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Abstract: In this paper, we present a robust algorithm to solve numerically a family of
two-dimensional fractional integro differential equations. The Haar wavelet method is upgraded
to include in its construction the Laplace transform step. This modification has proven to reduce
the accumulative errors that will be obtained in case of using the regular Haar wavelet technique.
Different examples are discussed to serve two goals, the methodology and the accuracy of our
new approach.

Keywords: haar wavelet method; laplace transform; numerical solutions; two-dimensional fractional
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1. Introduction

Wavelet on IR is studied by many mathematicians to construct an orthonormal basis for L2[IR];
see [1–3]. One of the common wavelets is the Haar wavelet on IR. In approximation theory, once
we have these bases, we are ready to find approximate solutions for many of the applied problems
such as in [4,5]. Let u(x, t) be a function defined over [0, 1]× [0, 1], and let k(x, t, y, τ) be a continuous
kernel; in addition, assume 0 < α < 1. In this work, we are interested in solving the two-dimensional
fractional Fredholm integro-differential equation of the form:

Dα
t u(x, t) = f (x, t) +

∫ 1

0

∫ 1

0
k(x, t, y, τ)u(y, τ)dydτ, (1)

where Dα
t u(t) is the fractional derivative in the sense of Caputo definition.

Babolian and Shahsavaran [4] obtained a numerical solution of nonlinear Fredholm integral
equations of the second kind using Haar wavelets. In addition, Aziz, Fayyaza, and Islama proposed
in [6] a new method for the numerical solution of a one-dimensional nonlinear Fredholm and Volterra
using Haar wavelets. This method is the extension of Aziz and Islama work in [7]. Moreover, Aziz,
Khan, and Islama also found a numerical solution for the two-dimensional nonlinear integral equation
by establishing a new method based on Haar wavelet. In addition, Rehman and Khan in [8] solved
fractional differential equations using the Legendre wavelet method. Furthermore, Pedas and Tamme,
in [9], used spline collocation methods for multi-term fractional differential equations. In [4], Shesha,
Savitha, and Nargund used the Haar wavelet method for the numerical solution of a two-dimensional
Fredholm integral equation of the second kind. After awhile, Cattani used Shannon wavelets for the
solution of integro-differential equations [10].
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In [5], Lepik provided a numerical solution for one-dimensional, fractional integral equations
using the Haar wavelet method. A similar approach can be done by replacing functions of one
variable by functions of two variables. In this paper, we find numerical solutions for the fractional
integro-differential Equation (1) using the Haar wavelet method (HWM); then, we use a modified
approach with the help of Laplace transform to solve the same equation. The examples we provide
show the efficiency of the second method comparing with the HWM.

2. Preliminaries and Basic Concepts

2.1. Fractional Derivative

There are many definitions that describe the fractional derivative. Here, we use Caputo approach
which is defined as follows:

Definition 1 (Caputo derivative). [11] The fractional derivative of f (x) in the Caputo sense is defined by

Dα
x f (x) =

1
Γ(n− α)

∫ x

0
f (n)(t)(x− t)n−α−1dt n ∈ IN, n− 1 < α < n. (2)

It is worth mentioning that a Caputo derivative allows traditional initial and boundary conditions
to be included in the formulation of the problem [12] as well as the derivative of the constant being
zero. For more information and properties about Caputo derivative, we encourage the reader to
see [11,13–15].

2.2. Laplace Transform

Definition 2. We denote the Laplace transform of a function f (t) by F(s), which is defined as

F(s) = L[ f (t)](s) =
∫ ∞

0
e−st f (t)dt. (3)

Lemma 1. The Laplace of the Caputo derivative is given by

L[Dα
t f (t)](s) = sαF(s)−

n−1

∑
k=0

sα−k−1 f (k)(0). (4)

Definition 3. A function f on 0 ≤ t < ∞ is said to be exponentially bounded if it satisfies an inequality of
the form

| f (t)| ≤ Mect,

for some real constants M > 0 and c, for all sufficiently large t.

Theorem (3.1) given in [16] shows that one can take the Laplace operator over fractional differential
equations if the homogeneous part is exponentially bounded. A modification of this mentioned
theorem will be adjusted to fit with the proposed Fredholm equation as follows:

Theorem 1. [16] Assume Equation (1) has a unique continuous solution u(x, t). If f (x, t) and k(x, t, w, y)
are continuous for x, t, w, y ∈ [0, 1] and exponentially bounded in t, then u(x, t) and its Caputo derivative are
exponentially bounded in t, and their Laplace transforms exist in t.

As a corollary of this theorem and the Fubini’s Theorem, we have the following result

Corollary 1. Let k(x, t, w, y) be continuous for 0 ≤ x, t, y, w ≤ 1 and of exponential order in t. If

f (x, t) =
∫ 1

0

∫ 1

0
k(x, t, y, w)dydw, for 0 ≤ x, t ≤ 1,
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then the Laplace transform of t 7→ f (x, t) exists and F(x, s) =
∫ 1

0

∫ 1
0 K(x, s, y, w)dydw, where K(x, s, y, w) is

the Laplace transform of t 7→ k(x, t, y, w).

2.3. Haar Wavelet

Wavelet analysis is the tool to construct an orthonormal basis for L2[R]. One of the common
wavelet bases is the Haar basis. In fact, for any i = 2, 3, 4, ... there are unique j ≥ 0 and 0 ≤ k ≤ 2j − 1
such that i = 2j + k + 1. Hence, we define the family {hi} by

h1(x) =

{
1 , 0 ≤ x < 1

0 , elsewhere
. (5)

and
hi(x) = ψj,k(x) = 2j/2ψ(2jx− k), f or i = 2, 3, 4, ...

where

ψ(x) =


1 , 0 ≤ x < 1

2

−1 , 1
2 ≤ x < 1

0 , elsewhere

.

The family {hi} defines an orthonormal basis for L2[0, 1]—that is, any f (x) in L2[0, 1] has the
expansion f (x) = ∑∞

i=1 aihi(x). For approximation purposes, the resolution level J is the maximum
value for j in i = 2j + k + 1. Thus, for given resolution level J, we define the truncated series expansion
of f (x) by

f (x) ≈
2J+1

∑
i=1

aihi(x)

where i = 2j + k + 1, j = 0, 1, 2, 3, ..., J, and 0 ≤ k ≤ 2j − 1. In Table 1, we compute explicitly the
corresponding values of j, k, and i for resolution level J = 3.

Table 1. Index computations for Haar basis function at J = 3.

j 0 1 1 2 2 2 2 3 3 3 3 3 ... 3

k 0 0 1 0 1 2 3 0 1 2 3 4 ... 7

i = 2j + k + 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 16

Since we are dealing with both of u(x) and its derivative u′(x) in differential equations, we will
introduce the integrating Haar functions [5] by

pi(x) =
∫ x

0
hi(x)dx =


x− k

2j , k
2j ≤ x < k+0.5

2j

k+1
2j − x , k+0.5

2j ≤ x < k+1
2j

0 , elsewhere

. (6)

It follows that, if we approximate u′(x) ≈ ∑2J+1

i=1 aihi(x), then we have u(x)− u(0) ≈ ∑2J+1

i=1 ai pi(x)

3. Haar Wavelet Method and Laplace Haar Wavelet Method

In this section, we propose the methodology of both the Haar wavelet method and the
Laplace Haar wavelet method to find a numerical solution to the suggested two-dimensional
integro-differential equation

Dα
t u(x, t) = f (x, t) +

∫ 1

0

∫ 1

0
k(x, t, y, τ)u(y, τ)dydτ (7)
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subject to the initial condition
u(x, 0) = 0, (8)

where 0 < α < 1, and Dα
t u(x, t) is the Caputo derivative.

3.1. Haar Wavelet Method (HWM)

We summarize the Haar wavelet approach in the following steps.

Step 1: After we determine the level of resolution J to approximate u(x, t), we assume

∂

∂t
u(x, t) ≈

2J+1

∑
i=1

2J+1

∑
j=1

aijhi(x)hj(t), (9)

where {aij} are to be determined. Using the initial condition in (8) and integrating with respect to t
over [0, t], one can write

u(x, t) ≈
2J+1

∑
i=1

2J+1

∑
j=1

aijhi(x)pj(t).

It follows that the integral term can be estimated by

∫ 1

0

∫ 1

0
k(x, t, y, τ)u(y, τ)dydτ ≈

2J+1

∑
i=1

2J+1

∑
j=1

aij

∫ 1

0

∫ 1

0
k(x, t, y, τ)hi(y)pj(τ)dydτ

Step 2: Now, to estimate the term Dα
t u(x, t), we plug Equation (9) into the definition of Dα

t u(x, t) to get

Dα
t u(x, t) =

1
Γ(1− α)

∫ t

0

∂

∂t
u(x, t)(t− τ)−αdτ

≈ 1
Γ(1− α)

2J+1

∑
i=1

2J+1

∑
j=1

aijhi(x)
∫ t

0
hj(τ)(t− τ)−αdτ

Step 3: Use the results of step (1) and (2) to obtain the equation

1
Γ(1− α)

2J+1

∑
i=1

2J+1

∑
j=1

aijhi(x)
∫ t

0
hj(τ)(t− τ)−αdτ = f (x, t) +

2J+1

∑
i=1

2J+1

∑
j=1

aij

∫ 1

0

∫ 1

0
k(x, t, y, τ)hi(y)pj(τ)dydτ

Use the equally distance nodes xm = m−0.5
2J+1 and tn = n−0.5

2J+1 to construct the system:

1
Γ(1− α)

2J+1

∑
i=1

2J+1

∑
j=1

aijhi(xm)
∫ tn

0
hj(τ)(tn − τ)−αdτ = f (xm, tn)

+
2J+1

∑
i=1

2J+1

∑
j=1

aij

∫ 1

0

∫ 1

0
k(xm, tn, y, τ)hi(y)pj(τ)dydτ

for m, n = 1, 2, 3, ..., 2J+1.
The wavelet coefficients aij are obtained by solving the above the 2J+1 × 2J+1 system of equations.
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3.2. Laplace Haar Wavelet Method (LHWM)

In this section, we summarize the methodology of Laplace Haar wavelet method to the
two-dimensional integro-differential Equation (7), where we consider in this approach the more
general case, for n− 1 < α < n and initial conditions

u(x, 0) = u0(x),
∂

∂t
u(x, 0) = u1(x), ...,

∂n−1

∂tn−1 u(x, 0) = un−1(x)

which can be reached in the following steps.

Step 1. Determine the level of resolution J.

Step 2. Applying the Laplace transform to Equation (7), use Lemma 1, Corollary 1, and use
the initial conditions u0(x) = u(x, 0), u1(x) = ∂

∂t u(x, 0),..., un−1(x) = ∂n−1

∂tk−1 u(x, 0), one gets:

sαU(x, s)−
n−1

∑
k=0

sα−k−1uk(x) = F(x, s) +
∫ 1

0

∫ 1

0
u(y, w)K(x, s, y, w)dwdy,

equivalently,

U(x, s) =
1
sα

(
F(x, s) +

n−1

∑
k=0

sα−k−1uk(x)

)
+
∫ 1

0

∫ 1

0
u(y, w)

K(x, s, y, w)

sα
dwdy,

Step 3. Divide by sα and take inverse Laplace transform

u(x, t) = g(x, t) +
∫ 1

0

∫ 1

0
u(y, w)R(x, t, y, w)dwdy, (10)

where g(x, t) = L−1[s−αF(x, s) + ∑n−1
k=0 sα−k−1uk(x)] and R(x, t, y, w) = L−1[s−αK(x, s, w, y)].

Step 4. Use the Haar wavelet truncated series u(x, t) ≈ ∑2J+1

i=1 ∑2J+1

j=1 aijhi(x)hj(t) to discretize
Equation (10):

2J+1

∑
i=1

2J+1

∑
j=1

aijhi(x)hj(t) = g(x, t) +
2J+1

∑
j=1

2J+1

∑
i=1

aij

∫ 1

0

∫ 1

0
hi(y)hj(w)R(x, t, y, w)dwdy.

Step 5. Use the nodes (xm, tn), m, n = 1, 2, 3, ..., 2J+1 to construct a 2J+1 × 2J+1 system

2J+1

∑
i=1

2J+1

∑
j=1

aijhi(xm)hj(tn) = g(xm, tn) +
2J+1

∑
j=1

2J+1

∑
i=1

aij

∫ 1

0

∫ 1

0
hi(y)hj(w)R(xm, tn, y, w)dwdy.

Then, solve this system to obtain the coefficients aij.

4. Numerical Examples

Here, we discuss some examples to explain the methodology of the proposed methods and
conduct some comparison analysis.

Example 1. Consider the two-dimensional linear fractional Fredholm integro-differential equation:

D0.5
t u(x, t) =

√
π

2
ex − 2(e− 1)t

3
+
∫ 1

0

∫ 1

0
u(y, τ)tdτdy (11)
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subject to the initial condition u(x, 0) = 0. The exact solution is u(x, t) =
√

tex. In this example, we find a
numerical solution using the Haar wavelet method and then use the Laplace Haar wavelet method. In either
approach, we consider the level of resolution J = 4.

First, Approach: (Haar wavelet Method)
We need to estimate the terms D0.5

t u(x, t) and
∫ 1

0

∫ 1
0 tu(y, τ)dτdy. Hence, we use

∂

∂t
u(x, t) ≈

32

∑
i=1

32

∑
j=1

aijhi(x)hj(t). (12)

Integrate both sides and use the initial condition u(x, 0) = 0 to find that

u(x, t) ≈
32

∑
i=1

32

∑
j=1

aijhi(x)pj(t). (13)

Now, using the equally distance nodes xm = m−0.5
32 and tn = n−0.5

32 , and using the estimates in (12)
and (13), one can obtain the discrete system

1√
π

32

∑
i=1

32

∑
j=1

aijhi(xm)
∫ tn

0
hj(τ)(tn − τ)−0.5dτ =

√
π

2
exm − 2(e− 1)tn

3
+

32

∑
j=1

aijtn pi(1)qj(1)

for n, m = 1, 2, 3, ..., 32, where qj(x) :=
∫ x

0 pj(y)dy. Use one of the common computer packages (we used
Mathematica 11) to compute the Haar coefficients aij, for n, m = 1, 2, 3, ..., 32. Figures 1–3 show the exact and
approximate solutions for different levels of resolution.

Second Approach: (Laplace Haar wavelet Method)
We apply the Laplace transform to Equation (11) to get

√
sU(x, s) =

√
π

2
1
s

ex − 2(e− 1)
3s2 +

1
s2

∫ 1

0

∫ 1

0
u(y, τ)dτdy

or, equivalently,

U(x, s) =
√

π

2
1

s3/2 ex − 2(e− 1)
3s5/2 +

1
s5/2

∫ 1

0

∫ 1

0
u(y, τ)dτdy

Now, we take the inverse Laplace transform to obtain

u(x, t) =
√

tex − 8(e− 1)
9

√
t3 +

4
√

t3

3
√

π

∫ 1

0

∫ 1

0
u(y, τ)dτdy.

To discretize the above equation, we take the nodes xn = tn = n−0.5
32 , n = 1, 2, 3..., 32. By this choice, we

have the system

32

∑
n=1

32

∑
m=1

anmhn(xi)hm(tj) =
√

tjexi − 8(e− 1)
9

√
t3

j +
4
√

t3
j

3
√

π

∫ 1

0

∫ 1

0

32

∑
n=1

32

∑
m=1

anmhn(y)hm(τ)dτdy.

Using the fact that
∫ 1

0 hi(x)dx = pi(1) for all i = 1, 2, 3, ..., 32, one can write the above system as

32

∑
n=1

32

∑
m=1

anmhn(xi)hm(tj) =
√

tjexi − 8(e− 1)
9

√
t3

j +
4
√

t3
j

3
√

π

32

∑
n=1

32

∑
m=1

anm pn(1)pm(1).

Figures 4 and 5 show the graphs of the approximate solution at the level of resolution J = 4.
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Figure 1. The exact solution for Example 1.

Figure 2. The approximate solution for Example 1 at J = 2 (to the left) and at J = 4 (to the right)
using HWM.

Figure 3. The approximate solution (blue) and the exact solution (red) for Example 1 at J = 2,
t = 0.046875 (to the left) and at J = 4, t = 0.046875 (to the right) using HWM.
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Figure 4. The approximate solution for Example 1 with level of resolution J = 4 using LHWM.

Figure 5. The approximate solution (blue) and the exact solution (red) for Example 1 with level of
resolution J = 4 and t = 0.5 using LHWM.

Example 2. Consider the following problem

D0.5
t u(x, t) = 6(2− e) + 8t3/2 sinc x + π

√
π
∫ 1

0

∫ 1

0
yeτu(y, τ)dydτ, (14)

subject to the initial condition u(x, 0) = 0, where sinc (x) = sin(πx)
πx is the normalized sinc function. The exact

solution is u(x, t) = 3
√

πt2 sinc x.
When we use the Haar wavelet method at J = 4, we discretize Equation (14) by

1√
π

32

∑
i=1

32

∑
j=1

aijhi(xm)
∫ tn

0
hj(τ)(tn − τ)−0.5dτ = 6(2− e) + 8t3/2

n sinc xm

+ π
√

π
32

∑
j=1

32

∑
i=1

aij

(∫ 1

0
yhi(y)dy

)(∫ 1

0
pj(τ)eτdτ

)

with xm = m−0.5
32 , tn = n−0.5

32 for n, m = 1, 2, 3, ..., 32. We solve the above system to get the approximate solution

u(x, t) =
32

∑
j=1

32

∑
i=1

aijhi(x)pj(t).
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The graph of the exact solution and the approximate solution with level of resolution J = 4 are shown in
Figures 6 and 7.

Figure 6. The exact solution (to the left) and the approximate solution (to the right) at J = 4 for
Example 2.

Figure 7. The approximate solution (blue) and the exact solution (red) for Example 2 with level of
resolution J = 4 and t = t8 using HWM.

Now, we use the Laplace Haar wavelet method with the same level of resolution (J = 4). If we follow the
same steps as in Example 1, we get the discrete system

32

∑
i=1

32

∑
r=1

airhi(xm)hr(tn) =
3
√

tn

(
8− 4e + π (tn) 3/2sinc (xm)

)
√

π

+ 2π
32

∑
i=1

32

∑
r=1

air
√

tn

(∫ 1

0
xhi(x)dx

)(∫ 1

0
ethr(t)dt

)

with xm = m−0.5
32 , tn = n−0.5

32 for n, m = 1, 2, 3, ..., 32. We solve the above system to get the approximate solution

u(x, t) =
32

∑
j=1

32

∑
i=1

aijhi(x)hj(t).

The graph of the approximate solution with level of resolution J = 4 is shown in Figures 8 and 9.
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Figure 8. The approximate solution for Example 2 with level of resolution J = 4 using LHWM.

Figure 9. The approximate solution (blue) and the exact solution (red) for Example 2 with level of
resolution J = 4 and t = t8 using LHWM.

One of the advantages of the Laplace Haar wavelet method is that one can easily solve higher
order fractional integro-differential equations as explained in the methodology. The following example
illustrates this benefit.

Example 3. Consider the following third fractional order problem

D5/2
t u(x, t) = −2π5/2

(
−6 + π2

)
+ 12
√

t sin(πx)
∫ 1

0

∫ 1

0
yeτu(y, τ)dydτ, (15)

subject to the initial condition u(x, 0) = 0. The exact solution is u(x, t) =
√

π t3 sin(πx). We use the Laplace
Haar wavelet method at the level of resolution J = 4. The required discrete system is given by

32

∑
i=1

32

∑
r=1

airhi(xm)hr(tn) =
16
15

π2
(

6− π2
)
(tn)

5/2 +
√

π (tn)
3 sin(πxm)

+
8π5√π

15

32

∑
i=1

32

∑
r=1

air (tn)
5/2 pi(1)

∫ 1

0
sin(πt)hr(t)dt,
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with approximate solution

u(x, t) =
32

∑
i=1

32

∑
r=1

airhi(xm)hr(tn).

Figures 10 and 11 show the exact and approximate solutions for Equation (15).

Figure 10. The exact (to the left) and the approximate (to the right) solutions for Example 3 with J = 4
using LHWM.

Figure 11. The approximate solution (blue) and the exact solution (red) for Example 3 with level of
resolution J = 4 and t = t8 using LHWM.

5. Quadrature Laplace Haar Wavelet Method

This section is designed to apply LHWM for equations involving functions that have no closed
Laplace form like f (t) = e−t2

sin(
√

t). We use the convolution theorem for a product of two
Laplace transforms. More precisely, if F(s) and G(s) are the Laplace transforms for f (t) and g(t),
respectively, then

L−1[F(s)G(s)](t) = f ∗ g(t) :=
∫ t

0
f (t− τ)g(τ)dτ.

Consider the same equation

Dα
t u(x, t) = f (x, t) +

∫ 1

0

∫ 1

0
k(x, t, y, τ)u(y, τ)dydτ (16)

for n− 1 < α < n and initial conditions

u(x, 0) =
∂

∂t
u(x, 0) = ... =

∂n−1

∂tn−1 u(x, 0) = 0. (17)

Definition 4. For α > 0, we define G(t) = tα−1

Γ(α) for 0 < t < ∞.
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Notice that L[G(t)](s) = 1
sα . This fact will be the key of this section. Take the Laplace transform

for both sides of Equation (16), and keep in your mind the initial conditions (17), one obtains

U(x, s) =
1
sα

F(x, s) +
∫ 1

0

∫ 1

0

1
sα

K(x, s, y, τ)u(y, τ)dydτ (18)

Now, take the inverse Laplace transform for both sides of Equation (18) and use the convolution
theorem, to find that

u(x, s) = G ∗ f (x, t) +
∫ 1

0

∫ 1

0
G ∗ k(x, t, y, τ)u(y, τ)dydτ, (19)

where

G ∗ f (x, t) =
∫ t

0
G(t− w) f (x, w)dw

and

G ∗ k(x, t, y, τ) =
∫ t

0
G(t− w)k(x, w, y, τ)dw

If we use any of the quadrature formulas to estimate these integrals, we obtain the new Fredholm
integral equation

u(x, s) = f̃ (x, t) +
∫ 1

0

∫ 1

0
k̃(x, t, y, τ)u(y, τ)dydτ, (20)

where

f̃ (x, t) =
t

M

M

∑
j=1
G(t− wj) f (x, wj)

and

k̃(x, t, y, τ) =
t

M

M

∑
j=1
G(t− wj)k(x, wj, y, τ)

for wj = t
M j. We emphasize that one can take any quadrature formula to estimate the above

convolutions. Finally, we discretize Equation (20), for desired resolution J as before, to get the
approximate solution

u(x, t) ≈
2J+1

∑
i=1

2J+1

∑
j=1

aijhi(x)hj(t).

Example 4. Consider the following higher order fractional integro-differential equation

D3/2
t u(x, t) =

3
4

e−x√π +
4
5

e−t2
sin
√

t +
∫ 1

0

∫ 1

0

2e1−t2

1− e
sin
√

t u(y, τ)dydτ, (21)

subject to the initial conditions u(x, 0) = ∂
∂t u(x, 0) = 0. The exact solution is u(x, t) = e−xt3/2. We use the

Laplace Haar wavelet method at the level of resolution J = 4. The required discrete system is given by

32

∑
i=1

32

∑
r=1

airhi(xm)hr(tn) = f̃ (xm, tn)+
32

∑
i=1

32

∑
r=1

air

∫ 1

0

∫ 1

0
k̃(xm, tn, y, τ)hi(y)hr(τ)dydτ,

with approximate solution

u(x, t) =
32

∑
i=1

32

∑
r=1

airhi(xm)hr(tn).

Figures 12 and 13 show the exact and approximate solutions for Equation (21).
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Figure 12. The exact (to the left) and the approximate (to the right) solutions for Example 4 with J = 4
using LHWM.

0.2 0.4 0.6 0.8 1.0
x

0.005

0.006

0.007

0.008

0.009

0.010

u

Figure 13. The approximate solution (blue) and the exact solution (red) for Example 4 with level of
resolution J = 4 and t = t2 using LHWM.

6. Comparison between HWM and LHWM

In this section, we compare the Haar wavelet method and Laplace Haar wavelet method.
The Tables 2–6 below show the absolute error in Examples 1–3 in both methods. The tables indicate
the accuracy of both methods, whereas the Laplace Haar wavelet method has better approximation.
It is worth mentioning that the Laplace wavelet method reduces the computation times significantly
(see Table 7).

Table 2. Exact, approximate, and absolute error for different values of xm and tn in Example 1 with
resolution J = 4 using HWM.

xm tn Exact Value Approximate Value Absolute Error

0.015625 0.126968 0.0997192 2.72493 × 10−2

0.109375 0.139448 0.10952 2.99273 × 10−2

0.234375 0.015625 0.158015 0.124103 3.39119 × 10−2

0.484375 0.202895 0.159352 4.35433 × 10−2

0.734375 0.260522 0.202896 5.59102 × 10−2

0.984375 0.334517 0.262728 7.17897 × 10−2

0.015625 0.335927 0.336167 2.39687 × 10−4

0.109375 0.368944 0.369209 2.65744 × 10−4

0.234375 0.109375 0.418068 0.418372 3.04514 × 10−4

0.484375 0.53681 0.537208 3.98226 × 10−4

0.734375 0.689277 0.689796 5.18554 × 10−4

0.984375 0.88505 0.885723 6.73059 × 10−4
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Table 2. Cont.

xm tn Exact Value Approximate Value Absolute Error

0.015625 0.491747 0.49167 7.68371 × 10−5

0.109375 0.540078 0.540002 7.65043 × 10−5

0.234375 0.234375 0.611989 0.611913 7.60092 × 10−5

0.484375 0.785809 0.785734 7.48123 × 10−5

0.734375 1.009 1.00893 7.32756 × 10−5

0.984375 1.29558 1.29551 7.13023 × 10−5

0.015625 0.70693 0.706692 2.38435 × 10−4

0.109375 0.776411 0.776173 2.38395 × 10−4

0.234375 0.484375 0.879789 0.879551 2.38335 × 10−4

0.484375 1.12967 1.12943 2.38189 × 10−4

0.734375 1.45053 1.45029 2.38002 × 10−4

0.984375 1.86251 1.86228 2.37762 × 10−4

0.015625 1.00778 1.00709 6.92453 × 10−4

0.109375 1.10683 1.10614 6.92446 × 10−4

0.234375 0.984375 1.2542 1.25351 6.92437 × 10−4

0.484375 1.61043 1.60974 6.92415 × 10−4

0.734375 2.06783 2.06714 6.92386 × 10−4

0.984375 2.65515 2.65446 6.92349 × 10−4

Table 3. Exact, approximate, and absolute error for different values of xm and tn in Example 1 with
resolution J = 4 using LHWM.

xm tn Exact Value Approximate Value Absolute Error

0.015625 0.126968 0.12697 1.04314 × 10−6

0.109375 0.139448 0.139449 1.04314 × 10−6

0.234375 0.015625 0.158015 0.158016 1.04314 × 10−6

0.484375 0.202895 0.202896 1.04314 × 10−6

0.734375 0.260522 0.260523 1.04314 × 10−6

0.984375 0.334517 0.334518 1.04314 × 10−6

0.015625 0.335927 0.335946 1.93192 × 10−5

0.109375 0.368944 0.368963 1.93192 × 10−5

0.234375 0.109375 0.418068 0.418087 1.93192 × 10−5

0.484375 0.53681 0.536829 1.93192 × 10−5

0.734375 0.689277 0.689297 1.93192 × 10−5

0.984375 0.88505 0.885069 1.93192 × 10−5

0.015625 0.491747 0.491807 6.06008 × 10−5

0.109375 0.540078 0.540139 6.06008 × 10−5

0.234375 0.234375 0.611989 0.612049 6.06008 × 10−5

0.484375 0.785809 0.78587 6.06008 × 10−5

0.734375 1.009 1.00906 6.06008 × 10−5

0.984375 1.29558 1.29564 6.06008 × 10−5

0.015625 0.70693 0.707111 1.80046 × 10−4

0.109375 0.776411 0.776591 1.80046 × 10−4

0.234375 0.484375 0.879789 0.879969 1.80046 × 10−4

0.484375 1.12967 1.12985 1.80046 × 10−4

0.734375 1.45053 1.45071 1.80046 × 10−4

0.984375 1.86251 1.86269 1.80046 × 10−4

0.015625 1.00778 1.0083 5.21618 × 10−4

0.109375 1.10683 1.10735 5.21618 × 10−4

0.234375 0.984375 1.2542 1.25473 5.21618 × 10−4

0.484375 1.61043 1.61095 5.21618 × 10−4

0.734375 2.06783 2.06835 5.21618 × 10−4

0.984375 2.65515 2.65567 5.21618 × 10−4
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Table 4. Exact, approximate, and absolute error for different values of xm and tn in Example 2 with
resolution J = 4 using HWM.

xm tn Exact Value Approximate Value Absolute Error

0.015625 0.00129766 0.00190396 6.06298 × 10−4

0.109375 0.00127279 0.00187079 5.98006 × 10−4

0.234375 0.00118402 0.00175244 5.68417 × 10−4

0.359375 0.015625 0.00103945 0.00155967 5.20225 × 10−4

0.484375 0.000852082 0.00130985 4.57771 × 10−4

0.734375 0.000416925 0.000729643 3.12718 × 10−4

0.984375 0.0000205978 0.000201207 1.80609 × 10−4

0.015625 0.0635855 0.0631889 3.96607 × 10−4

0.109375 0.0623666 0.0619889 3.77777 × 10−4

0.234375 0.058017 0.0577064 3.10578 × 10−4

0.359375 0.109375 0.0509328 0.0507317 2.01132 × 10−4

0.484375 0.041752 0.0416927 5.92945 × 10−4

0.734375 0.0204293 0.0206995 2.70127 × 10−4

0.984375 0.00100929 0.00157945 5.70154 × 10−4

0.015625 0.291974 0.291125 8.49444 × 10−4

0.109375 0.286377 0.285561 8.16738 × 10−4

0.234375 0.266405 0.265705 7.00023 × 10−4

0.359375 0.234375 0.233875 0.233365 5.0993 × 10−4

0.484375 0.191718 0.191455 2.63576 × 10−4

0.734375 0.0938081 0.0941167 3.08585 × 10−4

0.984375 0.00463451 0.0054642 8.29692 × 10−4

0.015625 1.24705 1.2456 1.45855 × 10−3

0.109375 1.22315 1.22174 1.40698 × 10−3

0.234375 1.13784 1.13662 1.22295 × 10−3

0.359375 0.484375 0.998907 0.997984 9.23228 × 10−4

0.484375 0.81885 0.818316 5.34797 × 10−4

0.734375 0.400665 0.401032 3.67342 × 10−4

0.984375 0.0197945 0.0209835 1.18898 × 10−3

0.015625 5.15042 5.14813 2.29639 × 10−3

0.109375 5.0517 5.04948 2.21871 × 10−3

0.234375 4.69938 4.69744 1.94151 × 10−3

0.359375 0.984375 4.12556 4.12407 1.49005 × 10−3

0.484375 3.38191 3.38101 9.04961 × 10−4

0.734375 1.65478 1.65523 4.53913 × 10−4

0.984375 0.0817527 0.0834443 1.69153 × 10−3

Table 5. Exact, approximate, and absolute error for different values of xm and tn in Example 2 with
resolution J = 4 using LHWM.

xm tn Exact Value Approximate Value Absolute Error

0.015625 0.00129766 0.00130173 4.06726 × 10−6

0.109375 0.00127279 0.00127686 4.06726 × 10−6

0.234375 0.00118402 0.00118809 4.06726 × 10−6

0.359375 0.015625 0.00103945 0.00104351 4.06726 × 10−6

0.484375 0.000852082 0.000856149 4.06726 × 10−6

0.734375 0.000416925 0.000420992 4.06726 × 10−6

0.984375 0.0000205978 0.000246651 4.06726 × 10−6

0.015625 0.0635855 0.0635962 1.0761 × 10−5

0.109375 0.0623666 0.0623774 1.0761 × 10−5

0.234375 0.058017 0.0580278 1.0761 × 10−5

0.359375 0.109375 0.0509328 0.0509436 1.0761 × 10−5

0.484375 0.041752 0.0417628 1.0761 × 10−5

0.734375 0.0204293 0.0204401 1.0761 × 10−5

0.984375 0.00100929 0.00102005 1.0761 × 10−5
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Table 5. Cont.

xm tn Exact Value Approximate Value Absolute Error

0.015625 0.291974 0.29199 1.57524 × 10−5

0.109375 0.286377 0.286393 1.57524 × 10−5

0.234375 0.266405 0.26642 1.57524 × 10−5

0.359375 0.234375 0.233875 0.233891 1.57524 × 10−5

0.484375 0.191718 0.191734 1.57524 × 10−5

0.734375 0.0938081 0.0938239 1.57524 × 10−5

0.984375 0.00463451 0.00465026 1.57524 × 10−5

0.015625 1.24705 1.24708 2.26455 × 10−5

0.109375 1.22315 1.22317 2.26455 × 10−5

0.234375 1.13784 1.13787 2.26455 × 10−5

0.359375 0.484375 0.998907 0.99893 2.26455 × 10−5

0.484375 0.81885 0.818873 2.26455 × 10−5

0.734375 0.400665 0.400688 2.26455 × 10−5

0.984375 0.0197945 0.0198172 2.26455 × 10−5

0.015625 5.15042 5.15046 3.22829 × 10−5

0.109375 5.0517 5.05173 3.22829 × 10−5

0.234375 4.69938 4.69941 3.22829 × 10−5

0.359375 0.984375 4.12556 4.12559 3.22829 × 10−5

0.484375 3.38191 3.38194 3.22829 × 10−5

0.734375 1.65478 1.65481 3.22829 × 10−5

0.984375 0.0817527 0.081785 3.22829 × 10−5

Table 6. Exact, approximate, and absolute error for different values of xm and tn in Example 3 with
resolution J = 4 using HWM.

xm tn Exact Value Approximate Value Absolute Error

0.015625 3.31765 × 10−7 3.02178 × 10−7 2.95868 × 10−8

0.046875 9.921 × 10−7 9.62513 × 10−7 2.95868 × 10−8

0.109375 2.27784 × 10−6 2.24825 × 10−6 2.95868 × 10−8

0.234375 0.015625 4.54066 × 10−6 4.51108 × 10−6 2.95868 × 10−8

0.359375 6.11221 × 10−6 6.08262 × 10−6 2.95868 × 10−8

0.484375 6.75323 × 10−6 6.72364 × 10−6 2.95868 × 10−8

0.734375 5.00985 × 10−6 4.98026 × 10−6 2.95868 × 10−8

0.984375 3.31765 × 10−7 3.02178 × 10−7 2.95868 × 10−8

0.015625 0.000113795 0.00010996 3.83569 × 10−6

0.046875 0.00034029 0.000336455 3.83569 × 10−6

0.109375 0.000781299 0.000777463 3.83569 × 10−6

0.234375 0.109375 0.00155745 0.00155361 3.83569 × 10−6

0.359375 0.00209649 0.00209265 3.83569 × 10−6

0.484375 0.00231636 0.00231252 3.83569 × 10−6

0.734375 0.00171838 0.00171454 3.83569 × 10−6

0.984375 0.000113795 0.00010996 3.83569 × 10−6

0.015625 0.00111971 0.00109392 2.57826 × 10−5

0.046875 0.00334834 0.00332255 2.57826 × 10−5

0.109375 0.00768771 0.00766192 2.57826 × 10−5

0.234375 0.234375 0.0153247 0.015299 2.57826 × 10−5

0.359375 0.0206287 0.0206029 2.57826 × 10−5

0.484375 0.0227922 0.0227664 2.57826 × 10−5

0.734375 0.0169082 0.0168825 2.57826 × 10−5

0.984375 0.00111971 0.00109392 2.57826 × 10−5
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Table 6. Cont.

xm tn Exact Value Approximate Value Absolute Error

0.015625 0.00988361 0.0097253 1.58308 × 10−4

0.046875 0.0295556 0.0293973 1.58308 × 10−4

0.109375 0.0678591 0.0677008 1.58308 × 10−4

0.234375 0.484375 0.135271 0.135113 1.58308 × 10−4

0.359375 0.182089 0.181931 1.58308 × 10−4

0.484375 0.201185 0.201027 1.58308 × 10−4

0.734375 0.149248 0.14909 1.58308 × 10−4

0.984375 0.00988361 0.0097253 1.58308 × 10−4

0.015625 0.0829568 0.0820248 9.32073 × 10−4

0.046875 0.248072 0.247139 9.32073 × 10−4

0.109375 0.569567 0.568635 9.32073 × 10−4

0.234375 0.984375 1.13538 1.13445 9.32073 × 10−4

0.359375 1.52834 1.52741 9.32073 × 10−4

0.484375 1.68863 1.68769 9.32073 × 10−4

0.734375 1.2527 1.25177 9.32073 × 10−4

0.984375 0.0829568 0.0820248 9.32073 × 10−4

Table 7. Comparison between HWM and LHWM.

Example(1)
Using HWM

Example(1)
Using LHWM

Example(2)
Using HWM

Example(2)
Using LHWM

Computations time using
Mathematica 11, at J = 2 24 min 3 min 28 min 3.5 min

Computations time using
Mathematica 11, at J = 4 3 h and 20 min 10 min 4 h and 35 min 12 min

Erorr range at J = 4 10−4–10−2 10−6–10−4 10−4–10−3 10−6–10−5

7. Conclusions

We started our own work by applying the existing method, Haar wavelet method, to solve
two-dimensional fractional integro-differential equations. However, we aspire to get better results in
less time. As a result, we proposed the Laplace Haar wavelet method to solve these kinds of equations.
Applying the Laplace Haar wavelet method was beneficial. It reduced the error and the computational
time significantly.

In conclusion, applying the Laplace Haar wavelet method is advantageous in comparison with
the Haar wavelet method.
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