fj algorithms @\Py

Article
Mining Sequential Patterns with VC-Dimension and
Rademacher Complexity

t

Diego Santoro ', Andrea Tonon ® and Fabio Vandin *

Department of Information Engineering, University of Padova, 35131 Padova, Italy;
diego.santoro@dei.unipd.it (D.S.); andrea.tonon@dei.unipd.it (A.T.)

* Correspondence: fabio.vandin@unipd.it

t These authors contributed equally to this work.

check for
Received: 10 April 2020; Accepted: 14 May 2020; Published: 18 May 2020 updates

Abstract: Sequential pattern mining is a fundamental data mining task with application in several
domains. We study two variants of this task—the first is the extraction of frequent sequential
patterns, whose frequency in a dataset of sequential transactions is higher than a user-provided
threshold; the second is the mining of true frequent sequential patterns, which appear with probability
above a user-defined threshold in transactions drawn from the generative process underlying the
data. We present the first sampling-based algorithm to mine, with high confidence, a rigorous
approximation of the frequent sequential patterns from massive datasets. We also present the
first algorithms to mine approximations of the true frequent sequential patterns with rigorous
guarantees on the quality of the output. Our algorithms are based on novel applications of
Vapnik-Chervonenkis dimension and Rademacher complexity, advanced tools from statistical
learning theory, to sequential pattern mining. Our extensive experimental evaluation shows that our
algorithms provide high-quality approximations for both problems we consider.

Keywords: data mining; sequential patterns; sampling; VC-dimension; Rademacher complexity;
statistical learning

1. Introduction

Sequential pattern mining [1] is a fundamental task in data mining and knowledge discovery,
with applications in several fields, from recommender systems and e-commerce to biology and
medicine. In its original formulation, sequential pattern mining requires to identify all frequent
sequential patterns, that is, sequences of itemsets that appear in a fraction at least 0 of all the transactions
in a transactional dataset, where each transaction is a sequence of itemsets. The threshold 0 is a
user-specified parameter and its choice must be, at least in part, be informed by domain knowledge.
In general, sequential patterns describe sequences of events or actions that are useful for predictions in
many scenarios.

Several exact methods have been proposed to find frequent sequential patterns. However,
the exact solution of the problem requires processing the entire dataset at least once, and often multiple
times. For large, modern sized datasets, this may be infeasible. A natural solution to reduce the
computation is to use sampling to obtain a small random portion (sample) of the dataset, and perform
the mining process only on the sample. It is easy to see that by analyzing only a sample of the data the
problem cannot be solved exactly, and one has to rely on the approximation provided by the results of
the mining task on the sample. Therefore, the main challenge in using sampling is on computing a
sample size such that the frequency of the sequential patterns in the sample is close to the frequency
that would be obtained from the analysis on the whole dataset. Relating the two quantities using
standard techniques (e.g., Hoeffding inequality and union bounds) does not provide useful results,

Algorithms 2020, 13, 123; doi:10.3390/a13050123 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-2013-0251
https://orcid.org/0000-0001-5676-0269
https://orcid.org/0000-0003-2244-2320
http://dx.doi.org/10.3390/a13050123
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/5/123?type=check_update&version=2

Algorithms 2020, 13, 123 2 of 34

that is, small sample sizes. In fact, such procedures require the knowledge of the number of all the
sequential patterns in the dataset, which is impractical to compute in a reasonable time. So, one has to
resort to loose upper bounds that usually result in sample sizes that are larger than the whole dataset.
Recently, tools from statistical learning (e.g.,Vapnik-Chervonenkis dimension [2] and Rademacher
complexity [3]) have been successfully used in frequent itemsets mining [4,5], a frequent pattern mining
task where transactions are collections of items, showing that accurate and rigorous approximations
can be obtained from small samples of the entire dataset. While sampling has previously been used in
the context of sequential pattern mining (e.g., Reference [6]), to the best of our knowledge no sampling
algorithm providing a rigorous approximation of the frequent sequential patterns has been proposed.

In several applications, the analysis of a dataset is performed to gain insight on the underlying
generative process of the data. For example, in market basket analysis one is interested in gaining
knowledge on the behaviour of all the customers, which can be modelled as a generative process from
which the transactions in the dataset have been drawn. In such a scenario, one is not interested in
sequential patterns that are frequent in the dataset, but in sequential patterns that are frequent in the
generative process, that is, whose probability of appearing in a transaction generated from the process is
above a threshold 6. Such patterns, called true frequent patterns, have been introduced by Reference [7],
which provides a Vapnik-Chervonenkis (VC) dimension based approach to mine true frequent itemsets.
While there is a relation between the probability that a pattern appears in a transaction generated from
the process and its frequency in the dataset, one cannot simply look at patterns with frequency above ¢
in the dataset to find the ones with probability above 0 in the process. Moreover, due to the stochastic
nature of the data, one cannot identify the true frequent patterns with certainty, and approximations
are to be sought. In such a scenario, relating the probability that a pattern appears in a transaction
generated from the process with its frequency in the dataset using standard techniques is even more
challenging. Hoeffding inequality and union bounds require to bound the number of all the possible
sequential patterns that can be generated from the process. Such bound is infinite if one considers all
possible sequential patterns (e.g., does not bound the pattern length). To the best of our knowledge, no
method to mine true frequent sequential patterns has been proposed.

1.1. Our Contributions

In this work, we study two problems in sequential pattern mining—mining frequent sequential
patterns and mining true frequent sequential patterns. We propose efficient algorithms for these
problems, based on the concepts of VC-dimension and Rademacher complexity. In this regard,
our contributions are:

o We define rigorous approximations of the set of frequent sequential patterns and the set of true
frequent sequential patterns. In particular, for both sets we define two approximations: one with
no false negatives, that is, containing all elements of the set; and one with no false positives, that is,
without any element that is not in the set. Our approximations are defined in terms of a single
parameter, which controls the accuracy of the approximation and is easily interpretable.

e Wesstudy the VC-dimension and the Rademacher complexity of sequential patterns, two advanced
concepts from statistical learning theory that have been used in other mining contexts, and provide
algorithms to efficiently compute upper bounds for both. In particular, we provide a simple,
but still effective in practice, upper bound to the VC-dimension of sequential patterns by relaxing
the upper bound previously defined in Reference [8]. We also provide the first efficiently
computable upper bound to the Rademacher complexity of sequential patterns. We also show
how to approximate the Rademacher complexity of sequential patterns.

e Weintroduce a new sampling-based algorithm to identify rigorous approximations of the frequent
sequential patterns with probability 1 — J, where ¢ is a confidence parameter set by the user. Our
algorithm hinges on our novel bound on the VC-dimension of sequential patterns, and it allows
to obtain a rigorous approximation of the frequent sequential patterns by mining only a fraction
of the whole dataset.

Algorithms 2020, 13, 123 3of 34

e Weintroduce efficient algorithms to obtain rigorous approximations of the true frequent sequential
patterns with probability 1 — §, where ¢ is a confidence parameter set by the user. Our algorithms
use the novel bounds on the VC-dimension and on Rademacher complexity that we have derived,
and they allow to obtain accurate approximations of the true frequent sequential patterns,
where the accuracy depends on the size of the available data.

o We perform an extensive experimental evaluation analyzing several sequential datasets, showing
that our algorithms provide high-quality approximations, even better than guaranteed by their
theoretical analysis, for both tasks we consider.

1.2. Related Work

Since the introduction of the frequent sequential pattern mining problem [1], a number of
exact algorithms has been proposed for this task, ranging from multi-pass algorithms using the
anti-monotonicity property of the frequency function [9], to prefix-based approaches [10], to works
focusing on the closed frequent sequences [11].

The use of sampling to reduce the amount of data for the mining process while obtaining
rigorous approximations of the collection of interesting patterns has been successfully applied in
many mining tasks. Raissi and Poncelet [6] provided a theoretical bound on the sample size for a single
sequential pattern in a static dataset using Hoeffding concentration inequalities, and they introduced
a sampling approach to build a dynamic sample in a streaming scenario using a biased reservoir
sampling. Our work is heavily inspired by the work of Riondato and Upfal [4,5], which introduced
advanced statistical learning techniques for the task of frequent itemsets and association rules mining.
In particular, in Reference [4] they employed the concept of VC-dimension to derive a bound on
the sample size needed to obtain an approximation of the frequent itemsets and association rules
from a dataset, while in Reference [5] they proposed a progressive sampling approach based on an
efficiently computable upper bound on the Rademacher complexity of itemsets. VC-dimension has
also been used to approximate frequent substrings in collections of strings [12], and the related concept
of pseudo-dimension has been used to mine interesting subgroups [13]. Rademacher complexity
has also been used in graph mining [14-16], to design random sampling approaches for estimating
betweenness centralities in graphs [17].

Other works have studied the problem of approximating frequent sequential patterns using
approaches other than sampling. In Reference [18], the dataset is processed in blocks with a
streaming algorithm, but the intermediate sequential patterns returned may miss many frequent
sequential patterns. More recently, Reference [8] introduced an algorithm to process the datasets
in blocks using a variable, data-dependent frequency threshold, based on an upper bound to the
empirical VC-dimension, to mine each block. Reference [8] defines an approximation for frequent
sequential patterns that is one of the definitions we consider in this work. The intermediate results
obtained after analyzing each block have probabilistic approximation guarantees, and after analyzing
all blocks the output is the exact collection of frequent sequential patterns. While these works,
in particular Reference [8], are related to our contributions, they do not provide sampling algorithms
for sequential pattern mining.

To the best of our knowledge, Reference [7] is the only work that considers the extraction
of frequent patterns w.r.t. an underlying generative process, based on the concept of empirical
VC-dimension of itemsets. While we use the general framework introduced by Reference [7],
the solution proposed by Reference [7] requires to solve an optimization problem that is tailored
to itemsets and, thus, not applicable to sequential patterns; in addition, computing the solution of such
problem could be relatively expensive. Reference [19] considers the problem of mining significant
patterns under a similar framework, making more realistic assumptions on the underlying generative
process compared to commonly used tests (e.g., Fisher’s exact test).

Several works have been proposed to identify statistically significant patterns where the
significance is defined in terms of the comparison of patterns statistics. Few methods [20-22] have

Algorithms 2020, 13, 123 4 of 34

been proposed to mine statistically significant sequential patterns. These methods are orthogonal to
our approach, which focuses on finding sequential patterns that are frequent with respect to (w.r.t.) an
underlying generative distribution.

2. Preliminaries

We now provide the definitions and concepts used throughout the article. We start by introducing
the task of sequential pattern mining and formally define the two problems which are the focus of
this work: approximating the frequent sequential patterns and mining sequential patterns that are
frequently generated from the underlying generative process. We then introduce two tools from
statistical learning theory, that is, the VC-dimension and the Rademacher complexity, and the related
concept of maximum deviation.

2.1. Sequential Pattern Mining

Let Z = {iy,ip,...,i,} be a finite set of elements called items. T is also called the ground set.
An itemset P is a (non-empty) subset of Z, thatis, P C Z. A sequential pattern p = (Py, Py, ..., P;) isa
finite ordered sequence of itemsets, with P; C 7,1 < i < {. A sequential pattern p is also called a sequence.
The length |p| of p is defined as the number of itemsets in p. The item-length ||p|| of p is the sum of the
sizes of the itemsets in p, that is,
|p]

lpll =) Pl 1)
i=1

where |P;| is the number of items in itemset P;. A sequence a = (A1, Ay, ..., Ap) is a subsequence
of another sequence b = (By,By, ...,By), denoted by a C b, if and only if there exist integers
1<ip <ip<...<iy <nsuchthat Ay C B;, A, C B ., Ay C B; . If ais a subsequence of b, then
b is called a super-sequence of a, denoted by b J a.

Let U denote the set of all the sequences which can be built with itemsets containing items from 7.
A dataset D is a finite bag of (sequential) transactions where each transaction is a sequence from U. A
sequence p belongs to a transaction T € D if and only if p C 7. For any sequence p, the support set Tp(p)
of p in D is the set of transactions in D to which p belongs: Tp(p) = {T € D : p C t}. The support
Suppp(p) of p in D is the cardinality of the set Tp(p), that is the number of transactions in D to which
p belongs: Suppp(p) = |Tp(p)|. Finally, the frequency fp(p) of p in D is the fraction of transactions in
D to which p belongs:

inr=-

_ Suppp(p)

A sequence p is closed w.r.t. D if for each of its super-sequences y JJ p we have fp(y) < fp(p), or,
equivalently, none of its super-sequence has support equal to fp(p). We denote the set of all closed
sequences in D with CS(D).

Example 1. Consider the following dataset D = {11, T, T3, T4 } as example:

@ = ({6,7}, {5}, {7}, {5})

© = ({1}, {2}, {6,7},{5})

w5 = ({1,4},{3},{2},{1,2,5,6})

o = ({1},{2},{6,7},{5})
The dataset above has 4 transactions. The first one, 71 = ({6,7},{5},{7},{5}), it is a sequence of length
|T1| = 4 and item-length ||71|| = 5. The frequency fp({{7},{5})) of ({7},{5}) in D, is 3/4, since it is
contained in all transactions but 3. Note that the sequence ({7},{5}) occurs three times as a subsequence of Ty,

but Ty contributes only once to the frequency of ({7},{5}). The sequence ({7},{6},{5}) is not a subsequence
of Ty because the order of the itemsets in the two sequences is not the same. Note that from the definitions above,

Algorithms 2020, 13, 123 5o0f 34

an item can only occur once in an itemset, but it can occur multiple times in different itemsets of the same
sequence. Finally, the sequence ({6,7},{5}), whose frequency is 3/4, is a closed sequence, since its frequency is
higher than the frequency of each of its super-sequences.

Sections 2.1.1 and 2.1.2 formally define the two problems we are interested in.

2.1.1. Frequent Sequential Pattern Mining

Given a dataset D and a minimum frequency threshold 6 € (0, 1], frequent sequential pattern (FSP)
mining is the task of reporting the set FSP(D, 6) of all the sequences whose frequency in D is at least 0,
and their frequencies:

ESP(D,0) = {(p, fp(p)) : p €U, fp(p) = 6}. ®)

In the first part of this work, we are interested in finding the set FSP(D, 6) by only mining a
sample of the dataset D. Note that given a sample of the dataset D, one cannot guarantee to find
the exact set FSP(D, 0) and has to resort to approximations of FSP(D,). Thus, we are interested
in finding rigorous approximations of FSP(D, 0). In particular, we consider the approximation of
FSP(D, 0) defined in Reference [8].

Definition 1. Given ¢ € (0,1), an e-approximation C of FSP(D, 0) is defined as a set of pairs (p, fp):

C={lpfp):peUfpcl01]})
that has the following properties:

o C contains a pair (p, fp) for every (p, fp(p)) € FSP(D,),
o C contains no pair (p, fp) such that fp(p) < 6 — ¢

o forevery (p, fp) € C, it holds |fp(p) — fp| < €/2.

(Note that while Reference [8] introduced the definition of e-approximation of FSP(D, 0), it did not
provide a sampling algorithm to find such approximation for a given ¢ € (0,1).)

Intuitively, the approximation C contains all the frequent sequential patterns that are in FSP(D, 6)
(i.e., there are no false negatives) and no sequential pattern that has frequency in D much below 6.
In addition, C provides a good approximation of the actual frequency of the sequential pattern in D,
within an error €/2, arbitrarily small.

Depending on the application, one may be interested in a different approximation of FSP(D, 6),
where all the sequential patterns in the approximation are frequent sequential patterns in the
whole dataset.

Definition 2. Given ¢ € (0,1), a false positives free (FPF) e-approximation F of FSP(D, 0) is defined as a set
of pairs (p, fp):
F=A{pfp):relf 0]} ®)

that has the following properties:

e F contains no pair (p, fp) such that fp(p) < 6;
e F contains all the pairs (p, f,) such that fp(p) > 0 +¢;

o forevery (p,fp) € F, it holds |fp(p) — fp| < e/2.

The approximation F does not contain false positives, that is, sequences with fp(p) < 6. In addition,
it does not miss sequences with fp(p) > 6 + € and, similarly to the e-approximation, we have that,
for every pair in F, it gives a good approximation of the actual frequency of the sequential patterns in
D, within an error ¢/2, arbitrarily small.

Algorithms 2020, 13, 123 6 of 34

2.1.2. True Frequent Sequential Pattern Mining

In several applications, the dataset D is a sample of transactions independently drawn from
an unknown probability distribution 7t on U. In such a scenario, the dataset D is a finite bag of |D|
independent identically distributed (i.i.d.) samples from 7r. For any sequence p € U, the real support set
T(p) of p is the set of sequences in U to which p belongs: T(p) = {T € U: p C 7}. We define the true
frequency tr(p) of p w.r.t. 7T as the probability that a transaction sampled from 7 contains p:

te(p) =}, 7(1). (6)

TeT(p)

In this scenario, the final goal of the data mining process on D is to gain a better understanding of
the process generating the data, that is, of the distribution 7, through the true frequencies ¢, which are
unknown and only approximately reflected in the dataset D. Therefore, we are interested in finding
the sequential patterns with true frequency ¢, at least 6 for some 6 € (0, 1]. We call these sequential
patterns the true frequent sequential patterns (TFSPs) and denote their set as:

TESP(7,0) = {(p,ta(p)) : p € U, ta(p) = 6}. @)

Note that, given a finite number of random samples from 7t (e.g., the dataset D), it is not possible
to find the exact set TFSP(7,0), and one has to resort to approximations of TFSP(7,0). Analogously
to the two approximations defined for the FSPs, now we define two approximations of the TFSPs,
depending on the application we are interested in: the first one that does not have false negatives,
while the second one that does not contain false positives.

Definition 3. Given u € (0,1), a p-approximation £ of TFSP(7,0) is defined as a set of pairs (p, fp):

E={(p.fp):rel f,el01]} 8)

that has the following properties:

o & contains a pair (p, fp) for every (p,tr(p)) € TESP(m,0);
o & contains no pair (p, fy) such that tz(p) < 0 —u;
o forevery (p, fp) € &, it holds |tz(p) — fpl < u/2.

Definition 4. Given u € (0,1), a false positives free (FPF) u-approximation G of TFSP(7t,0) is defined as a

set of pairs (p, fp):
G={(p.fr):rel fe01]} ©)

that has the following properties:

e G contains no pair (p, fp) such that t(p) < 6;
o G contains all the pairs (p, fy) such that t(p) > 60 + y;
o forevery (p,fp) € G, it holds |t (p) — fp| < p/2.

2.2. VC-Dimension

The Vapnik-Chervonenkis (VC) dimension [2,23] of a space of points is a measure of the complexity
or expressiveness of a family of indicator functions, or, equivalently, of a family of subsets, defined
on that space. A finite bound on the VC-dimension of a structure implies a bound of the number of
random samples required to approximately learn that structure.

We define a range space as a pair (X, R), where X is a finite or infinite set and R, the range set,
is a finite or infinite family of subsets of X. The members of X are called points, while the members
of R are called ranges. Given A C X, we define the projection of R in A as Pr(A) = {rNA : re€ R}.

Algorithms 2020, 13, 123 7 of 34

We define 24 as the power set of A, that is the set of all the possible subsets of A, including the empty
set @ and A itself. If PR (A) = 24, then A is said to be shattered by R. The VC-dimension of a range
space is the cardinality of the largest set shattered by the space.

Definition 5. Let RS = (X, R) be a range space and B C X. The empirical VC-dimension EVC(RS, B) of
RS on B is the maximum cardinality of a subset of B shattered by R. The VC-dimension VC(RS) of RS is
defined as VC(RS) = EVC(RS, X).

Example 2. Let X = [0, 1] be the set of all the points in [0, 1] and let R be the set of subsets [a, b], with 0 <
a <b<1,thatis [a,b] C [0,1]. Let us consider the set Y = {x,y,z}, containing 3 points 0 < x < y <
z < 1. It is not possible to find a range whose intersection with the set Y is {x,z}, since all the ranges [a, b],
with 0 < a < b < 1, containing x and z, also contain y. Then, VC(X, R) must be less than 3. Consider
now the set Y = {x,y}, containing only 2 points 0 < x < y < 1. It is easy to see that Y is shattered by R,
s0 VC(X,R) = 2.

The main application of VC-dimension in statistics and learning theory is to derive the sample
size needed to approximately “learn” the ranges, as defined below.

Definition 6. Let RS = (X, R) be a range space. Given ¢ € (0,1), a bag B of elements taken from X is an
e-bag of X if for all r € R, we have

(10)

‘|Xﬁr| _|BN7|
|X| |B|

Theorem 1. There is a constant ¢ > 0 such that if (X, R) is a range space of VC-dimension < d, and ¢,6 €
(0,1), then a bag B of m elements taken with independent random extractions with replacement from X, where

c 1
m2€2<d+ln6), (11)
is an e-bag of X with probability > 1 — 6.

The universal constant ¢ has been experimentally estimated to be at most 0.5 [24]. In the remaining
of this work, we will use ¢ = 0.5. Note that Theorem 1 holds also when d is an upper bound to the
empirical VC-dimension EVC(RS, B) of RS on B [25]. In that case, the bag B itself is an ¢-bag of X.

2.3. Rademacher Complexity

The Rademacher complexity [3,23,26] is a tool to measure the complexity of a family of real-valued
functions. Bounds based on the Rademacher complexity depend on the distribution of the dataset,
differently from the ones based on VC-dimension that are distribution independent.

Let D be a dataset of n transactions D = {fy,...,t,}. For eachi € {1,...,n}, let 0; be an
independent Rademacher random variable (r.v.) that takes value 1 or —1, each with probability 1/2.
Let G be a set of real-valued functions. The empirical Rademacher complexity Rp on D is defined
as follows:

RD:EU

n
sup e Y (Tig(fi)] , (12)
8€g "t i=1
where the expectation is taken w.r.t. the Rademacher r.v. 0;’s.

The Rademacher complexity is a measure of the expressiveness of the set G. A specific combination
of ¢0’s represents a splitting of D into two random sub-samples D; and D_;. For a function g € G,
Y4 g(t;)/n represents a good approximation of E[g] over D if n is sufficiently large. Y} ; 0;g(t;)/n
represents instead the difference between E[g] over the two random sub-samples D; and D_;.
By considering the expected value of the supremum of this difference over the set G, we get the

Algorithms 2020, 13, 123 8 of 34

empirical Rademacher complexity. Therefore, the intuition is that if Rp is small, the dataset D is
sufficiently large to ensure a good estimate of E[g] for every ¢ € G. In this work, we study the
Rademacher complexity of sequential patterns, which has not been explored before.

2.4. Maximum Deviation

Let M be a probability distribution over a domain set Z. Let F be a set of functions that go from
Z to [—1,1]. Given a function f € F, we define the expectation of f as:

E(f) = Ezomlf (2)], (13)

and, given a sample Z of n observations zy, . . ., z; drawn from M, the empirical average of f on Z as:

n

E(f,2) =) f(z) 1)

i=1

The maximum deviation is defined as the largest difference between the expectation of a function f and
its empirical average on sample Z as:

?lelg IE(f) — E(f, 2)I. (15)

We now use the maximum deviation to capture quantities of interest for the two mining tasks we
consider in this work.

In the frequent pattern mining scenario, we aim to find good estimates for fp(p) for each pattern
p. The frequency fp(p) is the expectation of a Bernoulli random variable (r.v.) Xp(p, t) which is 1 if
the pattern p appears in a transaction ¢t drawn uniformly at random from D:

Eivp[Xp(p.t)] = Pr(Xp(p,t) =1) = Suppp(p)/|D| = fp(p)- (16)

Let S be a sample of transactions drawn uniformly and independently at random from D.
We define the frequency fs(p) as the fraction of transactions of S where p appears. In this scenario,
we have that the frequency fp(p) of p on D and the frequency fs(p) of p on the sample S represent,
respectively, the expectation E(f,) and the empirical average E(f,, S) of a function f, associated with
a pattern p. Thus, the maximum deviation is:

sup |fp(p) — fs(p)l- (17)

peU

In the true frequent pattern mining scenario, we aim to find good estimates for t,(p) for each
pattern p. Note that the true frequency t(p) is the expectation of a Bernoulli r.v. which is 1 if the
pattern p appears in a transaction drawn from 7. Moreover, it is easy to prove that the observed
frequency fp(p) of a pattern p in a dataset D of transactions drawn from 7 is an unbiased estimator
for t(p), thatis: E [fp(p)] = t=(p).

Therefore, the true frequency t-(p) and the frequency fp(p) observed on the dataset D represent,
respectively, the expectation E(f,) and the empirical average E(f,, D) of a function f, associated with
a pattern p. Thus, the maximum deviation is:

sup |tz(p) — fo(p)l- (18)
peU

In the next sections, we provide probabilistic upper bounds to the maximum deviation using the
VC-dimension and Rademacher complexity which can therefore be used for frequent pattern mining
and true frequent pattern mining scenarios.

Algorithms 2020, 13, 123 9 of 34

3. VC-Dimension of Sequential Patterns

In this section, we apply the statistical learning theory concept of VC-dimension to sequential
patterns. First, we define the range space associated with a sequential dataset. Then, we show a
computable efficient upper bound on the VC-dimension and, finally, we present two applications
of such upper bound. The first one is to compute the size of a sample that guarantees to obtain a
good approximation for the problem of mining the frequent sequential patterns. The second one is to
compute an upper bound on the maximum deviation to mine the true frequent sequential patterns.

Remember that a range space is a pair (X, R) where X contains points and R contains ranges.
For a sequential dataset, X is the dataset itself, while R contains the sequential transactions that are
the support set for some sequential patterns.

Definition 7. Let D be a sequential dataset consisting of sequential transactions and let I be its ground set.
Let U be the set of all sequences built with itemsets containing item from Z. We define RS = (X, R) to be a
range space associated with D such that:

o X = D is the set of sequential transactions in the dataset;
e R ={Tp(p):p € U} isafamily of sets of sequential transactions such that for each sequential pattern p,
the set Tp(p) = {T € D : p C 1} is the support set of pon D .

The VC-dimension of this range space is the maximum size of a set of sequential transactions that
can be shattered by the support sets of the sequential patterns.

Example 3. Consider the following dataset D = {1, o, T3, Ta } as an example:

({1},{2,3},{4,5,6})
({13, {3}, {4})
{73, {3,4})
w = ({4}, {5})

The dataset above has 4 transactions. We now show that the VC-dimension of the range space RS associated with

D is 2. Let us consider the set A = {1, 13}. The power set 24 of A is 24 = {@, {1}, {13}, {2, 1} }. Aiis
shatter by R since the projection Pr (A) of R in A is equal to 22 (remember that Pr (A) = {rN A : r € R}):

T =
T =
73 =

~=
—_
——
~
~—
N

Since |A| = 2 and A is shattered by R, then the range space associated with D has VC-dimension > 2.
Analogously, the sets {11, i3}, {71, Ta },{ T2, Ta} and {13, T4 } are shattered by R. The set B = {11, 7p } is instead
not shattered by R: since Ty C T, there is not a sequential pattern p* such that BN Tp(p*) = {12 }. The sets
C={mn, 1, u}and E = {1, 13, 14} are not shattered by R either: there is not a sequential pattern p’ such
that {13, 1} = CNTp(p') or {13, u} = ENTp(p'). Thus, the VC-dimension of the range space associated
with D is exactly 2.

The exact computation of the (empirical) VC-dimension of the range space associated with a
dataset D is computationally expensive. The s-index, introduced by Servan-Schreiber et al. [8], provides
an efficiently computable upper bound on the VC-dimension of sequential patterns. Such upper bound
is based on the notion of capacity c(p) of a sequence p. The capacity c(p) of a sequence p is the number
of distinct subsequences of p, thatis, c(p) = |{z : z C p}|. The exact capacity can be computed using

Algorithms 2020, 13, 123 10 of 34

the algorithm described in Reference [27], but it is computationally expensive and may be prohibitive
for large datasets. Instead, Reference [8] proposed an algorithm to compute a more efficient upper
bound &(p) > c(p). Let us consider that a first simple bound is given by 2//PIl — 1, that may be a loose
upper bound of ¢(p) because it is obtained by considering all the items contained in all the itemsets in
p as distinct, that is, the capacity of the sequence p is 2/I?Il — 1 if and only if all the items contained in
all the itemsets of the sequence p are different. The bound proposed by Reference [8] can be computed
as follows. When p contains, among others, two itemsets A and B such that A C B, subsequences of
the form (C) with C C A are considered twice in 2llPll -1, “generated” once from A and once from B.
To avoid over-counting such 2/4! — 1 subsequences, Reference [8] proposes to consider only the ones
“generated” from the longest itemset that can generate them. Then, the s-index is defined as follows.

Definition 8 ([8]). Let D be a sequential dataset. The s-index of D is the maximum integer s such that D
contains at least s different sequential transactions with upper bound to their capacities ¢(p) at least 2° — 1,
such that no one of them is a subset of another, that is the s sequential transactions form an anti-chain.

The following result from Reference [8] shows that the s-index is an upper bound to the
VC-dimension of the range space for sequential patterns in D.

Theorem 2 (Lemma 3 [8]). Let D be a sequential dataset with s-index s. Then, the range space RS = (X, R)
corresponding to D has VC-dimension < s.

While an upper bound to the s-index can be computed in a streaming fashion, it still requires to
check whether a transaction is a subset of the set of other transactions currently maintained in memory
and that define the current value of the s-index. In addition, the computation of the upper bound é(p)
on the capacity of a sequence p requires to check whether the itemsets of p are subsets of each others.
To avoid such expensive operations, we define an upper bound to the s-index, that we call s-bound,
which does not require to check whether the transactions form an anti-chain.

Definition 9. Let D be a sequential dataset. The s-bound of D is the maximum integer s such that D contains
at least s different sequential transactions with item-length at least s.

Algorithm 1 shows the pseudo-code to compute an upper bound to the s-bound in a streaming
fashion. It uses an ordered set to maintain in memory the set of transactions that define the current
value of the s-bound. The ordered set stores pairs composed by a transaction and its item-length,
sorted by decreasing item-length. In addition, it uses a hash set to speed up the control on the equal
transactions.

In practice, it is quite uncommon that the long sequences that define the value of the s-index
are subsequences of other sequences, thus, removing the anti-chain constraint, the bound does not
deteriorate. In addition, the usage of the naive algorithm to compute the upper bound on ¢(p), that is
2lIPll -1, it is equivalent to consider the transactions that have item-length at least s to calculate the
s-bound, making the computation much faster without worsening the bound on the VC-dimension
in practice.

Algorithms 2020, 13, 123 11 of 34

Algorithm 1: SBoundUpp(D): computation of an upper bound on the s-bound.
Data: Dataset D.
Result: Upper bound d on the s-bound of D.

1 H < empty HashSet of transactions;

2 O < empty OrderedSet of pairs (transaction, itemLength) sorted by decreasing itemLength;
3d<«0;

4 foreach T € D do

5 if T ¢ H then

6 { + ComputeltemLength(7);
7 if ¢ > d then

8 H.add(7);

9 0.add((7,?));

10 (T, 0) + O.last();

1 if ¢/ >dthend <+ d+1;
12 else

13 H.remove(t’);

14 O.removelLast();

15 return d;

3.1. Compute the Sample Size for Frequent Sequential Pattern Mining

In this section, we show how to compute a sample size m for a random sample S of transactions
taken from D such that the maximum deviation is bounded by ¢/2, that is, sup ..y | fp(p) — fs(p)| <
/2, for a user-defined value ¢, using the upper bound on the VC-dimension defined above. Such result
underlies the sampling algorithm that will be introduced in Section 5. Algorithm 2 shows how to
compute a sample size that guarantees that sup ..y |fp(p) — fs(p)| < €/2 with probability > 1 — 4.
This algorithm is used in the sampling algorithm (Section 5).

Theorem 3 (Proof in Appendix A). Let S be a random sample of m transactions taken with replacement from
the sequential dataset D and e,6 € (0,1). Let d be the s-bound of D. If

2 1
m282<d+1n5), (19)

then sup .y | fo(p) — fs(p)| < e/2 with probability at least 1 — 6.

Algorithm 2: ComputeSampleSize(D,¢,d): computation of the sample size such that
sup,cy |fo(p) — fs(p)| < €/2 with probability > 1 —4.
Data: Dataset D; ¢,6 € (0,1).
Result: The sample size m.
1 d < SBoundUpp(D);
2 m < 2/€*(d+1In(1/9));
3 return m;

3.2. Compute an Upper Bound to the Max Deviation for the True Frequent Sequential Patterns

In this section, we show how to compute an upper bound on the maximum deviation pyc/2
for the true frequent sequential pattern mining problem, that is, sup .y [t=(p) — fo(p)| < pvc/2,
using the upper bound on the empirical VC-dimension. Such result underlies the strategy for mining
the true frequent sequential patterns that will be introduced in Section 6.

Algorithms 2020, 13, 123 12 of 34

We define a range space associated with the generative process 7 as a range space where the
points X = U and the range set R = {T(p) : p € U}. The s-bound of the dataset D, as defined above,
is an upper bound on the empirical VC-dimension of the range space associated with 7r computed on
D. Algorithm 3 shows how to compute an upper bound on the maximum deviation that is used in the
true frequent sequential pattern mining algorithm (Section 6).

Theorem 4 (Proof in Appendix A). Let D be a finite bag of |D| i.i.d. samples from an unknown probability
distribution 7t on Uand 6 € (0,1). Let d be the s-bound of D. If

2 1

then sup,,cy |t=(p) — fo(p)| < pvc/2 with probability at least 1 — 6.

Algorithm 3: ComputeMaxDevVC(D, J): computation of an upper bound on the max deviation
for the true frequent sequential pattern mining problem.
Data: Dataset D; 6 € (0,1).
Result: Upper bound to the max deviation yyc/2.
1 d < SBoundUpp(D);
2 pyc < /2/|D] (d+1In(1/6));
3 return uyc/2;

4. Rademacher Complexity of Sequential Patterns

In this section we introduce the Rademacher complexity of sequential patterns. We propose a
method for finding an efficiently computable upper bound to the empirical Rademacher complexity
Rp of sequential patterns (similar to what has been done in Reference [5] for itemsets) and a method
for approximating it. In the true frequent pattern mining scenario, these results will be useful for
defining a quantity which is an upper bound to the maximum deviation sup,,.; ltz(p) — fp(p)| with
high probability.

The introduction of the Rademacher complexity of sequential patterns requires the definition
of a set of real-valued functions. We define, for each pattern p € U, the indicator function ¢, : U —

{0,1} as:
Pp(t) = {1 YrE: @1)

0 otherwise’

where t is a transaction. Given a transaction ¢ of a dataset D with n transactions, ¢, (t) is 1 if p appears in
t, otherwise it is 0. We define the set of real-valued functions as the family of these indicator functions.
The frequency of p in D can be defined using the indicator function ¢,: fp(p) = Liep Pp(t)/n.
The (empirical) Rademacher complexity Rp on a given dataset D is defined as:

sup L Y Ui‘PP(ti)] , (22)

peU i3

Rp =E,

where the expectation is taken w.r.t. the Rademacher r.v. ¢, that is, conditionally on the dataset
D. The connection between the Rademacher complexity of sequential patterns and the maximum
deviation is given by the following theorem, which derives from standard results in statistical learning
theory (Thm. 3.2 in Reference [3]).

Algorithms 2020, 13, 123 13 of 34

Theorem 5. With probability at least 1 — 6:

2In(2/6) pur

t(p) — <2Rp+ | S = ER =
sup (p) ~ folp)] < 2Rp [= I)

The naive computation of the exact value of Rp is expensive since it requires to mine all patterns
from D and to generate all possible 2" combination values of the Rademacher variables for the
computation of the expectation. In the next sections we present an efficiently computable upper bound
on the Rademacher complexity of sequential patterns and a simple method that approximates it,
which are useful to find, respectively, an upper bound and an approximation to ur /2.

4.1. An Efficiently Computable Upper Bound to the Rademacher Complexity of Sequential Patterns

For any pattern p € U, let us define the following | D|-dimensional vector

op(p) = (¢p(t1),-- -, Pp(tip|) (24)

and let Vp = {vp(p),p € U}, where ty,ts,..., tp are the |D| transactions of D. Note that all the
infinite sequences of the universe U which do not appear in D are associated with the vector (0, ...,0)
of | D| zeros. This implies the finiteness of the size of Vp: |Vp| < co. In addition, defining |U(D)| as the
number of sequential patterns that appear in D, we have that potentially |Vp| < |U(D)|, since there
may be two or more patterns associated with the same vector vp € Vp (i.e., these patterns appear
exactly in the same transactions).

The following two theorems derive from known results of statistical learning theory (Thm. 3.3 of
Reference [3]). Both theorems have been used for mining frequent itemsets [5], and can be applied for
sequential pattern mining.

Theorem 6. (Massart’s Lemma)

\/211‘1|VD| (25)

Rp < max||op(p
D > pEUH D()|| |D|
where || - || indicates the Euclidean norm.

The following theorem is a stronger version of the previous one.

Theorem 7. Let w : RT™ — R be the function

1 SZUHZ)
w(s) =-In ex (, (26)
) s ’UEZV:D p 2‘D|2
then
Rp < mi . 27
p < min w(s) (27)

The upper bound on Rp of Theorem 7 is not directly applicable to sequential pattern mining since
it requires to mine every pattern that appear in D in order to determine the entire set Vp. However,
the set Vp is related to the set of closed sequential patterns on D. The following two results give us an
upper bound to the size of Vp which depends on the number of closed sequential patterns of D.

Lemma 1 (Proof in Appendix A). Consider a subset W of the dataset D, W C D. Let CSy (D) be the set of
closed sequential patterns in D whose support set in D is W, that is, CSy (D) = {p € CS(D) : Tp(p) = W},
with C = |CSw(D)|. Then the number C of closed sequential patterns in D with W as support set satisfies:
0<C<ICS(D)].

Algorithms 2020, 13, 123 14 of 34

A simple example where C = 2 is depicted in Figure 1. Note first of all that each super-sequence
of x1 but not of x; has support lower than the support of x;, and each super-sequence of x; but not
of x; has support lower than the support of x;. Let y,. = Ty, x, be the subsequence of transaction T
restricted to only the sequences x; and xy, preserving the relative order of their itemsets. Then y, =
Yz, # Yr, whichimplies |Tw (v,)|, |Tw (¥,)|, and | Tw (v,)| be lower than |Tw (x1)| = |Tw(x2)| = [W|.
Therefore each super-sequence of both x; and x; has support lower than the support of x; (i.e. equal
to the one of x,). Thus, x1 and x; are closed sequences in D with the same support set W.

D
<A,C> W
7 ||I<A,B,C,D,E>|| ¥, =<A,B,C,D>
<C,D,F,A,B>| ¥»=<C,D,A,B>
T3 |l<G,A,B,C,D>|| ¥» =<A,B,C,D>
<B,D>

X1=<A,B>
Xo=<C,D>

=

(8]

Figure 1. Graphical representation of the case CSy (D) = 2. Sequences x; and x; are closed sequences
in D with the same support set W.

Note that the previous lemma represents a sequential patterns version of Lemma 3 of Reference [5]
for itemsets, where the upper bound to the number of closed itemsets in D with W as support set is
one (this holds by the nature of the itemsets where the notion of “ordering” is not defined). Lemma 1
is crucial for proving the following lemma which provides a bound on the size of the set Vp of
binary vectors.

Lemma 2 (Proof in Appendix A). Vp = {vp(p): p € CS(D)}U{(0,...,0)}and |Vp| < |CS(D)|+1,
that is, each vector of Vp different from (0, .. .,0) is associated with at least one closed sequential pattern in D.

Combining a partitioning of CS(D) with the previous lemma we can define a function @, an upper
bound to the function w of Theorem 7, which is efficient to compute with a single scan of D. Let Z be
the set of items that appear in the dataset D and <, be its increasing ordering by their support in D (ties
broken arbitrarily). Given an item a, let Tp({{a})) be its support set on D. Let <, denote the increasing
ordering of the transactions Tp(({a})) by the number of items contained that come after a w.r.t. the
ordering <, (ties broken arbitrarily). Let CS(D) = C; U Cp4, where C; = {p € CS(D) : ||p|| = 1} and
Coy = {p € CS(D) : ||p|| > 2}. Let us focus on partitioning C. Let p € Co and let a be the item in
p which comes before any other item in p w.r.t. the order <,. Let T be the transaction containing p
which comes before any other transaction containing p w.r.t. the order <,. We assign p to the set Cy +.
Remember that an item can appear multiple times in a sequence. Given a transaction T € Tp(({a})),
kg is the number of items in T (counted with their multiplicity) equal to a or that come after a in <,.
Let m, r be the multiplicity of a in 7. For each k,m > 1, m <k, let g, ,, be the number of transactions
in Tp(({a})) that contain exactly k items (counted with their multiplicity) equal to a or located after a
in the ordering <,, with exactly m repetitions of a. Let x, = max{k : g, ,, > 0}. The following lemma
gives us an upper bound to the size of C, ;.

Lemma 3 (Proof in Appendix A). We have

|Cao| < 2Kar=rMax(QMar 1), (28)

Algorithms 2020, 13, 123 15 of 34
Combining the following partitioning of CS(D) as

cSP)=CuC=cullU U Cu (29)
a€T reTp(({a})

with the previous lemma, we obtain

ICS(D)| < |Z|+ Y.), 2Rermar(pmer — 1), (30)
a€Z reTp(({a}))

Now we are ready to define the function @, which can be used to obtain an efficiently computable
upper bound to Rp. The following lemma represents the analogous of Lemma 5 of Reference [5],
adjusted for sequential patterns. Let 7 be the average item-length of the transactions of D, that is,
7= Yiep ||t||/n. Let /) be the maximum item-length of the transactions of D, that is, 7 = max;ep ||¢||.
Let 17 be an item-length threshold, with 7 < 5 < 7. Let D() be the bag of transactions of D with
item-length greater than 7. Let Vp(,) be the set of the 2/P0)l — 1 binary vectors associated with all
possible non-empty sub-bags of D(7).

Lemma 4 (Proof in Appendix A). Given an item a in Z, we define the following quantity:

k_ Sakm =1 1
q(a,n) _1+ZZ Z((k < qp)2=mm 1)+1(k>;7)2< .)) (31)
]

“1m=1 j=1 =1 L

Let @ : Rt — R be the function

1 fp(({a})) 2D ()]
w(s,n)=-In Y [q@ne 2Pl 4 vpgle 2P 41, (32)
acl
Then,
Rp < i 0(s,1). 33
D_seRE:%lEWSﬁw(S 1) (33)

For a given value of 7, the function @ can be compute with a single scan of the dataset, since
it requires to know g, ,, for each a € 7 and for each k,m, 1 < k < x;, 1 < m < k. The values 7],
71, and the support of each item and consequently the ordering <, are obtained during the dataset
creation. Thus, it is sufficient to look at each transaction 7, sorting the items Z; that appear in T
according to <,, and, for each item of 7+, keep track of its multiplicity m, -, compute k; r and increase
by one g, k, ..m, - Finally, since @ is convex and has first and second derivatives w.r.t. s everywhere in
R, its global minimum can be computed using a non-linear optimization solver. This procedure has
to be repeated for each possible value of # in (7, 7].

However, one could choose a particular schedule of values of # to be tested, instead of taking
into account each possible value, achieving a value of the function @ near to its minimum. A possible
choice is to look at the restricted interval [77 + B1, min(By,7)], given two positive values for f1 and B,
instead of investigating the whole interval (7, 7]. This choice is motivated by the fact that in Lemma 4
the value of 77 gives us an idea of which term of the summation is dominant (the one based on closed
sequential patterns or the one based on binary vectors). If 4 is close to 77 then the number of binary
vectors we count could be high, the dominant term is the one based on the set of binary vectors, and we
expect the upper bound to be high. Instead, if # is close to 7] then the upper bound to the number of
closed sequential patterns we count could be high, and the set of binary vectors we take into account
is small. In this case, the dominant term is the one based on the closed sequential patterns, and the

Algorithms 2020, 13, 123 16 of 34

value of the upper bound could be high (since we count many sequential patterns with item-length
greater than 7 that instead would be associated with a small number of binary vectors). Thus, the best
value of 1 will be the one that is larger than 77 and smaller than #, enough to count not too many closed
sequential patterns and binary vectors.

Finally, we define ComputeMaxDevRadeBound as the procedure for computing an upper bound
to yir/2 where, once the upper bound R}, to the Rademacher complexity Rp is computed using
Algorithm 4, the upper bound % /2 to yig /2 is obtained by

b
21In (2/6
PR — oRb 4 nIY(DI/)'

. (34)

The pseudo-code of the algorithm for computing the upper bound to Rp follows.

Algorithm 4: RadeBound(D): algorithm for bounding the empirical Rademacher complexity of
sequential patterns

Data: : a sequential dataset D built on alphabet Z
Result: upper bound to Rp

1 Qakm < 0, VaceZ kmeN, m<k

2 xg+0,VaeZ;

/* 1,], and the support of the items are computed during the scan of D x/
3 fort € Ddo
4 fora € T do
5 ks <= number of items in T (counted with their multiplicity) equal to a or that come
after a in <,;
6 Mg, < number of repetitions of a in T;
7 SafkomeT = 1
8 Xa < max(Xa, kor);

9 return mingcg+ ;<4 @(s,1);

4.2. Approximating the Rademacher Complexity of Sequential Patterns

The previous section presents an efficiently computable upper bound to the Rademacher of
sequential patterns, which does not require any extraction of frequent sequences from a given dataset.
Here we present a simple method that gives us an approximation of the Rademacher complexity of
sequential patterns, which provides a tighter bound to the maximum deviation compared to the ones
previously presented.

In the definition of the Rademacher complexity, a given combination ¢ of the Rademacher r.v.
o splits the dataset D of n transactions in two sub-samples D;(7) and D_1(7): each transaction
associated with 1 and —1 goes respectively into D; () and D_1 (7). For a given sequential pattern
p € U, let Suppp,) (p) and Suppp | () (p) be respectively the number of transactions of D (') and
D_1(0) in which p appears. Thus, the Rademacher complexity can be rewritten as follows:

l n
sup — Y iy (t;)

peU ni3

Rp =E, sup . (35)

n

. l Suppp, () (P) = SupPp_(0)(P)
pel

In our approximation method we generate a single combination ¢ of the Rademacher r.v. 7, instead of
generating every possible combination and then taking the expectation. Given 7, the approximation
RD (7) of Rp is

N S _(p)—S _
Rp (&) = sup uppp,) (p) _ uppp,l(@(p)'
peU

(36)

Algorithms 2020, 13, 123 17 of 34

The first step of the procedure is to mine frequent sequential patterns from D;(c) and D_4(7),
given a frequency threshold x. Let FSP(D;(c),«x) and FSP(D_1(7),«) be the sets of sequential
patterns with support greater or equal than « in D1(¢) and D_4(7), respectively. Let us define
the following quantities:

v(p) = Suppp,) (p) — Suppp @ (p), (37)
711 = sup{y(p) : p € FSP(D1(7),x) NFSP(D_1(0),x)}, (38)

and
Y2 = sup{y(p) : p € FSP(D1(7),«x) \ FSP(D_1(7),x)}. (39)

If max(y1,72)/n > « then Rp(7) = max(y1,72)/n, since each pattern p that is not frequent in both
sub-samples has 7y(p)/n lower than . Instead, if max(7y1,2)/n < « the entire procedure is repeated
with ¥ = max(y1,72)/n. Note that, since the Rademacher complexity is a non-negative quantity,
it is not necessary to look at patterns in FSP(D_1(7),«) \ FSP(D;(7), k) since their y(p)’s values
are negative. The pseudo-code of the method for finding an approximation of Rp is presented in
Algorithm 5. The extraction of frequent sequences from the two sub-samples can be done using one of
the many algorithms for mining frequent sequential patterns.

Algorithm 5: RadeApprox(D, «): algorithm for approximating the Rademacher complexity of
sequential patterns.

Data: : dataset D; x € (0,1]

Result: approximation to Rp

1 0 + combination of ¢;

2 split D into D1 (0) and D_1(0);
3 found < false;

4 ¥+ 0;

5 while ! found do

6 compute FSP(D(0),«x);

7 | compute FSP(D_4(7),«);

8 if |[FSP(D1(7),x)| + |FSP(D_1(7),x)| = 0 then
9 K<+ x/2;

10 continue;

11 compute 1 and »;

2 | v« max(71,72)/|D;

13 if v > « then found < true;
14 else x < ;

15 return 7y;

Finally, we define ComputeMaxDevRadeApprox as the procedure for computing an approximation
of yir/2 where, once the approximation R%, of the Rademacher complexity Rp is computed using
Algorithm 5, the approximation y% /2 of ug /2 is obtained by:

: 21n (2/6
ER —2rg + n(2/9)

: 40
D (40)

5. Sampling-Based Algorithm for Frequent Sequential Pattern Mining

We now present a sampling algorithm for frequent sequential pattern mining. The aim of this
algorithm is to reduce the amount of data to consider to mine the frequent sequential patterns, in order
to speed up the extraction of the sequential patterns and to reduce the amount of memory required.
We define a random sample as a bag of m transactions taken uniformly and independently at random,

Algorithms 2020, 13, 123 18 of 34

with replacement, from D. Obtaining the exact set FSP(D,) from a random sample is not possible,
thus we focus on obtaining an e-approximation with probability at least 1 — J, where § € (0,1) is a
confidence parameter, whose value, with ¢, is provided in input by the user. Intuitively, if a random
sample is sufficiently large, then the set of frequent sequential patterns extracted from the random
sample well approximates the set FSP(D, 6). The challenge is to find the number of transactions that
are necessary to obtain the desired e-approximation. To compute such sample size, our approach uses
the VC-dimension of sequential patterns (see Section 3.1).

Theorem 8. Givene, § € (0,1), let S be a random sample of size m sequential transactions taken independently
at random with replacement from the dataset D such that sup,,.i; | fp(p) — fs(p)| < €/2 with probability
at least 1 — 6. Then, given 6 € (0,1], the set FSP(S,0 — ¢/2) is an e-approximation to FSP(D,0) with
probability at least 1 — 6.

Proof. Suppose that sup,,.; |fp(p) — fs(p)| < €/2. In such a scenario, we have that for all sequential
patterns p € D, it results fs(p) € [fp(p) —€/2, fp(p) + €/2]. This also holds for the sequential
patterns in C = FSP(S,0 — €/2). Therefore, the set C satisfies Property 3 from Definition 1. It also
means that for all p € FSP(D,0), fs(p) > 0 —¢/2, so such p € C and C also satisfies Property
1. Now, let p* be a sequential pattern such that fp(p*) < 6 —e. Then, fs(p*) < 0 —€/2, that is
p* ¢ C, which allows us to conclude that C also has Property 2 from Definition 1. Since we know that
sup,cy |fp(p) — fs(p)| < €/2 with probability at least 1 — 4, then the set C is an e-approximation to
FSP(D, 6) with probability at least 1 — §, which concludes the proof. [

Theorem 8 provides a simple sampling-based algorithm to obtain an e-approximation to FSP(D, 6)
with probability > 1 — §: take a random sample of m transactions from D such that the maximum
deviation is bounded by ¢/2, that is, sup,.|fp(p) — fs(p)| < €/2; report in output the set
FSP(S,0 —¢/2). Asillustrated in Section 3.1, such sample size can be computed using an efficient upper
bound on the VC-dimension, given in input the desired upper bound on the maximum deviation &/2
(see Algorithm 2). Note that such sample size can not be computed with the Rademacher complexity,
since the sample size appears in both terms of the right-hand side of Equation (23). Thus, it is not
possible to fix the value of the bound on the maximum deviation to compute the sample size that
provides such guarantees. Algorithm 6 shows the pseudo-code of the sampling algorithm.

We now provide the respective theorem to find a FPF e-approximation.

Theorem 9. Givene, § € (0,1), let S be a random sample of size m sequential transactions taken independently
at random with replacement from the dataset D such that sup .y Ifo(p) — fs(p)| < e/2 with probability
> 1— 6. Then, given 8 € (0,1], the set FSP(S,0 + ¢/2) is a FPF e-approximation to FSP(D,) with
probability > 1 — 6.

Proof. Suppose that sup,,; |fp(p) — fs(p)| < &/2. In such a scenario, we have that for all sequential
patterns p € D, it results fs(p) € [fp(p) —€/2, fp(p) + €/2]. This also holds for the sequential
patterns in F = FSP(S,0 + ¢/2). Therefore, the set F satisfies Property 3 from Definition 2. It also
means that for all p* ¢ FSP(D,0), fs(p*) < 6 +¢/2, so such p* ¢ F and F also satisfies Property
1. Now, let p’ be a sequential pattern such that fp(p’) > 0 +¢e. Then, fs(p') > 0+ €/2, that is
p' € F, which allows us to conclude that F also has Property 2 from Definition 2. Since we know that
sup,cy |fo(p) — fs(p)| < €/2 with probability at least 1 — 4, then the set 7 is a FPF ¢-approximation
to FSP(D, §) with probability at least 1 — 6, which concludes the proof. [

Algorithms 2020, 13, 123 19 of 34

Algorithm 6: Sampling-Based Algorithm for Frequent Sequential Pattern Mining.
Data: Dataset D; ¢,6 € (0,1); 0 € (0,1].
Result: Set C that is an e-approximation (resp. a FPF e-approximation) to FSP(D, 6) with
probability > 1 — 4.
1 m < ComputeSampleSize(D, ¢, d);

2 § < sample of m transactions taken independently at random with replacement from D;
3 C < FSP(S,0 —¢/2); /*resp. 8+ ¢/2to obtain a FPF e-approximation */
4 return C;

As explained above, the sample size m can be computed with Algorithm 2 that uses an efficient
upper bound on the VC-dimension of sequential patterns. Then, the sample is generated taking m
transactions uniformly and independently at random, with replacement, from D. Finally, the mining of
the sample S can be performed with any efficient algorithm for the exact mining of frequent sequential
patterns. Figure 2 depicts a block diagram representing the relations between the algorithms presented
in this work.

) Algorithm 6
Algorithm 2

: ComputeSampleSize > Mining frequgnt sequgnt/al
Algorithm 1 patterns with sampling

Algorithm 3

ComputeMaxDevVC

A 4

SBoundUpp

\ 4

K K Algorithm 7
Algorithm 4 Equation 3

Mining true frequent

RadeBound ;
sequential patterns

ComputeMaxDevRadeBound

\ 4

\ A 4

Algorithm 5 Equation 4

\ 4

RadeApprox ComputeMaxDevRadeApprox

Hildi ll

Figure 2. Block diagram representing the relations between our algorithms.
6. Algorithms for True Frequent Sequential Pattern Mining

In this section, we describe our approach to find rigorous approximations to the TFSPs.
In particular, given a dataset D, that is a finite bag of |D| i.i.d. samples from an unknown probability
distribution 7r on U, a minimum frequency threshold 6 and a confidence parameter J, we aim to find
rigorous approximations of the TFSPs w.r.t. 0, defined in Definitions 3 and 4, with probability at
least 1 — 4.

The intuition behind our approach is the following. If we know an upper bound y/2 on the
maximum deviation, that is sup . |[tx(p) — fp(p)| < j1/2, we can identify a frequency threshold 0
(resp. §) such that the set FSP(D, 0) is a FPF p-approximation (resp. FSP(D, 8) is a yi-approximation)
of TFSP(,0). The upper bound on the maximum deviation can be computed, as illustrated in the
previous sections, with the empirical VC-dimension and with the Rademacher complexity.

We now describe how to identify the threshold f that allows to obtain a FPF y-approximation.
Suppose that sup .y, ltz(p) — fp(p)| < p/2. In such a scenario, we have that every sequential pattern
p* ¢ TFSP(7,0), and so that has t(p*) < 6, has a frequency fp(p*) < 8 + /2 = 8. Hence, the only
sequential patterns that can have frequency in D greater or equal to § = @ + /2, are those with
true frequency at least 6. The intuition is that if we find a y such that sup .y |t=(p) — fo(p)| < 1/2,
we know that all the sequences p € U, that are not true frequent w.r.t §, can not be in FSP(D,).
The following theorem formalizes the strategy to obtain a FPF p-approximation. Algorithm 7 shows
the pseudo-code to mine the true frequent sequential patterns.

Algorithms 2020, 13, 123 20 of 34

Theorem 10 shows how to compute a corrected threshold 8 such that the set FSP(D,) is a
FPF p-approximation of TFSP(7,0), that is, FSP(D, 8) only contains sequential patterns that are in
TFSP(7,0). It guarantees that with high probability the set FSP(D, 8) does not contain false positives
but it has not guarantees on the number of false negatives, that is, sequential patterns that are in
TFSP(r,0) but not in FSP(D, é). On the other hand, we might be interested in finding all the true
frequent sequential patterns in TFSP(, 6). The following result shows how to identify a threshold
0 such that the set FSP(D, #) contains all the true frequent sequential patterns in TFSP(7,6) with
high probability, that is, FSP(D,) is a y-approximation of TFSP(7,6). Note that while Theorem 11
provides guarantees on false negatives, it does not provide guarantees on the number of false positives
in FSP(D,).

Algorithm 7 shows the pseudo-code of the two strategies to mine the true frequent sequential
patterns. To compute an upper bound on the maximum deviation, it is possible to use Algorithm 3
based on the empirical VC-dimension or the two procedures ComputeMaxDevRadeBound (Equation (34))
and ComputeMaxDevRadeApprox (Equation (40)) based on the Rademacher complexity. The mining
of D can be performed with any efficient algorithm for the exact mining of frequent sequential
patterns. Figure 2 shows the relations between the algorithms we presented for mining true frequent
sequential patterns.

Theorem 10. Given 6 € (0,1), such that SUp,cy ltz(p) — fo(p)| < u/2 with probability at least 1 — 6,
and given 6 € (0,1], the set FSP(D, 0), with 0 = 6 + /2, is a FPF y-approximation of the set TESP(7t,6)
with probability at least 1 — .

Proof. Suppose that sup iy Itz(p) — fp(p)| < p/2. Thus, we have that for all the sequential patterns
p € U, itresults fp(p) € [trx(p) — 1/2,tx(p) + 1/2]. This also holds for the sequential patterns
in G = FSP(D,). Therefore, the set G satisfies Property 3 of Definition 4. Let p* be a sequential
pattern such that t.(p*) < 0, that is, it is not a true frequent sequential pattern w.r.t. 6. Then,
fo(p*) < 8+ u/2 =0, thatis, p* ¢ G, which allows us to conclude that G also has Property 1 from
Definition 4. Now, let p’ be a sequential pattern such that t(p") > 6 + p. Then, fp(p’) > 0 + u/2, that
is p’ € G, which allows us to conclude that G also has Property 2 from Definition 4. Since we know that
SUp,cy ltz(p) — fp(p)| < /2 with probability at least 1 — J, then the set G is a FPF py-approximation
of TFSP(m,0) with probability at least 1 — §, which concludes the proof. [

Theorem 11. Given 6 € (0,1), such that SUP ey Itz(p) — fo(p)| < u/2 with probability at least 1 — 6,
and given 0 € (0,1], the set FSP(D, 0), with 8 = 6 — u/2, is a y-approximation of the set TFSP (7, 0) with
probability at least 1 — 6.

Proof. Suppose that sup,,.y; [tx(p) — fp(p)| < 1/2. Thus, we have that for all the sequential patterns
p € U, itresults fp(p) € [tx(p) — 1/2,tx(p) + 1/2]. This also holds for the sequential patterns in
& = FSP(D,f). Therefore, the set £ satisfies Property 3 of Definition 3. It also means that for all
p € TFSP(m,0), fp(p) > 0 — u/2 = 0, thatis, p € £, which allows us to conclude that £ also has
Property 1 from Definition 3. Now, let p* be a sequential pattern such that t,(p*) < 6 — p. Then,
fp(p*) < 6 —u/2, thatis p* ¢ £, which allows us to conclude that £ also has Property 2 from
Definition 3. Since we know that sup,,; ltz(p) — fo(p)| < u/2 with probability at least 1 — J, then the
set £ is a p-approximation of TFSP (7, 0) with probability at least 1 — §, which concludes the proof. [

Algorithms 2020, 13, 123 21 of 34

Algorithm 7: Mining the True Frequent Sequential Patterns.
Data: Dataset D; ¢ € (0,1); 0 € (0,1]
Result: Set G that is a FPF p-approximation (resp. p-approximation) to TFSP (7, 6) with
probability > 1 — 4.
1 /2 < ComputeMaxDeviationBound(D, 9);
2 G+« FSP(D,0+u/2); /*resp.6 — /2 to obtain a y-approximation */
3 return P;

7. Experimental Evaluation

In this section, we report the results of our experimental evaluation on multiple datasets to
assess the performance of the algorithms we proposed in this work. The goals of the evaluation are
the following:

e Assess the performance of our sampling algorithm. In particular, to asses whether with probability
1 — J the sets of frequent sequential patterns extracted from samples are e-approximations, for the
first strategy, and FPF e-approximations, for the second one, of FSP(D,0). In addition, we
compared the performance of the sampling algorithm with the ones to mine the full datasets in
term of execution time.

e Assess the performance of our algorithms for mining the true frequent sequential patterns.
In particular, to assess whether with probability 1 — J the set of frequent sequential patterns
extracted from the dataset with the corrected threshold does not contain false positives, that is, it
is a FPF p-approximation of TSFP(7,6), for the first method, and contains all the TFSPs, that is, it
is a y-approximation of TSFP(7,0), for the second method. In addition, we compared the results
obtained with the VC-dimension and with the Rademacher complexity, both used to compute an
upper bound on the maximum deviation.

Since no sampling algorithm for rigorously approximating the set of frequent sequential patterns
and no algorithm to mine true frequent sequential patterns have been previously proposed, we do not
consider other methods in our experimental evaluation.

7.1. Implementation and Environment

The code to compute the bound on the VC-dimension (Algorithm 1) and to perform the evaluation
has been developed in Java and executed using version 1.8.0_201. The code to compute the bound
and the approximation to the Rademacher Complexity (resp. Algorithms 4 and 5) has been developed
in C++. We have performed all our experiments on the same machine with 512 GB of RAM and 2
Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.3GHz. To mine sequential patterns, we used the PrefixSpan [10]
implementation provided by the SPMF library [28]. We used NLopt [29] as non-linear optimization
solver. Our open-source implementation and the code developed for the tests, including scripts to
reproduce all results, are available online [30].

7.2. Datasets

In this section, we describe the datasets we used in our evaluation. We first describe the dataset
used to evaluate our sampling algorithm for FSP mining, and then the datasets used for TFSP mining.
All datasets are obtained starting from the following real datasets:

e BIBLE: a conversion of the Bible into sequence where each word is an item;

° BMS1: contains sequences of click-stream data from the e-commerce website Gazelle;
e BMS2: contains sequences of click-stream data from the e-commerce website Gazelle;
° FIFA: contains sequences of click-stream data from the website of FIFA World Cup 98;
e KOSARAK: contains sequences of click-stream data from an Hungarian news portal;

Algorithms 2020, 13, 123 22 of 34

e LEVIATHAN: is a conversion of the novel Leviathan by Thomas Hobbes (1651) as a sequence
dataset where each word is an item;

e MSNBC: contains sequences of click-stream data from MSNBC website and each item represents
the category of a web page;

e SIGN: contains sign language utterance.

All the datasets used are publicly available online [31] and the code to generate the
pseudo-artificial datasets, as described in the following sections, is provided [30]. The characteristics
of the datasets are reported in Table 1.

Table 1. Datasets characteristics. For each dataset D, we report the number |D| of transactions, the total
number |Z| of items, the average transaction item-length and the maximum transaction item-length.

Dataset D Size |D| |Z| Avg. Item-Length Max. Item-Length
BIBLE 36,369 13,905 21.6 100
BMS1 59,601 497 2.5 267
BMS2 77,512 3340 4.6 161
FIFA 20,450 2990 36.2 100
KOSARAK 69,999 14,804 8.0 796
LEVIATHAN 5835 9025 33.8 100
MSNBC 989,818 17 4.8 14,795
SIGN 730 267 52.0 94

7.2.1. FSP Mining

The typical scenario for the application of sampling is that the dataset to mine is very large,
sometimes even too large to fit in the main memory of the machine. Thus, in applying sampling
techniques, we aim to reduce the size of such dataset, considering only a sample of it, in order to obtain
an amount of data of reasonable size. Since the number of transactions in each real dataset (shown
in Table 1) is fairly limited, we replicated each dataset to reach modern datasets sizes. For each real
dataset, we fixed a replication factor and we created a new dataset, replicating each transaction in
the dataset a number of times equal to the replication factor. Then, the input data for the sampling
algorithm is the new enlarged dataset. The replication factors used are the following: BIBLE and FIFA
=200x; BMS1, BMS2 and KOSARAK = 100x; LEVIATHAN = 1000x; MSNBC = 10x and SIGN = 10,000x.

7.2.2. TFSP Mining

To evaluate our algorithms to mine the true frequent sequential patterns, we need to know which
are the sequential patterns that are frequently generated from the unknown generative process 7.
In particular, we need a ground truth of the true frequencies of the sequential patterns. We generated
pseudo-artificial datasets by taking some of the datasets in Table 1 as ground truth for the true
frequencies t; of the sequential patterns. For each ground truth, we created four new datasets by
sampling sequential transactions uniformly at random from the original dataset. All the new datasets
have the same number of transactions of the respectively ground truth, that is, the respectively original
dataset. We used the original datasets as ground truth and we executed our evaluation in the new
(sampled) datasets. Therefore, the true frequency of a sequential pattern is its frequency in the original
dataset, that is, its frequency in the original dataset is exactly the same that such pattern would have in
an hypothetical infinite number of transactions generated by the unknown generative process 7.

7.3. Sampling Algorithm Results

In this section, we describe the results obtained with our sampling algorithm (Algorithm 6).
As explained above, the typical scenario to apply sampling is that the dataset to mine is very large.
Thus, we aim to reduce the size of such dataset, considering only a sample of it. In addition, from the
sample, we aim to obtain a good approximation of the results that would have been obtained from the

Algorithms 2020, 13, 123 23 of 34

entire dataset. In all our experiments we fixed ¢ = 0.01 and § = 0.1. The steps of the evaluation are the
following (Algorithm 6): given a dataset Dy, as input, we compute the sample size m, using Algorithm 2,
to obtain an ¢ = 0.01-approximation (resp. FPF 0.01-approximation) with probability at least 1 — 6 =
0.90. Then, we extract a random sample S of m transactions from D; and we run the algorithm to mine
the frequent sequential patterns on S. Finally, we verify whether the set of frequent sequential patterns
extracted from the sample is a 0.01-approximation (resp. FPS 0.01-approximation) to FSP(Dy,6).
For each dataset D; we repeat the experiment 5 times, and then we compute the fraction of times
the sets of frequent sequential patterns extracted from the samples have the properties described in
Definition 1 (resp. Definition 2). Table 2 shows the results.

Table 2. Sampling algorithms results. For each enlarged dataset Dy, we report 6, the ratio
|S|/|DL| between the sample size |S| and the size of the enlarged dataset |Dp|, Max_Abs_Err,
the maximum max,cc, |fp(p) — fs,(p)|, and Avg_Abs_Err, the average maxyec, | fp(p) — fs,(p)|, over
the 5 samples S; and with C; the set of frequent sequential patterns extracted from S;, the percentage of
e-approximations obtained over the 5 samples and the percentage of FPF e-approximations obtained
over the 5 samples.

Dataset D, 6 |S|/|DLl Max_Abs_Err Avg Abs_Err e-approx FPF g-approx

(x10~%) (x10~%) (%) (%)
BIBLE 0.1 0.24 9.33 7.47 100 100
BMS1 0.012 0.17 5.45 4.70 100 100
BMS2 0.012 0.16 4.08 3.14 100 100
FIFA 0.25 0.50 8.68 7.07 100 100
KOSARAK 0.02 0.52 7.18 495 100 100
LEVIATHAN 0.15 0.30 9.19 7.84 100 100
MSNBC 0.02 0.37 4.33 3.63 100 100
SIGN 0.4 0.20 14.14 12.19 100 100

We observe that the samples obtained from the datasets are about 2 to 5 times smaller than
the whole datasets. Moreover, in all the runs for all the datasets, we obtain an e-approximation
(resp. FPF e-approximation). Such results are even better than the theoretical guarantees, that ensure
to obtain such approximations with probability at least 90%. We also reported Max_Abs_Err =
maxs,jc(1 5 Maxpec, |f(p) — fs,(p)] and Avg_Abs_Err = & Y5, 15 maxpec, |fp(p) — fs, (p)], where
C; is the set of frequent sequential patterns extracted from the sample S;, i = 1, ..., 5 (since we run each
experiment 5 times, there are 5 samples). They represent the maximum and the average, over the 5
runs, of the maximum absolute difference between the frequency that the sequential patterns have in
the entire dataset and that they have in the sample, over all the sequential patterns extracted from the
sample. Again, the results obtained are better than the theoretical guarantees, that ensure a maximal
absolute difference lower than £/2 = 0.005.

Figure 3 shows the comparison between the average execution time of the sampling algorithm
and the average execution time of the mining of the entire dataset, over the 5 runs. For all the datasets,
the sampling algorithm requires less time than the mining of the whole dataset. For BMS1 and BMS2,
the mining of the whole dataset is very fast since the number of frequent sequential patterns extracted
from it is low. Thus, there is not a large difference between the execution time to mine the whole
dataset and the execution time for the sampling algorithm, which is most due to the computation of
the sample size. Similar results between our sampling algorithm and the mining of the whole dataset
have also been obtained with KOSARAK and MSNBC. As expected, for all the datasets, the execution
time of the sampling algorithm to obtain an e-approximation is larger than the execution time of the
sampling algorithm to obtain a FPF e-approximation, since the minimum frequency threshold used in
the first case is lower, resulting in a higher number of extracted sequential patterns.

Algorithms 2020, 13, 123 24 of 34

Il Compute Sample Size I Mining Sample (FPF €-app) I Mining Dataset

[Generate Sample [Mining Sample (g-app)
125 12.5 250
6
100+ 10.0 200
0
> 751 4 7.5/ 150
€
F 501 5.0 100
2
25 2.5 50
0 0 0.0 0
BIBLE BMS1 BMS2 FIFA
25
150 201 800
20+
— 15
2 15 100 600
E]
£ 10 10 400
50
5 5 200
0 0 0
KOSARAK LEVIATHAN MSNBC SIGN

Figure 3. Execution time of the sampling algorithm. The execution time required to mine the whole
dataset, and the execution times of the sampling algorithm to obtain an e-approximation and a false
positives free (FPF) e-approximation are reported. For the sampling algorithms, we show the execution
time to compute the sample size, the execution time to generate the sample, and the execution time to
mine the sample.

We now discuss some of the patterns extracted from the MSNBC dataset, for which richer
information regarding the data is available. In particular, in MSNBC each transaction contains the
sequence of click-stream data generated by a single view on the MSNBC website by a user, and each
item represents the category of a visited webpage, such “frontpage”, “news”, “sports”, and so forth.

The two most frequent sequential patterns extracted in the enlarged datasets with a classic FSP
algorithm are single categories, that is, sequential patterns of item-length 1: ({frontpage}) is the
most frequent while ({on — air}) is the second one. They are also the two most frequent sequential
patterns extracted in all the five samples using our sampling algorithms. The most frequent sequential
patterns with item-length greater than one are the sequential patterns ({ frontpage}, { frontpage}) and
({frontpage}, { frontpage},{ frontpage}). For ({ frontpage}, { frontpage}), 75% of the transactions in
which it appears there is at least an instance of such pattern where the two items are consecutive.
This means that users visited two consecutive webpages of the same category, “frontpage”, or that
they refreshed the same page twice, while in the 25% of the transactions in which it appears
users visited webpages of other categories between the two “frontpage” webpages. Instead,
for ({ frontpage}, { frontpage}, { frontpage}) the percentage of transactions in which the three items
are consecutive is 59%. We also observed similar results with other categories: sequential patterns
that are sequences of the same item, and so of the same category, have higher frequency. This fact
highlights that users usually visit more frequently pages of the same category or that they refresh
multiple times the same pages.

The most frequent sequential patterns that are not sequences of the same item are
combinations of the items “frontpage” and “news”, for example, ({frontpage}, {news}),
({frontpage}, {news}, {news}) and ({news}, { frontpage}). Surprisingly, the item “on-air” alone is
more frequent that the item “news” alone. This means that users visit “news” webpages coming
from a “frontpage” more frequently than “on-air” webpages, though they visit more frequently
“on-air” webpages.

Algorithms 2020, 13, 123 25 of 34

7.4. True Frequent Sequential Patterns Results

In this section, we describe the results of our algorithms for mining the true frequent sequential
patterns. In all these experiments, we fixed 6 = 0.1. First of all, for each real dataset we generated
4 pseudo-artificial datasets D;, i € [1,4] from the same ground truth. We mined the set FSP(D;,0),
and we compared it with the TFSPs, that is, the set FSP(D, 0), where D is the ground truth. Such
experiments aim to verify whether the sets of the FSPs extracted from the pseudo-artificial datasets
contain false positives and miss some TFSPs. Table 3 shows the fractions of times that the set FSP(D;, 6)
contains false positives and misses TFSPs from the ground truth. We ran this evaluation over the
four datasets D;, i € [1,4], of the same size from the same ground truth and we reported the average.
For each dataset, we report the results with two frequency thresholds 6. In almost all the cases, the FSPs
mined from the pseudo-artificial datasets contain false positives and miss some TFSPs. In particular,
with lower frequency thresholds (and, therefore, a larger number of patterns), the fraction of times
we find false positives and false negatives usually increases. These results emphasize that, in general,
the mining of the FSPs is not enough to learn interesting features of the underlying generative process
of the data, and techniques like the ones introduced in this work are necessary.

Table 3. Average fraction of times that FSP(D;,), with D; a pseudo-artificial dataset, contains false
positives, Times FPs, and misses true frequent sequential patterns (TFSPs) (false negatives), Times FNs,
over 4 datasets D; from the same ground truth.

Ground Truth 0 |TFSP| TimesFPs Times FNs
BIBLE 0 7 e o
BMS1 0%2? i; 582;: zg;
M2 o 1w
KOSARAK 8:82 ii’ 12822 zgf
LEVIATHAN 0% 22 100, 100%
MSNECgn g wn s

Then, we compute and compare the upper bounds to the maximum deviation introduced in
the previous sections, since our strategy to find an approximation to the true frequent sequential
patterns hinges on finding a tight upper bound to the maximum deviation. For each pseudo-artificial
dataset, we computed the upper bound iy /2 to the maximum deviation using the VC-dimension
based bound (ComputeMaxDevVC, Algorithm 3), the Rademacher complexity based bound % /2
(ComputeMaxDevRadeBound, Equation (34)), and the Rademacher complexity approximation
1% /2 (ComputeMaxDevRadeApprox, Equation (40)). Table 4 shows that the two methods for
computing the upper bound to the maximum deviation using an upper to the empirical VC-dimension
and Rademacher complexity are similar for BMS1 and BMS2, but for the other samples the
VC-dimension-based algorithm is better than the one based on the Rademacher complexity bound by
a factor between 2 and 3, that is, 4% / uyc € [2,3]. Tighter upper bounds to the maximum deviation are
provided by the method that uses the approximation of the Rademacher complexity.

Algorithms 2020, 13, 123 26 of 34

Table 4. Comparison of the upper bound /2 to the maximum deviation achieved respectively
by ComputeMaxDevVC, ComputeMaxDevRadeBound, and ComputeMaxDevRadeApprox for each
dataset. We show averages avg, maximum values max, and standard deviations std for each dataset
and method over the 4 pseudo-artificial datasets.

nyvcl2 y%/Z upl2
Dataset av max std av max std av max std
8 (x1073) 8 (x1073) 8 (x1073)
BIBLE 0.0339 0.0340 0.1 0.0747 0.0748 0.1 0.0207 0.0223 15
BMS1 0.0194 0.0197 0.3 0.0287 0.0294 0.6 0.0136 0.0153 1.0
BMS2 0.0194 0.0196 0.1 0.0202 0.0207 0.5 0.0107 0.0115 0.5

KOSARAK 0.0334 0.0335 0.1 0.0957 0.0972 1.5 0.0145 0.0164 1.5
LEVIATHAN 0.0847 0.0850 0.3 0.1878 0.1904 1.6 0.0569 0.0636 55
MSNBC 0.0089 0.0090 0.1 0.0252 0.0257 0.9 0.0035 0.0041 04

In our implementation of Algorithm 4 to compute an upper bound to the empirical Rademacher
complexity of sequential patterns, we compute several upper bounds associated with different integer
values of # € [f7 + B1, min(By,)] for fixed values of B and By, taking the minimum bound among
those computed. In our experiments, we fixed 1 = 20 and 8, = 120. In practice, by increasing
the value of 17 we observe a decreasing trend of the upper bound value until a minimum value is
reached. Then, by increasing again the value of 7 the value of the upper bound increases until it
converges to the one achieved with # = 7. In addition, for each pseudo-artificial dataset the value of 1
associated with the minimum value of the upper bound to the maximum deviation is always found in
[7 + B1, min(Bo,)], with B1 = 20, B = 120.

Finally, we evaluated the performance of our two strategies to mine an approximation of the true
frequent sequential patterns, the first one with guarantees on the false positives and the second one
with guarantees on the false negatives, using the upper bounds on the maximum deviation computed
above. We considered the two tightest upper bounds, that are yiyc /2 and % /2, computed respectively
using the empirical VC-dimension and an approximation of the empirical Rademacher complexity.
From each pseudo-artificial dataset, we mined the FSPs using @, for the first strategy, and , for the
second one, respectively computed using Theorems 10 and 11, and we compared the sequential
patterns extracted with the TFSPs from the ground truth. Table 5 shows the results for the strategy
with guarantees on the false positives. Using pyc /2 to compute the corrected frequency threshold dyc,
our algorithm performs better than the theoretical guarantees in all the runs, since the number of times
the output contains false positives is always equal to zero, while the theory guarantees a probability
of at least 1 — 6 = 0.9 to obtain the correct approximation. Obviously, this also happens using p% /2
to compute the corrected frequency threshold g, since uyc > pu%. We also computed the average
fraction of TESPs reported in the output by the algorithm, that is, |[FSP(D;,8)| /| TFSP|, since we aim to
obtain as many TFSPs as possible. For all the datasets, it is possible to notice that the results obtained
with the Rademacher complexity are better than the ones obtained with the VC-dimension, since the
Rademacher allows to obtain a higher percentage of TFSPs in output. Table 6 shows the results for the
strategy with guarantees on the false negatives. Similar to the previous case, our algorithm performs
better than the theoretical guarantees in all the runs, since the number of times the algorithm misses
some TFSPs is always equal to zero, with both the VC-dimension and the Rademacher complexity
based results. We also report the average fractions of patterns in the output that are TFSPs, that is,
|TFSP|/|FSP(D;,0)|, since we are interested in obtaining all the TFSPs but with less false positives as
possible. Again, the results with the Rademacher complexity are better than the ones obtained with the
VC-dimension, since the number of sequential patterns in the output of the algorithm that are TFSPs is
higher using the Rademacher complexity.

Algorithms 2020, 13, 123 27 of 34

Table 5. Results of our algorithm for the TFSPs with guarantees on the false positives in 4
pseudo-artificial datasets D; for each ground truth. The table reports the frequency thresholds 6
used in the experiments, the number of TFSPs in the ground truth, the number of times the output
contains false positives using fyc = 6 + pyc /2 as frequency threshold and the average fraction of the
reported TFSPs in the output using such frequency threshold, the number of times the output contains
false positives using g = 6 + 1% /2 and the average fraction of the reported TFSPs in the output using
such frequency threshold.

Times FPsin |FSP(D;,0yc)|/ Times FPsin |FSP(D;, 0R)|/

Ground Truth 0 ITESPl popD,, bye) |TESP| FSP(D;, b) |TESP|

BIBLE 05 7 00, 02 - 07
BMS! o00m 1 0o, 029 0o 015
BMS? o005 1 00, 01 0o, 018
A
N N - R S
MSNBC 005 145 0% 020 0% 076

Table 6. Results of our algorithm for the TFSPs with guarantees on the false negatives in 4
pseudo-artificial datasets D; for each ground truth. The table reports the frequency thresholds 60
used in the experiments, the number of TFSPs in the ground truth, the number of times the output
of the algorithm misses some TFSPs using Oyc =0 — uyc/2as frequency threshold and the average
fraction of sequential patterns that are TFSPs in the output using such frequency threshold, the number
of times the output of the algorithm misses some TFSPs using g = 6 — p% /2 and the average fraction
of sequential patterns that are TFSPs in the output using such frequency threshold.

Ground Tewth 0 [TFSP| o Dutve)| FoP(Dyiw [FSP(DL 6x)
BIBLE 0 774 0% 0 0% 03
BMS! ot 1 0% 004 0% 019
BMS? v 0% 001 0% 019
KOSARAK qob] 0% b4 0% 08
PSR B D
MSNBC s 0% 02 0% 06

We now we briefly analyze the sequential patterns extracted from the MSNBC dataset using our
TFSP algorithms. Since we considered the FSP extracted from the whole dataset as ground truth,
that is, as TFSP, the considerations reported for the most frequent sequential patterns extracted from
the whole dataset and from the samples (see previous section) are still valid for the true frequent
sequential patterns that have higher frequency.

Using 6 = 0.02, as shown in Tables 5 and 6, we find 97 true frequent sequential patterns. In the four
pseudo-artificial datasets we extracted on average ~126 and ~230 sequential patterns with guarantees
on the false negatives, using respectively the approximation on the Rademacher complexity and the
VC-dimension. With the algorithms with guarantees on the false positives, we mined ~74 and ~54
sequential patterns, respectively.

Algorithms 2020, 13, 123 28 of 34

({frontpage}, { frontpage},{ frontpage}, { frontpage}, { frontpage}, { frontpage}, { frontpage})
is the most frequent sequential pattern that is a TFSP but that it is not returned by our
algorithm with guarantees on the false positives using the VC-dimension, that is, it is one of
the allowed false negatives, in all the four pseudo-artificial datasets. Instead, the corresponding
algorithm that uses the approximation of the Rademacher complexity always returned such
sequential pattern as a TFSP. The most frequent sequential patterns that are true frequent
but that are not returned by our algorithm with guarantees on the false positives using the
approximation of the Rademacher complexity are ({frontpage},{frontpage}, {news}, {news})
in two pseudo-artificial datasets, and ({frontpage}, {news},{frontpage},{frontpage}) and
({frontpage}, {news}, { frontpage}, { frontpage}) both in one pseudo-artificial dataset. Instead,
the most frequent sequential patterns that are not true frequent but that are returned by our
algorithms with guarantees on the false negatives, that is, they are some of the allowed
false positives, are ({frontpage},{on — air},{on — air}), in three pseudo-artificial datasets
and ({ frontpage},{local},{ frontpage}) in one, for both strategies.

8. Discussion

In this work, we studied two tasks related to sequential pattern mining: frequent sequential pattern
mining and true frequent sequential pattern mining. For both tasks, we defined rigorous approximations
and designed efficient algorithms to extract such approximations with high confidence using advanced
tools from statistical learning theory. In particular, we devised an efficient sampling-based algorithm to
approximate the set of frequent sequential patterns in large datasets using the concept of VC-dimension.
We also devised efficient algorithms to mine the true frequent sequential patterns using VC-dimension
and Rademacher complexity. Our extensive experimental evaluation shows that our sampling
algorithm for mining frequent sequential patterns produces accurate approximations using samples
that are small fractions of the whole datasets, thus vastly speeding up the sequential pattern mining
task on very large datasets. For mining true frequent sequential patterns, our experimental evaluation
shows that our algorithms obtain high-quality approximations, even better than guaranteed by their
theoretical analysis. In addition, our evaluation shows that the upper bound on the maximum deviation
computed using the approximation of the Rademacher complexity allows to obtain better results than
the ones obtained with the upper bound on the maximum deviation computed using the empirical
VC-dimension.

Author Contributions: Conceptualization, D.S., A.T., and EV.; methodology, D.S., A.T., and E.V,; software, D.S.
and A.T; validation, D.S., A.T.,, and F.V,; formal analysis, D.S., A.T., and EV; investigation, D.S. and A.T.; resources,
E.V,; data curation, D.S. and A.T.; writing—original draft preparation, D.S., A.T., and EV,; writing—review and
editing, D.S., A.T., and F.V,; visualization, D.S. and A.T.; supervision, F.V.; project administration, EV,; funding
acquisition, F.V. All authors have read and agreed to the published version of the manuscript.

Funding: Part of this work was supported by the University of Padova grant STARS: Algorithms for Inferential
Data Mining, and by MIUR, the Italian Ministry of Education, University and Research, under PRIN Project
n. 20174LF3T8 AHeAD (Efficient Algorithms for HArnessing Networked Data). and under the initiative
“Departments of Excellence” (Law 232/2016).

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Appendix A. Missing Proofs

In this appendix we present the proofs not included in the main text.

Theorem 3. Let S be a random sample of m transactions taken with replacement from the sequential dataset D
and ¢,8 € (0,1). Let d be the s-bound of D. If

2 1

Algorithms 2020, 13, 123 29 of 34

then sup .y | fp(p) — fs(p)| < €/2 with probability at least 1 — 4.

Proof. From Theorem 1 in the main text we know that S is an £/2-bag for D with probability at least
1 — 6. This means that for all r € R we have

[Dnr| SO

A
I (42)

<£
=2

Given a sequence p € U and its support set Tp(p) on D, that is the range 7, and from the definition of
range set of a sequential dataset, we have

D
Do = oip) (A3)
and S|
s =S5 (A4)

Thus, sup,,cyy |fp(p) — fs(p)| < e/2 with probability > 1—45. O

Theorem 4. Let D be a finite bag of | D| i.i.d. samples from an unknown probability distribution 7t on U and
0 € (0,1). Let d be the s-bound of D. If

2 1

then sup,,cy |t=(p) — fo(p)| < pvc/2 with probability at least 1 — 6.

Proof. The proof is analogous to the proof of Theorem 3, when we consider the dataset D a random
sample of a fixed size and we aim to compute an upper bound on the maximum deviation between
the true frequency of a sequence and its frequency in D. O

Lemma 1. Consider a subset W of the dataset D, W C D. Let CSy (D) be the set of closed sequential patterns
in D whose support set in D is W, that is, CSyw (D) = {p € CS(D) : Tp(p) = W}, with C = |CSw (D).
Then the number C of closed sequential patterns in D with W as support set satisfies: 0 < C < |CS(D)].

Proof. The proof is organized in such a way: first, we show that the basic cases C = 0 and C = 1 hold,
second, we prove the cases for 2 < C < |CS(D)]|.

Let us consider the case where W is a particular subset of D for which no sequence has W as
support set in D. Thus, CSy (D) is an empty set and C = 0. The case C = 1 is trivial, since it could
happen that only one closed sequential pattern has W as support set in D.

Now, before proving the cases for a generic value of C in [2,...,|CS(D)|], we start by considering
the case C = 2. Let p1,p2 be two sequences with W as support set. Assume that each super-sequence
of p; but not of p; has support lower than the support of p;, and each super-sequence of p; but not
of p; has support lower than the support of p». Now, let us focus on super-sequences of both p; and
p2- Let T € W be a transaction of W. We define y,. = 13, ;,, as the subsequence of 7 restricted to only
the sequences p; and p,, preserving the relative order of their itemsets. For instance, let p; = (A, B),
p2 = (C,D) and T = (A,C,F,D,B), where A,B,C, D, F are itemsets: thus, y,. = (A,C, D, B). Now,
if the support set of y in W does not coincide with W, that is, Ty (y,) C W, then for each transaction
T € W we have |Tw(y,)| < |Tw(p1)| = |Tw(p2)| = |W|. Note that this could happen because
the set of itemsets of p; and p, may not appear in the same order in all transactions. Hence each
super-sequence of both p; and p; has support lower than the support of p; (that is equal to the support
of pp). Thus, each super-sequence of p; has a lower support compared to the support of p;, fori = 1,2.

Algorithms 2020, 13, 123 30 of 34

This implies that p; and p; are closed sequences in D and since their support set is W, they belong to
CSw (D). Thus, the case C = 2 could happen.

Now we generalize this concept for a generic number C of closed sequential patterns, where
2 < C < |CS(D)|. Let H = {p1,p2,-..,pc} be a set of C sequential patterns with W as support
set. Assume that each super-sequence of p; but not of p; has support lower than the support of p;,
foreachi, k € [1,...,C] with k # i. Let H, be the power set of H without the empty set and the sets
made of only one sequence, that is, H, = P(H) \ {{@}, {p1},{p2},..., {pc}}. So, in Hy there are
every possible subset of H of size greater than one. For a transaction T € W and h, € H,, we define
Y (hp) = Ty, as the subsequence of 7 restricted to /1y, that is, to only the sequences p € hy, preserving
the relative order of their itemsets. If Vi, € H), there exits a transaction T € W such that the support
setof y.(hy) in W does not coincide with W, that is, Ty (y,(hp)) C W, then for each transaction T € W
we have [Ty (y.(hp))| < |Tw(p1)| = --- = |Tw(pc)| = [W|. Hence each super-sequence made of only
sequences of /1, has support lower than the support of p;, fori = 1,...,C. Thus, each super-sequence
of p; has a lower support compared to the support of p;, fori =1, ..., C. This implies that all sequences
of H are closed sequence in D and since their support set is W, they belong to CSw (D). O

Lemma2. Vp = {vp(p): p € CS(D)}UA{(0,...,0)} and |Vp| < |CS(D)|+ 1, that is, each vector of Vp
different from (0, ...,0) is associated with at least one closed sequential pattern in D.

Proof. Let Vp = Vp U {(0,...,0)}, where Vp ={v € Vp: v # (0,...,0)}. Let p € U be a sequence
of non-empty support set in D, that is, vp(p) # (0,...,0). There are two possibilities: p is or is not a
closed sequence in D. If p is not a closed sequence, then there exists a closed super-sequence y 7 p with
support equal to the support of p, so with vp(p) = vp(y). Thus, vp(p) is associated with at least one
closed sequence. Combining this with the fact that each vector v € Vp is associated with at least one
sequence p € Uand Lemma 1, then each vector of Vp different from (0, ..., 0) is associated with at least
one closed sequential pattern of D. To conclude our proof is sufficient to show that there are no closed
sequences associated with the vector (0,...,0). Let SPo = {p € U: vp(p) = (0,...,0)}. Note that
|SPo| = 0. For each p € SPw, there always exists a super-sequence y —J p such that fp(p) = fp(y) = 0.
This implies that each sequence of SPs is not closed. Thus, Vp = {vp(p) : p € CS(D)} and
\Vp| = |Vp|+1<|CS(D)|+1. O

Lemma 3. We have
|Car| < 2Kar=Mazx(QMar _ 1), (A6)

Proof. C, represents a subset of the set ® of all those subsequences of T that are made of only items
equal to a or that come after a in <,, with item-length at least two and with at least one occurrence of a.
Let us focus on finding an upper bound to |®|. In order to build such a generic subsequence of T, it is
sufficient to select i occurrences of 4 among the m, r available, with 1 <7 < m, -, and choose j items
among the remaining k, r — m, ; items different from a. Note that if i = 1, then j must be greater than
0. Thus, using the fact that the sum of (Z) fork =0,...,nis equal to 2", we have

Mg, Koz Mox ko —mar (Mgt Kax Tt ko —maz
s () [S)
j=1 i=2 j=0
< zku;(*ma,r r%[<ma'T> — zku,'r*ma,'f (zmu,‘r — l) (A8)
I l - 4
i=1

where the first inequality holds because some sequences of ® are counted more times. Since |Cp | <
|®|, the thesis holds. O

Algorithms 2020, 13, 123 31 of 34

Lemma 4. Given an item a in L, we define the following quantity:

8akm n—1 1
an—1+222< (k <m)2k-m@m —1) + 1(k >) Z()) (A9)
1m=1 j=1 i=1
Let @ : RT™ — R be the function
. s’fp({{a})) s?[D(1)]
. 2
w(s,n) = gln Y | ala,n)e 2/D| + [V le 2D 4q. (A10)
acl
Then,
Rp < i D(s,). All
DS pmin _ @) (A1)

Proof. Let us consider the function w from Theorem 7. For a given value of #, we have that Vp C
(VD \ Vp(y)) U Vp(y), since not all the binary vectors of Vp,) necessarily belong to Vp. Thus:

1 loll?Y o 1 s?[[o]l? s?|[o] [
w(s)=-In ¥ ex () <-hln| ¥ ex ()+ Y ex () , (Al2)
S veVp p 2112 S UEVD\VD(q) p 2n2 ‘()EVD(W) P 2n2

where n = |D|. For each binary vector v € Vp(,) the maximum number of 1’s is 1 D(#) |. Thus,

s2||v]|? s2|D
Y exp (2’12||> < [Vpylexp (215;])) . (A13)

ve VD(;])

By using the definition of Euclidean norm, we have that, for any sequence p € U,

lop(p)Il =4/, Z ¢p(ti)? = /nfp(p (Al4)

Note that each closed sequential pattern p with ||p|| > # can only appear in transactions of D(1)
and, consequently, it is associated with a binary vector of Vp,) and not of Vp \ Vp(,. Thus, defining
CS(D,) as the set of closed sequential patterns of D with item-length lower or equal to 7 and using
Lemma 2 we can use the sum over CS(D, 1) as an upper bound on the sum over Vp \ Vp():

2(19]|2 2
Z exp (S|2|Zz||> < Z exp (Sf;)n(p)> + 1. (A15)
)

UGVD\VD(W) pGCS(DJ]

Note that the vector (0,...,0) of Vp \ Vp, provides a +1.
Now let us focus on the first term of the sum. The set CS(D, 17) can be broken using the Equation 29

in the sum over C;

2

Z exp (szpn(p)) (Al6)
peCi

plus the sum over Cy+ (1) (i.e., the set of closed sequential patterns with item-length in [2, 7])

Y, L Y eXP<SZJZ)n(p)>, (A17)

a€Z teTp(({a})) peCay ()

Algorithms 2020, 13, 123 32 of 34

where C, 1 (77) is the set of closed sequential patterns of C, - with item-length in [2,]. Since the set of
items of the sequences in C; is a subset of Z, we have

T oxp (S22 < wp (220101 A

peCy ael

For any p € Co(17), fp(p) < fp({{a})) by the anti-monotonicity support property for sequential
patterns. An upper bound to the size of C, (1) can be computed in two ways, depending on the value
of kg r. If kyr <17, we can use Lemma 3:

2 2
Y exp (s ij(P)) < Y 2hrmar(2Mer —1)exp (s fp(zt{a}») (AL9)
reTp(({a})) pECar(n) " TeTp(({a}))

If kq,r > 11 we have to count the number of possible closed sequential patterns with at least one item
equal to a and with item-length in [2, #] that we can build from k; ; items of t:

sfp(p) " (Kax—1 sfp(({a}))
exp| ——= | < . exp | ——— . (A20)
TGTD%{LI}WG;() (2n) TETD%{aD) 1; (!) (2n)

Finally, using the quantities x,k,m and g previously defined and indicator functions we can merge the
right-hand sides of the last two inequalities

I M§<

ii (k <m)2m@m — +]1k>77i;()exP<SZfD(2<1;{a}>)>. (A21)

Thus, rearranging all the terms we reach the definition of @. Using the above arguments and the best
value of 77 which minimizes the function we have that w(s) < @(s,#) forany s € R*,7 < 5 < . Since
Rp < mingcg+ w(s) (by Theorem 7), we conclude that Rp < mingep+ z<,<p @(s,77). O

References

1. Agrawal, R; Srikant, R. Mining sequential patterns. In Proceedings of the Eleventh International Conference
on Data Engineering, Taipei, China, 6-10 March 1995; pp. 3-14.

2. Vapnik, V.N.; Chervonenkis, A.Y. On the Uniform Convergence of Relative Frequencies of Events to Their
Probabilities. In Measures of Complexity; Vovk, V., Papadopoulos, H., Gammerman, A., Eds.; Springer: Cham,
Switzerland, 2015.

3. Boucheron, S.; Bousquet, O.; Lugosi, G. Theory of classification: A survey of some recent advances.
ESAIM Probab. Stat. 2005, 9, 323-375. [CrossRef]

4. Riondato, M.; Upfal, E. Efficient discovery of association rules and frequent itemsets through sampling with
tight performance guarantees. ACM Trans. Knowl. Discov. D 2014, 8, 20. [CrossRef]

5. Riondato, M.; Upfal, E. Mining frequent itemsets through progressive sampling with rademacher averages.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, New York, NY, USA, 22-27 August 2015; pp. 1005-1014.

6. Raissi, C.; Poncelet, P. Sampling for sequential pattern mining: From static databases to data streams.
In Proceedings of the Seventh IEEE International Conference on Data Mining (ICDM 2007), Omaha, NE,
USA, 28-31 October 2007; pp. 631-636.

7. Riondato, M.; Vandin, F. Finding the true frequent itemsets. In Proceedings of the 2014 SIAM International
Conference on Data Mining, Philadelphia, PA, USA, 28 April 2014; pp. 497-505.

8. Servan-Schreiber, S.; Riondato, M.; Zgraggen, E. ProSecCo: Progressive sequence mining with convergence
guarantees. Knowl. Inf. Syst. 2020, 62, 1313-1340. [CrossRef]

http://dx.doi.org/10.1051/ps:2005018
http://dx.doi.org/10.1145/2629586
http://dx.doi.org/10.1007/s10115-019-01393-8

Algorithms 2020, 13, 123 33 of 34

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Srikant, R.; Agrawal, R. Mining sequential patterns: Generalizations and performance improvements.
In Advances in Database Technology—EDBT 96, Proceedings of the International Conference on Extending Database
Technology, Avignon, France, 25—-29 March 1996; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1-17.

Pei,].; Han,]J.; Mortazavi-Asl, B.; Wang, J.; Pinto, H.; Chen, Q.; Dayal, U.; Hsu, M.C. Mining sequential
patterns by pattern-growth: The prefixspan approach. IEEE Trans. Knowl. Data Eng. 2004, 16, 1424-1440.
Wang, J.; Han, J.; Li, C. Frequent closed sequence mining without candidate maintenance. IEEE Trans. Knowl.
Data Eng. 2007, 19, 1042-1056. [CrossRef]

Pellegrina, L.; Pizzi, C.; Vandin, F. Fast Approximation of Frequent k-mers and Applications to Metagenomics.
J. Comput. Biol. 2019, 27, 534-549. [CrossRef] [PubMed]

Riondato, M.; Vandin, F. MiSoSouP: Mining interesting subgroups with sampling and pseudodimension.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
London, UK, 19 July 2018; pp. 2130-2139.

Al Hasan, M.; Chaoji, V.; Salem, S.; Besson, J.; Zaki, M.]. Origami: Mining representative orthogonal graph
patterns. In Proceedings of the Seventh IEEE International Conference on Data Mining (ICDM 2007), Omaha,
NE, USA, 28-31 October 2007; pp. 153-162.

Corizzo, R.; Pio, G.; Ceci, M.; Malerba, D. DENCAST: distributed density-based clustering for multi-target
regression. J. Big Data 2019, 6, 43. [CrossRef]

Cheng, J.; Fu, A\W.c; Liu, J. K-isomorphism: privacy preserving network publication against structural
attacks. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,
Indianapolis, Indiana, 6-11 June 2010; pp. 459-470.

Riondato, M.; Upfal, E. ABRA: Approximating betweenness centrality in static and dynamic graphs with
rademacher averages. ACM Trans. Knowl. Discov. D 2018, 12, 1-38. [CrossRef]

Mendes, L.E; Ding, B.; Han, J. Stream sequential pattern mining with precise error bounds. In Proceedings
of the Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15-19 December 2008; pp. 941-946.
Pellegrina, L.; Riondato, M.; Vandin, F. SPuManTE: Significant Pattern Mining with Unconditional Testing.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
Anchorage, AK, USA, 4-8 August 2019; pp. 1528-1538.

Gwadera, R.; Crestani, F. Ranking Sequential Patterns with Respect to Significance. In Advances in Knowledge
Discovery and Data Mining; Zaki, M.]., Yu,].X., Ravindran, B., Pudi, V., Eds.; Springer: Berlin, Germany, 2010;
Volume 6118.

Low-Kam, C.; Raissi, C.; Kaytoue, M.; Pei, J. Mining statistically significant sequential patterns.
In Proceedings of the IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7-10 December
2013; pp. 488-497.

Tonon, A.; Vandin, F. Permutation Strategies for Mining Significant Sequential Patterns. In Proceedings of the
IEEE International Conference on Data Mining (ICDM), Beijing, China, 8-11 November 2019; pp. 1330-1335.
Mitzenmacher, M.; Upfal, E. Probability and Computing: Randomization and Probabilistic Techniques in Algorithms
and Data Analysis; Cambridge University Press: New York, NY, USA, 2017.

Loffler, M.; Phillips,].M. Shape fitting on point sets with probability distributions. In Algorithms—ESA 2009,
Proceedings of the European Symposium on Algorithms, Copenhagen, Denmark, 7-9 September 2009; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 313-324.

Li, Y.; Long, PM.; Srinivasan, A. Improved bounds on the sample complexity of learning. J. Comput. Syst.
Sci. 2001, 62, 516-527. [CrossRef]

Shalev-Shwartz, S.; Ben-David, S. Understanding machine learning: From theory to algorithms; Cambridge
University Press: New York, NY, USA, 2014.

Egho, E.; Raissi, C.; Calders, T.; Jay, N.; Napoli, A. On measuring similarity for sequences of itemsets.
Data Min. Knowl. Discov. 2015, 29, 732-764. [CrossRef]

Fournier-Viger, P.; Lin,].C.W.; Gomariz, A.; Gueniche, T.; Soltani, A.; Deng, Z.; Lam, H.T. The SPMF
open-source data mining library version 2. In Machine Learning and Knowledge Discovery in Databases; Berendt,
B., Ed.; Springer: Cham, Switzerland, 2016; Volume 9853, pp. 36—40.

Johnson, S.G. The NLopt Nonlinear-Optimization Package. 2014. Available online: https://nlopt.
readthedocs.io/en/latest/ (accessed on 10 April 2020).

http://dx.doi.org/10.1109/TKDE.2007.1043
http://dx.doi.org/10.1089/cmb.2019.0314
http://www.ncbi.nlm.nih.gov/pubmed/31891535
http://dx.doi.org/10.1186/s40537-019-0207-2
http://dx.doi.org/10.1145/3208351
http://dx.doi.org/10.1006/jcss.2000.1741
http://dx.doi.org/10.1007/s10618-014-0362-1
https://nlopt.readthedocs.io/en/latest/
https://nlopt.readthedocs.io/en/latest/

Algorithms 2020, 13, 123 34 of 34

30. GitHub. VCRadSPM: Mining Sequential Patterns with VC-Dimension and Rademacher Complexity.
Available online: https://github.com/VandinLab/VCRadSPM (accessed on 10 April 2020).

31. SPMF Datasets. Available online: https://www.philippe-fournier-viger.com/spmf/index.php?link=
datasets.php (accessed on 10 April 2020).

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

https://github.com/VandinLab/VCRadSPM
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Sequential Pattern Mining
	Frequent Sequential Pattern Mining
	True Frequent Sequential Pattern Mining

	VC-Dimension
	Rademacher Complexity
	Maximum Deviation

	VC-Dimension of Sequential Patterns
	Compute the Sample Size for Frequent Sequential Pattern Mining
	Compute an Upper Bound to the Max Deviation for the True Frequent Sequential Patterns

	Rademacher Complexity of Sequential Patterns
	An Efficiently Computable Upper Bound to the Rademacher Complexity of Sequential Patterns
	Approximating the Rademacher Complexity of Sequential Patterns

	Sampling-Based Algorithm for Frequent Sequential Pattern Mining
	Algorithms for True Frequent Sequential Pattern Mining
	Experimental Evaluation
	Implementation and Environment
	Datasets
	FSP Mining
	TFSP Mining

	Sampling Algorithm Results
	True Frequent Sequential Patterns Results

	Discussion
	Missing Proofs
	References

