
algorithms

Article

Transfer Learning: Video Prediction and
Spatiotemporal Urban Traffic Forecasting †

Dmitry Pavlyuk

Transport and Telecommunication Institute, LV-1019 Riga, Latvia; Dmitry.Pavlyuk@tsi.lv
† This paper is an extended version of our paper published in the Proceedings of the 6th International

Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (Cracow, Poland,
5–7 June 2019).

Received: 9 January 2020; Accepted: 11 February 2020; Published: 13 February 2020
����������
�������

Abstract: Transfer learning is a modern concept that focuses on the application of ideas, models,
and algorithms, developed in one applied area, for solving a similar problem in another area. In this
paper, we identify links between methodologies in two fields: video prediction and spatiotemporal
traffic forecasting. The similarities of the video stream and citywide traffic data structures are
discovered and analogues between historical development and modern states of the methodologies
are presented and discussed. The idea of transferring video prediction models to the urban traffic
forecasting domain is validated using a large real-world traffic data set. The list of transferred
techniques includes spatial filtering by predefined kernels in combination with time series models and
spectral graph convolutional artificial neural networks. The obtained models’ forecasting performance
is compared to the baseline traffic forecasting models: non-spatial time series models and spatially
regularized vector autoregression models. We conclude that the application of video prediction
models and algorithms for urban traffic forecasting is effective both in terms of observed forecasting
accuracy and development, and training efforts. Finally, we discuss problems and obstacles of
transferring methodologies and present potential directions for further research.

Keywords: urban traffic flows; spatiotemporal models; data-driven; graph convolutional neural
networks; spatial filtering; network-wide forecasts

1. Introduction

Transfer learning (or domain adaptation) is a modern concept defined as application of principles
and models, learned in one setting, for improving solutions in another setting—for example, application
of models that developed for video prediction for forecasting of urban traffic flows [1,2]. In a machine
learning context, transferring is usually implemented via adaptation of a trained model by transforming
the input feature space to match domain inputs or by replacing the final layer of a model to produce
domain-specific outputs. For example, a link between popular problems of text and image classification
can be created by developing translator functions for converting text- and image-specific features into
a common feature set [3]. Another example of transfer learning in image processing is a model (e.g.,
convolutional neural network) that is trained for the classification of animals and further fine-tuned for
the classification of other types of objects [4]. In a more general context, transfer leaning is not limited
by the application of pre-trained models in another area, but also extends to the application of general
model architectures, widely used in one domain, for solving problems in another domain. The practical
advantage of transfer learning is widely acknowledged: application of pre-trained models or carefully
tested model architectures allows saving resources for model training. Resources for model training
include both computational power and training data set collection (which can be limited in some
not-data-rich domains). At the same time, transfer learning may sufficiently improve the scientific

Algorithms 2020, 13, 39; doi:10.3390/a13020039 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-3710-9678
http://dx.doi.org/10.3390/a13020039
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/2/39?type=check_update&version=2

Algorithms 2020, 13, 39 2 of 18

process of developing and testing new methodologies; the merging of models and principles from
different domains leads to a faster and more focused research process.

One of the key issues for successful transfer learning is the similarity of the output results,
input space, and background principles between domains. Although there are several statistical
approaches to matching domain-specific features and problems [5], none of them guard against
negative transfer effects that appear when information from another domain degrades the performance
of a learner from another [1]. Additionally, manual matching of domain-specific features and outputs
keep the feature set interpretable, which is highly important for decision makers.

In this paper, we provide successful evidence for merging methodologies of two emerging areas:
video prediction and spatiotemporal urban traffic forecasting. Video prediction [6] is a popular problem
of computer vision, which is devoted to the generation of future video frames on the base of the
previous video stream. Recently, the problem has become extremely popular due to the spreading
of autonomous robots and self-driving cars, growing computational power, and methodological
advances. Spatiotemporal urban traffic forecasting [7] is another emerging domain, which is focused
on the prediction of citywide traffic flows and road network states on the base of historical traffic
information on linked roads (spatial dimensions), observed for a specified time period (temporal
dimension). The problem of spatiotemporal structure identification and traffic forecasting plays a rising
role in transport engineering [8]. We state that, despite different domains, methodologies developed
for video prediction and spatiotemporal traffic forecasting and related data structures have a high
level of similarity, which allows the transfer of them between domains. Further, we provide a brief
overview of the historical development of video prediction and spatiotemporal traffic forecasting
methodologies and summarize the links between them. In the experimental part of our study,
we consider the transferring of video prediction principles and models to the domain of spatiotemporal
traffic forecasting (asymmetric transferring). Several methods of video processing are selected and
their performance for urban traffic flow forecasting is demonstrated for a large real-world data set.

2. Literature Review

2.1. Video Prediction Methodology

Video prediction methodology has roots in digital signal and image processing. The key concept
of signal processing is filtering, that implements a convolution in temporal or spatial domains with
specifically designed kernels [9]. An image (or one frame of a video stream) is usually coded as
a bi-dimensional signal, and a wide range of kernels is developed for its spatial convolution. The list
of popular kernels includes the Gaussian kernel for smoothing and restoration, first- and second-order
kernels for edge and feature detection, and local adaptive kernels for denoising. In addition, several
studies were devoted to the development of data-driven kernels, trained on the basis of temporal
information [10,11]. These kernels are widely applied in the practice of image processing and have the
perfectly developed theoretical background.

Although convolution with spatial kernels demonstrates good results for image processing,
their application to video streams is limited due to the omitting of temporal information—each video
frame is considered as an independent image and its segments are predicted using spatial information
only. Thus, historically, the problem was mainly formulated not as a pure video prediction, but as
image inpainting or as video segment restoration. The three-dimensional (3D) video stream (one
temporal and two spatial dimensions) has a rich data structure that can be used for the detection of
spatiotemporal features like a motion. At the same time, the processing and prediction of multivariate
signals require significant computational power and advanced methodologies, hence, the video
prediction problem was not closely addressed until the early 2000s. The development of artificial neural
networks (ANN) and hardware improvements contributed to advances of video prediction—Sutskever
et al. [12] applied a temporal restricted Boltzmann machine for video denoising, and Verma utilized
a feed-forward ANN architecture [13] for pixel-wise video prediction. The input space for every pixel

Algorithms 2020, 13, 39 3 of 18

in the latter model included values of immediate vertical and horizontal neighbors for one or two
temporal lags, so technically the model was based on data-driven spatiotemporal convolution kernels.
Obviously, the simple architecture of a feed-forward ANN did not allow learning long-term temporal
dependencies and complex spatial patterns.

The motion of objects is a practically important spatiotemporal pattern that needs to be recognized
for video prediction. Global spatial kernels, applied to all pixels of a video frame, will not be able
to learn object-specific movements, hence, several enhancements were introduced to capture the
motion. Optical flow [14] is an approach to motion estimation that attempts to calculate a position
change for every pixel between two consecutive video frames using differential methods. Due to the
aperture problem, the solution of optical flow equations is not unique and usually requires additional
conditions (e.g., phase correlation). Despite quite strict preconditions (constant brightness of pixels
and smooth transitions), the optical flow method demonstrated good performance for the next-frame
video prediction [15,16]. Later, the approach was enhanced by the incorporation of a physical model of
the observed process. In many practical applications, the video stream represents a natural process that
follows physical laws—for example, satellite imagery represents meteorological processes like cyclone
movements and can be used for weather forecasting. The background process can be described by
a physical model of fluids, based on advection and Navier-Stokes equations, which help to discover
spatiotemporal patterns of the video stream’s points and regions. Although the assumption on the
presence of a physical theory behind the video stream lacks generalization capabilities due to significant
specifics of the domain, this approach is widely used as a baseline for video prediction in other domains.

The recent advances of deep learning models allowed for the reduction of assumptions on
background processes for video prediction and learning spatiotemporal patterns directly from data.
Mainly, image processing is associated with convolutional ANN (CNN), which simultaneously
train multiple spatial kernels for feature extraction. Several consecutive layers of trained spatial
kernels are supplemented by pooling layers for dimension reduction, rectifier layers for capturing
non-linear dependencies, and a fully connected layers for output production. For video processing,
CNN architectures were extended for handling temporal dimensions with recurrent ANN architectures.
The long short-term memory (LSTM) network is one of recurrent architectures, which, in conjunction
with CNN, is widely used for video prediction. The list of developed deep learning models for
video prediction includes PredNet [17], MCNet [18], generative adversarial net-based (GAN) [19],
dual motion GAN [20], PredRNN [21], among a dozen other architectures. The key problem for ANN
architecture development remains the same—the identification of objects and the spatiotemporal
patterns of their motion, and the separate prediction of a video background and moving objects.

Classical spatial kernels and CNN architecture exploit the assumption of a fixed number of spatial
neighbors for every pixel (usually defined by the grid structure). This assumption is too restrictive for
spatiotemporal patterns in video streams—if a video frame contains several moving objects, then pixels
that belong to each object are naturally more related to pixels of this object in previous frames than
to pixels of other objects (even located within the spatial neighborhood). Thus, the structure of
spatiotemporal relationships is better modeled by a graph than by a grid. The spatiotemporal graph
contains vertices (individual pixels or regions on sequential video frames) and edges (relationships
between vertices). The extension of CNN architecture that implements a convolution on a graph
structure is named graph-based convolutional ANN (GCNN) and began emerging in 2019 [22]. Several
GCNN architectures were proposed for video prediction: Bhattacharjee and Das [23] suggested
an architecture with spatiotemporal graph convolution and the direction attention mechanism; Li et
al. [24] developed a GCNN architecture with separate temporal and spatial routing; Shi et al. [25]
proposed a two-stream GCNN architecture for skeleton-based motion on video.

Summarizing the historical outline of video prediction methodology, we concluded that the
development of algorithms began from predefined spatial convolutions, utilized information from
physical background processes, and have come to data-driven deep learning of complex spatial patterns
in the form of spatiotemporal graphs.

Algorithms 2020, 13, 39 4 of 18

2.2. Spatiotemporal Urban Traffic Forecasting Methodology

The key distinguishing feature of the spatiotemporal approach to urban traffic forecasting is the
simultaneous utilization of information on spatial relationships between traffic flow at distant road
segments that appear with temporal delays. Special cases of spatiotemporal models include traffic
flow over a road network or temporal growing of congestion (usually in the opposite direction to
traffic flow). Initially, the appearance of spatiotemporal relationships was explained by the natural
features of traffic flow—vehicles observed at an upstream road segment, after a specific time period,
will be observed at the downstream one. Later, the reasoning of spatiotemporal dependencies became
more complex and now includes the behavior of informed drivers, the supplementary and competitive
nature of road segments, and other reasons.

Historically, spatiotemporal urban traffic modeling began with dynamic models of traffic, inherited
from the physics of fluids and the kinematic wave theory. Lighthill and Whitham [26] set up an analogy
between liquid flows and traffic flows and demonstrated its utility for traffic flow forecasting. Later,
using the same analogy, other physical mechanisms were tested for traffic modeling, e.g., Navier-Stokes
equations [27]. At the same time, the analogy between flows of particles and vehicles is too restrictive
to explain complex traffic phenomena.

From another perspective, a data-driven approach to traffic forecasting was developed on the
basis of time series analysis [28]. As the time series models (like autoregressive integrated moving
average, ARIMA) utilize temporal information only, their classical specification does not allow for
identifying spatiotemporal relationships. Thus, significant efforts were made to enhance time series
models with spatial information. In 1984, Okutani and Stephanedes [29] included adjacent roads
into the Kalman filter for a given road segment to capture spatiotemporal relationships and utilize
this information for forecasting. Despite a significant potential utility of spatiotemporal information,
the following significant step in this direction was made in late 1990s only, when advanced time series
and machine learning models were applied.

Time series models were enhanced with spatial information in two ways: incorporation of spatial
covariates into classical univariate model specifications (e.g., ARIMA with explanatory variables,
ARIMAX) and multivariate time series model specifications (vector autoregression, VAR). Williams [30]
suggested the ARIMAX model with spatial explanatory variables, defined on the basis of road
connectivity (upstream segments) and cross-correlation of traffic flows. Later, several other statistical
approaches for the identification of spatial explanatory variables were suggested [31,32]. Another
direction of methodological advances, the multivariate time series models, allows for the simultaneous
modeling of many road segments and the data-driven identification of spatiotemporal relationships.
The classical specification of VAR, the most popular multivariate time series model, is rarely applied
to large spatial segments, due to its enormous number of parameters and the potential problem of
overfitting. Thus, several sparse specifications of VAR were suggested based on road connectivity [33],
cross-correlation [34], adaptive LASSO [35], among others. Drawing a parallel with video processing
methodologies, the VAR model in spatial settings represents a linear pixel-specific data-driven spatial
kernel, while the sparse VAR model specifications are based on a graph of spatiotemporal dependencies.

Similarly to video prediction, multiple ANN specifications were tested for urban traffic forecasting.
The feed-forward ANN specifications were successfully applied to small spatial segments [36,37],
but did not work well for large road segments with complex spatiotemporal patterns. Thus, advanced
specifications like state-space ANN [38] and time delay ANN [39] were suggested. These specifications
required the explicit specification of the spatial or spatiotemporal graph of dependencies. Later,
deep learning models were utilized to learn spatiotemporal relationships in a data-driven way.
Huang et al. [40] proposed the deep belief network for spatiotemporal feature learning; Cao [41]
utilized the tensor-based convolution for model temporal and spatial relationships; and Liang et al. [42]
applied the popular GAN architecture.

Recently developed graph-based convolutional ANN architecture quickly found its application in
spatiotemporal traffic forecasting. Cui et al. [43] proposed GCNN with a higher order spatial graph

Algorithms 2020, 13, 39 5 of 18

convolution and tested its scalability for a citywide road network. Yu et al. [44] applied GCNN with
spectral and spatial graph-based convolutions. Zhang et al. [45] extended GCNN by the learning
of several kernels for every road segment and weighting them for construction of sparse locally
connected networks.

Summarizing the development of spatiotemporal urban traffic forecasting methodologies, we state
that the two most popular approaches, multivariate time series and machine learning models, have
come to the data-driven learning of spatiotemporal graphs of dependencies, and are used for better
forecasting performance and interpretability of solutions.

2.3. Transferring Methodologies between Video Prediction and Spatiotemporal Urban Traffic Forecasting

The brief discussion of video prediction and spatiotemporal urban traffic forecasting
methodologies, presented above, reveals multiple similarities of data structures, emerging problems,
and applied models and algorithms in these areas. We summarized these similarities in Table 1.

Table 1. Matching video prediction and urban traffic forecasting methodologies.

Feature Video Prediction Spatiotemporal Urban Traffic Forecasting

Data structure
Observation Pixel Road segment

Spatial setting Video frame Citywide road network
Temporal setting Sequence of video frames Sequence of temporally aggregated traffic states

Modeled variable Multiple channels for every pixel (e.g.,
Red, Green, Blue)

Multiple traffic flow characteristics (e.g., flow
value, speed, occupancy)

Problem dimension
Huge spatial and temporal dimensions
(e.g., 1920 × 1080 resolution of 24 frames

per second)

Huge spatial and temporal dimensions (e.g.,
thousands of road segments in a medium-sized

city with 30-s aggregation)
Data availability Data-rich area Data-rich area

Dependencies Spatiotemporal graph Spatiotemporal graph
Methodology

Type Spatiotemporal Spatiotemporal

Forecasting features
Separate prediction of stable regions

(backward scene) and dynamic objects
(motion)

Separate prediction of normal and abnormal
traffic conditions (congestion)

Attention Dynamic objects (recognition and
prediction of motion)

Dynamic “objects” (congestion and prediction
of its growth)

Physical analogies Physics of observed process (e.g., optical
flow models)

Analogy with physics of fluids (e.g., kinematic
macroscopic traffic flow models)

Potential grouping Patches (stable regions of a video frame) Clusters (road segments with similar traffic
flows) or reservoirs

Emerging approaches Graph-based convolutional ANN
Graph-based convolutional ANN; Multivariate

time series with a graph-based structure of
dependencies

A high level of data structure similarity between video and citywide traffic flows led to the
development and application of similar models and algorithms. All of this creates favorable conditions
for transfer learning between these applied areas—from the utilization of model specifications and
algorithms, tested in one setting, in another area, to the direct application of pre-trained models in
both areas. Transfer learning between video prediction and traffic forecasting has significant practical
potential. First, a researcher who is working on spatiotemporal traffic forecasting models gains a higher
start and higher learning slope by utilizing developed video forecasting models instead of testing
a wide set of potential model specifications. Second, there are special cases where both video prediction
and traffic flow forecasting are required—for example, a traffic operations center serves city-level traffic
forecasting and monitoring video streams from cameras for preventing road accidents, or a vehicle
on-board system forecasts traffic flows for routing and predict video streams for autonomous driving.
In such cases, it is more commercially attractive to operate and support one model for both tasks
instead of having independent models.

Algorithms 2020, 13, 39 6 of 18

Despite the significant advantages of transfer learning in terms of computational resources and
scientific efforts, the number of studies at the intersection of video prediction and spatiotemporal
urban traffic forecasting is extremely small. In 2017, Ma et al. [46] and Yu et al. [47] represented urban
traffic data in the form of images and applied deep learning models, developed for image processing
(with convolutional layers and LSTM components), for their forecasting. Ma et al. [46] represented
traffic in a linear spatial setting (an arterial road) in the form of a two-dimensional spatiotemporal
contour diagram; Yu et al. [47] utilized geographical coordinates of a citywide road network and traffic
state color-coding for representing traffic at a specified time period as an image. Krishnakumari et
al. [48] also represented traffic data as an image using geographical coordinates and color-coding
traffic states, and tested the direct application of pre-trained image processing models for traffic state
prediction (the models were fine-tuned after replacing the last fully connected layer of CNN). Finally,
Pavlyuk [49] tested different approaches for representing traffic data in a video-like form and for the
further application of existing ANN architectures for video prediction.

3. Methodology

This study is devoted to the validation of the concept of transfer learning from video prediction to
spatiotemporal urban traffic forecasting areas. We arbitrarily selected popular methods of image and
video processing and tested their performance for traffic flow data against state-of-the-art models.

Let us have k spatial locations and Yt as a k × 1 vector
(
y1,t, y2,t, . . . , yk,t

)
′ of traffic values at the

spatial location i = 1, . . . , k during the time period t. We assumed that the one-period spatial structure
is provided in the form of the weighted directed graph, where spatial locations are coded into vertices
and relationships between them into edges. There is a wide set of approaches to the definition of the
spatial structure [8]; in this study, we utilized travel time in uncongested traffic conditions as a primary
relationship measure. In addition, we utilized cross-correlation definition of the spatial structure for
the state-of-the-art regularized VAR model. We limited the complexity of the spatial structure by
defining a local neighborhood for every spatial location i as

NB(i, r) =
{
j : di j < r and i , j

}
, (1)

where di j is a travel time between spatial locations i and j, r is an arbitrary selected radius of the
neighborhood. The radius is normally defined as a maximum travel time of a direct flow within the
road network (without loops and forward-backward movements). For some model specifications,
we also simultaneously considered two neighborhoods of different radii.

There are several approaches for the calculation of spatial weights on the basis of observed
distances. In this study, we tested two options, the negative exponential decay function we and the
inverse decay function w1/d:

we = wi j,e(σ, r) =

 exp
(
−d2

i j/σ
2
)
, i f j ∈ NB(i, r),

0, otherwise,
(2)

w1/d = wi j,1/d(σ, r) =

 1
di j

, i f j ∈ NB(i, r),

0, otherwise,
(3)

where σ2 is a decay parameter of we. The negative exponential decay function we corresponds to
Gaussian smoothing, widely used for image processing.

3.1. Transferred Models

In this study, we tested two approaches of different levels of complexity that are widely used in
video processing:

Algorithms 2020, 13, 39 7 of 18

• Spatial filtering by predefined kernels (SpX-model), both pure and in combination with the time
series model (SpX-ARIMAX), and,

• Graph-based convolutional ANN (GCNN).

3.1.1. Models Based on Spatial Kernels

Spatial filtering by predefined kernels is widely used in image processing due to its simplicity
and clear results. Dozens of kernels are developed for image smoothing, sharpening, edge detection,
interpolation, image inpainting, and other popular tasks. We selected a regression-based technique [10]
that uses spatial kernel values as regressors for image inpainting as a base for our model. Following
Ohashi and Torgo [10], we selected two spatial kernels for our experiments, weighted average and
standard deviation:

avg(i, r, t) =
∑

j∈NB(i,r)

wi j(σ, r)y j,t (4)

sd(i, r, t) =

√√
1∣∣∣NB(i, r)

∣∣∣ ∑
j∈NB(i,r)

(
y j,t − avg(i, r, t)

)2
(5)

The spatially weighted average is a popular kernel for smoothing, while the standard deviation is
a variant of edge detection kernels. The key parameter of spatial filtering is a radius of convolution.
Smaller radius values correspond to local area characteristics, and larger values to the characteristics of
wider areas, and their combination allows the representation of the spatial dynamics of the process.
Thus, for our model specification, we simultaneously utilized kernel values for neighborhoods (1)
for two radii, r1 and r2: NB(i, r1) and NB(i, r2). The sample neighborhoods are presented in Figure 1;
neighborhood radii are tuned by the cross-validation procedure.

Algorithms 2020, 13, 39 7 of 18

• Spatial filtering by predefined kernels (SpX-model), both pure and in combination with the time
series model (SpX-ARIMAX), and,

• Graph-based convolutional ANN (GCNN).

3.1.1. Models Based on Spatial Kernels

Spatial filtering by predefined kernels is widely used in image processing due to its simplicity
and clear results. Dozens of kernels are developed for image smoothing, sharpening, edge detection,
interpolation, image inpainting, and other popular tasks. We selected a regression-based technique
[10] that uses spatial kernel values as regressors for image inpainting as a base for our model.
Following Ohashi and Torgo [10], we selected two spatial kernels for our experiments, weighted
average and standard deviation: ܽ݃ݒሺ݅, ,ݎ ሻݐ = ,ߪሺݓ ,௧∈ேሺ,ሻݕሻݎ (4)

,ሺ݅݀ݏ ,ݎ ሻݐ = ඨ ,ሺ݅ܤܰ|1 |ሻݎ ቀݕ,௧ − ,ሺ݅݃ݒܽ ,ݎ ሻቁଶ∈ேሺ,ሻݐ 	 (5)

The spatially weighted average is a popular kernel for smoothing, while the standard deviation
is a variant of edge detection kernels. The key parameter of spatial filtering is a radius of convolution.
Smaller radius values correspond to local area characteristics, and larger values to the characteristics
of wider areas, and their combination allows the representation of the spatial dynamics of the process.
Thus, for our model specification, we simultaneously utilized kernel values for neighborhoods (1) for
two radii, ݎଵ and ݎଶ: ܰܤሺ݅, ,ሺ݅ܤܰ ଵሻ andݎ ;ଶሻ. The sample neighborhoods are presented in Figure 1ݎ
neighborhood radii are tuned by the cross-validation procedure.

Figure 1. Two spatial neighborhoods.

Another potential issue with the definition of the spatial neighborhood is related to the
forecasting horizon. Mostly, models are trained for one-step-ahead forecasts and further iteratively
applied for longer forecasting horizons. Alternatively, models can be trained for a specified
forecasting horizon. For the latter approach to longer forecasting horizons, the spatial neighborhood
can be defined on the basis of the forecasting horizon value h. Assuming that the acting spatial
neighborhood can be wider for longer forecasting horizons, we tested the following specification of
expanding spatial neighborhoods: ݎ = ݎ + ݁ݐݏ ∗ ℎ	 (6)

where ݁ݐݏ is a constant speed of neighborhood expansion (݁ݐݏ = 0 corresponds to constant spatial
neighborhood for all forecasting horizons).

The resulting set of spatial kernels is defined as:

Figure 1. Two spatial neighborhoods.

Another potential issue with the definition of the spatial neighborhood is related to the forecasting
horizon. Mostly, models are trained for one-step-ahead forecasts and further iteratively applied for
longer forecasting horizons. Alternatively, models can be trained for a specified forecasting horizon.
For the latter approach to longer forecasting horizons, the spatial neighborhood can be defined on the
basis of the forecasting horizon value h. Assuming that the acting spatial neighborhood can be wider for
longer forecasting horizons, we tested the following specification of expanding spatial neighborhoods:

rh = r + step ∗ h (6)

where step is a constant speed of neighborhood expansion (step = 0 corresponds to constant spatial
neighborhood for all forecasting horizons).

Algorithms 2020, 13, 39 8 of 18

The resulting set of spatial kernels is defined as:

SpXi,t,h =
{
avg

(
i, r1,h, t

)
, sd

(
i, r1,h, t

)
, avg

(
i, r2,h, t

)
, sd

(
i, r2,h, t

)}
(7)

Given the set of regressors SpXi,t, we consider the model to predict the traffic flow:

yi,t+h = g
(
β, SpXi,t,h

)
+ εi,t (8)

where g and β are the model function and a vector of its parameters, respectively, and εi,t is a vector
of random terms. Two specifications of g functions are tested: linear and non-linear. The non-linear
model specification is implemented using the support vector regression (SVR) [50]. Corresponding
specifications are further referred to as SpX-lm (linear) and SpX-SVR (SVR-based model).

Note that SpX-lm and SpX-SVR are based on spatial neighborhoods’ states only, and do not
include historical information on the spatial location itself. These specifications are fairly restrictive,
but allow for transferring models between spatial locations—a model, trained for a spatial location
with available historical information, can be applied for the forecasting of traffic flows at another
spatial location where the historical information is not available. This approach corresponds to ideas of
the cross-region transferring of traffic forecasting models, presented by Lin et al. [51]. In contrast to the
mentioned study, our model specification is purely based on traffic data in neighborhoods and does
not utilize information on road density, nearby points of interest, and other traffic-specific features.

If historical information on the spatial location is available, then the model specification can be
enhanced by combining it with classical time series models. We include spatial regressors SpXi,t into
the popular ARIMA model, obtaining the SpX-ARIMAX model specification:

y′i,t =
p∑

h=1

αhy′i,t−h +

q∑
h=0

γhεk,i,t−h +
∑

XεSpXi,t−1,1

βXX (9)

where y′i,t is a stationarized time series yi,t, p, q are model orders, and αh,γh, βx are model parameters.

3.1.2. Models Based on Graph Convolution

While SpX-model specification corresponds to well-established and widely used spatial filtering
techniques for video processing, the following specification is based on one of the most recent
techniques of video prediction—the graph convolutional neural networks (GCNN) [22]. One of the key
reasons for the success of conventional CNNs is their ability to learn hierarchical patterns and extract
high-level features from image and video data. The GCNN architecture extends CNN by introducing
the convolution operator for non-Euclidean graph-based spaces. There are two popular approaches to
the implementation of graph-based convolutions:

• Spectral graph convolution [52], and,
• Spatial graph convolution [53].

The spectral graph convolution is based on the spectral graph theory and is calculated via the
Laplacian matrix of the graph. Conversely, the spatial graph convolution aggregates information
from the local spatial neighborhood of every graph vertex (road segment). Thus, the spectral
graph convolution deals with the entire graph are more computationally intensive, while the spatial
convolution is local and potentially more effective. In this study, we arbitrarily selected the spectral
graph convolution approach for testing.

Let W be the matrix of weights that defines the graph structure, and D be the diagonal matrix
introduced as D = diag

(
W1T

)
, where 1 is the all-ones vector. Then, the spectral-based graph convolution

is defined as [22].

gθ ∗Y = θ
(
Ik + D−

1
2 WD−

1
2

)
Y, (10)

Algorithms 2020, 13, 39 9 of 18

where Ik is an identity matrix, and gθ is a filter, represented by the trained matrix θ. Given the
graph convolution filter, the architecture of GCNN is similar to classical CNN and includes several
sequentially connected convolutional and pooling layers and the final fully connected layer. The general
architecture of GCNN is presented in Figure 2.

Algorithms 2020, 13, 39 9 of 18

where ܫ is an identity matrix, and ݃ఏ is a filter, represented by the trained matrix ߠ. Given the
graph convolution filter, the architecture of GCNN is similar to classical CNN and includes several
sequentially connected convolutional and pooling layers and the final fully connected layer. The
general architecture of GCNN is presented in Figure 2.

Figure 2. General architecture of graph convolutional neural networks (GCNN).

In this study, we utilized the GCNN architecture, developed by Yu et al. [44], as a reference
implementation of spectral GCNN and tuned it for our purposes. The resulting architecture includes
two sequentially internal blocks of three layers: graph convolution, pooling, and LSTM; other
parameters are tuned by cross-validation as described below.

3.2. Baseline Models

We utilized several popular traffic forecasting models for the estimation of the comparative
performance of the transferred models. The list of baseline models includes the following:

• Naïve forecasts,
• Conventional ARIMA models,
• Conventional VAR models,
• Sparse VAR models in two specifications: with sparsity, controlled using travel time or cross-

correlation.

Naïve forecasts and conventional ARIMA models are widely used as univariate (non-spatial)
baseline models in traffic forecasting. The conventional VAR model, applied to a vector of traffic
values ௧ܻ at spatial locations, is a data-driven approach to learn linear spatial relationships between
time series:

௧ܻ = Φ ௧ܻି୦୮
୦ୀଵ + ௧, (11)ߝ

where Φ is a set of ݇ × ݇ weight matrices for every lag ℎ = 1,… , .
The conventional VAR specification is extremely flexible and parameter-rich, so for a large

dimensionality (citywide traffic forecasting) it suffered from the well-known curse of the
dimensionality problem. Sparse VAR specifications, where some coefficients of Φ are forced to be
0, usually demonstrate better forecasting performance [54]. We utilized the sparse specification of
VAR, based on local spatial neighborhoods defined above, and introduced it into the model as a set
of ܵ matrices: ݏ,ሺݎሻ = ൜1, ݂݅	݆ ∈ ,ሺ݅ܤܰ ,ሻ,0ݎ ,݁ݏ݅ݓݎℎ݁ݐ (12)

Figure 2. General architecture of graph convolutional neural networks (GCNN).

In this study, we utilized the GCNN architecture, developed by Yu et al. [44], as a reference
implementation of spectral GCNN and tuned it for our purposes. The resulting architecture includes two
sequentially internal blocks of three layers: graph convolution, pooling, and LSTM; other parameters
are tuned by cross-validation as described below.

3.2. Baseline Models

We utilized several popular traffic forecasting models for the estimation of the comparative
performance of the transferred models. The list of baseline models includes the following:

• Naïve forecasts,
• Conventional ARIMA models,
• Conventional VAR models,
• Sparse VAR models in two specifications: with sparsity, controlled using travel time

or cross-correlation.

Naïve forecasts and conventional ARIMA models are widely used as univariate (non-spatial)
baseline models in traffic forecasting. The conventional VAR model, applied to a vector of traffic
values Yt at spatial locations, is a data-driven approach to learn linear spatial relationships between
time series:

Yt =

p∑
h=1

ΦhYt−h + εt, (11)

where Φh is a set of k× k weight matrices for every lag h = 1, . . . , p.
The conventional VAR specification is extremely flexible and parameter-rich, so for a large

dimensionality (citywide traffic forecasting) it suffered from the well-known curse of the dimensionality
problem. Sparse VAR specifications, where some coefficients of Φh are forced to be 0, usually
demonstrate better forecasting performance [54]. We utilized the sparse specification of VAR, based on
local spatial neighborhoods defined above, and introduced it into the model as a set of Sh matrices:

si j,h(r) =
{

1, i f j ∈ NB(i, r),
0, otherwise,

(12)

Algorithms 2020, 13, 39 10 of 18

Definition of spatial neighborhoods depends on the distance metric di j. In addition to the travel
time-based metric, we utilized the cross-correlation:

NB(i, r) =
{
j : Corr

(
yi,t, y j,t−h

)
> θ and i , j

}
, (13)

where θ is a trained threshold value.
Given the set of regularizing matrices Sh, the sparse VAR specification is expressed as

Yt =

p∑
h=1

(Φh ◦ Sh)Yt−h + εt, (14)

where Φh ◦ Sh is the entry-wise product of the matrices. Further, we refer the sparse VAR specification
based on the travel time definition of spatial neighborhoods as SpVAR-tt, and the specification based
on cross-correlations, as SpVAR-cc.

4. Experimental Results

4.1. Data Set

The performance of the discussed models was estimated on the basis of the large real-world data
set, obtained from the archive of Minnesota Department of Transportation (MnDoT). The complete
data set includes information for 40 weeks (1 January–8 October 2017) from 2676 detectors, deployed
in the city center of Minneapolis. Detectors were uniformly distributed over the analyzed roads with
a mean distance of 270 m. For calculation purposes, 100 detectors were randomly sampled from the
complete data set for further analysis. A map of the case study area with the spatial distribution of the
complete data set and the research sample is presented in Figure 3.

Algorithms 2020, 13, 39 10 of 18

Definition of spatial neighborhoods depends on the distance metric ݀. In addition to the travel
time-based metric, we utilized the cross-correlation: ܰܤሺ݅, ሻݎ = ൛݆: ,,௧ݕ൫ݎݎܥ ,௧ି൯ݕ ݅	݀݊ܽ	ߠ ≠ ݆ൟ, (13)

where ߠ is a trained threshold value.
Given the set of regularizing matrices ܵ, the sparse VAR specification is expressed as

௧ܻ = ሺΦ ∘ ܵሻ ௧ܻି୦୮
୦ୀଵ + ௧, (14)ߝ

where Φ ∘ ܵ is the entry-wise product of the matrices. Further, we refer the sparse VAR
specification based on the travel time definition of spatial neighborhoods as SpVAR-tt, and the
specification based on cross-correlations, as SpVAR-cc.

4. Experimental Results

4.1. Data Set

The performance of the discussed models was estimated on the basis of the large real-world data
set, obtained from the archive of Minnesota Department of Transportation (MnDoT). The complete
data set includes information for 40 weeks (1 January–8 October 2017) from 2676 detectors, deployed
in the city center of Minneapolis. Detectors were uniformly distributed over the analyzed roads with
a mean distance of 270 m. For calculation purposes, 100 detectors were randomly sampled from the
complete data set for further analysis. A map of the case study area with the spatial distribution of
the complete data set and the research sample is presented in Figure 3.

Figure 3. Case study area—complete data set (blue circles) and research sample (red circles).

The original data set includes information on traffic flow volumes, temporarily aggregated by
30-s periods. The executed data preprocessing routines include:

• Lane detectors’ values are aggregated by road.
• Values are aggregated in 5-min time intervals, widely used for short-term traffic forecasting.
• Median traffic values are calculated for the first 30 weeks for every 5-min time interval and node,

and used as periodical patterns of traffic flows.

Figure 3. Case study area—complete data set (blue circles) and research sample (red circles).

The original data set includes information on traffic flow volumes, temporarily aggregated by
30-s periods. The executed data preprocessing routines include:

• Lane detectors’ values are aggregated by road.
• Values are aggregated in 5-min time intervals, widely used for short-term traffic forecasting.

Algorithms 2020, 13, 39 11 of 18

• Median traffic values are calculated for the first 30 weeks for every 5-min time interval and node,
and used as periodical patterns of traffic flows.

• Obtained periodical patterns are subtracted from the flow values for the latest 10 weeks of the data
set. As a result, we obtained detrended time series that are used for model training and testing.
Thus, the models are focused on the forecasting of deviations from regular traffic conditions (in
video prediction, this operation corresponds to the removal of a static background scene).

• Outliers are identified using detector- and time period-specific interquartile ranges. The selected
threshold value is selected as 0.01 and is fairly small, so only wrong observations are filtered out,
while real traffic values for congested conditions are kept in place. The identified outliers are
marked as missed values.

• Linear interpolation is utilized for the imputation of missed values; detectors with more than 4 h
of missed values in a row are excluded from the final data set.

• 100 detectors are randomly sampled from the complete data set for computational reasons.

As a result, the preprocessed data set includes a complete 10-week time series (20,160 observations)
for 100 detectors that represent deviations from regular traffic conditions. The data set is supplemented
by a matrix of travel times between detectors, estimated using acting speed limits.

Spatial characteristics of the research sample are presented in Figure 4.

Algorithms 2020, 13, 39 11 of 18

• Obtained periodical patterns are subtracted from the flow values for the latest 10 weeks of the
data set. As a result, we obtained detrended time series that are used for model training and
testing. Thus, the models are focused on the forecasting of deviations from regular traffic
conditions (in video prediction, this operation corresponds to the removal of a static background
scene).

• Outliers are identified using detector- and time period-specific interquartile ranges. The selected
threshold value is selected as 0.01 and is fairly small, so only wrong observations are filtered
out, while real traffic values for congested conditions are kept in place. The identified outliers
are marked as missed values.

• Linear interpolation is utilized for the imputation of missed values; detectors with more than 4
h of missed values in a row are excluded from the final data set.

• 100 detectors are randomly sampled from the complete data set for computational reasons.

As a result, the preprocessed data set includes a complete 10-week time series (20,160
observations) for 100 detectors that represent deviations from regular traffic conditions. The data set
is supplemented by a matrix of travel times between detectors, estimated using acting speed limits.

Spatial characteristics of the research sample are presented in Figure 4.

Figure 4. Spatial graph settings: (a) graph for the 10-min neighborhood; (b) percentage of achievable
nodes within specified travel time (min); and (c) spatial graph Laplacian’s heat map, ordered by
geographical coordinates.

Figure 4a represents a graph of the spatial neighborhood, constructed for 10-min travel times
(unconnected vertices correspond to the entrance points of the research road segment, which are not
reachable from other nodes). Figure 4b represents the s-curved distribution of reachable nodes by
travel time: percentage of nodes, reachable from a given spatial location within a specified time
period under uncongested traffic conditions. The form of the curve closely matches for the complete
data set and our research sample, so the characteristics of the sample spatial graph are similar to the
complete one. Figure 4c contains a heatmap of the spatial Laplacian matrix, which is used for GCNN
convolutions. The graph vertices are ordered by their geographical coordinates for better information
on the spatial structure; zero-valued Laplacian rows and columns were excluded from the heatmap
for smoother representation of the spatial graph structure.

4.2. Hyperparameter Tuning and Forecasting Accuracy

Empirical testing of the research models requires the selection of the performance metric and
tuning of the hyperparameters. In this study, we focused on forecasting accuracy as the primary
model performance characteristic. The forecasting accuracy is measured using two widely used
metrics, mean absolute error (MAE) and root-mean-squared error (RMSE):

Figure 4. Spatial graph settings: (a) graph for the 10-min neighborhood; (b) percentage of achievable
nodes within specified travel time (min); and (c) spatial graph Laplacian’s heat map, ordered by
geographical coordinates.

Figure 4a represents a graph of the spatial neighborhood, constructed for 10-min travel times
(unconnected vertices correspond to the entrance points of the research road segment, which are
not reachable from other nodes). Figure 4b represents the s-curved distribution of reachable nodes
by travel time: percentage of nodes, reachable from a given spatial location within a specified time
period under uncongested traffic conditions. The form of the curve closely matches for the complete
data set and our research sample, so the characteristics of the sample spatial graph are similar to the
complete one. Figure 4c contains a heatmap of the spatial Laplacian matrix, which is used for GCNN
convolutions. The graph vertices are ordered by their geographical coordinates for better information
on the spatial structure; zero-valued Laplacian rows and columns were excluded from the heatmap for
smoother representation of the spatial graph structure.

4.2. Hyperparameter Tuning and Forecasting Accuracy

Empirical testing of the research models requires the selection of the performance metric and
tuning of the hyperparameters. In this study, we focused on forecasting accuracy as the primary model
performance characteristic. The forecasting accuracy is measured using two widely used metrics,
mean absolute error (MAE) and root-mean-squared error (RMSE):

Algorithms 2020, 13, 39 12 of 18

MAEt =
1
k

k∑
i=1

∣∣∣yi,t − ŷi,t
∣∣∣, (15)

RMSEt =

√√√
1
k

k∑
i=1

(yi,t − ŷi,t)
2, (16)

where ŷi,t is a predicted value for a spatial location i and time point t. The obtained MAE and
RMSE values were aggregated by spatial and temporal dimensions, and their mean values used for
model comparisons.

The models’ hyperparameters were tuned for one-step-ahead forecasting accuracy, while the
model performance was compared for longer forecasting horizons as well. We utilized the rolling
window cross-validation technique [55] for the estimation of out-of-sample MAE and RMSE values.
The list of tuned hyperparameters includes:

• Radii of spatial neighborhoods r1, r2, and the spatial inflation step for SpX-lm, SpX-SVR,
and SpX-ARIMAX models;

• Spatial weights’ definition and distance decay parameter σ2 for SpX and GCNN models;
• ARIMA orders for conventional ARIMA and SpX-ARIMAX models, tuned by Hyndman and

Khandakar’s algorithm [56];
• Cross-correlation threshold θ for SpVAR-cc model;
• Order p for VAR, SpVAR-tt, and SpVAR-cc models;
• Size of the rolling window (the look-back interval) L for all models (gradually increased until the

models’ forecasting performance metrics are stabilized).

The hyperparameters and their tested sets are summarized in Table 2.

Table 2. Hyperparameter overview.

Hyperparameter Symbol Tested Values Used in Models

Radii of spatial
neighborhoods r1, r2 [0, 10, 20, 30] SpX-lm, SpX-SVR,

SpX-ARIMAX

Spatial inflation step [0, 5] SpX-lm, SpX-SVR,
SpX-ARIMAX

Spatial weights w we, w1/d
SpX-lm, SpX-SVR,

SpX-ARIMAX, GCNN
Distance decay speed for we σ2 [10, 20] GCNN
Cross-correlation threshold θ [0.1, 0.2, 0.3] SpVAR-cc
Order of autoregression and
moving average components p, q Hyndman and Khandakar’s

algorithm [56] ARIMA, SpX-ARIMAX

Order of autoregression p [1, 3, 6] VAR, SpVAR-tt,
SpVAR-cc

Look-back interval L [360, 720, 1440] All models

The GCNN model was trained for 100 epochs and 3 × 3 windows for spatial and temporal
convolutions. In addition, we tested the performance of the GCNN model for detrended and
original time series and came to the preference of detrended data, which were also used in all other
model specifications.

4.3. Estimation Results

The average performance of each model was estimated by the rolling window technique for 10
weeks of data. Given that the first five days were reserved for the look-back interval and the rolling
step was selected as one hour (l = 12), we trained every model specification for 1560 data subsets

Algorithms 2020, 13, 39 13 of 18

and obtained their short-term forecasts (h = 3). Further, the optimal set of hyperparameters for every
model specification was selected on the basis of the average one-step-ahead forecasting accuracy.

Obtained forecasting accuracy metrics for the optimal set of hyperparameters are summarized in
Table 3 (model specifications with highest forecasting accuracy are marked by bold).

Table 3. Forecasting accuracy of the research models.

Model Calibrated
Hypermeters’ Values MAE by Forecasting Horizon RMSE by Forecasting Horizon

0–5 min
(h = 1)

5–10 min
(h = 2)

10–15 min
(h = 3)

0–5 min
(h = 1)

5–10 min
(h = 2)

10–15 min
(h = 3)

Transferred models

SpX-lm
r1 = 10

11.27 11.68 11.90 16.42 17.04 17.41r2 = 30
step = 5

SpX-SVR
r1 = 10

10.54 10.83 11.08 15.78 16.17 16.51r2 = 30
step = 5

SpX-ARIMAX

r1 = 10

8.85 9.56 9.91 12.54 13.75 14.33
r2 = 30
step = 5

w = w1/d
GCNN w = w1/d 9.77 10.57 11.16 18.62 23.37 25.95

Baseline models

SpVAR-tt - 8.92 9.42 9.84 12.58 13.40 14.09
SpVAR-cc θ = 0.1 8.88 9.35 9.80 12.51 13.27 14.02

VAR p = 6 12.61 12.66 12.68 17.40 17.57 17.72
ARIMA detector-specific p, q 9.02 9.80 10.57 12.74 14.09 15.56
Naïve - 16.21 16.59 16.83 25.37 25.85 26.26

Table 3 provides average values of forecasting accuracy metrics, which could be misleading due to
the significant heterogeneity of results over spatial and temporal dimensions. Figure 5 represents spatial
and temporal kernel densities of MAE values for three model specifications: ARIMA, SpX-ARIMAX,
and SpX-SVR (corresponding distributions for SpVAR-tt and SpVAR-cc models were omitted due to
their high similarity to the SpX-ARIMAX model).

Algorithms 2020, 13, 39 13 of 18

step was selected as one hour (݈ = 12), we trained every model specification for 1560 data subsets
and obtained their short-term forecasts (ℎ = 3). Further, the optimal set of hyperparameters for every
model specification was selected on the basis of the average one-step-ahead forecasting accuracy.

Obtained forecasting accuracy metrics for the optimal set of hyperparameters are summarized
in Table 3 (model specifications with highest forecasting accuracy are marked by bold).

Table 3. Forecasting accuracy of the research models.

Model
Calibrated

Hypermeters’
Values

MAE by Forecasting Horizon RMSE by Forecasting Horizon

 0–5 min
(h = 1)

5–10 min
(h = 2)

10–15 min
(h = 3)

0–5 min
(h = 1)

5–10 min
(h = 2)

10–15 min
(h = 3)

Transferred models

SpX-lm
ଵݎ = 10

ଶݎ 17.41 17.04 16.42 11.90 11.68 11.27 = ݁ݐݏ 30 = 5

SpX-SVR
ଵݎ = 10

ଶݎ 16.51 16.17 15.78 11.08 10.83 10.54 = ݁ݐݏ 30 = 5

SpX-
ARIMAX

ଵݎ = 10

ଶݎ 14.33 13.75 12.54 9.91 9.56 8.85 = ݁ݐݏ 30 = ݓ 5 = ଵ/ௗݓ
GCNN ݓ = ଵ/ௗ 9.77 10.57 11.16 18.62 23.37 25.95ݓ

Baseline models
SpVAR-

tt
- 8.92 9.42 9.84 12.58 13.40 14.09

SpVAR-
cc

ߠ = 0.1 8.88 9.35 9.80 12.51 13.27 14.02

VAR = 6 12.61 12.66 12.68 17.40 17.57 17.72

ARIMA
detector-

specific p, q
9.02 9.80 10.57 12.74 14.09 15.56

Naïve - 16.21 16.59 16.83 25.37 25.85 26.26

Table 3 provides average values of forecasting accuracy metrics, which could be misleading due
to the significant heterogeneity of results over spatial and temporal dimensions. Figure 5 represents
spatial and temporal kernel densities of MAE values for three model specifications: ARIMA, SpX-
ARIMAX, and SpX-SVR (corresponding distributions for SpVAR-tt and SpVAR-cc models were
omitted due to their high similarity to the SpX-ARIMAX model).

Figure 5. Density of mean absolute error (MAE) values: (a) spatially aggregated and (b) temporarily
aggregated.

Spatial distributions were calculated by the averaging of the obtained time-specific MAE values
by detectors, while temporal distributions were calculated by averaging the detector-specific MAE
values over time of the day.

Figure 5. Density of mean absolute error (MAE) values: (a) spatially aggregated and (b)
temporarily aggregated.

Spatial distributions were calculated by the averaging of the obtained time-specific MAE values
by detectors, while temporal distributions were calculated by averaging the detector-specific MAE
values over time of the day.

Algorithms 2020, 13, 39 14 of 18

4.4. Reproducibility

To ensure the reproducibility of the obtained experimental results, we publicly provided the source
codes for all executed routines at http://bit.ly/Algorithms2020 (R language markdown). The repository
includes routines for downloading data from Dr. Kwon’s archive of MnDoT traffic data [57],
data preprocessing and sampling, and all experiments with model specifications.

5. Discussion

Table 3 and Figure 5 demonstrate the comparative forecasting performance of transferred
and baseline models. We observed that the overall short-term forecasting performance of the
transferred models was effective and comparable with the values of modern spatiotemporal traffic
forecasting models. The non-spatial ARIMA model set up a good baseline for one-step-ahead
forecasting performance (MAE = 9.02for h = 1), but its performance was degrading fast for longer
forecasting horizons due to its inability to utilize spatial information from neighboring road segments.
All spatiotemporal model specifications, except GCNN, demonstrated better stability of performance.

The performances of SpX-lm and SpX-SVR models, based on spatial kernels, were the worst among
the analyzed spatial model specifications (MAE = 11.27 for SpX-lm and 10.54 for SpX-SVR), but were
still reasonable (e.g., better than the performance of the conventional VAR model specification, MAE =

12.61) Although these performance values were not optimal, the SpX-lm and SpX-SVR models had
a significant advantage in terms of transferring—their specifications were based purely on the spatial
information and did not include temporal information from the analyzed road segment. This means
that the obtained models could potentially be transferred to traffic forecasting at spatial locations,
where historical information is not available. The SpX-ARIMAX, which includes both temporal and
spatial information, demonstrated one of the best performance values among all models (MAE = 8.85).
Note that spatial information was included in the SpX-models in a very simple way—by two predefined
spatial kernels—and this definition was good enough to successfully compete against the more detailed
definition of the spatial structure, applied in SpVAR-models. Comparing SpX-lm and SpX-SVR model
specifications, we observed a clear advantage of the SVR-based model, which indicates non-linear
patterns of spatial relationships. These non-linearities were partially utilized by the simultaneous usage
of two spatial neighborhoods of different radii, r1 and r2. The radii were tuned by cross-validation and
set to 10 and 30 min of travel time for all model specifications. They gradually increased with step =

5 or longer forecasting horizons (e.g., for h = 3 the radii were equal to 20 and 40 min, respectively).
Spatial and temporal distributions of MAE values, presented in Figure 5, also indicate the advantages
of the SpX-model specifications: comparing the right tails of the distributions (extreme forecasting
errors), we observed that the SpX-ARIMAX model provided significantly smaller values. For spatial
distribution, it means that the SpX-ARIMAX model was appropriate for all detectors in the research area,
while the ARIMA model worked worse for some of them. For temporal distribution, the implication
was even more important—the SpX-ARIMAX model gave more stable results for all time periods,
including free traffic flow at nights, regular traffic conditions during the day, and congested traffic
conditions during peak hours. Overall, we concluded that the approach, based on predefined spatial
kernels, widely used for image and video processing, works well for spatiotemporal traffic forecasting.

The direct application of the spectral GCNN model for traffic forecasting was not so successful.
The performance of the GCNN model was appropriate for one-step-ahead forecasts (MAE = 9.77) but
very unstable in terms of extreme error values (RMSE values were significantly higher, given comparable
MAE values). There were several possible explanations for these results. First, the conventional
GCNN architecture was used for our experiments, so any traffic-specific features were not taken into
consideration (e.g., road capacity, weather conditions, etc.). Second, the training process of GCNN
was also specific to video prediction and differed from the other models. For example, the effective
look-back interval is limited to several previous frames, which is appropriate for video streams,
but could be insufficient for traffic data with longer temporal patterns. Third, our results could be
sample-specific (arterial roads), as there is a collection of evidence in the literature that indicates that

http://bit.ly/Algorithms2020

Algorithms 2020, 13, 39 15 of 18

the GCNN model works well for traffic data in different spatial settings [43–45]. Finally, the reason
could alternatively be related to the spectral convolution of the graph, while another approach, spatial
convolution, could be more appropriate for traffic data. The GCNN methodology itself is relatively
new; hence, all these hypotheses require additional research.

Transferring ideas, models, and algorithms between applied areas of video prediction and traffic
forecasting opens a wide range of future research directions. Methodological advances that are
now implemented in these applied areas in parallel, should be merged and tested for data sets of
different natures. In this study, we tested only a limited set of video processing ideas and models,
while the modern modeling toolbox is rich and many other exiting models could be adopted. We also
considered only one transfer direction, from video prediction to traffic forecasting, while the opposite
transfer (application of popular traffic forecasting models to video prediction) is also available.
Finally, we presented transferring at two deeper levels, utilizing the same ideas and the same model
architectures, while upper-level transfer learning and the application of pretrained models in another
application area has a huge research potential and practical utility.

6. Conclusions

This study promoted the idea of transfer learning between video prediction and spatiotemporal
urban traffic forecasting areas. The transferring of ideas, algorithms, model structures, and pre-trained
models is an effective way of methodological enhancement, which allows the saving of computational
resources in the practical aspect, and of intellectual and research resources in the scientific aspect.
We identified similarities between data structures of video stream and citywide traffic data and
discovered close links in historical development and the modern states of video prediction and urban
traffic forecasting methodologies. The experimental part of the study was devoted to the application
of popular video processing techniques (spatial filtering and convolutional networks) in the traffic
forecasting domain. Experiments, executed for the citywide traffic data set, supported our hypothesis
on the applicability of video prediction tools for urban traffic data.

Funding: The author was financially supported by the specific support objective activity 1.1.1.2. “Post-doctoral
Research Aid” (Project id. N. 1.1.1.2/16/I/001) of the Republic of Latvia, funded by the European Regional
Development Fund. Dmitry Pavlyuk’s research project No. 1.1.1.2/VIAA/1/16/112 “Spatiotemporal urban traffic
modelling using big data”.

Acknowledgments: We thank Taek Kwon for his public archive of MnDoT traffic data [57]. We also
thank Yu, Yin, and Zhu for publicly available source codes for the spectral GCNN [44], which we used as
a reference implementation.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Pavlyuk, D. Spatiotemporal Traffic Forecasting as a Video Prediction Problem. In Proceedings of the 2019
6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS),
Cracow, Poland, 5–7 June 2019; pp. 1–7.

2. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]
3. Qi, G.-J.; Aggarwal, C.; Huang, T. Towards semantic knowledge propagation from text corpus to web images.

In Proceedings of the 20th International Conference on World Wide Web—WWW ’11, Hyderabad, India,
28 March–1 April 2011; ACM Press: Hyderabad, India, 2011; pp. 297–306.

4. Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Learning and Transferring Mid-level Image Representations Using
Convolutional Neural Networks. In Proceedings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1717–1724.

5. Shi, X.; Liu, Q.; Fan, W.; Yu, P.S.; Zhu, R. Transfer Learning on Heterogenous Feature Spaces via Spectral
Transformation. In Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, Australia,
13–17 December 2010; pp. 1049–1054.

http://dx.doi.org/10.1186/s40537-016-0043-6

Algorithms 2020, 13, 39 16 of 18

6. Tekalp, A.M. Digital Video Processing, 2nd ed.; Prentice Hall: New York, NY, USA, 2015; ISBN 978-0-13-399100-0.
7. Ermagun, A.; Levinson, D. Spatiotemporal traffic forecasting: Review and proposed directions. Trans. Rev.

2018, 38, 786–814. [CrossRef]
8. Pavlyuk, D. Feature selection and extraction in spatiotemporal traffic forecasting: A systematic literature

review. Eur. Trans. Res. Rev. 2019, 11, 6. [CrossRef]
9. Najim, M. Digital Filters Design for Signal and Image Processing; John Wiley & Sons: Hoboken, JA, USA, 2006.
10. Ohashi, O.; Torgo, L. Spatial Interpolation Using Multiple Regression. In Proceedings of the 2012 IEEE 12th

International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; pp. 1044–1049.
11. Hutchison, D.; Kanade, T.; Kittler, J.; Kleinberg, J.M.; Mattern, F.; Mitchell, J.C.; Naor, M.; Nierstrasz, O.; Pandu

Rangan, C.; Steffen, B.; et al. Non-Local Kernel Regression for Image and Video Restoration. In Computer
Vision—ECCV 2010; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg, Germany,
2010; Volume 6313, pp. 566–579. ISBN 978-3-642-15557-4.

12. Sutskever, I.; Hinton, G. Learning Multilevel Distributed Representations for High-Dimensional Sequences.
In Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, San Juan,
Puerto Rico, 21–24 March 2007; pp. 548–555.

13. Verma, N.K. Future image frame generation using Artificial Neural Network with selected features.
In Proceedings of the 2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC,
USA, 9–11 October 2012; pp. 1–8.

14. Barron, J.L.; Fleet, D.J.; Beauchemin, S.S. Performance of optical flow techniques. Int. J. Comput. Vision 1994,
12, 43–77. [CrossRef]

15. Sakaino, H. Spatio-Temporal Image Pattern Prediction Method Based on a Physical Model with Time-Varying
Optical Flow. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3023–3036. [CrossRef]

16. Verma, N.K. Shimaila Generation of Future image frames using Adaptive Network Based Fuzzy Inference
System on spatiotemporal framework. In Proceedings of the 2012 IEEE Applied Imagery Pattern Recognition
Workshop (AIPR), Washington, DC, USA, 9–11 October 2012; pp. 1–8.

17. Lotter, W.; Kreiman, G.; Cox, D. Deep Predictive Coding Networks for Video Prediction and Unsupervised
Learning. In Proceedings of the 5th International Conference on Learning Representations (ICLR 2017),
Toulon, France, 24–26 April 2017; p. 18.

18. Villegas, R.; Yang, J.; Hong, S.; Lin, X.; Lee, H. Decomposing Motion and Content for Natural Video Sequence
Prediction. In Proceedings of the 5th International Conference on Learning Representations (ICLR 2017),
Toulon, France, 24–26 April 2017; p. 22.

19. Vondrick, C.; Pirsiavash, H.; Torralba, A. Generating Videos with Scene Dynamics. In Advances in Neural
Information Processing Systems 29; Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R., Eds.; Curran
Associates, Inc.: Dakis, NY, USA, 2016; pp. 613–621.

20. Liang, X.; Lee, L.; Dai, W.; Xing, E.P. Dual Motion GAN for Future-Flow Embedded Video Prediction.
In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017; pp. 1762–1770.

21. Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. PredRNN: Recurrent Neural Networks for Predictive Learning
using Spatiotemporal LSTMs. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Dakis, NY,
USA, 2017; pp. 879–888.

22. Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput.
Soc. Netw. 2019, 6, 11. [CrossRef]

23. Bhattacharjee, P.; Das, S. Directional Attention based Video Frame Prediction using Graph Convolutional
Networks. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest,
Hungary, 14–19 July 2019; pp. 1–10.

24. Li, B.; Li, X.; Zhang, Z.; Wu, F. Spatio-Temporal Graph Routing for Skeleton-Based Action Recognition.
In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), Honolulu, HI,
USA, 27 January–1 February 2019; Volume 33, pp. 8561–8568.

25. Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based
Action Recognition. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Long Beach, CA, USA, 15–21 June 2019; p. 10.

http://dx.doi.org/10.1080/01441647.2018.1442887
http://dx.doi.org/10.1186/s12544-019-0345-9
http://dx.doi.org/10.1007/BF01420984
http://dx.doi.org/10.1109/TGRS.2012.2212201
http://dx.doi.org/10.1186/s40649-019-0069-y

Algorithms 2020, 13, 39 17 of 18

26. Lighthill, M.J.; Whitham, G.B. On kinematic waves II. A theory of traffic flow on long crowded roads. Proc.
R. Soc. Lond. Ser. A Math. Phys.Sci. 1955, 229, 317–345.

27. Velasco, R.M.; Marques, W. Navier-Stokes-like equations for traffic flow. Phys. Rev. E 2005, 72, 046102.
[CrossRef]

28. Ahmed, M.S.; Cook, A.R. Analysis of freeway traffic time series data by using Box-Jenkins techniques. Trans.
Res. Rec. 1979, 722, 1–9.

29. Okutani, I.; Stephanedes, Y.J. Dynamic prediction of traffic volume through Kalman filtering theory. Trans.
Res. Part B Methodol. 1984, 18, 1–11. [CrossRef]

30. Williams, B. Multivariate vehicular traffic flow prediction: Evaluation of ARIMAX modeling. Trans. Res. Rec.
J. Trans. Res. Board 2001, 1776, 194–200. [CrossRef]

31. Li, L.; Su, X.; Wang, Y.; Lin, Y.; Li, Z.; Li, Y. Robust causal dependence mining in big data network and its
application to traffic flow predictions. Trans. Res. Part C Emerg. Technol. 2015, 58, 292–307. [CrossRef]

32. Ermagun, A.; Levinson, D.M. Development and application of the network weight matrix to predict traffic
flow for congested and uncongested conditions. Environ. Plan. B Urban Anal. City Sci. 2018, 46, 1684–1705.
[CrossRef]

33. Kamarianakis, Y.; Prastacos, P. Forecasting Traffic Flow Conditions in an Urban Network: Comparison of
Multivariate and Univariate Approaches. Trans. Res. Rec. J. Trans. Res. Board 2003, 1857, 74–84. [CrossRef]

34. Salamanis, A.; Kehagias, D.D.; Filelis-Papadopoulos, C.K.; Tzovaras, D.; Gravvanis, G.A. Managing Spatial
Graph Dependencies in Large Volumes of Traffic Data for Travel-Time Prediction. IEEE Trans. Intell. Trans.
Syst. 2016, 17, 1678–1687. [CrossRef]

35. Kamarianakis, Y.; Shen, W.; Wynter, L. Real-time road traffic forecasting using regime-switching space-time
models and adaptive LASSO. Appl. Stoch. Models Bus. Ind. 2012, 28, 297–315. [CrossRef]

36. Clark, S.D.; Dougherty, M.S.; Kirby, H.R. The use of neural networks and time series models for short term
traffic forecasting: A comparative study. In Proceedings of the PTRC European Transport, Highways and
Planning 21st Summer Annual Meeting, Manchester, UK, 13–17 September 1993; pp. 151–162.

37. Park, D.; Rilett, L.R. Forecasting freeway link travel times with a multilayer feedforward neural network.
Computer-Aided Civ. Infrastruct. Eng. 1999, 14, 357–367. [CrossRef]

38. van Lint, J.W.C.; Hoogendoorn, S.P.; van Zuylen, H.J. Accurate freeway travel time prediction with state-space
neural networks under missing data. Trans. Res. Part C Emerg. Technol. 2005, 13, 347–369. [CrossRef]

39. Abdulhai, B.; Porwal, H.; Recker, W. Short-Term Traffic Flow Prediction Using Neuro-Genetic Algorithms. J.
Intell. Trans. Syst. 2002, 7, 3–41. [CrossRef]

40. Huang, W.; Song, G.; Hong, H.; Xie, K. Deep Architecture for Traffic Flow Prediction: Deep Belief Networks
With Multitask Learning. IEEE Trans. Intell. Trans. Syst. 2014, 15, 2191–2201. [CrossRef]

41. Cao, Q.; Ren, G.; Li, D. Multiple Spatio-temporal Scales Traffic Forecasting Based on Deep Learning Approach.
In Proceedings of the Compendium of Papers of the Transportation Research Board 97th Annual Meeting,
Washington, DC, USA, 7–11 January 2018; p. 18.

42. Liang, Y.; Cui, Z.; Tian, Y.; Chen, H.; Wang, Y. A Deep Generative Adversarial Architecture for Network-wide
Spatial-Temporal Traffic State Estimation. In Proceedings of the Transportation Research Board 97th Annual
Meeting, Washington, DC, USA, 7–11 January 2018; p. 22.

43. Cui, Z.; Henrickson, K.; Ke, R.; Wang, Y. Traffic Graph Convolutional Recurrent Neural Network: A Deep
Learning Framework for Network-Scale Traffic Learning and Forecasting. IEEE Trans. Intell. Trans. Syst.
2019, 1–12. [CrossRef]

44. Yu, B.; Yin, H.; Zhu, Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework
for Traffic Forecasting. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 3634–3640.

45. Zhang, Q.; Jin, Q.; Chang, J.; Xiang, S.; Pan, C. Kernel-Weighted Graph Convolutional Network: A Deep
Learning Approach for Traffic Forecasting. In Proceedings of the 2018 24th International Conference on
Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 1018–1023.

46. Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; Wang, Y. Learning Traffic as Images: A Deep Convolutional Neural
Network for Large-Scale Transportation Network Speed Prediction. Sensors 2017, 17, 818. [CrossRef]

47. Yu, H.; Wu, Z.; Wang, S.; Wang, Y.; Ma, X. Spatiotemporal Recurrent Convolutional Networks for Traffic
Prediction in Transportation Networks. Sensors 2017, 17, 1501. [CrossRef]

http://dx.doi.org/10.1103/PhysRevE.72.046102
http://dx.doi.org/10.1016/0191-2615(84)90002-X
http://dx.doi.org/10.3141/1776-25
http://dx.doi.org/10.1016/j.trc.2015.03.003
http://dx.doi.org/10.1177/2399808318763368
http://dx.doi.org/10.3141/1857-09
http://dx.doi.org/10.1109/TITS.2015.2488593
http://dx.doi.org/10.1002/asmb.1937
http://dx.doi.org/10.1111/0885-9507.00154
http://dx.doi.org/10.1016/j.trc.2005.03.001
http://dx.doi.org/10.1080/713930748
http://dx.doi.org/10.1109/TITS.2014.2311123
http://dx.doi.org/10.1109/TITS.2019.2950416
http://dx.doi.org/10.3390/s17040818
http://dx.doi.org/10.3390/s17071501

Algorithms 2020, 13, 39 18 of 18

48. Krishnakumari, P.; Perotti, A.; Pinto, V.; Cats, O.; van Lint, H. Understanding Network Traffic States using
Transfer Learning. In Proceedings of the 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 1396–1401.

49. Pavlyuk, D. Make It Flat: Multidimensional Scaling of Citywide Traffic Data. In RelStat 2019: Reliability
and Statistics in Transportation and Communication; Kabashkin, I., Jackiva, I., Prentkovskis, O., Eds.; Springer
International Publishing: Cham, Switzerland, 2020; in press.

50. Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.J.; Vapnik, V. Support Vector Regression Machines.
In Advances in Neural Information Processing Systems 9; Mozer, M.C., Jordan, M.I., Petsche, T., Eds.; MIT Press:
Cambridge, MA, USA, 1997; pp. 155–161.

51. Lin, B.Y.; Xu, F.F.; Liao, E.Q.; Zhu, K.Q. Transfer Learning for Traffic Speed Prediction with Effective
Spatiotemporal Features. In Proceedings of the 31st Conference on Neural Information Processing Systems
(NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; p. 7.

52. Bruna, J.; Zaremba, W.; Szlam, A.; Lecun, Y. Spectral networks and locally connected networks on graphs.
In Proceedings of the International Conference on Learning Representations (ICLR2014), Banff, AB, Canada,
14–16 April 2014; p. 14.

53. Micheli, A. Neural Network for Graphs: A Contextual Constructive Approach. IEEE Trans. Neural Netw.
2009, 20, 498–511. [CrossRef]

54. Schimbinschi, F.; Moreira-Matias, L.; Nguyen, V.X.; Bailey, J. Topology-regularized universal vector
autoregression for traffic forecasting in large urban areas. Expert Syst. Appl. 2017, 82, 301–316. [CrossRef]

55. Zivot, E.; Wang, J. Rolling Analysis of Time Series. In Modeling Financial Time Series with S-PLUS; Springer:
New York, NY, USA, 2006; pp. 313–360, ISBN 978-0-387-27965-7.

56. Hyndman, R.J.; Khandakar, Y. Automatic Time Series Forecasting: The forecast Package for R. J. Stat. Softw.
2008, 27. [CrossRef]

57. Kwon, T. RTMC *. Traffic Data. Available online: http://www.d.umn.edu/~{}tkwon/TMCdata/TMCarchive.
html (accessed on 12 January 2018).

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TNN.2008.2010350
http://dx.doi.org/10.1016/j.eswa.2017.04.015
http://dx.doi.org/10.18637/jss.v027.i03
http://www.d.umn.edu/~{}tkwon/TMCdata/TMCarchive.html
http://www.d.umn.edu/~{}tkwon/TMCdata/TMCarchive.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Video Prediction Methodology
	Spatiotemporal Urban Traffic Forecasting Methodology
	Transferring Methodologies between Video Prediction and Spatiotemporal Urban Traffic Forecasting

	Methodology
	Transferred Models
	Models Based on Spatial Kernels
	Models Based on Graph Convolution

	Baseline Models

	Experimental Results
	Data Set
	Hyperparameter Tuning and Forecasting Accuracy
	Estimation Results
	Reproducibility

	Discussion
	Conclusions
	References

