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Abstract: In this paper, we consider a class of structured optimization problems whose objective
function is the summation of two convex functions: f and h, which are not necessarily differentiable.
We focus particularly on the case where the function f is general and its exact first-order information
(function value and subgradient) may be difficult to obtain, while the function h is relatively simple.
We propose a generalized alternating linearization bundle method for solving this class of problems,
which can handle inexact first-order information of on-demand accuracy. The inexact information can
be very general, which covers various oracles, such as inexact, partially inexact and asymptotically
exact oracles, and so forth. At each iteration, the algorithm solves two interrelated subproblems: one
aims to find the proximal point of the polyhedron model of f plus the linearization of h; the other
aims to find the proximal point of the linearization of f plus h. We establish global convergence of the
algorithm under different types of inexactness. Finally, some preliminary numerical results on a set of
two-stage stochastic linear programming problems show that our method is very encouraging.

Keywords: nonsmooth convex optimization; bundle method; alternating linearization; on-demand
accurary; global convergence

1. Introduction

In this paper, we consider the following structured convex optimization problem

F∗ := min
x∈Rn

{F(x) := f (x) + h(x)} , (1)

where f : dom h→ R and h : Rn → (−∞, ∞] are closed proper convex functions, but not necessarily
differentiable, and dom h := {x : h(x) < ∞} is the effective domain of h. Problems of this type
frequently arise in practice, such as compressed sensing [1], image reconstruction [2], machine
learning [3], optimal control [4] and power system [5–8], and so forth. The following are three
interesting examples.

Example 1. (`1 minimization in compressed sensing). The signal recovery problems in compressed sensing [1]
usually take the following form

min
x∈Rn

1
2
‖Ax− b‖2 + λ‖x‖1, (2)

where A ∈ Rm×n, b ∈ Rm, λ > 0 and ‖x‖1 := ∑n
i=1 |xi|, which aims to get a sparse solution x of the linear

system Ax = b. Note that by defining f (x) = 1
2‖Ax− b‖2 and h(x) = λ‖x‖1, (2) is of the form of (1).
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Example 2. (Regularized risk minimization). At the core of many machine learning problems is to minimize
a regularized risk function [9,10]:

min
x∈Rn

Remp(x) + λΩ(x), (3)

where Remp(x) := 1
m

m
∑

i=1
l(ui, vi, x) is the empirical risk, {(ui, vi), i = 1, · · · , m} is a training set, and l is

a convex loss function measuring the gap between v and the predicted values generated by using x. In general,
Remp(x) is a nondifferentiable and computationally expensive convex function, whereas the regularization term
Ω(x) is a simple convex function, say Ω(x) = 1

2‖x‖2
2 or Ω(x) = ‖x‖1. By defining f (x) = Remp(x) and

h(x) = λΩ(x), (3) is also of the form of (1).

Example 3. (Unconstrained transformation of a constrained problem). Given a constrained problem

min { f (x) : x ∈ X}, (4)

where f is a convex function and X ⊆ Rn is a convex set. By introducing the indicator function δX of X, that is,
δX(x) equals 0 on X and infinity elsewhere, problem (4) can be written equivalently as

min
x∈Rn

f (x) + δX(x). (5)

Clearly, by setting h(x) = δX(x), (5) becomes the form of (1). We note that such transformation could be
very efficient in practice if the set X has some special structure [11,12].

The design of methods for solving problems of the form (1) has attracted the attention of many
researchers. We mention here four classes of these methods—operator splitting methods [13–15],
alternating direction methods of multipliers [5,16–19], alternating linearization methods [20,21],
and alternating linearization bundle method [22]. They all fall within the well-known class of
first-order black-box methods, that is, it is assumed that there is an oracle that can return the
(approximate) function value and one arbitrary (approximate) subgradient at any given point.
Regarding the above methods, we are concerned about the following three points:

• Smoothness of one or both functions in the objective has been assumed for many of the methods.
• Except for Reference [22], they all require the exact computation of the function values

and (sub)gradients.
• The alternating linearization methods [20,21] essentially assume that both functions f and h are

“simple” in the sense that minimizing the function plus a separable convex quadratic function
is easy.

However, for some practical problems, the functions may be nondifferentiable (nonsmooth),
not easy to handle, and computationally expensive in the sense that the exact first-order information
may be impossible to calculate, or be computable but difficult to obtain. For example, if f has the form

f (x) := sup{φu(x) : u ∈ U},

where U is an infinite set and φu(x) : Rn → R is convex for any u ∈ U, then it is often difficult to
calculate the exact function value f (x). But for any tolerance ε > 0, we may usually find a lower
approximation f ε

x ≈ f (x) in finite time such that f ε
x ∈ [ f (x)− ε, f (x)] and f ε

x = φuε(x) for some uε ∈ U.
Then we can take a subgradient of φuε at x as an approximate subgradient of f at x. Another example
is two-stage stochastic programming (see, e.g., References [23,24]), in which the function value is
generated after solving a series of linear programs (details will be given in the section of numerical
experiments), therefore its accuracy is determined by the tolerance of the linear programming solver.
Some other practical examples, such as Lagrangian relaxation, chance-constrained programs and
convex composite functions, can be found in Reference [25].
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Based on the above observation, in this paper, we focus particularly on the case where the
function f is general, possibly nonsmooth and its exact function values and subgradients may
be difficult to obtain, whereas the function h is assumed to be relatively simple. Our main
goal is to provide an efficient method, namely, the improved alternating linearization bundle
method, for such kind of structured convex optimization problems. The basic tool we used
here to handle nonsmoothness and inexactness is the bundle technique, since in the nonsmooth
optimization community, bundle methods [26–29] are regarded as the most robust and reliable
methods, whose variants have been well studied for handling inexact oracles [23,25,30–33].

Roughly speaking, our method generalizes the alternating linearization bundle method of
Kiwiel [22] from exact and inexact oracles to various oracles, including exact, inexact, partially inexact,
asymptotically exact and partially asymptotically exact oracles. These oracles are covered by the
so-called on-demand accuracy oracles proposed by de Oliveira and Sagastizábal [23], whose accuracy
is controlled by two parameters: a descent target and an error bound. More precisely, the accuracy
is bounded by an error bound whenever the function estimation reaches a certain descent target.
The most advantage of oracles with on-demand accuracy is that the function and subgradient
estimations can be rough without an accuracy control for some “non-critical” iterates, thus the
computational effort can be saved.

At each iteration, the proposed algorithm alternately solves two interrelated subproblems: one is
to find the proximal point of the polyhedron model of f plus the linearization of h; the other is to find
the proximal point of the linearization of f plus h. We establish global convergence of the algorithm
under different types of inexactness. Finally, some preliminary numerical results on a set of two-stage
stochastic linear programming problems show that our method is very encouraging.

This paper is organized as follows. In Section 2, we recall the condition of the inexact frist-order
oracles. In Section 3, we present an improved alternating linearization bundle method for structured
convex optimization with inexact first-order oracles and show some properties of the algorithm.
In Section 4, we establish global convergence of the algorithm under different types of inexactness.
In Section 5, we provide some numerical experiments on two-stage stochastic linear programming
problems. The notations are standard. The Euclidean inner product in Rn is denoted by 〈x, y〉 := xTy,
and the associated norm by ‖ · ‖.

2. Preliminaries

For a given constant ε ≥ 0, the ε-subdifferential of function f at x is defined by (see Reference [34])

∂ε f (x) := {g ∈ Rn : f (y) ≥ f (x) + 〈g, y− x〉 − ε, ∀y ∈ Rn},

with ∂ f (x) := ∂0 f (x) being the usual subdifferential in convex analysis [35]. Each element g ∈ ∂ f (x)
is called a subgradient. For simplicity, we use the following notations:

fx: the approximate f value at x, that is, fx ≈ f (x);
gx: an approximate subgradient of f at x, that is, gx ≈ g(x) ∈ ∂ f (x);
Fx: the approximate F value at x, that is, Fx := fx + h(x).
Aiming at the special structure of problem (1), we present a slight variant of the oracles with

on-demand accuracy proposed in Reference [23] as follows: for a given x ∈ Rn, a descent target γx

and an error bound εx ≥ 0, the approximate values fx, gx and Fx satisfy the following condition
fx = f (x)− η(γx) with unknown η(γx) ≥ 0,

gx ∈ ∂η(γx) f (x), and

whenever Fx ≤ γx (descent target reached), the relation η(γx) ≤ εx holds.

(6)
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From the relations in (6), we see that although the error η(γx) is unknown, it has to be restricted
within the error bound εx whenever the descent target Fx ≤ γx is reached. This ensures that the exact
and inexact function values satisfy

fx ∈ [ f (x)− εx, f (x)] and f (x) ∈ [ fx, fx + εx], whenever Fx ≤ γx. (7)

The advantages of oracle (6) are that: (1) if the descent target is not reached, the calculation
of oracle information can be rough without an accuracy control, which can potentially reduce the
computational cost; (2) by properly choosing the parameters γx and εx, the oracle (6) covers various
existing oracles:

• Exact (Ex) [12,21]: set γx = +∞ and εx = 0;
• Partially Inexact (PI) [24]: set γx < +∞ and εx = 0;
• Inexact (IE) [11,25,32,36,37]: set γx = +∞ and εx ≡ ε > 0 (possibly unknown);
• Asymptotically Exact (AE) [38,39]: set γx = +∞ and εx → 0 along the iterative process;
• Partially Asymptotically Exact (PAE) [23]: set γx < +∞ and εx → 0.

3. The Generalized Alternating Linearization Bundle Method

In this section, we present our generalized alternating linearization bundle method with inexact
first-order oracles for solving (1).

Let k be the current iteration index, xj, j ∈ Jk ⊆ {1, · · · , k} be given points generated by
previous iterations, and the corresponding approximate values fxj /gxj be produced by the oracle (6).
For notational convenience, we denote

f j
x := fxj , gj

x := gxj , Fj
x := Fxj , ε

j
x := εxj , γ

j
x := γxj .

The approximate linearizations of f at xj are given by

f j(·) := f j
x + 〈g

j
x, · − xj〉, j ∈ Jk.

From the second relation in (6), we have

f (·) ≥ f (xj) + 〈gj
x, · − xj〉 − η(γ

j
x) = f j(·),

which implies that f j is a lower approximation to f . Next, it is natural to define the polyhedral inexact
cutting-plane model of f by

f̌k(·) := max
j∈Jk

{
f j(·)

}
, (8)

which is obviously a lower polyhedral model for f , that is, f̌k(·) ≤ f (·).
Let x̂k (called stability center) be the “best” point obtained so far, which satisfies that x̂k = xk(l) for

some k(l) ≤ k. Frequently, it holds that f k(l)
x = min

j=1,··· ,k
f j
x. Thus, from (7), we have

f (x̂k) ∈ [ f k
x̂ , f k

x̂ + ε
k(l)
x ], whenever Fk

x̂ ≤ γk
x̂. (9)

By applying the bundle idea to the “complex” function f , and keeping the simple function h
unchanged, similar to traditional proximal bundle methods (see, e.g., Reference [28]), we may solve
the following subproblem to obtain a new iterate xk+1:

xk+1 := arg min f̌k(·) + h(·) + 1
2tk
‖ · −x̂k‖2, (10)
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where tk > 0 is a proximal parameter. However, subproblem (10) is generally not easy to solve, so by
making use of the alternating linearization idea of Kiwiel [22], we solve two easier subproblems instead
of (10). These two subproblems are interrelated: one is to find the proximal point of the polyhedron
model f̌ plus the linearization of h, aiming at generating an aggregate linear model of f for use in the
second subproblem; the other is to find the proximal point of the aggregate linear model of f plus h,
aiming at obtaining a new trial point.

Now, we are ready to present the details of our algorithm, which generalizes the work of
Kiwiel [22]. We note that the choice of the model function f̌k in the algorithm may be different
from the form of (8), since the subgradient aggregation strategy [40] is used to compress the bundle.
The algorithm generates three sequences of iterates as follows: {yk}, the sequence of intermediate
points, at which the aggregate linear models of f are generated; {xk}, the sequence of trial points; {x̂k},
the sequence of stability centers.

We make some comments about Algorithm 1 as follows.

Algorithm 1 Generalized alternating linearization bundle method

Step 0 (Initialization). Select an initial point x1 ∈ Rn, constants κ ∈ (0, 1), tmin > 0, and an initial stepsize t1 ≥ tmin.
Call the oracle (6) at x1 to compute the approximate values f 1

x and g1
x. Choose an initial error bound ε1

x ≥ 0 and a
descent target γ1

x = +∞. Set x̂1 := x1, f 1
x̂ := f 1

x , F1
x̂ := f 1

x̂ + h(x̂1), f̄0 := f1, and h̄0(·) := h(x1) + 〈p0
h, · − x1〉 with

p0
h ∈ ∂h(x1). Let i1t := 0, l := 1, k(l) := 1 and k := 1.

Step 1 (Model selection). Choose f̌k : Rn → R closed convex and such that

max{ f̄k−1, fk} ≤ f̌k ≤ f .

Step 2 (Solve f -subproblem). Set

yk+1 := arg min
{

φk
f (·) := f̌k(·) + h̄k−1(·) +

1
2tk
‖ · −x̂k‖2

}
, (11)

f̄k(·) := f̌k(y
k+1) + 〈pk

f , · − yk+1〉 with pk
f :=

1
tk
(x̂k − yk+1)− pk−1

h . (12)

Step 3 (Solve h-subproblem). Set

xk+1 := arg min
{

φk
h(·) := f̄k(·) + h(·) + 1

2tk
‖ · −x̂k‖2

}
, (13)

h̄k(·) := h(xk+1) + 〈pk
h, · − xk+1〉 with pk

h :=
1
tk
(x̂k − xk+1)− pk

f . (14)

Step 4 (Stopping criterion). Compute

vk := Fk
x̂ −

[
f̄k(xk+1) + h(xk+1)

]
, pk :=

1
tk
(x̂k − xk+1), εk := vk − tk‖pk‖2. (15)

If max{‖pk‖, εk} = 0, stop.
Step 5 (Noise attenuation). If vk < −εk, set tk := 10tk, ik

t := k, and go back to Step 2.
Step 6 (Call oracle). Select a new error bound εk+1

x ≥ 0 and a new descent target γk+1
x ∈ R∪ {+∞}. Call the

oracle (6) to compute f k+1
x and gk+1

x .
Step 7 (Descent test). If the descent condition

Fk+1
x ≤ Fk

x̂ − κvk (16)

holds, set x̂k+1 := xk+1, Fk+1
x̂ := Fk+1

x , ik+1
t := 0, k(l + 1) := k + 1, and l := l + 1 (descent step); otherwise, set

x̂k+1 := x̂k, Fk+1
x̂ := Fk

x̂ , ik+1
t := ik

t , and k(l + 1) = k(l) (null step).
Step 8 (Stepsize updating). For a descent step, select tk+1 ≥ tk. For a null step, either set tk+1 := tk or choose
tk+1 ∈ [tmin, tk] if ik+1

t = 0.
Step 9 (Loop). Let k := k + 1, and go to Step 1.

Remark 1. (i) Theoretically speaking, the model function f̌k can be the simplest form max{ f̄k−1, fk}, but in
order to keep numerical stability, it may additionally consist of some active linearizations.
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(ii) Alternately solving subproblems (11) and (13) can be regarded as the proximal alternating linearization
method (e.g., Reference [21]) being applied to the function f̌k + h.

(iii) If f̌k is a polyhedral function, then subproblem (11) is equivalent to a convex quadratic programming
and thus can be solved efficiently. In addition, if h is simple, subproblem (13) can also be solved easily, or even
has a closed-form solution (say h(x) = 1

2‖x‖2).
(iv) The role of Step 5 is to reduce the impact of inexactness. The algorithm loops between steps 2–5 by

increasing the step size tk until vk ≥ −εk.
(v) The stability center, descent target and error bound keep unchanged in the loop between Steps 2 and 5
(vi) In order to establish global convergence of the algorithm, the descent target and error bound at Step 6

should be suitably updated. Some detailed rules are presented in the next section.

The following lemma summarizes some fundamental properties of Algorithm 1, whose proof is
a slight modification of that in [22], Lemma 2.2.

Lemma 1. (i) The vectors pk
f and pk

h of (12) and (14) satisfy

pk
f ∈ ∂ f̌k(yk+1) and pk

h ∈ ∂h(xk+1). (17)

The linearizations f̄k, h̄k, F̄k satisfy the following inequalities

f̄k ≤ f̌k, h̄k ≤ h and F̄k := f̄k + h̄k ≤ F. (18)

(ii) The aggregate subgradient pk defined in (15) and the above linearization F̄k can be expressed as follows

pk = pk
f + pk

h =
1
tk
(x̂k − xk+1), (19)

F̄k(·) = F̄k(xk+1) + 〈pk, · − xk+1〉.

(iii) The predicted descent vk and the aggregate linearization error εk of (15) satisfy

vk = tk‖pk‖2 + εk and εk = Fk
x̂ − F̄k(x̂k). (20)

(iv) The aggregate linearization F̄k is also expressed

Fk
x̂ − εk + 〈pk, · − x̂k〉 = F̄k(·) ≤ F(·). (21)

(v) Denote the optimality measure by

Vk := max{‖pk‖, εk + 〈pk, x̂k〉}, (22)

which satisfies
Vk ≤ max{‖pk‖, εk}(1 + ‖x̂k‖) (23)

and
Fk

x̂ ≤ F(x) + Vk(1 + ‖x‖), ∀ x. (24)

(vi) We have the relations

vk ≥ −εk ⇔ tk‖pk‖2/2 ≥ −εk ⇔ vk ≥ tk‖pk‖2/2, vk ≥ εk. (25)
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Moreover, if Fk
x̂ ≤ γk

x̂, then we have −εk ≤ ε
k(l)
x and

vk ≥ max

{
tk‖pk‖2

2
, |εk|

}
i f vk ≥ −εk, (26)

Vk ≤ max

{(
2vk
tk

)1/2
, vk

}
(1 + ‖x̂k‖) i f vk ≥ −εk, (27)

Vk <

(
2ε

k(l)
x
tk

)1/2

(1 + ‖x̂k‖) i f vk < −εk. (28)

Proof. (i) From the optimality condition of subproblem (11), we obtain

0 ∈ ∂φk
f (y

k+1) = ∂ f̌k(yk+1) + pk−1
h +

1
tk
(yk+1 − x̂k) = ∂ f̌k(yk+1)− pk

f ,

which implies pk
f ∈ ∂ f̌k(yk+1). In addition, the fact that f̄k(yk+1) = f̌k(yk+1) yields f̄k ≤ f̌k. Similarly,

by the optimality condition of (14), we have

0 ∈ ∂φk
h(xk+1) = pk

f + ∂h(xk+1) +
1
tk
(xk+1 − x̂k) = ∂h(xk+1)− pk

h,

which shows pk
h ∈ ∂h(xk+1). Further from h̄(xk+1) = h(xk+1), we obtain h̄k ≤ h. Finally, it follows that

F̄k = f̄k + h̄k ≤ f̌k + h ≤ F.

(ii) By (14), we obtain

pk
f + pk

h = pk
f +

1
tk
(x̂k − xk+1)− pk

f =
1
tk
(x̂k − xk+1) = pk.

Utilizing the linearity of F̄k(·), (12) and (19), we derive

F̄k(·) = f̄k(·) + h̄k(·)
= f̌k(yk+1) + 〈pk

f , · − yk+1〉+ h(xk+1) + 〈pk
h, · − xk+1〉

= f̄k(xk+1)− 〈pk
f , xk+1 − yk+1〉+ 〈pk

f , · − yk+1〉+ h(xk+1) + 〈pk
h, · − xk+1〉

= f̄k(xk+1) + 〈pk
f , · − xk+1〉+ h(xk+1) + 〈pk

h, · − xk+1〉

= F̄k(xk+1) + 〈pk, · − xk+1〉.

(iii) We obtain directly vk = εk + tk‖pk‖2 from (15). Combining (15) and (ii), we have

εk = vk − tk‖pk‖2

= Fk
x̂ − [ f̄k(xk+1) + h(xk+1)]− tk‖pk‖2

= Fk
x̂ − F̄k(x̂k) + 〈pk, x̂k − xk+1〉 − tk‖pk‖2

= Fk
x̂ − F̄k(x̂k).

(iv) Since εk = vk − tk‖pk‖2 = Fk
x̂ − [ f̄k(xk+1) + h(xk+1)]− tk‖pk‖2, the aggregate lineaization

F̄k(·) satisfies
Fk

x̂ − εk + 〈pk, · − x̂k〉 = F̄k(xk+1) + 〈pk, · − xk+1〉 = F̄k(·) ≤ F(·).
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(v) Using the Cauchy-Schwarz inequality in the definition (22) gives

Vk = max{‖pk‖, εk + 〈pk, x̂k〉}
≤ max{‖pk‖, εk + ‖pk‖‖x̂k‖}
≤ max{‖pk‖, εk}+ ‖pk‖‖x̂k‖
≤ max{‖pk‖, εk}(1 + ‖x̂k‖).

From (21), we have

Fk
x̂ ≤ F(x) + εk − 〈pk, x− x̂k〉
= F(x) + εk − 〈pk, x〉+ 〈pk, x̂k〉
≤ F(x) + ‖pk‖‖x‖+ εk + 〈pk, x̂k〉
≤ F(x) + max{‖pk‖, εk + 〈pk, x̂k〉}(1 + ‖x‖)
= F(x) + Vk(1 + ‖x‖), ∀ x.

(vi) By (iii), it is easy to get (25). Next, by (18), (20) and (9), we conclude that, if Fk
x̂ ≤ γk

x̂,

−εk = F̄k(x̂k)− Fk
x̂ ≤ F(x̂k)− Fk

x̂ = f (x̂k)− f k
x̂ ≤ ε

k(l)
x .

Relation (26) follows from the facts that vk ≥ εk and vk ≥ tk‖pk‖2/2. Relation (27) follows

from (23), ‖pk‖ ≤ ( 2vk
tk
)

1/2
and εk ≤ vk. Finally, if vk < −εk, we obtain ‖pk‖2 < −2εk

tk
, which together

with −εk ≤ ε
k(l)
x shows that ‖pk‖ < ( 2ε

k(l)
x
tk

)1/2, and therefore (28) holds.

Remark 2. Relation (17) shows that pk
f is a subgradient of the model function f̌k at yk+1 and that pk

h is

a subgradient of h at xk+1. Vk defined by (22) can be viewed as an optimality measure of the iterates, which
will be proved to converge to zero in the next section. Relation (24) is also a test for optimality, in that x̂k is an
approximate optimal solution to problem (1) whenever Vk is sufficiently small.

4. Global Convergence

This section aims to establish the global convergence of Algorithm 1 for various oracles.
These oracles are controlled by two parameters: the error bound εx and the descent target γx. In
Table 1, we present the choices of these two parameters for different type of instances described in
Section 2, including Exact (Ex), Partially Inexact (PI), Inexact (IE), Asymptotically Exact (AE) and
Partially Asymptotically Exact (PAE) oracles, where the constants are selected as θ, κ ∈ (0, 1), and
κε ∈ (0, κ).

Table 1. The choices for the error bound and the descent target.

Instances εk+1
x γk+1

x

Ex 0 +∞
PI 0 Fk

x̂ − θκvk
IE ε > 0 +∞
AE κεvk +∞

PAE κεvk Fk
x̂ − θκvk

The following lemma is crucial to guarantee the global convergence of Algorithm 1.

Lemma 2. The descent target is always reached at the stability centers, that is, Fk
x̂ ≤ γk

x̂ for all k ≥ 1.
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Proof. For instances Ex, IE and AE, since γk
x = +∞, the claim holds immediately.

For instances PI and PAE, we have γk+1
x = Fk

x̂ − θκvk. Thus, for k = 1, from Step 0 it follows that
x̂1 = x1, f 1

x̂ = f 1
x and γ1

x̂ = γ1
x = +∞. This implies F1

x̂ = f 1
x̂ + h(x̂1) ≤ γ1

x̂. In addition, for k ≥ 2, since
θ ∈ (0, 1), once the descent test (16) is satisfied at iteration k− 1, we have

Fk
x̂ ≤ Fk−1

x̂ − κvk−1 ≤ Fk−1
x̂ − θκvk−1 = γk

x = γk
x̂.

The following lemma shows that an (approximate) optimal solution can be obtained whenever
the algorithm terminates finitely or loops infinitely between Steps 2 and 5.

Lemma 3. If either Algorithm 1 terminates at the kth iteration at Step 4, or loops between Steps 2 and 5
infinitely, then

(i) x̂k is an optimal solution to problem (1) for instances Ex and PI.
(ii) x̂k is ε-optimal, that is, F(x̂k) ≤ F∗ + ε, for instance IE.

(iii) x̂k is ε
k(l)
x -optimal, that is, F(x̂k) ≤ F∗ + ε

k(l)
x , for instances AE and PAE.

Proof. Firstly, suppose that Algorithm 1 terminates at Step 4 with iteration k. Then from (23), we have
Vk = 0. This together with (24) shows that

Fk
x̂ ≤ inf{F(x) : x ∈ Rn} = F∗. (29)

Thus, from (7), we can conclude that: F(x̂k) = Fk
x̂ ≤ F∗ for instances Ex and PI; F(x̂k) ≤ Fk

x̂ + ε ≤
F∗ + ε for instance IE; F(x̂k) ≤ Fk

x̂ + ε
k(l)
x ≤ F∗ + ε

k(l)
x for instances AE and PAE.

Secondly, suppose that Algorithm 1 loops between Steps 2 and 5 infinitely. Then from Lemma 2
and the condition at Step 5, it follows that (28) holds and tk ↑ ∞. Thus, we obtain Vk → 0. This
along with (24) implies (29), and therefore the claims hold by repeating the corresponding lines
in first case.

From the above lemma, in what follows, we may assume that Algorithm 1 neither terminates
finitely nor loops infinitely between Steps 2 and 5. In addition, as in Reference [22], we assume that
the model subgradients pk

f ∈ ∂ f̌k(yk+1) in (17) satisfy that {pk
f } is bounded if {yk} is bounded.

Algorithm 1 must take only one of the following two cases:

(i) the algorithm generates finitely many descent steps;
(ii) the algorithm generates infinitely many descent steps.

We first consider case (i), in which two subcases may occur: t∞ := limk tk = ∞ and t∞ < ∞.
The first subcase of t∞ = ∞ is analyzed in the following lemma.

Lemma 4. Suppose that Algorithm 1 generates finitely many descent steps, that is, there exists an index k̄ such
that only null steps occur for all k ≥ k̄, and that t∞ = ∞. Denote K := {k ≥ k̄ : tk+1 > tk}, then Vk → 0 as
k ∈ K, k→ ∞.

Proof. For the last time tk increases before Step 5 for k ∈ K, one has

Vk <

(
2εk̄

x
tk

)1/2 (
1 +

∥∥∥x̂k̄
∥∥∥) ,

which along with tk → ∞ shows the lemma.

The following lemma analyzes the second subcase of t∞ < ∞.
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Lemma 5. Suppose that there exists k̄ such that x̂k = x̂k̄ and tmin ≤ tk+1 ≤ tk for all k ≥ k̄. If the descent
criterion (16) fails for all k ≥ k̄, then Vk → 0.

Proof. In view of the facts that tmin ≤ tk+1 ≤ tk and x̂k = x̂k̄ for all k ≥ k̄, we know that only null
steps occur and tk does not increase at Step 5. By Taylor’s expansion, Cauchy-Schwarz inequality, and
the properties of subproblems (11) and (13), we can conclude that vk → 0, so the conclusion holds
from (27). For more details, one can refer to [11], Lemma 3.2.

By combining Lemmas 4 and 5, we have the following lemma.

Lemma 6. Suppose that there exists k̄ such that only null steps occur for all k ≥ k̄. Let K := {k ≥ k̄ : tk+1 >

tk} if tk → ∞; K := {k : k ≥ k̄} otherwise. Then Vk
K→ 0.

Now, we can present the main convergence result for the case where the algorithm generates
finitely many descent steps.

Theorem 1. Suppose that Algorithm 1 generates finitely many descent steps, and that x̂k̄ is the last stability
center. Then, x̂k̄ is an optimal solution to problem (1) for instances Ex and PI; an ε-optimal solution for IE; and

an ε
k̄(l)
x -optimal solution for AE and PAE.

Proof. Under the stated assumption, we know that x̂k ≡ x̂k̄ and f k
x̂ ≡ f k̄

x̂ for all k ≥ k̄. This together
with (24) and Lemma 6 shows that

Fk̄
x̂ ≤ inf{F(x) : x ∈ Rn} = F∗.

Hence, similar to the proof of Lemma 3, we obtain the results of the theorem.

Next, we consider the second case where the algorithm generates infinitely many descent steps.

Lemma 7. Suppose that Algorithm 1 generates infinitely many descent steps, and that F∞
x̂ := lim

k
Fk

x̂ > −∞.

Let K := {k : Fk+1
x̂ < Fk

x̂}. Then vk
K→ 0 and limk∈KVk = 0. Moreover, if {x̂k} is bounded, then Vk

K→ 0.

Proof. From the descent test condition (16), we may first prove that vk
K→ 0, and therefore εk, tk‖pk‖2 K→

0 from (26) and ‖pk‖
K→ 0 from the fact that tk ≥ tmin. It can be further proved that εk, ‖pk‖

K→ 0, so it
follows limk∈KVk = 0 from the definition of Vk. Moreover, under the condition that {x̂k} is bounded,

we have Vk
K→ 0 by (v) of Lemma 1. For more details, one can refer to [11], Lemma 3.4.

Finally, we present the convergence results for the second case.

Theorem 2. Suppose that Algorithm 1 generates infinitely many descent steps, F∞
x̂ > −∞, and that the index

set K is defined in Lemma 7. Then

(i) F∗ ≤ limk∈KF(x̂k+1) ≤ limk∈KF(x̂k+1) ≤ F∞
x̂ + ε for instance IE in Table 1;

(ii) F∗ ≤ limk∈KF(x̂k+1) ≤ limk∈KF(x̂k+1) ≤ F∞
x̂ for the remaining instances in Table 1;

(iii) limk∈KVk = 0 and Fk
x̂ ↓ F∞

x̂ ≤ F∗.

Proof. It is obvious that
F∗ ≤ lim

k∈K
F(x̂k+1) ≤ lim

k∈K
F(x̂k+1). (30)
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(i) For instance IE, it follows that εk+1
x̂ = ε and Fk+1

x̂ ≤ γk+1
x̂ = +∞ for all k ∈ K. Then from (7),

we have F(x̂k+1) ≤ Fk+1
x̂ + ε, ∀k ∈ K, which implies

lim
k∈K

F(x̂k+1) ≤ lim
k∈K

Fk+1
x̂ + ε = F∞

x̂ + ε.

This along with (30) shows part (i).
(ii) Next, the other four instances in Table 1 are considered separately.
For instance Ex, we have εk+1

x̂ = 0, Fk+1
x̂ ≤ γk+1

x̂ = +∞ and F(x̂k+1) = Fk+1
x̂ . This implies

lim
k∈K

F(x̂k+1) = lim
k∈K

Fk+1
x̂ = F∞

x̂ .

For instance PI, we have εk+1
x̂ = 0 and γk+1

x̂ = Fk
x̂ − θκvk for all k ∈ K. Thus, we obtain

Fk+1
x̂ ≤ Fk

x̂ − κvk ≤ Fk
x̂ − θκvk = γk+1

x̂ .

This implies F(x̂k+1) = Fk+1
x̂ , and therefore

lim
k∈K

F(x̂k+1) = lim
k∈K

Fk+1
x̂ = F∞

x̂ .

For instance AE, we have εk+1
x̂ = κεvk and Fk+1

x̂ ≤ γk+1
x̂ = +∞ for all k ∈ K, which implies

F(x̂k+1) ≤ Fk+1
x̂ + εk+1

x̂ ≤ Fk+1
x̂ + κεvk.

This along with Lemma 7 (vk
K→ 0) shows that

lim
k∈K

F(x̂k+1) ≤ lim
k∈K

Fk+1
x̂ = F∞

x̂ .

For instance PAE, we have εk+1
x̂ = κεvk and γk+1

x̂ = Fk
x̂ − θκvk for all k ∈ K. Then, it follows that

Fk+1
x̂ ≤ Fk

x̂ − κvk ≤ Fk
x̂ − θκvk = γk+1

x̂ ,

which implies
F(x̂k+1) ≤ Fk+1

x̂ + κεvk.

Again from Lemma 7, we obtain

lim
k∈K

F(x̂k+1) ≤ lim
k∈K

Fk+1
x̂ = F∞

x̂ .

Summarizing the above analysis and noticing (30), we complete the proof of part (ii).
(iii) From Lemma 7, we know that limk∈KVk = 0. This together with (24) shows part (iii).

5. Numerical Experiments

In this section, we aim to test the numerical efficiency of the proposed algorithm. In the fields
of production and transportation, finance and insurance, power industry, and telecommunications,
decision makers usually need to solve problems with uncertain information. As an effective tool to
solve such problems, stochastic programming (SP) has attracted more and more attention and research
on its practical instances and theories; see, for example, References [41,42]. We consider a class of
two-stage SP problems with fixed recourse, whose discretization of uncertainty into N scenarios has
the form (see e.g., References [23,43])

min f (x) := 〈c, x〉+ ∑N
i=1 piVi(x)

s.t. x ∈ X := {x ∈ Rn1
+ : Ax = b}, (31)
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where x is the first-stage decision variable, c ∈ Rn1 , A ∈ Rm1×n1 , and b ∈ Rm1 . In addition, the recourse
function is

Vi(x) := min
π∈Rn2

+

{〈q, π〉 : Wπ = hi − Tix},

where corresponding to the ith scenario (hi, Ti), with probability pi > 0 for hi ∈ Rm2 and Ti ∈ Rm2×n1 .
Here π is the second-stage decision variable.

Clearly, by introducing the indicator function δX , problem (31) can be written as the form of (5),
and then becomes the form of (1) by setting h(x) = δX(x).

The above recourse function can be written as its dual form:

Vi(x) = max
y∈Rm2

〈hi − Tix, y〉 s.t. WTy ≤ q,

where q ∈ Rn2 and W ∈ Rm2×n2 . By solving these linear programming problems to return
solutions with precision up to a given tolerance, one can establish an inexact oracle in the form
(6), see Reference [23] for more detailed description.

The instances of SP problems are downloaded from the link: http://pwp.gatech.edu/guanghui-
lan/computer-codes/.

Four instances are tested, namely, SSN(50), SSN(100), 20-term(50), 20-term(100), where the
integers in the brackets mean the number of scenarios N. Here, the SSN instances come from the
telecommunications and have been studied by Sen, Doverspike, and Cosares [44]. And the 20-term
instances come from the motor freight carrier’s problem and have been studied by Mak, Morton, and
Wood [45]. The dimensions of these instances are listed in Table 2.

Table 2. Dimensions of the SP instances.

Name n1 m1 n2 m2

SSN 89 1 706 175
20-term 63 3 764 124

The parameters are selected as: κ = 0.04, tmin = 0.1 and t1 = 1.1. The maximum bundle size is set
to be 35. All the tests were performed in MATLAB (R2014a) on a PC with Intel(R) Core(TM) i7-4790
CPU 3.60GHz, 4GB RAM. The quadratic programming and linear programming subproblems were
solved by the MOSEK 8 toolbox for MATLAB; see http://www.mosek.com.

We first compare our algorithm (denoted by GALBM) with the accelerated prox-level method
(APL) in Reference [43], where the tolerances of the linear programming solver of MOSEK are set by
default. The results are listed in Table 3, in which the number of iterations (NI), the consumed CPU
time in seconds (Time), and the returned minimum values ( f∗) are compared. Note that we use the
MATLAB commands tic and toc to measure the consumed CPU time. For each instance, we run
10 times and report the average CPU time. From Table 3, we see that, when similar solution quality is
achieved, GALBM can significantly outperform than APL in terms of the number of iterations and
CPU time.

http://pwp.gatech.edu/guanghui-lan/computer-codes/
http://pwp.gatech.edu/guanghui-lan/computer-codes/
http://www.mosek.com
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Table 3. The comparisons between GALBM and accelerated prox-level (APL) for the stochastic
programming (SP) instances.

Name Algorithm NI Time f∗

SSN(50) GALBM 105 28.12 4.838238
APL 147 72.40 4.838278

SSN(100) GALBM 95 49.58 7.352609
APL 155 156.53 7.352618

20-term(50) GALBM 132 47.62 2.549453× 105

APL 156 106.51 2.549453× 105

20-term(100) GALBM 173 128.23 2.532875× 105

APL 261 364.93 2.532876× 105

In what follows, we are interested in evaluating the impact of inexact oracles for GALBM. In more
detail, we carry out two groups of tests. The first group adopts fixed tolerances, that is, εk+1

x ≡ ε,
and the corresponding results are reported in Tables 4–7. Whereas the second group adopts dynamic
tolerances with a safeguard parameter µ > 0, that is, εk+1

x = min{µ, κεvk} with κε = 0.7, and the
corresponding results are reported in Tables 8–11. The symbol “-” in the following tables means that
the number of iterations for the corresponding instance is greater than 500.

Table 4. Numerical results for SSN(50) with fixed tolerances.

No. εx NI Time f∗

1 10−4 206 55.21 4.838157
2 10−5 202 50.37 4.838163
3 10−6 190 49.64 4.838247
4 10−7 132 34.35 4.838156
5 10−8 105 27.81 4.838238
6 10−9 97 24.49 4.838188
7 10−10 99 25.62 4.838136
8 10−11 84 22.98 4.838191
9 10−12 97 27.47 4.838128

10 10−13 84 25.53 4.838231

Table 5. Numerical results for SSN(100) with fixed tolerances.

No. εx NI Time f∗

1 10−4 - - -
2 10−5 224 109.21 7.352932
3 10−6 194 94.80 7.352854
4 10−7 127 62.17 7.352937
5 10−8 95 46.93 7.352758
6 10−9 87 43.03 7.352750
7 10−10 79 41.55 7.353074
8 10−11 83 43.76 7.352939
9 10−12 81 44.08 7.352748

10 10−13 81 46.77 7.352734
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Table 6. Numerical results for 20-term (50) with fixed tolerances.

No. εx NI Time f∗

1 10−2 250 80.86 2.549490× 105

3 10−3 144 49.12 2.549466× 105

3 10−4 165 57.49 2.549463× 105

4 10−5 164 54.12 2.549460× 105

5 10−6 211 72.42 2.549461× 105

6 10−7 178 62.19 2.549459× 105

7 10−8 132 44.56 2.549457× 105

8 10−9 175 61.53 2.549461× 105

9 10−10 132 49.53 2.549457× 105

10 10−11 258 99.69 2.549457× 105

11 10−12 175 67.70 2.549461× 105

12 10−13 183 71.52 2.549461× 105

Table 7. Numerical results for 20-term (100) with fixed tolerances.

No. εx NI Time f∗

1 10−2 227 141.74 2.532914× 105

2 10−3 - - -
3 10−4 140 96.02 2.532879× 105

4 10−5 179 117.71 2.532877× 105

5 10−6 152 99.29 2.532879× 105

6 10−7 139 95.07 2.532876× 105

7 10−8 173 128.44 2.532876× 105

8 10−9 143 103.51 2.532878× 105

9 10−10 - - -
10 10−11 159 110.21 2.532877× 105

11 10−12 150 112.37 2.532878× 105

12 10−13 132 99.46 2.532878× 105

Table 8. Numerical results for SSN (50) with dynamic tolerances.

No. µ NI Time f∗

1 10−3 - - -
2 10−4 201 50.54 4.838163
3 10−5 202 49.07 4.838163
4 10−6 190 49.21 4.838247
5 10−7 132 32.26 4.838156
6 10−8 105 27.10 4.838238

Table 9. Numerical results for SSN (100) with dynamic tolerances.

No. µ NI Time f∗

1 10−3 - - -
2 10−4 - - -
3 10−5 284 141.85 7.353010
4 10−6 194 97.01 7.352854
5 10−7 127 63.83 7.352937
6 10−8 95 47.97 7.352758
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Table 10. Numerical results for 20-term (50) with dynamic tolerances.

No. µ NI Time f∗

1 10−2 199 65.09 2.549485× 105

2 10−3 140 44.73 2.549462× 105

3 10−4 165 54.08 2.549463× 105

4 10−5 164 54.18 2.549460× 105

5 10−6 211 70.67 2.549461× 105

6 10−7 178 61.90 2.549459× 105

7 10−8 132 46.94 2.549457× 105

Table 11. Numerical results for 20-term (100) with dynamic tolerances.

No. µ NI Time f∗

1 10−2 191 119.40 2.532901× 105

2 10−3 143 92.32 2.532881× 105

3 10−4 140 91.68 2.532878× 105

4 10−5 179 121.12 2.532877× 105

5 10−6 146 104.27 2.532878× 105

6 10−7 170 120.29 2.532879× 105

7 10−8 173 126.57 2.532876× 105

6. Conclusions

In this paper, we have proposed a generalized alternating linearization bundle method for solving
structured convex optimization with inexact first-order oracles. Our method can handle various inexact
data by making use of the so-called on-demand accuracy oracles. At each iteration, two interrelated
subproblems are solved alternately, aiming to reduce the computational cost. Global convergence of
the algorithm is established under different types of inexactness. Numerical results show that the
proposed algorithm is promising.
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