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Abstract: Soil temperature (ST) plays a key role in the processes and functions of almost all ecosystems,
and is also an essential parameter for various applications such as agricultural production, geothermal
development, and their utilization. Although numerous machine learning models have been used in
the prediction of ST, and good results have been obtained, most of the current studies have focused on
daily or monthly ST predictions, while hourly ST predictions are scarce. This paper presents a novel
scheme for forecasting the hourly ST using weather forecast data. The method considers the hourly
ST prediction to be the superposition of two parts, namely, the daily average ST prediction and the ST
amplitude (the difference between the hourly ST and the daily average ST) prediction. According
to the results of correlation analysis, we selected nine meteorological parameters and combined
two temporal parameters as the input vectors for predicting the daily average ST. For the task of
predicting the ST amplitude, seven meteorological parameters and one temporal parameter were
selected as the inputs. Two submodels were constructed using a deep bidirectional long short-term
memory network (BiLSTM). For the task of hourly ST prediction at five different soil depths at 30 sites,
which are located in 5 common climates in the United States, the results showed the method proposed
in this paper performs best at all depths for 30 stations (100% of all) for the root mean square error
(RMSE), 27 stations (90% of all) for the mean absolute error (MAE), and 30 stations (100% of all) for the
coefficient of determination (R2), respectively. Moreover, the method adopted in this study displays a
stronger ST prediction ability than the traditional methods under all climate types involved in the
experiment, the hourly ST produced by it can be used as a driving parameter for high-resolution
biogeochemical models, land surface models and hydrological models and can provide ideas for an
analysis of other time series data.

Keywords: soil temperature; machine learning; weather forecasting data; BiLSTM; soil depths

1. Introduction

Among the many soil factors, soil temperature (ST) is the most important, affecting the processes
and functions of almost all ecosystems [1], such as soil infiltration rates [2], soil respiration [3],
soil organic matter accumulation and degradation [4], soil chemical and physical reactions [5], land
surface hydrological processes, and land atmosphere interactions [6]. ST is extremely important to
the growth of crops [7], affecting their germination, root growth, and the absorption of nutrients [8].
Dang [9] reported that an increase in ST will reduce the growth cycle of crops and significantly increase
the yield. The ST is also an essential important parameter in a geothermal exploration [10], ground
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heat exchanger applications [11], thermal energy storage [12], ground source heat pump (GSHP)
systems [13], and other geothermal development and utilization applications.

The ST measurement system represents one of the most accurate and direct methods of ST
acquisition in the world. However, ST measurements are costly and time-consuming [14], and it is not
easy to obtain different large-scale depths of ST in real-time.

A machine learning method is an effective way to estimate the ST. This type of method predicts
the ST at different depths by establishing a nonlinear relationship between the input and output
data. The input parameters are usually easily obtained meteorological parameters involving a simple
calculation process and offering a high prediction accuracy. Feng [15] adopted four machine learning
algorithms for predicting the half-hourly ST at four different depths. The results show that the selected
machine learning method performs well for predicting the half-hourly ST at all depths. Xing [16]
designed a daily ST prediction model using a support vector machine (SVM) algorithm, which performs
well in the daily ST prediction tasks of 16 observation stations distributed throughout the United States.
Artificial neural network (ANN) are frequently used in ST prediction and have achieved good results.
Tabari [17] developed models for 1 day ahead ST predictions based on an ANN. Its performance is in
terms of the Nash–Sutcliffe co-efficient of efficiency values of >0.94 and a correlation co-efficient of
>0.96. Bilgili [18] compared the capability of linear repression, nonlinear repression, and an ANN at
different depths, and found that the accuracy of an ANN is better than that of the other two methods.
Wu [19] used an ANN to predict the monthly average ST at a depth of 10 cm. Compared with
multiple linear regression, the developed ANN achieves a good performance and robustness. In [20],
gene expression programming (GEP), an ANN, and an adaptive neuro-fuzzy inference system (ANFIS)
were used to estimate the monthly mean ST. The comparison shows that the ANN and ANFIS achieve
a better performance than the GEP model. Kisi [21] estimated the monthly ST using a multi-layer
perceptron (MLP), radial basis neural network (RBNN), generated regression neural network (GRNN),
and multiple linear regression (MLR) at different depths. The results show that the RBNN algorithm
achieves the highest prediction accuracy at depths of 5 and 10 cm, and an MLR and a GRNN are better
at ST prediction at depths of 50 and 100 cm.

Although many machine learning models have been used in the prediction of ST and good results
have been obtained, there are still some inherent problems. First, in a large number of studies, the input
parameters of the model were selected through a correlation analysis, and the ST was considered as the
output of the model. However, the correlation between meteorological parameters and the ST is not
the same owing to the difference in climate at different sites. As a result, a model that considers a single
correlation between meteorological parameters and the ST across different sites will suffer from obvious
limitations. Second, the input of hourly soil temperature can help the model to obtain high-resolution
simulation results in related studies such as using terrestrial biogeochemical models to simulate the
dynamic changes of N2O, CO, N2, and CH4 in soil [22–24], simulating soil respiration by land surface
models [25], and quantifying hydrological and biological processes in hydrological models [26,27].
However, most of the current studies have focused on daily or monthly ST predictions, and hourly
ST predictions remain scarce. Third, as a branch of machine learning, deep learning technology
performs well in nonlinear data processing, and therefore, has achieved success in predicting the solar
radiation [28–30], wind speed [31–33], and soil moisture [34], whereas studies on ST prediction are
relatively few in number.

In this research, we treat the hourly ST prediction as the sum of the daily average ST prediction and
ST amplitude prediction, and verify them at 30 sites located under different climates. The prediction
model was built using a bidirectional long short-term memory network (BiLSTM), which is a deep
learning technique for sequence learning, and although less commonly applied to ST predictions,
is inherently suitable for this domain.

The remainder of this article is organized as follows. Section 2 introduces the data applied in
this research. The algorithm for predicting the hourly soil temperature is introduced in Section 3.
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The experimental results and their analysis are presented in Section 4, and finally, Section 5 provides
some concluding remarks regarding this research.

2. Data

The measured ST were obtained from the National Water and Climate Center of the US Department
of Agriculture (https://www.wcc.nrcs.usda.gov/scan/). The agency has installed more than 200 sites
throughout the country to collect data on meteorology, soil, and solar radiation. We selected the hourly
data for 30 measurement sites, which are located in five common climate zones. Figure 1 shows the
identification numbers and geographic locations of the 30 measurement sites used in the study.
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Figure 1. Location and climate types of 30 measurement stations used in the present study.

The data-collection times and elevations of these stations are given in Table 1, and are classified
based on the Koppen climate classification method. This method involves a representation based
on three letters indicating the climatic conditions. The first letter indicates the major climate type,
which is one of the following: (A) equatorial, (B) arid, (C) warm temperature, (D) snowfall, and (E)
polar climates. The second and third letters indicate the precipitation conditions and temperature,
respectively. For example, BSk indicates that the region is located in an arid, cold temperature with a
stepped climate. For a detailed description of the climate classification, please refer to [35].

Table 1. Measurement stations used in the study.

Climate Type Site id Elevation (m) Period Site id Elevation (m) Period

BSk

2107 1221 2011~2019 2152 1322 2010~2019
2131 1251 2011~2019 2160 1779 2010~2019
2132 1718 2011~2019 2169 1477 2009~2019
2133 1558 2013~2019 2171 1595 2010~2019
2139 2131 2011~2019

BWh
2129 1526 2010~2019 2183 169 2012~2019
2140 1620 2011~2019 2185 806 2012~2019
2158 1628 2010~2019 2186 1110 2012~2019

Cfa

2013 235 2013~2019 2083 71 2011~2019
2037 37 2011~2019 2174 49 2010~2018
2070 50 2011~2017 2177 82 2015~2017
2076 215 2011~2019

Csa
2189 822 2012~2019 2218 1129 2015~2019
2215 2385 2015~2019

Dfa
2014 323 2010~2019 2147 336 2010~2015
2031 327 2010~2019 2196 328 2013~2019
2042 742 2010~2014

https://www.wcc.nrcs.usda.gov/scan/
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There will be missing values in the data set, which are caused by sensor failure, memory damage,
and other reasons. In order to avoid destroying the continuity of the time series data, we use MissForest
algorithm [36] to interpolate missing values. This method is a nonparametric interpolation method
based on random forest, which is suitable for both discrete variables and continuous variables, and can
be well applied to nonlinear data. After processing missing values, the valid data of 30 stations totaled
1,577,714 groups, including the hourly weather conditions such as the temperature, dew point, relative
humidity, wind speed, solar radiation, and soil temperature at 5, 10, 20, 50, and 100 cm, respectively.
Based on the existing data, we further calculated the month, day of the month, hour of the day, and ST
amplitude as supplementary data. The ST amplitude is a parameter defined in this paper, which is
used to describe the fluctuation of hourly ST relative to the average ST of the day, it is obtained by
subtracting daily average ST from each hourly ST.

We first determined the inputs of the model with a Pearson correlation coefficient [16], which can
reflect the degree of correlation between the two variables x and y, based on Equation (1). It is generally
believed that the absolute value of r is 0.0–0.2 indicates an extremely weak or no correlation between x
and y, 0.2–0.4 indicates a weak correlation, 0.4–0.6 indicates a moderate correlation, 0.6–0.8 indicates a
strong correlation, and 0.8–1.0 indicates an extremely strong correlation.

r =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi√
n
∑n

i=1 x2
i −

(∑n
i=1 xi

)2
√

n
∑n

i=1 y2
i −

(∑n
i=1 yi

)2
(1)

Figure 2 shows the correlation coefficient between the ST amplitude and meteorological parameters
for the different depths, in which the correlation coefficient greater than 0 indicates a positive correlation
between x and y, and less than 0 indicates a negative correlation. The parameters appearing between
-0.2 and 0.2 are month, day of the month, air temperature observed, wind direction average, wind
speed maximum, relative humidity, and dew point temperature, indicating that these parameters have
no correlation or have extremely weak correlation with ST amplitude for most depths.
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Figure 2. Correlation coefficients of (x) daily weather parameters and (y) soil temperature (ST)
amplitude for different depths.

Figure 3 shows the correlation coefficients between the daily average ST and the meteorological
parameters for the different depths. It can be seen that, except for the wind direction average, wind
speed maximum, and relative humidity, the other parameters are moderately or strongly correlated
with the daily average ST for most depths.
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Figure 3. Correlation coefficients of daily average (x) weather parameters and (y) ST for different depths.

Through the analysis of Figures 2 and 3, we delete the parameter in which the absolute value of
correlation coefficient is less than 0.2, and choose eight parameters as the input vector for predicting
ST amplitude. For the forecasting task of daily average ST, eleven parameters are selected as input.
Details of the input parameters are shown in Table 2, in which meteorological parameters are collected
by sensors at intervals of one hour.

Table 2. Input variables for the forecast models.

ST Amplitude Forecast Task Daily Average ST Forecast Task

Hour of the day Month
Air Temperature Maximum Day of the month
Air Temperature Minimum Air Temperature Observed

Wind Speed Average Air Temperature Maxium
Solar Radiation Average Air Temperature Minimum

Relative Humidity Minimum Wind Speed Average
Relative Humidity Maximum Solar Radiation Average

Vapor Pressure Dew Point Temperature
Relative Humidity Minimum
Relative Humidity Maximum

Vapor Pressure

3. Methodology

3.1. BiLSTM Networks

The structure of BiLSTM is shown in Figure 4a, and the structure of long short-term memory
network (LSTM) is shown in Figure 4b. In the LSTM structure, the output result at time t is only
related to time t − 1, whereas in the BiLSTM structure, the output result at time t is related to both t − 1
and t + 1, and this structure can effectively use all information of the past and future for training [37].
In [38] and [39], BiLSTM was used for time-series data processing, and it was found that BiLSTM is
faster and more accurate than LSTM and standard recurrent neural networks.
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Equations (2)–(5) describe the calculation process of BiLSTM, where ht is the output result of the
forward layer at time t, h′t is the output result of the backward layer at time t, ŷt is the network output
that combines ht and h′t , f and g are nonlinear activation functions, and the goal of network training is
to minimize the mean square error (MSE) function s based on the target value yt.

ht = f (UXt + Wht−1) (2)

h′t = f (U′Xt + W′ht+1) (3)

ŷt = g
(
V′h′t + Vht

)
(4)

s =
∑n

t=1(yt − ŷt)

n
(5)

3.2. Integrated BiLSTM Model

We proposed a novel method to predict the hourly ST, which includes two sub-models: The daily
average ST prediction model and the ST amplitude prediction model. The hourly ST estimation is the
summation of the daily average ST prediction results and ST amplitude prediction results, because in
the Section 2, we have defined that ST amplitude was obtained by subtracting the daily average ST
from the hourly ST. A flow chart of the model is shown in Figure 5, and the input parameters of the
two submodels are given in Table 2.Algorithms 2020, 13, x FOR PEER REVIEW 7 of 16 
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The topology of each sub-model is set to six layers, namely, an input layer with 12 features and
1 timestep; 4 hidden layers, in which the numbers of neurons of each layer are 14, 14, 14, and 6,
respectively; and an output layer with 1 neuron, the loss function of which is the MSE. In addition,
an adaptive moment estimation algorithm (Adam) [40] is selected as the optimizer.

3.3. Benchmark Models

We chose six benchmark algorithms to prove the relative advantages of the proposed method,
namely, three deep learning methods, i.e., LSTM, BiLSTM and deep nerual network (DNN), and three
traditional machine learning methods, random forest (RF), support vector regression (SVR), and linear
regression (LR). A brief introduction and the parameter selection of each algorithm are as follows.

The LSTM network is a special type of deep neural network proposed by Hochreiter and
Schmidhuber [41] in 1997. Because LSTM can solve tasks with a long time-lag well, it is widely used
in time-series data processing [42–46]. The topology of the LSTM is consistent with the subnetwork
described in Section 3.2.

The topology of BiLSTM, introduced in Section 3.1, is consistent with the subnetwork described
in Section 3.2.

DNN is a neural network with multiple hidden layers, which has strong nonlinear fitting ability
and has been successfully applied in prediction and classification tasks [47–50]. In order to ensure
fair comparison, we set the number of layers of DNN and the number of neurons in each layer to be
consistent with the subnetwork described in Section 3.2, and choose rectified linear units (RELU) [51]
as the activation function.

RF is an excellent algorithm used in machine learning. It has the advantages of a fast learning
speed, insensitivity to noise, less overfitting, and can achieve good results without numerous parametric
adjustments. Through a grid search of the search variable space, the number of decision trees was set
to 10, and the tree depth was set to 20.

An SVR is one of the most important algorithms in machine learning. It can deal with
high-dimensional, heterogeneous, and scarcely labeled datasets extremely efficiently, and can also
successfully adapt to specific applications [52]. In our experiment, the kernel function and penalty
factor are set to a radial basis function (RBF) and 1, respectively, which are determined through a grid
search of the variable search space.

LR is a regression method widely used in practical applications and does not require a setting of
the parameters.

The RF, SVR, and LR were built using scikit-learn, whereas the LSTM, BiLSTM, and DNN networks,
based on Theano, were developed using Keras.

In the experiment, the data from each site were divided into two parts, with the first 80% of the
data serving as the training set and the second 20% as the test set. When executing the ST amplitude
prediction model, all input data need to be normalized to [−1, 1], and, when running the daily average
ST prediction model, all input data need to be normalized to [0, 1]. The month, hour of the day,
air temperature maximum, air temperature minimum, solar radiation, relative humidity minimum,
relative humidity maximum, and vapor pressure are used as the inputs of the benchmark algorithm,
and the ST temperature of different depths is the output of the model. When executing the benchmark
algorithm, the data need to be normalized to [0, 1]. Because the performances of the integrated
BiLSTM, BiLSTM, and LSTM are significantly affected by the initialization weight matrix, we ran
these algorithms ten times on the same data and computed the mean of the results to ensure a fair
comparison with traditional machine learning methods.

4. Results

In this paper, a novel integrated BiLSTM model is proposed that combines the daily average ST
prediction and the ST amplitude prediction to obtain the hourly ST. Compared with the traditional
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machine learning model, the integrated BiLSTM exhibits obvious advantages in predicting the hourly
ST for various climates.

Our results are presented in four aspects. First, the proposed algorithm was used to predict the ST
under different observations, and the results were compared with those of other traditional algorithms.
Second, the ST prediction performances of each algorithm under different soil depths were compared.
Third, the ST prediction performances of each algorithm under different climate types were compared.
Finally, the algorithm proposed in this paper was compared with the algorithms in other literatures.

4.1. Model Comparisons

The prediction performance of different models at each observation station are shown in Figures 6–8.
As presented in Figure 6, the best performance is obtained by the integrated BiLSTM model, the root
mean squared error (RMSE) of which at all 30 sites is lower than that of the benchmark algorithm,
whereas the worst performance is obtained by the LR algorithm, the RMSE of which is the highest at
all sites. According to the statistics, based on the RMSE index, the integrated BiLSTM is 4.8–18.7%,
8.8–23.6%, 20.9–25.7%, 12.8%–25.1%, 17.0–45.0%, and 42.0–65.1% more accurate than LSTM, BiLSTM,
DNN, RF, SVR, and LR, respectively.

The mean absolute error (MAE) of every model for each observation station is given in Figure 7.
As can be seen, integrated BiLSTM performs better than the benchmark models at 27 observation sites
(90% of the total number of stations), and based on the MAE index is 2.6–18.7%, 5.7–21.5%, 20.3–25.7%,
9.8–22.1%, 17.5–44.1%, and 42.2–65.1% more accurate than LSTM, BiLSTM, DNN, RF, SVR, and LR,
respectively. At station 2215, the BiLSTM algorithm obtains the best MAE value of 1.06 ◦C, whereas the
MAE value of the integrated BiLSTM algorithm is 1.07 ◦C, which is only 0.01 ◦C higher than that of
the BiLSTM. By contrast, LSTM obtained the lowest MAE of 1.14 ◦C and 1.12 ◦C at the two stations
2031 and 2147, which are 0.06 ◦C and 0.02 ◦C lower than that of the integrated BiLSTM, respectively.
In other words, the difference between the integrated BiLSTM and the best algorithm is not obvious at
these three stations.
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Figure 8 shows the R2 generated by every model at each observation, and as the figure indicates,
the integrated BiLSTM was the best model with the highest R2 value at each observation station.
According to statistics, based on the R2 index, the integrated BiLSTM is 1.3–4.8%, 2.4–8.0%, 5.1–8.3%,
3.2–9.3%, 4.4–45.0%, and 23–57.4% more accurate than LSTM, BiLSTM, DNN, RF, SVR, and LR,
respectively. The performance of the LSTM model is slightly better than that of the BiLSTM, and the
performance of the LR model is still not ideal. We also noted that the R2 value of the LR is less than



Algorithms 2020, 13, 173 9 of 15

zero at the two sites labeled 2218 and 2147, which indicates that LR model is unsuitable for processing
data with a nonlinear correlation.

Although the RF model is not as good as the integrated BiLSTM, LSTM, and BiLSTM with respect
to the three indicators, RMSE, MAE, and R2, it can be clearly seen from Figures 6–8 that favorable
agreements exist between the results of the RF model and these three deep learning models, and the
prediction results at multiple sites are better than DNN, which confirms the potential of using the RF
model for an estimation of the hourly ST.
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The best and worst statistical results for each model, and the identification number of the
observation sites that produced these results, are given in Tables 3 and 4, respectively. The RMSE,
MAE, and determination coefficient (R2) are used as the evaluation criteria. From Tables 3 and 4,
we can clearly see that the performance of the integrated BiLSTM model developed in this study
showed the best results. For the 30 observation stations involved in the experiment, the RMSE, MAE,
and R2 values obtained for the integrated BiLSTM are within the range of 0.95–2.53 ◦C, 0.76–1.99 ◦C,
and 0.823–0.976, respectively.
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Among the deep learning technology, DNN algorithm is not as good as integrated BiLSTM, LSTM
and BiLSTM for predicting hourly ST. As mentioned above, the results of DNN are sometimes even
worse than the RF, as can be seen from Table 4, the worst R2 obtained by DNN is 0.613, while the worst
R2 of RF is 0.656.

Table 3. Best statistical results of each model.

Method
RMSE MAE R2

Best Site id Best Site id Best Site id

Integrated BiLSTM 0.95 ◦C 2042 0.76 ◦C 2042 0.976 2171
LSTM 1.22 ◦C 2042 0.93 ◦C 2042 0.964 2171

BiLSTM 1.29 ◦C 2083 0.95 ◦C 2083 0.965 2171
DNN 1.22 ◦C 2042 0.97 ◦C 2042 0.961 2171

RF 1.42 ◦C 2042 1.07 ◦C 2083 0.954 2171
SVR 1.56 ◦C 2013 1.24 ◦C 2013 0.953 2183
LR 2.33 ◦C 2083 1.86 ◦C 2083 0.906 2183

Table 4. Worst statistical results of each model.

Method
RMSE MAE R2

Worst Site id Worst Site id Worst Site id

Integrated BiLSTM 2.53 ◦C 2183 1.99 ◦C 2183 0.823 2014
LSTM 3.03 ◦C 2183 2.44 ◦C 2183 0.701 2014

BiLSTM 3.22 ◦C 2183 2.55 ◦C 2183 0.658 2218
DNN 3.21 ◦C 2028 2.80 ◦C 2028 0.613 2014

RF 2.90 ◦C 2218 2.26 ◦C 2218 0.656 2014
SVR 3.33 ◦C 2218 2.66 ◦C 2218 0.388 2218
LR 4.87 ◦C 2186 4.03 ◦C 2186 −0.311 2218

The statistic performance of each model for an estimation of the hourly ST is shown in Table 5,
which are the average performance of each model after 10 runs. According to Table 5, the maximum
R2, and the minimum RMSE and MAE (the best results), with values of 0.923, 1.53 ◦C, and 1.22 ◦C,
respectively, were obtained using the integrated BiLSTM. By contrast, the minimum R2, and the
maximum RMSE and MAE values, were found to be 0.518, 3.43 ◦C, and 2.76 ◦C when using the LR.
The integrated BiLSTM, BiLSTM, and LSTM perform better than the DNN, RF, SVR, and LR. DNN is
inferior to LSTM-based method in processing time series data. Among the deep learning methods,
the integrated BiLSTM method achieves the best prediction results for the hourly ST, whereas within
the range of traditional machine learning, the random forest model achieves the best performance.

Table 5. Statistic performance of each model for estimation of hourly soil temperature.

Method RMSE(◦C) MAE(◦C) R2

Integrated BiLSTM 1.53 1.22 0.923
LSTM 1.76 1.39 0.896

BiLSTM 1.85 1.44 0.882
DNN 1.99 1.58 0.865

RF 1.92 1.49 0.874
SVR 2.18 1.75 0.808
LR 3.43 2.76 0.518

4.2. Model Performance at Different Depths

Figure 9 shows the performance of each model in estimating the hourly ST at different soil
depths. With respect to RMSE, MAE, and R2, the integrated BiLSTM models generally show the best
performance at all soil depths, and the LSTM model is the second-best prediction algorithm.
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Except for RF, the accuracy (based on the RMSE and MAE) of the other models increases with an
increase in depth. Taking the integrated BiLSTM model as an example, the highest RMSE and MAE
values (the worst results) are obtained at 5 cm, whereas the lowest values (the best results) are obtained
at 100 cm. With respect to R2, the accuracy of the integrated BiLSTM model increases from 5 to 20 cm,
and decreases from 50 to 100 cm, whereas the R2 values of the other models decrease with an increase
in depth. This result differs from the conclusions in [21] and [53], the experimental results of which
show that the accuracy of the machine learning algorithm will gradually decrease at a soil depth of 10
to 100 cm. This may be related to the different models used and the different climatic conditions.

We noticed that the lowest RMSE value obtained by the integrated BiLSTM is 2.04 ◦C at 5 cm,
which is 0.1 ◦C lower than that obtained by the second-best model. The difference gradually increases
to 0.31 ◦C at 50 cm, and then decreases to 0.23 ◦C at 100 cm. In other words, from 5 to 50 cm,
the difference between the integrated BiLSTM model and the second-best model widens, indicating
that the integrated BiLSTM has potential for deeper ST prediction tasks.

4.3. Model Performance at Different Climates

The statistic performance of each algorithm for predicting the hourly ST under different climates is
shown in Tables 6–8. As can be seen from these tables, the best performances were generally obtained
using the integrated BiLSTM. This produced the best results for four climates (80% of the total number)
for RMSE, five climates (100% of the total number) for MAE, and five climates (100% of the total
number) for R2, respectively. The LR was the worst model, producing the minimum R2, and the
maximum RMSE and MAE, under all climate types involved in the experiment. With respect to the
RMSE, the BiLSTM performed slightly better than the integrated BiLSTM under the BWh climate.

For the five models, namely, integrated BiLSTM, LSTM, BiLSTM, DNN, and RF, the lowest RMSE
and lowest MAE were obtained under the Dfa climate type, whereas the highest RMSE and MAE were
generated under the BWh or Csa climate, which does not mean that these models perform better under
the Dfa climate. Based on the statistics, the average soil temperature measured in the Dfa climate is
12.21 ◦C, whereas the average soil temperatures of Bwh and Csa are 21.68 ◦C and 21.72 ◦C, respectively.
If the relative error (the ratio of the error to the true value) is calculated, we can see that the relative
error of each algorithm is the highest in the Dfa climate. In other words, the performance of each model
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under a Dfa climate (snow areas) is not as good as that in warm or dry areas (BSk, BWh, Cfa, and Csa).
It is also clear from Table 8 that the R2 of these five models is the lowest under the Dfa climate type.

Table 6. Average RMSE of each model for different climate types (◦C).

Method BSk BWh Cfa Csa Dfa

Integrated BiLSTM 1.56 1.82 1.34 1.63 1.25
LSTM 1.86 2.09 1.51 1.92 1.44
BiLSTM 1.92 1.75 1.57 2.07 1.54
DNN 2.13 2.16 1.60 2.35 1.56
RF 2.03 2.17 1.67 2.08 1.64
SVR 2.25 2.46 1.82 2.64 1.90
LR 3.56 3.81 2.88 4.16 3.04

Table 7. Average MAE of each model for different climate types (◦C).

Method BSk BWh Cfa Csa Dfa

integrated BiLSTM 1.27 1.44 1.07 1.30 1.00
LSTM 1.47 1.67 1.20 1.50 1.11
BiLSTM 1.50 1.74 1.22 1.57 1.19
DNN 1.68 1.72 1.26 1.84 1.22
RF 1.58 1.69 1.30 1.61 1.26
SVR 1.82 2.02 1.44 2.11 1.51
LR 2.86 3.09 2.29 3.30 2.48

Table 8. Average determination coefficient (R2) of each model for different climate types.

Method BSk BWh Cfa Csa Dfa

Integrated BiLSTM 0.94 0.94 0.94 0.89 0.87
LSTM 0.91 0.92 0.92 0.83 0.83
BiLSTM 0.91 0.91 0.91 0.81 0.80
DNN 0.89 0.92 0.90 0.78 0.77
RF 0.89 0.92 0.89 0.80 0.78
SVR 0.86 0.88 0.87 0.56 0.67
LR 0.65 0.69 0.67 −0.02 0.15

4.4. Compared with the Other Literatures

Feng [15] uses four machine learning methods to predict the half hourly ST of a maize field in
northern China. The results show that the four methods can provide ideal ST prediction at all depths,
and the extreme learning machine (ELM) performs best. We compared the prediction results of our
proposed algorithm at 5 cm, 10 cm, and 20 cm (only these three depths are involved in both studies)
with Feng’s optimal prediction results. The results are shown in Table 9. Our proposed method is less
accurate than Feng’s when the soil depth is 5 cm, but when the soil depth is 10 cm and 20 cm, it is more
accurate than the optimal method mentioned in his article.

Table 9. Comparison of the results of the two studies.

Soil Depth Feng’s Research Our’ Research

RMSE MAE RMSE MAE

5 cm 1.85 1.44 2.04 1.63
10 cm 2.05 1.6 1.69 1.34
20 cm 2.47 1.91 1.55 1.44
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5. Conclusions

Although numerous machine learning models have been used and have achieved good results for
predicting the monthly or daily ST, hourly ST predictions have been scarce.

This paper presented a novel scheme for forecasting the hourly ST at five different soil depths in
30 sites, located under five common climates in the United States. Differing from other studies that
consider meteorological parameters as the input of the model and the ST as the output, our proposed
method includes two submodels for the daily average ST prediction and ST amplitude prediction.
The hourly ST was obtained by superposing the prediction results of the two submodels. Through an
input–output correlation analysis, we selected nine meteorological parameters and two temporal
parameters as the inputs of the daily average ST prediction model, and seven meteorological parameters
and one temporal parameter as the inputs of the ST amplitude prediction model. The experimental
results show that the proposed model produced the best results for 30 stations (100%) for RMSE,
27 stations (90%) for MAE, and 30 stations (100%) for R2, respectively. We compared the prediction
results of each algorithm for the ST at different depths, and demonstrated that the integrated BiLSTM
developed in this study is better than the benchmark algorithm in terms of ST prediction at the five
soil depths involved in the experiment, and has greater potential than the benchmark algorithm in
terms of a deeper ST prediction. By comparing the prediction results according to the climate type,
it was found that the algorithm proposed in this study performs better than the benchmark algorithm
under all climate types involved in the experiment, especially in warm or dry areas.

Although we verified the effectiveness of the model with hourly ST predictions, our method is also
applicable to the sequence learning of other data, such as the wind speed, humidity, or temperature.

In future work, we will improve the prediction accuracy of the model for ST by enriching data
sets, and adjusting the structure of neural network.
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