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Abstract: The paper addresses issues associated with implementing GPC controllers in systems with
multiple input signals. Depending on the method of identification, the resulting models may be of
a high order and when applied to a control/regulation law, may result in numerical errors due to the
limitations of representing values in double-precision floating point numbers. This phenomenon is
to be avoided, because even if the model is correct, the resulting numerical errors will lead to poor
control performance. An effective way to identify, and at the same time eliminate, this unfavorable
feature is to reduce the model order. A method of model order reduction is presented in this paper that
effectively mitigates these issues. In this paper, the Generalized Predictive Control (GPC) algorithm is
presented, followed by a discussion of the conditions that result in high order models. Examples are
included where the discussed problem is demonstrated along with the subsequent results after the
reduction. The obtained results and formulated conclusions are valuable for industry practitioners
who implement a predictive control in industry.

Keywords: high order model; model predictive control (MPC); generalized predictive control (GPC);
numerical problems

1. Introduction

Model Predictive Control (MPC) algorithms [1–6] are frequently used in industrial applications [7],
especially as a technique for efficient control of Multiple-Input Multiple-Output (MIMO) processes.
Compared with the classical PID controller, MPC algorithms give very good control quality and
tuning is much easier, especially for non-minimum phase objects, objects with long time delays, as
well as MIMO objects with internal coupling between inputs and outputs. Furthermore, in MPC,
unlike PID control, all necessary constraints may be incorporated systematically in the control
law. Additionally, MPC can be applied to nonlinear systems [8–10] using the structure of fuzzy
models [11–17] or online linearization of the process model at each MPC algorithm iteration [18,19].
In large-scale industrial applications, MPC algorithms are implemented in Distributed Control Systems
(DCS) using Programmable Logic Controllers (PLC) [20] or specialized industrial controllers [21].
Whereas in embedded systems, microcontrollers [22] or Field Programmable Gate Arrays (FPGA) [23]
are typically used as hardware platforms.

Recent years have seen an increase in the development of predictive control techniques [24–26]
used in both the lower levels, which have typically been thought of as base control, as well as the
upper-level supervisory control layer, which may also include the optimization functions. It is worth
noting that the explosive increase in computing power and capabilities of embedded controllers is
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causing the boundaries of the traditional layered control structure [27] to become blurred as the specific
functions performed at each layer become less distinct.

This is one of the main reasons for the popularization of multidimensional predictive
control techniques.

Despite these points, the use of advanced predictive control techniques can be difficult in some
cases. There is extensive literature related to the limitations, advantages, and disadvantages of the
use of advanced control systems. The authors draw attention to modeling problems and issues of
inaccuracy of internal models used in predictive controllers [28,29]. The issue of calculations and
memory requirements needed to run predictive controllers was also discussed [21]. In addition to
general problems, there are problems that appear only for certain types of predictive control algorithms.

This work discusses the implementation of the General Predictive Control (GPC) algorithm for
a multi-input process. The GPC algorithm originated in the late 1980s [30–33] and historically it is
included in the second-generation algorithms [26]. The algorithm uses an internal model in the form
of a discrete transfer function that defines the dynamic input-output relationships between the model
inputs and outputs. The model inputs are the control system Manipulated Variable (MV) outputs as
well as the Disturbance Variables (DV). The model outputs are the Controlled Variables (CV), which are
the inputs to the control system. Due to the relatively simple yet universal form of the internal model,
this algorithm has become very popular and particularly in the academic community. It is worth
mentioning that the first theoretical studies proving stability were derived for algorithms derived from
the GPC algorithm. The most important ones are CRHPC (Constrained Receding Horizon Predictive
Control) [34] and SIORHC (Stabilizing Input Output Receding Horizon Control) [35], which were
based on the concept of additional equalization constraints of the output signal.

The GPC algorithm uses a transfer function model to predict future CV values.
Unfortunately, in some cases, particularly when the process has many inputs, the resulting internal
model may be of high order. This can lead to numerical errors and ultimately to instability of the
algorithm. The aim of this article is to show this undesirable property, which was noticed during the
design phase of a GPC algorithm in a DCS system and persisted during the implementation phase at
the sites. This property is visible only in certain conditions, which unfortunately quite often occur
during implementation of advanced automation solutions in the real objects and are not referred in
the literature. Additionally, this situation can be difficult to recognize since the effects are gradual
in nature. Numerical problems appear gradually with increasing model order and occur during the
internal model prediction stage of which the results are not directly visible outside of the algorithm.
This subject is approached from the perspective of an actual control system project and utilizes the
context of the GPC algorithm to illustrate the point. The solution presented is intended to be a practical
solution. However, the problem does provide motivation for additional work in the area of prediction
algorithms and their methods of implementation.

In the following sections of the paper, we will explore the conditions that result in high order
models as well as present specific examples to illustrate the problem. Several methods that can be
used to reduce the model order are discussed. A practical approximation method that is based on
engineering judgement is presented, which that avoids resulting high order models. The presented
method of order reduction is one of the possible approaches. This approach was chosen to be easy
to apply by process engineers. There are many other reduction methods listed in this article but not
investigated in detail since the aim of this article is not to compare the quality of the applied model
reduction methods but to show the dangerous properties of the GPC algorithm and to justify the
necessity of taking certain actions. The model order reduction method has its limitations and does not
exhaust all possibilities of solving the problem. Alternative approaches are listed in the summary.

All results presented in this paper comes from simulations performed in MATLAB.
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2. GPC Problem Formulation

2.1. Predictive Controller Formulation

Let nu and ny denote the number of process inputs (manipulated variables) and outputs

(controlled variables), respectively, i.e., u = [u1 . . . unu ]
T, y =

[
y1 . . . yny

]T
. In the more general

formulation of MPC, the vector of decision variables calculated at each sampling instant, k = 0, 1, 2, . . . ,
has the length of nuNu and consists of the current and future increments of the manipulated variables

∆u(k) =


∆u(k|k)

...
∆u(k + Nu − 1|k)

 (1)

where ∆u(k + p
∣∣∣k) denotes increments of the manipulated variables for the future sampling instant

k + p calculated at the current instant k, Nu is the control horizon. The rudimentary MPC optimization
problem is:

min
∆u(k)


N∑

p=1

‖ysp(k + p
∣∣∣k) − ŷ(k + p

∣∣∣k)‖2Ψp
+

Nu−1∑
p=1

‖∆u(k + p
∣∣∣k)‖2Λp

 (2)

subject to
umin

≤ u(k + p
∣∣∣k) ≤ umax, p = 0, . . . , Nu − 1

− ∆umax
≤ u(k + p

∣∣∣k) ≤ ∆umax, p = 0, . . . , Nu − 1

The symbols ysp(k + p
∣∣∣k) and ŷ(k + p

∣∣∣k) denote the set-point trajectory and the predicted trajectory
for the sampling instant k + p calculated at the instant k, the prediction horizon is N. The weighting
matrices Ψp = diag

(
ψp,1, . . . ,ψp,ny

)
and Λp = diag

(
λp,1, . . . ,λp,nu

)
are of dimensionality ny × ny and

nu × nu, respectively. The minimal and maximal values of the manipulated variables are denoted by
umin and umax, respectively; the maximal rate of change of the manipulated variables is ∆umax. At each
sampling instant, having calculated nuNu future increments of the manipulated variables over the
control horizon (1), only the increments for the current time step are applied to the process.

The basic optimization problem (2) is the same in all MPC algorithms, even though the
implementation details differ due to the fact that different types of dynamical models utilize different
prediction equations [1,2,36]. When the linear model is used for prediction, a Quadratic Programming
(QP) optimization problem results from the control law formulation, which may be solved by readily
available solvers. Although the QP solver results in a more mathematically tractable problem,
it does impose increased requirements on memory resources and CPU capacity. In typical industrial
applications, MPC with on-line quadratic optimization is only practical for rather moderate numbers
of process inputs and outputs [3]. Furthermore, the prediction horizon and particularly the control
horizon have a significant impact on the resulting computational complexity and execution time
necessary to complete the calculations at each sampling instant, which imposes limits on the control
system’s ability to implement the optimization problem in real-time.

2.2. Construction of GPC Algorithm

In the GPC algorithm, the dynamics of the control object are modeled in the form of a discrete
transfer function. In order to simplify the explanation, the model in the structure of Multiple Input
Single Output (MISO) is presented in (3):

ŷk = −ATYk−1 + B∆UMV_P
k + D∆UDV_P

k (3)
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A is a vector of model coefficients associated with historical values of the output given by (4):

A =


a1
...

amax_n

 (4)

where max_n defines the number of the coefficients and order of the model denominator. Yk−1 is a
vector of the past values of model outputs given by (5):

Yk−1 =


yk−1

...
yk−max_n

 (5)

B is a vector of model coefficients associated with historical values of the inputs (MVs signals) given
by (6):

B =


B(0)

...
B(max_m)

 =




b(1)0

...

b(nMV)
0


...

b(1)max_m
...

b(nMV)
max_m




(6)

max_m defines the maximum number of coefficients for the MV inputs (model order), nMV defines
number of MVs inputs. Vector of the past values of MVs is given by (7), where mv1 to nMV define
index of MV inputs, delaymv1 to delaynMV defines delay values for each MV inputs.

∆UMV_P
k =




∆u(mv1)

k−delaymv1
...

∆u(nMV)

k−delaynMV


...

∆u(mv1)
k−max_m−delaymv1

...

∆u(nMV)

k−max_m−delaynMV





(7)

D is a vector of model coefficients associated with the historical value of the Disturbance Variable
inputs (DV signals) given by (8):

D =


D(0)

...
D(max_l)

 =




d(1)0

...

d(nDV)
0


...

d(1)max_l
...

d(nDV)

max_l




(8)
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max_l defines the maximum number of coefficients for the DV inputs (model order), nDV defines
number of DV inputs. The vector of the past values of DVs is given by (9), where dv1 to nDV define
the index of DV inputs, delaydv1 to delaynDV defines delay values for each of the DV inputs.

∆UDV_P
k =




∆u(dv1)

k−delaydv1
...

∆u(nDV)

k−delaynDV


...

∆u(dv1)
k−max_l−delaydv1

...

∆u(nDV)

k−max_l−delaynDV





(9)

In each timestep, the GPC algorithm solves the optimization problem defined by (2). The algorithm
calculates the optimal trajectory of the CVs, which minimizes the difference between setpoint and
predicted model outputs while minimizing the changes of MVs signals. The predicted model outputs
are calculated using general model formula (3) based on past outputs of MVs and DVs values and
predicted (i.e., calculated by GPC algorithm) MVs. The accuracy of the model predictions is critical to
the correct operation of the GPC algorithm.

3. Process Identification

GPC control algorithm is based on a discrete time model. Although this type of model can be
obtained directly from mathematical or physics equations, in actual practice, it is more common to
obtain the discrete time model empirically using a system identification process. The complexity of
industrial processes typically requires that the model be constrained to be a maximum of 3rd order to
accurately capture the relationship between input and output. The generic form of model is shown
in (10):

Y(s)
U(s)

= Gain ·
(R1s + Q1)(R2s + Q2)

(T1s + 1)(T1s + 1)(T1s + 1)
e−st (10)

where Q1 and Q2 can be equal −1, 0 or 1. The parameters R1, R2, T1, T2, and T3 and process delay in
the real project are identified experimentally, where the experiment depends on the specific industrial
installation and used equipment.

Two approaches are used to identify models. The first one assumes that it is possible to stimulate
all input signals simultaneously in such a way that the contribution of each individual term of the
transfer function can be isolated. This is not always possible and is particularly difficult during closed
loop operation.

The second method is based on the identification of SISO models. In this method, the relationships
between all inputs and outputs are identified independently using bump-test experiments on the actual
plant and typically without closed loop control—usually by placing the associated control loops in
manual. The bump-test is accomplished by applying an excitation signal to each input, u (n), where the
excitation signal is a step input. In actual practice, a true step may not be realizable, but a signal that
closely approximates a step typically provides acceptable results. The model structure for one output
is shown in Figure 1.

The identification of individual models is more effort-intensive but is straightforward and intuitive
to understand, and it eliminates the problem of the influences of individual inputs on each other.
This type of modeling is widely used in industry for model-based control. The model presented in
Figure 1 cannot be applied directly to the GPC algorithm as the transfer function model must be
reduced to a common denominator to match the general form shown in (3).
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If every transfer function of the SISO model can be described as a quotient, the nominator N and
the denominator D as showed below (11):

Tx(s) =
Nx(s)
Dx(s)

(11)

the sum of e.g., 3 models reduced to the common denominator is shown in (12).

T(s) =
N1(s) ·D2(s) ·D3(s)
D1(s) ·D2(s) ·D3(s)

+
N2(s) ·D1(s) ·D3(s)
D1(s) ·D2(s) ·D3(s)

+
N3(s) ·D1(s) ·D2(s)
D1(s) ·D2(s) ·D3(s)

(12)

This process of reducing the models to a common denominator is critical because it can lead to
high-order models and consequently to numerical issues in the actual implementation in software.

4. Example Models

4.1. Two Input-Two Output Model

This example utilizes a model with two inputs and two outputs. Both outputs depend on inputs
in the same way, i.e., the model consists of two identical MISO models. The relationship between each
input and output is described by independent transfer functions given by (13) and (14):

T1(s) =
Y(s)

U1(s)
= −1

(120s− 1)(280s + 1)
(100s + 1)(150s + 1)(200s + 1)

(13)

T2(s) =
Y(s)

U2(s)
= −1

(20s− 1)(40s + 1)
(50s + 1)(70s + 1)(180s + 1)

(14)

The transfer functions used in the examples structurally correspond to the third order models
used in the DCS software to identify industrial process models given by (10). The values of time
constants used in the examples were invented to show the problem of creating high-order models.
Each sub-model was discretized with sample times of 2s and simulated as a step response for an 1800 s
time-horizon, which is 900 time-steps, shown in Figure 2.
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4.2. Transformation to GPC Internal Model Format

In the next step, the models are reduced to a common denominator and added as shown in (15) in
order to meet requirements for the GPC internal model form shown in (3):

T(s) = T1(s) + T2(s) (15)

As a result, a 6th order model was obtained; a step response of the model is shown below in
Figure 3.
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GPC controller with a 6th order internal model was simulated in the closed loop; the following
values of tuning parameters were used: control horizon Nu = 20, prediction horizon N = 400,
and matrix R as a unit matrix. The original model shown in (12), which was before the reduction to
a common denominator, was used as the plant in the simulation, where each input-output relationship
is simulated independently using (15). The closed loop operation is stable, and the GPC algorithm
works correctly. The results are shown in Figures 4 and 5.
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The same experiment was repeated for a model the included an additional input. The results are
discussed in the next section.

4.3. Three Input-Three Output Model

The model presented in Section 4.1 was extended about one more input, as described by transfer
function T3(s) (16):

T3(s) =
Y(s)

U3(s)
=

1
(10s + 1)(30s + 1)(60s + 1)

(16)

As in the two input-two output case, each sub-model was discretized with a sample time of
2 s. and the step response was simulated over an 1800 s time horizon, which again is 900 time-steps.
The resulting step response from each input is presented in Figure 6.
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Figure 6. Step response for T1, T2, and T3 transfer functions simulated for 900 time-steps.

As in the previous example, the models were reduced to a common denominator and added as
shown in (17) in order to meet the requirements for the GPC internal model form shown in (3).

T(s) = T1(s) + T2(s) + T3(s) (17)

This step results in a 9th order model, which yields numerical errors during the closed-loop
simulation. Simulation of transfer function T(s) for 1800 s (900 steps) is presented in Figure 7.
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Figure 7. Step response of the 9th order model after reduction to common denominator simulated for
900 time-steps.

This example shows that even a correctly executed identification experiment that results in
mathematically correct SISO models may eventually lead to a situation in which the internal model is
incorrect due to the effects of the high order model. The model’s irregularities result from numerical
problems and are visible only during simulation of the model in the GPC internal model format.
This unfavorable property must be correctly identified at the stage of synthesis of the control
algorithm. In the event of this unfavorable situation, appropriate remedial measures must be taken.
Otherwise, the overall control performance will be negatively impacted, and the closed loop response
of the resulting predictive controller may be unstable. This situation is showed in the next simulation.

The resulting GPC controller, with the 9th order internal model, was simulated in closed loop
and the three individual modes, before the reduction to common denominator, were used as the
plant. The results of the simulation are shown in Figures 8 and 9. As can be easily seen, the control
signals are not smooth, resulting from numerical issues. The same experiment was repeated with
larger values in the MV penalty matrix R with similar results. The poor performance is caused by
numerical issues associated with the simulation using a high order internal model of the GPC controller.
Furthermore, the addition of another input further increases the transfer function order and leads to
complete destabilization of the algorithm in closed loop.
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Figure 8. GPC with the 9th order internal model—closed loop simulation of 300 time-steps; dashed line
is a set point, solid is a CV, and control parameters as: control horizon Nu = 20, prediction horizon N = 400,
and the R matrix = identity matrix.
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Figure 9. GPC with the 9th order internal model—closed loop simulation of 300 time-steps, trend for
MVs signals. Controller parameters: control horizon Nu = 20, prediction horizon N = 400, and the
R matrix = identity matrix.

The problem outlined above can be solved in several ways. The methods of model order reduction
may be considered as the first solution. Linear systems have seen a wide variety of reduction techniques
such as modal/eigenvalue truncation [37], Lyapunov balanced truncation [38], frequency weighted
model reduction [39], normalized co-prime factorization [40], moment matching [41], optimal Hankel
approximations [42], Karhunen-Loève (proper orthogonal decomposition (POD)) [43], approximation
by a lower order time-delay model [44], etc. However, these methods require specialized knowledge
in detailed mathematics. In this paper, we strive to find an effective engineering method that can be
utilized by engineers and practitioners in the industry.

5. Model Order Reduction Method

The 9th order model that results from combining (13), (14), and (16) to a common denominator
can be reduced to a lower order model by utilizing an approximation of the original transfer function.
This method is not a mathematically rigorous method, but rather is meant to be a practical method that
is based on engineering judgement and simulation. This method may require some trails and error
iterations to obtain the desired closed loop response. In this example, each 3rd order SISO model will
be approximated independently by a 2nd order SISO model. The approximation is made based on an
engineering judgment driven approximation method consisting of removing similar time constants
from the nominator and denominator of transfer function or replacing these three-time constants by
two slightly bigger ones. The reduced transfer functions are defined by Equations (18), (19), and (20):

T1(s) =
Y(s)

U1(s)
= −1

(120s− 1)
(90s + 1)(110s + 1)

(18)

T2(s) =
Y(s)

U2(s)
= −1

(20s− 1)
(80s + 1)(180s + 1)

(19)

T3(s) =
Y(s)

U3(s)
=

1
(40s + 1)(60s + 1)

(20)

The quality of the model after the order reduction step was verified by simulation. The results are
shown in Figures 10–12.
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Figure 10. Comparison of original and T1 and after order reduction (black line)—simulation of
900 time-steps.
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Figure 11. Comparison of original and T2 and after order reduction (black line)—simulation of
900 time-steps.

Algorithms 2020, 13, x FOR PEER REVIEW 11 of 16 

The quality of the model after the order reduction step was verified by simulation. The results 
are shown in Figures 10–12. 

 
Figure 10. Comparison of original and T1 and after order reduction (black line)—simulation of 900 
time-steps. 

 
Figure 11. Comparison of original and T2 and after order reduction (black line)—simulation of 900 
time-steps. 

 
Figure 12. Comparison of original and T3 and after order reduction (black line)—simulation of 900 
time-steps. 

0 100 200 300 400 500 600 700 800 900
step

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

T1(s)
T1(s) - reduced

0 100 200 300 400 500 600 700 800 900
step

-0.2

0

0.2

0.4

0.6

0.8

1
T2(s)
T2(s) - reduced

0 100 200 300 400 500 600 700 800 900
step

0

0.2

0.4

0.6

0.8

1

1.2
T3(s)
T3(s) - reduced

Figure 12. Comparison of original and T3 and after order reduction (black line)—simulation of
900 time-steps.

The results of the simulation are very good. In practice, the approximation of the 3rd order model
with a 2nd order model usually leads to good results. In the next step, three 2nd order SISO models
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were reduced to a common denominator and added to meet the requirements for the GPC model form
(3). This resulted in a 6th order reduced model and this reduced model is compared with the original
9th order model that was obtained by adding the three original SISO models. The simulations results
are shown in Figure 13.
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Figure 13. Comparison of the 6th and 9th order models—simulation of 900 time-steps (solid line—9th
order model, dashed line—6th order model—model after order reduction).

The static gain of the 6th order reduced model is equal to 3 and thus the reduced model compares
closely to the expected model. A closed loop simulation of the resulting GPC controller utilizing
the reduced order internal model (6th order) was performed and the original 3rd orders models,
before reduction to common order given by (13), (14), and (16), were used. The resulting GPC controller
was found to be stable through simulation and the results are shown in Figures 14 and 15.
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Figure 14. GPC with reduced internal model—closed loop simulation of 300 time-steps where the
dashed line is the set point and the solid line is the CV. Controller parameters: control horizon Nu = 20,
prediction horizon N = 400, and the R matrix = identity matrix.
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Figure 15. GPC with reduced internal model closed loop simulation of 300 time-steps, trend for MVs
signals (u1, u2 and u3). Controller parameters: control horizon Nu = 20, prediction horizon N = 400,
and the R matrix = identity matrix.

6. Conclusions

The example presented in this article shows that the GPC algorithm applied to MISO objects may
be unstable due to numerical problems caused by the high order model. It may be helpful to solve
numerical problems of high order models by using an order reduction technique. However, this solution
has limitations and may not be effective with models that have a large number of input signals.

In addition to order reduction, this problem can be solved by using longer sampling times.
A longer sampling time improves numerical stability, but this approach also has limitations for
processes that exhibit fast dynamics. Another solution is to identify the model as a MISO model with
a predefined model order instead of identifying the SISO models and changing the model to a common
denominator model.

A completely different approach could be to use an estimator to calculate the change in output
regardless of each input. This would eliminate the need to reduce the internal model to a common
denominator and avoid high order models. Such research goes beyond the framework of this article
and may be further investigated.

The problem described for the GPC controller is not applicable to other predictive control structures
such as Dynamic Matrix Control (DMC). This is due to the structure of the model, which in the case of
the DMC controller is the step response coefficients. Based on our industrial experience of applying
GPC, we have found that if the order of the internal model, after the reduction operation, exceeds 9th
order, the resulting GPC controller will be subject to numerical issues. In cases where this occurs,
we have found that the best course of action is to utilize another control structure such as DMC.

An alternative interesting direction would be to investigate the model predictive controller
algorithm, in which the internal model is described by a state space model (MPCs). Checking and
comparing the sensitivity of GPC and MPCs algorithms could be an interesting continuation of the
problem shown.
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GPC Generalized Predictive Control
MPC Model Predictive Control
PID Proportional, Integral and Derivative
MIMO Multiple-Input Multiple-Output
SISO Single-Input Single-Output
DCS Distributed Control system
PLC Programmable Logic Controllers
FPGA Field Programmable Gate Arrays
MV Manipulated Variable
CV Controlled Variable
DV Disturbance Variable
CRHPC Constrained Receding Horizon Predictive Control
SIORHC Stabilizing Input Output Receding Horizon Control
QP Quadratic Programming
CPU Central Processing Unit
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2. Ławryńczuk, M. Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach,

Studies in Systems, Decision and Control; Springer International Publishing: Cham, Switzerland, 2014; Volume 3.
3. Qin, S.J.; Badgwell, T.A. A survey of industrial model predictive control technology. Control Eng. Pract. 2003,

11, 733–764. [CrossRef]
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