1 s−1+

∧
µ2 s−2 + · · ·+

∧
µk s−k + · · ·

(expansion about s = ∞)
(11)

where
∧
λi=

[ ∧
λ
−
i ,
∧
λ
+

i

]
for i = 0, 1, 2, · · · and

∧
µi=

[ ∧
µ
−
i ,
∧
µ
+

i

]
for i = 1, 2, , 3, · · · are TMs and MPs of

ROCIP.

Figure 3. Closed loop system of ROCIP.

The model
_
Gr (s) in Figure 3 is an approximation of system Gn(s) in Figure 2 which is obtained by

order reduction technique. In this work, the denominator of
_
Gr (s) is obtained from improved Routh
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approximation [56] and numerator of
_
Gr (s) is derived by matching of TMs and MPs [29]. Figure 4

shows the closed-loop control system with FOPID controller
∧
C (s) designed for ROCIP. Once the

design for ROCIP is established, the same controller is applied to HOCIP as depicted in Figure 5 in
order to ensure the applicability of designed controller for original system.Algorithms 2020, xx, 5 6 of 20
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( ∧
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_
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e−0
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(15)

Figure 5. Closed loop HOCIP with FOPID controller.

4. Design of FOPID Controller

The procedure to design an FOPID controller (PIαDβ) for ROCIP to meet the desired performance
is discussed in this section. The ROCIP of first order for (9) is given as

_
G1 (s) =

[e−0 , e+0 ]

[ f−0 , f+0 ] + [ f−1 , f+1 ]s
(12)

where e−0 and e+0 , respectively, are lower and upper limits of interval coefficient [e−0 , e+0 ] of the

numerator of
_
G1 (s). Similarly, f−0 and f−1 are lower limits, and f+0 and f+1 are upper limits of

interval coefficients [ f−0 , f+0 ] and [ f−1 , f+1 ].
The five unknown parameters of PIαDβ controller are determined to satisfy the criteria of specified

PM and ωgc. These unknown design parameters of PIαDβ controller are estimated by solving two
non-linear equations [10,57,58]. The expressions given in (13) and (14) should be satisfied for a specified
phase margin and gain crossover frequency [59].

20 ∗ log10

∣∣∣
∧
C (jωgc)

_
G (jωgc)H(jωgc)

∣∣∣ = 0 (13)

Arg
( ∧

C (jωgc)
_
G (jωgc)H(jωgc)

)
= −π + φpm (14)

4.1. Description of Fractional Order Controller Based on Bode Envelope

The transfer functions given in (15) and (16), respectively, offer the minimum and maximum plots
of the gain.

_
G1a (s) =

e−0
f+1 s + f+0

(15)

_
G1b (s) =

e+0
f−1 s + f−0

(16)
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Similarly, the transfer functions given by (17) and (18), respectively, provide the minimum and
maximum plots of the phase.

_
G1c (s) =

e+0
f−1 s + f+0

(17)

_
G1d (s) =

e−0
f+1 s + f−0

(18)

Designing of PIαDβ controller for
_

G1b (s) and
_

G1d (s) should satisfy (13) and (14), respectively.
Thus, (13) and (14) become

20 ∗ log10

∣∣∣∣
∧
C (jωgc)

_
G1b (jωgc)H(jωgc)

∣∣∣∣ = 0 (19)

Arg
( ∧

C (jωgc)
_
G1d (jωgc)H(jωgc)

)
= −π + φpm (20)

Using the value of
∧
C (s) from (9), the expressions given in (19) and (20) become (21)

and (22), respectively.

20 ∗ log10

∣∣∣∣∣

(
e+0√

( f−1 ωgc)2+( f−0 )2

)
∗
(√

x2 + y2
)
∗
(

1
ωgc

)∣∣∣∣∣ = 0 (21)

tan−1
[ y

x

]
− π

2
− tan−1

(
f+1 ωgc

f−0

)
= −π + φpm (22)

where
x = Ka + Kbω−α

gc cos
(

π
2 α
)
+ Kcω

β
gccos

(
π
2 β
)

y = −Kbω−α
gc sin

(
π
2 α
)
+ Kcω

β
gcsin

(
π
2 β
)

The SCA is utilized for solving (21) and (22) to determine the unknown parameters of
∧
C (s).

5. Brief Description of Reduction Method for HOCIP

It is desired to approximate the system given in (6) into (9) based on improved Routh
approximation integrated with matching of TMs and MPs. The former guarantees the stability
and the latter improves overall response of reduced model.

5.1. Procedure for Denominator

The denominator polynomial
_

F (s) of ROCIP is obtained by using improved Routh table given
in [56] which always ensures the stability of reduced model. The improved Routh table for
denominator polynomial of HOCIP is given in Table 1.

Table 1. Modified Routh array.

T1,1 = Bn T1,2 = Bn−2 T1,3 = Bn−4 . . .
T2,1 = Bn−1 T2,2 = Bn−3 . . .

T3,1 T3,2
...

...
. . .

Tn,1 Tn,2
Tn+1,1
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The formula for calculating the interval elements of Table 1 is given as

Ti,j = Ti−2,j+1 −
∩
Ti−2,1
∩
Ti−1,1

Ti−1,j+1 (23)

where i ≥ 3 and 1 ≤ j ≤ (n− i + 3)/2. The element
∩
Ti,j denotes the mid-point of the interval [T−i,j , T+

i,j ]

and its value is calculated according to

∩
Ti,j=

1
2

(
T−i,j + T+

i,j

)
(24)

While obtaining the elements of the modified Routh table (Table 1), two conditions are established
to ensure the consistency of all elements.

Condition 1. To ensure the existence of interval Ti,j, the element Ti−1,j+1 is modified to

Ti−1,j+1 =

[
max

(
T−i−1,j+1,

∩
Ti−1,j+1 −

ULi−2,j+1

2

)
,

min
(

T+
i−1,j+1,

∩
Ti−1,j+1 +

ULi−2,j+1

2

)] (25)

where T−i−1,j+1 and T+
i−1,j+1 are the lower and upper bounds of the interval Ti−1,j+1;

∩
Ti−1,j+1 is the mid-point

of interval Ti−1,j+1; Li−2,j+1 is the range of element Ti−2,j+1 which is given as

Li−2,j+1 = T+
i−1,j+1 − T−i−1,j+1 (26)

and

U =
(

1/d
)∣∣∣∣∣

∩
Ti−1,1
∩
Ti−2,1

∣∣∣∣∣ (27)

with d > 1. This value of d is obtained as

d =

∣∣∣
∧
Ti−1,1

∣∣∣+
∣∣∣
∩
Ti−2,1

∣∣∣
∣∣∣
∩
Ti−2,1

∣∣∣
(28)

Condition 2. This condition sets essential features on the denominator polynomial obtained from the Table 1.

The denominator polynomial,
_

F (s), of ROCIP is calculated from the (n + 1− r)th and (n + 2− r)th rows of
Table 1 as

_

F (s) =
∩
Tn+1−r,1 sr + Tn+2−r,1sr−1 + Tn+1−r,2sr−2 + · · · (29)

Usually, the value of
∩
Tn+1−r,1 is taken as the mid value of the interval Tn+1−r,1.

5.2. Procedure for Numerator

Once the denominator polynomial of ROCIP is obtained from (29), thereafter the interval
coefficients of numerator polynomial are calculated by matching the first r interval TMs and MPs of
HOCIP with ROCIP. This can be expressed mathematically as:

[
λ−i , λ+

i
]
=
[ ∧

λ
−
i ,
∧
λ
+

i

]
for i = 0, 1, · · · , (ψ− 1) (30)
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[
µ−i , µ+

i
]
=
[ ∧

µ
−
i ,
∧
µ
+

i

]
for i = 1, 2, · · · , σ (31)

where ψ + σ = r. To achieve a better steady-state response of ROCIP, at least one TM should be
considered [60] such that ψ ≥ 1. The general expression for calculating interval TMs and interval MPs
for continuous interval system are proposed by Singh et al. [29]. The expressions for [λ−m , λ+

m ] and
[µ−m , µ+

m ] parameters for HOCIP, (6), are given as:

[λ−m , λ+
m ] =

[A−m , A+
m ]

[B−0 , B+
0 ]
−

m−1

∑
i=0

[B−k−i, B+
k−i][λ

−
i , λ+

i ]

[B−0 , B+
0 ]

m = 0, 1, 2, · · ·
(32)

[µ−m , µ+
m ] =

[A−n−m, A+
n−m]

[B−n , B+
n ]

−
m−1

∑
i=1

[B−n−k+i, B+
n−k+i][µ

−
i , µ+

i ]

[B−n , B+
n ]

m = 1, 2, · · ·
(33)

In the same manner, the expressions for ROCIP, (9), are written as

[ ∧
λ
−
m ,
∧
λ
+

m

]
=

[e−m , e+m ]
[ f−0 , f+0 ]

−
m−1

∑
i=0

[
f−k−i, f+k−i

][ ∧
λ
−
i ,
∧
λ
+

i

]

[
f−0 , f+0

]

m = 0, 1, 2, · · ·

(34)

[ ∧
µ
−
m ,
∧
µ
+

m

]
=

[e−r−m, e+r−m]

[ f−n , f+n ]
−

m−1

∑
i=1

[
f−r−k+i, f+r−k+i

][ ∧
µ
−
i ,
∧
µ
+

i

]

[
f−r , f+r

]

m = 1, 2, · · ·

(35)

6. Sine-Cosine Algorithm (SCA)

The SCA initially creates a set of random population and allows them to move towards the best
solution. In this algorithm, the optimization process contains two phases namely exploration and
exploitation which lead to produce global (best) solution. The trigonometric functions namely sine sine
and cosine functions are used to update the solutions in this algorithm. The position is updated as:

Vk+1
p = Vk

p + β1 ∗ sin(β2) ∗ |β3Qk
p −Vk

p | β4 ≥ 0.5 (36)

Vk+1
p = Vk

p + β1 ∗ cos(β2) ∗ |β3Qk
p −Vk

p | β4 < 0.5 (37)

where Vk+1
p and Vk

p are old and updated positions of current solution at k-th iteration in p-th dimension.
Qk

p is the position of destination point in k-th dimension. The parameters β2, β3 and β4 are random
numbers in the range of [0, 1]. However, |.| represents the absolute value.

The distinctive features of sine and cosine functions of (36) and (37) are shown in Figure 6.
By varying the value of β1, the amplitude of sine and cosine functions can be altered which results
in finding a solution outside the space between their corresponding boundaries. Figure 7 shows
exploration and exploitation of search space with sine and cosine wave-forms lying between [−2, 2].
In SCA algorithm, the balance exploration and exploitation can be achieved by changing β1 using

β1 = a− k
a
T

(38)

where k is the current iteration, T is the total number of iterations and a is constant.
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Next position region  when β1 < 1

Next position region  when β1 > 1

Q (destination)

V (solution)

 

 

 

 

 

Figure 6. The result of the sine and cosine functions in (36) and (37) for the next stage [26].

Next position region  when β1 < 1

Next position region  when β1 > 1

Q (destination)

V (solution)

 

 

 

 

 
Figure 7. Sine and cosine functions within the range of [−2, 2] allow a way to move around (inside the
space among them) or beyond (outside the space among them) the target [26].

7. Test System

This section consists of two parts. In the first part, a test case is taken to explain model order
reduction technique. In the second part, the design procedure of the FOPID controller for ROCIP
is elaborated.

7.1. Improved Routh–Pade Approximation Method

Let the third-order SISO test system be given as

G3(s) =
[3, 4]s2 + [25, 26]s + [14, 15]

[7, 8]s3 + [54, 55]s2 + [90, 91]s + [35, 36]
=

A(s)
B(s)

(39)

The desired first-order model for (39) becomes

_
G1 (s) =

[e−0 , e+0 ]

[ f−0 , f+0 ] + [ f−1 , f+1 ]s
=

_
E (s)
_
F (s)

(40)

7.1.1. Calculation of Denominator

The improved Routh Table (Table 1) for denominator of (39) obtained using (23) is given in Table 2.

Table 2. Routh array for denominator polynomial of (39).

s3 [7, 8] [90, 91]
s2 [54, 55] [35.06, 35.94]
s1 [85.175, 86.054]
s0 [35.06, 35.94]
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The denominator of (40) is obtained from direct truncation of Table 2 which is given as

_
F (s) = [85.175, 86.054] s + [35.06, 35.94] (41)

7.1.2. Calculation of Numerator

The first interval TM and first interval MP of HOCIP, (39), are determined using (32) and (33),
which are given as

[λ−0 , λ+
0 ] = [0.389, 0.428] (42)

[µ−1 , µ+
1 ] = [0.375, 0.571] (43)

The numerator polynomial of the desired first-order model, (40), can be obtained by matching
first interval TM of HOCIP with first interval TM of ROCIP, such that

[
∧
λ
−
0 ,
∧
λ
+

0 ] = [λ−0 , λ+
0 ] (44)

Using (34) and (42), the numerator polynomial is obtained as

_
E (s) = [e−0 , e+0 ] = [13.638, 15.382] (45)

Therefore, the desired first-order interval model,
_
G1 (s), obtained from (41) and (45), is given as

_
G1 (s) =

[13.638, 15.382]
[85.175, 86.054]s + [35.06, 35.94]

(46)

Figure 8 represents the step response of interval transfer function (39) and its proposed model (46).
It is clear from Figure 8 that the steady-state response of proposed model (46) and the system (39)
are exactly identical, but when it comes to the transient state response there is a slight deviation
between (39) and (46). Therefore, it can be concluded safely that the model preserves essential
characteristics of the original system. This illustrates that proposed model (46) provides a good model
of system (39).
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Figure 8. Step response of system G3(s) and model
_
G1 (s).

7.2. Design of FOPID Controller

An SCA-based FOPID controller is proposed for the first order interval system, (46), by considering
the frequency domain specifications. In order to establish the efficacy of the SCA-based FOPID
controller, other algorithms, namely particle swarm optimization (PSO) [61], Nelder–Mead simplex
(NMS) [4] and Luus–Jaakola (LJ) [62,63] are also used to obtain the parameters of PIαDβ controller.
A total of 50 candidates are considered in whole population with 100 iterations for all algorithms.
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The key feature of the SCA algorithm [61,64–66] is that it is free from algorithm-specific parameters.
The algorithm-specific parameters of all other algorithms are listed in Table 3.

Table 3. Algorithm-specific parameters for different algorithms.

Algorithms Parameters Values

PSO
Cognitive parameter, c1
Social parameter, c2
Inertia weight, w

2
2
0.5

NMS

Refection coefficient, α
Contraction coefficient, β
Expansion coefficient, γ
Shrinking coefficient, δ

1
1/2
2
1/2

LJ Contraction factor, γ 0.95

SCA No parameter −

In order to design the FOPID controller, different transfer functions are constructed as shown in
Section 4.1. Using (16) and (18), the system transfer functions corresponding to maximum plots of gain
and phase of the Bode envelope given as

_
G1b (s) =

15.382
85.175s + 35.06

(47)

_
G1d (s) =

13.638
86.054s + 35.06

(48)

The design criteria of the controlled system are considered as: gain crossover frequency (ωgc)= 50
rad/sec and phase margin (φpm)= 85 deg.

Figure 9 represents the block diagram of ROCIP with an SCA-based FOPID controller. To obtain
the desired specifications, (21) and (22) are solved using SCA. The optimal parameters (Ka, Kb, Kc, α

and β) of PIαDβ controller obtained are

Ka = 324.565, Kb = 658.081, Kc = 204.214,

α = 0.616, β = 0.992
(49)

Apply SCA, evaluate objective function in equs. (21) 
& (22) and determine Ka, Kb, Kc, α and β

βb
a cα

K
Ĉ(s)=K + +K S

S
Ĝ(s)

1
H(s)=

s

+
-Reference input

Error signal FOPID

Controller

Sensor

Control signal Interval plant 

(ROCIP)

Output signal

R(s) E(s) U(s) C(s)

 

Figure 9. ROCIP with an SCA-based FOPID controller.

The FOPID controller for the specified design criteria is given as

∧
C(s)= 324.565 +

658.081
s0.616 + 204.214s0.992 (50)
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The FOPID controllers for the above defined specifications obtained due to PSO, NMS and LJ are
given as

∧
CPSO (s) = 245.496 +

335.474
s0.457 + 443.675s0.845 (51)

∧
CNMS (s) = 832.765 +

147.164
s0.329 + 379.852s0.693 (52)

∧
CLJ (s) = 473.359 +

259.876
s0.478 + 156.952s0.573 (53)

Figure 10 presents the unit step response of closed-loop control system of Figures 4 and 5 having
ROCIP and HOCIP, respectively. From Figure 10, it is clearly observed that the designed FOPID

controller
∧

C(s) using SCA for ROCIP,
_
G1 (s), is also suited for HOCIP, G3(s). This establishes the

usefulness of proposed technique.
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Figure 10. Unit step response of controlled ROCIP and HOCIP.

Figure 11 depicts the Bode plots of the open-loop controlled systems with FOPID controller. It is
clear from the Figure 11 that frequency response of the SCA-based FOPID controller is also excellent
for both ROCIP and HOCIP.
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Figure 11. Bode plots of controlled ROCIP and HOCIP with an FOPID controller.

Figures 12 and 13 plots the step responses of ROCIP and HOCIP with FOPID controllers obtained
due to SCA, PSO, NMS and LJ. However, Figures 14 and 15 are showing the Bode plots. It is clearly
observed that the step responses of the closed-loop system with an SCA-based FOPID controller is
better when compared to other optimization algorithms. The same is true for frequency response
plotted in Figures 14 and 15. This clearly established the supremacy of the SCA-based FOPID controller.
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The comparative analysis is reported in Table 4. It is seen that the desired frequency
domain specifications (ωgc= 50 rad/sec and φpm= 85 deg) of HOCIP are nearly fulfilled with an
SCA assisted FOPID controller. The FOPID controllers designed using SCA, PSO, NMS, and LJ
optimization techniques for HOCIP gives frequency domain specifications as (ωgc= 87.32 rad/sec and
φpm= 54.7 deg), (ωgc= 75.83 rad/sec and φpm= 43.2 deg), (ωgc= 58.57 rad/sec and φpm= 28.3 deg) and
(ωgc= 31.54 rad/sec and φpm= 33.7 deg), respectively. From these values, it is evident that the ωgc

and φpm obtained from the FOPID controllers designed using PSO, NMS and LJ are having larger
deviations from the desired frequency domain specifications when compared to the FOPID controller

based on SCA. This proves that the designed controller
∧

C(s) is robust and also best suited for both
ROCIP and HOCIP to attain the desired specifications.

Table 4. Controller parameters and specifications for different algorithms.

Algorithms φpc (deg) ωgc (rad/sec) Ka Kb Kc α β

SCA 87.32 54.7 324.565 658.081 204.214 0.616 0.992
PSO 75.83 43.2 245.496 335.474 443.675 0.457 0.845
NMS 58.57 28.3 832.765 147.164 379.852 0.329 0.693

LJ 31.54 33.7 473.359 259.876 156.952 478 0.573

8. Conclusions

This article proposed a robust PIαDβ controller based on sine-cosine algorithm (SCA)
for high-order continuous interval plant (HOCIP) using a model order reduction technique.
For controller design, HOCIP is initially diminished to reduced-order continuous interval plant
(ROCIP) using the modified Routh–Pade approximation technique. The denominator polynomial of
ROCIP is derived using modified Routh approximation which always guarantees the stability and
the numerator polynomial is obtained by matching TMs and MPs that improve the transient and
steady-state response of the ROCIP. Then, SCA algorithm is used to determine the five unknown
parameters of PIαDβ controller for ROCIP. The values of controller parameter are determined by
minimizing two non-linear equations. For the design of PIαDβ controller, gain crossover frequency
(ωgc) and phase margin (φpm) are considered as performance criteria. The simulation results
demonstrate that the desired frequency domain specifications for both ROCIP and HOCIP are
approximately fulfilled with the proposed SCA-based FOPID controller. Thus, it is established that
proposed technique is an excellent alternative approach for the design of an FOPID controller using



Algorithms 2020, 13, 317 16 of 19

reduced-order modeling. The future line of work for the proposed technique lies in the design of a
controller for multi-input-multi-output (MIMO) continuous and discrete interval systems.
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Abbreviations

The following abbreviations are used in this manuscript:

FOPID fractional-order proportional-integral-derivative
PM phase margin
MPs Markov parameters
TMs time moments
ROCIP reduced-order continuous interval plant
HOCIP high-order continuous interval plant
SCA sine-cosine algorithm
SISO single-input-single-output
MIMO multi-input-multi-output
PID proportional-integral-derivative
IOPID integer-order proportional-integral-derivative
AVR automatic voltage regulator
MOR model order reduction
ISE integral-square-error
PSO particle swarm optimization
RL Riemann–Liouville
GL Grunwald–Letnikov
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