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Abstract: The wireless sensor network (WSN) has the advantages of low cost, high monitoring
accuracy, good fault tolerance, remote monitoring and convenient maintenance. It has been widely
used in various fields. In the WSN, the placement of node sensors has a great impact on its coverage,
energy consumption and some other factors. In order to improve the convergence speed of a node
placement optimization algorithm, the encoding method is improved in this paper. The degressive
ary number encoding is further extended to a multi-objective optimization problem. Furthermore,
the adaptive changing rule of ary number is proposed by analyzing the experimental results of
the N-ary number encoded algorithm. Then a multi-objective optimization algorithm adopting
the adaptive degressive ary number encoding method has been used in optimizing the node
placement in WSN. The experiments show that the proposed adaptive degressive ary number
encoded algorithm can improve both the optimization effect and search efficiency when solving the
node placement problem.

Keywords: wireless sensor networks; node placement; a fast non-dominated sorted genetic algorithm
(NSGA2); degressive ary number; adaptive

1. Introduction

The wireless sensor network is a distributed sensor network consisting of small smart devices
with computing, storage, and wireless communication capabilities. Nodes (sensors) in the network
have self-organizing characteristics. By adopting a multi-hop routing strategy, information collection
and data forwarding in a specific area can be completed [1]. In recent years, WSNs have been widely
applied to solve optimization problems successfully in many fields [2,3].

Random placement of the sensor nodes is usually preferred in a large scale WSN because it is
easy and less expensive. However, it can cause holes formulation and can not guarantee to achieve the
required targets [4]. Therefore, it is necessary to optimize the node placement of the WSN.

The node placement problem is one of the fundamental problems when building wireless sensor
networks. The solutions to node placement problem include node placement strategy [5,6] and node
placement optimization [7,8].

The node placement strategy is generally used for the deterministic deployment of initial nodes,
which can obtain the appropriate node placement through a certain strategy at the beginning of
the WSN.

The node placement optimization is generally used to optimize the location of existing nodes.
If mobile nodes (such as flying nodes or unmanned aerial vehicles) exist, the position of the nodes
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can be adjusted whenever needed. In some harsh environments, sensor nodes can only be randomly
placed. Then a node placement that meets the application requirements should be obtained by the
node placement optimization algorithm, and the nodes will move to the appropriate positions.

When node placement optimization is used, the sink node (or the base station) will run the
optimization algorithm to get the moving information (direction and distance) of each node. Then the
moving information will be sent to all the sensor nodes, which will move to the corresponding location
according to the information.

The key to the node placement optimization problem is to optimize the placement of sensor
nodes and adjust the network topology so that the network can meet all the application requirements
while meeting the coverage requirements of the target area. Furthermore, except for the rechargeable
WSN, the energy limitation of sensor nodes brings a big challenge to WSNs, which means these WSNs
may have insufficient energy to collect and send information [9]. Therefore, in addition to coverage,
the energy consumption and balance of the network are also important measurement indexes.

In general, an excellent node placement solution ensures that the WSN has higher coverage and
longer lifetime. However, most of the proposed optimization algorithms have not considered the
energy consumption caused by the node movement. This made those optimization algorithms be only
used for the deterministic deployment of initial nodes.

In previous studies [10], we have considered the movement of the nodes besides the coverage and
lifetime. A directed evolved crossover operator and an adaptive range limit parameter are proposed
to improve the optimization effect of A Fast Non-dominated Sorted Genetic Algorithm (NSGA2) on
node placement problem. The improved algorithm, which called ADENSGA, can solve not only
node placement problems, but also node redistribution problems. In the ordinary multi-objective
optimization algorithm, the importance of several optimization objectives is the same. However,
in practice, coverage is more important than other objectives. The proposed directed evolved crossover
operator can made the algorithm focus more on coverage among multiple optimization objectives.

Although ADENSGA has many advantages, it still has the defect of slow convergence speed.
Since most WSNs have a large number of sensor nodes, the node placement optimization problem is
generally high-dimensional. ADENSGA is encoded by the common binary encoding, which has the
defects of local early convergence and slow convergence speed in a high-dimensional optimization
problem. To solve these problems, the encoding method of ADENSGA [10] is improved in this paper.

Degressive ary number encoding is a method with high search efficiency and wide applicability.
However, the existing degressive ary number encoding [11] has some defects in the adaptive change
rules of ary number. It may lead to the local early convergence when solving the high-dimensional
problems. Besides, degressive ary number encoding has never been used in a multi-objective
optimization algorithm. In this paper, the degressive ary number encoding will be extended to
a multi-objective optimization problem. By analyzing the optimization effect of different ary number N
in the node placement optimization, better adaptive change rules of ary number for a high dimensional
multi-objective optimization problem is proposed.

The rest of the paper is organized as follows: Section 2 presents the related work; Section 3
introduces some preliminary work, including the single-objective degressive ary number encoded
genetic algorithm and the mathematical model of node placement optimization problem; Section 4
extends the degressive ary number encoding to a multi-objective genetic algorithm, shows the analysis
of the influence of ary number on node placement problem and proposes an adaptive degressive rule
of ary number; Section 5 contains the parameters’ experiments and selection; Section 6 contains the
results and analysis of the proposed algorithm when applied to node placement problem. Finally,
some conclusions are drawn in Section 7.

2. Related Work

In recent years, researches on the node placement of wireless sensor networks are also
increasing. Node placement optimization problem can be either a single-objective optimization
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problem for coverage or a multi-objective optimization problem for multiple performance indicators
(coverage, network lifetime, node movement, connectivity, etc.) according to application requirements.
Long et al. [12] proposed an improved Shuffled Frog Leaping Algorithm (SFLA) to deploy the
mobile nodes in WSN. It can solve the problems like non-uniform distribution and incomplete
coverage of the nodes. However, the coverage is the only optimization objective considered by SFLA.
Gupta et al. [13] regarded node placement problem as a linear programming problem and proposed a
biogeography-based optimization (BBO) algorithm. BBO can find the optimal node placement for the
WSN while meeting the coverage and connectivity requirements. In order to obtain an optimum sensor
node placement for WSN, Abidin et al. [14] proposed a new biologic heuristic optimization algorithm
called Territorial Predator Scent Marking Algorithm (TPSMA). TPSMA can simulate the behavior of
territorial predators, and optimize the node placement to get an effective deployment that provides
maximum coverage and minimum energy consumption without jeopardizing the connectivity. In this
paper, the coverage, network lifetime and node movement are all considered.

Because of its advantages of parallelism, self-organization and self-adaptation, evolutionary
algorithms, especially genetic algorithms, are widely used to solve the node placement optimization
problem. Khalesian et al. [15] designed specific operators for WSNs’ node placement optimization
problem and proposed a constrained Pareto-based multi-objective evolutionary approach (CPMEA).
CPMEA can find the Pareto optimal node placements that maximize the coverage and minimize
the energy consumption while maintaining the full connectivity. Jourdan et al. [16] improved
a multi-objective genetic algorithm (MOGA) and applied it to the node placement optimization.
The proposed algorithm has good performance and flexibility with the optimization objectives of
coverage, network lifetime and the number of nodes. In the problems employing great numbers of
nodes or large areas to be covered, normal genetic algorithms have poor performance. Tripathi et al. [17]
proposed a hybrid Genetic Programming (GP) and Genetic Algorithm (GA) for solving this problem.
In their algorithm, GP optimizes the deployment structure and GA was used for actual node placement
as per the GP optimized structure. The algorithm improved the total coverage area, energy utilization
efficiency, network survival time and the number of nodes. In this paper, an improved ADENSGA is
proposed to solve the node placement optimization problem.

3. Preliminary Concepts Introduction

3.1. Single-Objective Degressive Ary Number Encoded Genetic Algorithm

Degressive ary number encoded genetic algorithm (DGA) [18] is an improved genetic algorithm
based on encoding.

Set natural number N, N ≥ 2. A genetic algorithm encoded by natural number N called N-ary
encoded genetic algorithm (NGA). NGA uses a N-valued coded symbol set {0, 1, 2, . . . , N − 1} and
each individual is a N-ary symbol string, while common binary genetic algorithm uses a binary coded
symbol set {0, 1}. The calculation formula of N-ary encoding is shown in Equation (1).

(Ap Ap−1 · · · A0)N = Ap × Np + Ap−1 × Np−1 + · · ·+ A1 × N1 + A0 × N0 = Bp∗Bp∗−1 · · · B0 (1)

where Ap Ap−1 · · · A0 is an unencoded string, Bp∗Bp∗−1 · · · B0 is the N-ary encoded string, N is the
ary number of the coding method, p is the length of the unencoded string, p∗ is the length of the
encoded string.

The examples of the individuals in NGA are shown in Figure 1.
The corresponding encoding method called N-ary encoding and the number N is called the ary

number. Basic binary encoded genetic algorithm [19], octal encoded genetic algorithm [20] and decimal
encoded genetic algorithm [21] all belong to NGA.
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Figure 1. The examples of N-ary individuals.

In the single-objective optimization problem, high ary number encoded GA can search for the
optimal area more quickly (faster convergence speed) at the beginning of the evolution; low ary
number encoded GA can ensure the error between the result and the theoretical optimal solution is
smaller in the late evolution [22]. Moreover, a high ary number encoded GA can better maintain the
diversity of the population to jump out of the local optimal [23].

Based on NGA, DGA was proposed to combine the advantages of high ary number encoding
and low ary number encoding. Since different ary number has different effects on different stages of
evolution, the ary number can be selected for each generation to optimize the evolutionary effects.
Therefore, the core idea of DGA is that ary number N should be reduced to 2 from a certain initial
number with the increase of evolutionary generation according to a fixed function. The process of
DGA for a maximum problem is shown in Algorithm 1.

Algorithm 1: Process of DGA
In : Size of population n, Initial ary number N(0), Ary number change rule N(k),

Termination conditions
Out : Global optimal solution x∗k

1 Generate the initial population x0 of size n;
2 N ← N(0);
3 k← 1;
4 while Not meet the termination conditions do
5 Encode all the individuals by N;
6 xk ← Select, Crossover, Mutate;
7 F(k)← Fitness(xk);
8 x∗k ← max[Find f max(xk, F(k)), x∗k ];
9 k← k + 1;

10 N ← N(k);
11 end

In Algorithm 1, Select, Crossover and Mutate represent the genetic operators which are used to
obtain a new population, Fitness is used to calculate the fitness function for the population, Find f max
is used to find the optimal solution in the population.

Compared with the normal GA, the DGA re-encodes all the individuals in each generation.
In addition, the ary number N for the next generation is calculated according to the change rule N(k).

Because DGA combines the advantages of high ary number encoding and low ary number
encoding, it has improvements on both convergence speed and optimization effect.

On this basis, many experiments have been carried out to examine the influence of the ary
number’s function. Through the analysis and summary of the law between the change of the ary
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number and the change of the fitness function in DGA, we proposed an Adaptive Degressive Ary
Number Encoded Genetic Algorithm (ADGA) [11]. Different from DGA, the change rule of the ary
number in ADGA is adaptive. ADGA can give full play to the advantages of high-ary number encoding
and low-ary number encoding in different evolutionary stages with a good universality.

In the single-objective optimization problem, degressive ary number encoding performs better
than binary encoding. It can achieve better optimization results within fewer generations. Therefore,
in order to improve the convergence speed of the multi-objective optimization algorithm, the degressive
ary number encoding used in multi-objective problems is taken into account.

3.2. Model of Node Placement Optimization Problem

The node placement optimization problem is a high-dimensional multi-objective optimization
problem. Through the optimization of WSN’s performance, the best moving position for each node is
obtained. It can be simplified to a multi-objective optimization model with constraints.

The model of the node placement problem has been described in our latest paper [10] and the
equations of the model are shown in Equations (2) and (3).

max f = [ f1(∆x, ∆y), f2(∆x, ∆y)]

s.t.


∆x ∈ (−alimitxm, alimitxm)

∆y ∈ (−alimitym, alimitym)

x0 + ∆x ∈ (0, xm)

y0 + ∆y ∈ (0, ym)

(2)

{
f1(∆x, ∆y) = Coverage
f2(∆x, ∆y) = min(Erest)

(3)

where (∆x, ∆y) are two matrices that represent the displacement of all the nodes’ coordinates, xm is the
length of the monitoring area, ym is the width of the monitoring area, (x0, y0) are the matrices of initial
node coordinates, alimit is a coefficient that restricts the movement of nodes, Erest is the predicted rest
energy set (including the moving energy consumption) for all nodes after operation for a period of
time, f1 represents the coverage of the WSN, f2 represents the predicted rest energy of the node with
the least energy in the WSN.

The traditional model of node placement optimization problem in WSN takes node coordinate as
the solution. A node will move with the corresponding node number rather than move to the nearest
position, resulting in a large distance. In this model, the coordinates of the node are replaced by the
displacements of the node coordinates as the solution to the optimization problem. It can simplify the
calculation of the moving distance, and help limit the moving distance of each node by restricting the
search scope of the solution space.

Equation (3) shows that coverage and the minimum rest energy (includes node movement energy
consumption) after a certain number of rounds are the two main optimization objectives. Since the
minimum rest energy in all nodes can represent both the energy consumption and energy balance of
the network, it can represent network lifetime.

4. Algorithm Design

4.1. Degressive Ary Number Encoded ADENSGA for Node Placement Problem

In previous studies [10], a directed evolved NSGA2, ADENSGA, was proposed to solve the node
placement problem. In ADENSGA, the basic binary encoding is used. In this paper, we will further
improve the encoding method of ADENSGA.
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To improve the performance of the algorithm, degressive ary number encoding is considered
to apply in ADENSGA. Thus, degressive ary number encoding should be extended to the
multi-objective problems.

Encoding is a method which can transform the feasible solution of the problem from its solution
space to the search space. Therefore, the implementation of degressive ary number encoding in
multi-objective optimization problems is similar to that in single-objective optimization problems.
The process of the degressive ary number encoded ADENSGA (D-ADENSGA) for the node placement
optimization is shown in Algorithm 2.

Algorithm 2: Process of D-ADENSGA
In : Size of population n, Initial ary number N(0), Ary number change rule N(k),

Termination conditions
Out : Global optimal solution (∆x∗k, ∆y∗k)

1 Generate the initial population (∆x0, ∆y0) of size n;
2 N ← N(0);
3 k← 1;
4 while Not meet the termination conditions do
5 Encode all the individuals by N;
6 for i = 1 : n do
7 Num(i)← Density((∆xk, ∆yk));
8 pc(i)← Calculatepc(Num(i));
9 rlimit(i)← Calculaterlimit(Num(i));

10 end
11 (∆xk, ∆yk)← Select, Crossover(pc), Mutate;
12 (∆xk, ∆yk)← Update((∆xk, ∆yk), rlimit);
13 Fk ← Fitness((∆xk, ∆yk);
14 (∆xk, ∆yk)← Elite((∆xk, ∆yk), (∆xk−1, ∆yk−1), Fk, Fk−1);
15 (∆x∗k, ∆y∗k)← Best((∆xk, ∆yk), Fk);
16 k← k + 1;
17 N ← N(k);
18 end

Some details in Algorithm 2 will be explained in the following.

(1) Density

Density calculates the number of overlapping Num(i) at the location of the ith node according
to the node density [10].

(2) Calculatepc and Calculaterlimit

Calculatepc and Calculaterlimit calculate the crossover probability pc and node movement
range rlimit for each node, respectively, according to the node density at the location.
The equations are shown in Equations (4) and (5).

pc(i) =


0 Num(i) = 1
pc1 Num(i) = 2
pc2 Num(i) > 2

(4)
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rlimit(i) =



alimit ·min[xm, ym] · 2
Num∗max

Num(i) = 1
alimit ·min[xm, ym] · 1

Num∗max

Num(i) = 2
alimit ·min[xm, ym] · Num(k)

Num∗max

Num(i) > 2

(5)

(3) Select, Crossover and Mutate

Select and Mutate are the operators used in NSGA2 [19]. Crossover is a multiple-point crossover
operator with the adaptive crossover probability pc.

(4) Update

Update is used to update the population according to the constraints in Equation (2) and the
adaptive node movement range rlimit. For rlimit, it will be compared with ∆xk (or ∆yk), and the
one with a smaller absolute value will be assigned to ∆xk (or ∆yk). The equation is shown in
Equation (6).

{
∆x = max[min[∆x′, rlimit],−rlimit]

∆y = max[min[∆y′, rlimit],−rlimit]
(6)

(5) Fitness

Fitness is used to calculate the objectives of the node placement optimization problem by
Equation (3). Fk represents the set of values of objectives for all solutions in the kth generation.

(6) Elite and Best

Elite is the elite strategy. Best selects the non-dominated solutions by the fast non-dominant
sort. These two are also introduced in NSGA2 [19].

The change rule of ary number in D-ADENSGA can be expressed by a fixed equation. In other
words, N(k) is determined in advance. However, it is uncertain whether degressive ary number
encoding is effective in multi-objective optimization problems. In addition, the best change rule of ary
number N(k) needs to be tested.

4.2. N-Ary Number Encoded ADENSGA for Node Placement Problem

Different ary number N may have different effects on the multi-objective problem than the
single-objective problem. In order to apply degressive ary number encoding in a multi-objective
problem, the optimization effect of multi-objective N-ary number encoding ADENSGA(N-ADENSGA)
under different ary numbers N should first be tested.

The process of N-ADENSGA is exactly the same as D-ADENSGA in Algorithm 2, with N(k) = N
during the whole process of evolution.

In this section, experiments are carried out on N-ADENSGA with different values of N.
In this experiment, set N = [2, 10, 18, 26, 34, 42, 50], the maximum iteration of the algorithm

kmax = 100. The parameters used in the experiment are shown in Table 1.
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Table 1. Parameter Settings.

Length and width of the monitoring area, xm, ym/m 100

Coordinates of the sink node, (xsink, ysink)/m (50,175)

Total number of nodes, n 50

Sensing range of the node, rs/m 12

Size of the population, Psize 20

Crossover probability constant 1 for the node with appropriate node density, pc1 0.5

Crossover probability constant 2 for the node with high node density, pc2 0.9

Mutation probability, pm 0.1

Theoretical maxmum number of overlapping, Num∗max 5

Initial energy of nodes, Eo/J 0.5

Energy consumption coefficient of node movement, Ed/(J/m) 5 × 10−6

Energy consumption coefficient of data transmission and reception, Eelec/(J/bit) 50 × 10−9

Energy consumption coefficient of data fusion, EDA/(J/bit) 5 × 10−9

Energy consumption coefficient of free space power amplification loss, E f s/[J/(bit ·m2)] 10 × 10−12

Energy consumption coefficient of multi-path attenuation power amplification loss, Emp/[J/(bit ·m2)] 0.0013 × 10−12

Data length, l/bit 4000

Node movement range coefficient, alimit 0.1

Round number of WSN, r 300

To comprehensively evaluate the optimization effect of the algorithms on the node placement
problem, two auxiliary evaluation index Score and D is introduced [10]. Score represents the
comprehensive performance of the algorithm. The larger the value of Score, the better the algorithm
performance. D represents the total moving distance of all the nodes. The smaller the value of D is,
the better the algorithm performance. The equations of Score and D are shown in Equations (7) and (8).

Score = f1 · f2 (7)

D =
n

∑
i=1

dis(i) (8)

where f1, f2 are the optimization objectives of the problem shown in Equation (3), dis(i) is the moving
distance of the ith node, n is the number of sensor nodes in the monitoring area.

The influences of ary number N for two different random node placements are shown in Figures 2
and 3. Each figure is composed of (a), (b) and (c), respectively, corresponding to three evaluation
indexes, average Coverage, average Rest Energy, and average Score.

Figures 2a and 3a show that on the objective of coverage, low ary number encoding is significantly
better than high ary number encoding in the final optimization effect, while high ary number encoding
is more likely to optimize the objective faster in the initial stage of optimization (before 20 generations).

Figures 2b and 3b show that on the objective of rest energy, high ary number encoding is better
than low ary number encoding in the final optimization effect, and can optimize the objective faster in
the initial stage of optimization.

Figures 2c and 3c show that considering the two optimization objectives comprehensively, high ary
number encoding can close to the optimization objectives faster in the initial stage of evolution,
while low ary number encoding can get better optimization results in the middle and late stages
of evolution.

Since the value ary number N can determine the size of the search space, it may affect the running
time of the algorithm and the accuracy of the solution. In order to find out the relationship between
the running time, D and N, the results for 10 random initial placements are calculated and shown in
Table 2.
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(a) Average Coverage (b) Average Rest Energy

(c) Average Score

Figure 2. The optimal results for different values of N of node placement 1.

(a) Average Coverage (b) Average Rest Energy

(c) Average Score

Figure 3. The optimal results for different values of N of node placement 2.
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Table 2. Running time for different values of N.

N 2 10 18 26 34 42 50

Average running time/s 718.3 718.0 718.5 721.6 721.0 720.2 719.8

D/m 391.4 388.3 380.7 394.5 391.6 392.4 388.4

Table 2 shows that the running time and D have little relation with N. This is because that
the running time of the algorithms mainly influenced by the predicting running of WSNs in f2.
The influence of encoding length on running time can be negligible. Furthermore, the ary number N
may slightly affect the precision of the solutions, but will not affect the total moving distance D of all
the nodes.

4.3. Adaptive Degressive Ary Number Encoded ADENSGA for Node Placement Problem

Section 4.2 shows that in the multi-objective problem, the optimal ary number will change with
evolution. Therefore, the multi-objective genetic algorithm with degressive ary number encoding is
feasible to solve the problem of node placement in WSNs.

Through the experiment of N-ADENSGA, the rough degressive rules of ary number can
be concluded:

(1) To solve the problem that local early convergence leads to poor optimization results and maintain
the population diversity in a high-dimensional problem, it is necessary to maintain a high ary
number N for certain generations at the beginning of evolution;

(2) In the process of N decreasing, the ary number N should decrease quickly first, then slowly and
trend to 2 in the end;

(3) The faster the Score is increased, the slower the ary number should be decreased.

Consequently, it can be supposed that the value of the next generation hexadecimal number can
be determined according to the growth rate of Score.

Then an adaptive degressive rule of ary number can be proposed. The equation is shown in
Equation (9). 

N(k) = N(0) k ≤ kmin

Score(k− 1)− Score(0)
Scorelimit

k
klimit + kmin

=

N(0)− N(k)
N(0)

k− kmin

klimit

k > kmin
(9)

where Scorelimit is the difference between the maximum and minimum values of the theoretical Score,
Score(0) is the initial average Score, N(0) is the initial ary number, N(k) is the ary number of the kth
generation, kmin is the generation when the ary number remains at N(0), and klimit is an estimation
of the generation used when the ary number converges to 2. Among them, N(0), kmin, Scorelimit and
klimit are the default parameters.

The ary number of kth generation, N(k), can be calculated by Equations (10) and (11).

N(k) =



N(0) k ≤ kmin

max[2, ceil[N(0)−

a ·
(k− kmin) · (Score(k− 1)− Score(0))

k
]]

k > kmin

(10)

a =
N(0) · (klimit + kmin)

Scorelimit · klimit
(11)
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where a is a parameter value to adjust the decreasing rate of ary number. In this paper, according to
the experiment environment and experience, set Scorelimit = 0.035, klimit = 40. The values of N(0) and
kmin will be discussed in the next section.

When the adaptive degressive ary number encoding is used in ADENSGA, a new improved
algorithm called adaptive degressive ary number encoded directed evolved NSGA (AD-ADENSGA)
is proposed. The process of AD-ADENSGA is shown in Figure 4.

Figure 4. The flow chart of AD-ADENSGA.

5. Parameter Analysis

The key to AD-ADENSGA is the adaptive calculation of N(k). Equation (10) shows that the initial
ary number N(0) and the highest ary number’s generation kmin are the two main parameters. In this
section, these two parameters will be tested and analyzed.
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5.1. Parameter Analysis for Initial Ary Number N(0)

Initial ary number N(0) is used to set the encoded ary number of the initial population. The value
of the initial ary number determines the rate of change of the ary number throughout the evolution
process. If N(0) is too low, the algorithm will quickly degrade to a binary algorithm. If N(0) is too
high, the algorithm is easy to fall into a locally optimal solution. Therefore, an appropriate initial ary
number will help improve the optimization effect of the algorithm.

In this section, experiments are carried out on AD-ADENSGA with different values of N(0).
In this experiment, set kmin = 15, kmax = 200, set 5 different values for N(0) ∈ [2 30 50 70 90].

When N(0) = 2, the algorithm is equal to the binary encoded ADENSGA. According to Section 4.3,
set Scorelimit = 0.035, klimit = 40. Other parameters used in the experiment are shown in Table 1.

The influences of initial ary number N(0) for a random node placement are shown in Figure 5.
Each figure is composed of (a), (b), (c) and (d), respectively corresponding to four evaluation indexes,
average Coverage, average Rest Energy, average Score and max Score.

(a) Average Coverage (b) Average Rest Energy

(c) Average Score (d) Max Score

Figure 5. The optimal results for different values of N(0) of node placement 3.

In order to observe the influence of N(0) on the optimization results more intuitively, the average
ary number of five runs changing with the generation is shown in Figure 6.
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Figure 6. The average ary number changing with the generation for different values of N(0).

Figure 5a shows the influence of N(0) on the objective of coverage. When N(0) is too low,
the optimization speed of coverage is poor. When N(0) is too high, the optimization speed is fast
but the final results of coverage are poor. Figure 5b shows N(0) have little influence on the objective
of rest energy. Figure 5c,d show that considering the two optimization objectives comprehensively,
N(0) should be chosen in the range of 30–70.

Considering that N(0) is related to the encoding length, the value of N(0) may affect the running
time. The average running time for different values of N(0) for 10 random initial placements are
shown in Table 3.

Table 3. Running time for different values of N(0).

N 2 30 50 70 90

Average running time/s 1245.1 1248.1 1246.4 1251.2 1250.0

Table 3 shows that the running time has little relation with N(0). This is because that the
running time of the algorithms mainly influenced by the predicting running of WSNs in f2. Therefore,
the algorithm with shorter convergence generation takes less time.

In this paper, considering the optimization objectives of coverage and rest energy, N(0) = 50
is chosen.

5.2. Parameter Analysis for the Highest Ary Number’s Generation kmin

The highest ary number’s generation kmin is used to set the generation of the initial ary number
N(0) needed to remain. The value of the kmin determines from which generation the ary number
begins to decline adaptively. If kmin is too low, the algorithm is easy to fall into a locally optimal
solution. If kmin is too high, the algorithm will need to spend much more time. Therefore, the selection
of an appropriate highest ary number’s generation is very important.

In this section, experiments are carried out on AD-ADENSGA with different values of kmin.
In this experiment, set N(0) = 50, kmax = 200, set 7 different values for kmin ∈ [0 5 10 15 20 25 30].

According to Section 4.3, set Scorelimit = 0.035, klimit = 40. Other parameters used in the experiment
are shown in Table 1.

The influences of the highest ary number’s generation kmin for a random node placement are
shown in Figure 7. Each figure is composed of (a), (b), (c) and (d), respectively corresponding to four
evaluation indexes, average Coverage, average Rest Energy, average Score and max Score.

In order to observe the influence of kmin on the optimization results more intuitively, the average
ary number of five runs changing with the generation is shown in Figure 8.
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(a) Average Coverage (b) Average Rest Energy

(c) Average Score (d) Max Score

Figure 7. The optimal results for different values of kmin of node placement 4.

Figure 8. The average ary number changing with the generation for different values of kmin.

Figure 7a shows the influence of kmin on the objective of coverage. When kmin is too low,
the optimization speed and final results of coverage are poor, the algorithm may fall into local
optimum. Figure 7b shows kmin has little influence on the objective of rest energy. Figure 7c,d show
that considering the two optimization objectives comprehensively, kmin should be chosen over 10.

In this paper, kmin = 15 is chosen.

6. Results and Discussion

In this section, the AD-ADENSGA will be compared with ADENSGA with basic binary encoding
(ADENSGA) [10] and decreasing ary number encoded ADENSGA with a fixed change rule of ary
number (D-ADENSGA) mentioned in Section 4.1.
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According to the rough degressive rules of ary number concluded in Section 4.3, a similar fitting
function can be found as the degressive rule of D-ADENSGA, which is shown in Equation (12).

N(k) = max[2, ceil(N(0)− (N(0)− 2) · 307

307 + k7 )] (12)

The experimental environment has been described in Section 4.2 and the parameters used in
the experiment are shown in Table 1. In addition, set Scorelimit = 0.035, klimit = 40, kmax = 200.
According to the parameter experiments in Section 5, set N(0) = 50, kmin = 15.

The curves of ary number changing with the generation are shown in Figure 9. The curves
respectively represent the change of ary number for AD-ADENSGA in five runs, ADENSGA
and D-ADENSGA.

Figure 9. The average ary number changing with the generation for node placement 5.

Figure 10 shows the results of ADENSGA, D-ADENSGA and AD-ADENSGA in each generation.
Among them, Figure 10a shows the average Coverage curves, Figure 10b shows the average Rest
Energy curves, Figure 10c shows the average Score curves and Figure 10d shows the max Score curves.
The average Coverage curves, average Rest Energy curves and average Score curves respectively
represent the average of the mean value of the first dominance level’s Coverage, Rest Energy and Score
in five runs. The max Score curves represent the average of the maximum value of the first dominance
level’s Score in five runs.

Figure 10a,b show that AD-ADENSGA and D-ADENSGA can achieve higher coverage in less time,
while the optimization effect of AD-ADENSGA on energy consumption is better than D-ADENSGA
and ADENSGA.

Figure 10c,d show that the optimization effects of both AD-ADENSGA and D-ADENSGA are
better than ADENSGA.

To further analyze the optimization of these three algorithms, the results of the 200th generation
(k = 200) are shown in Table 4. Gn95 means the generation in which Average Coverage reaches 0.95
for the first time, where the optimal results are highlighted in bold.

Table 4. Results for Node Placement 5.

Average
Coverage

Average Rest
Energy/J

Average
Score

Max
Score

Average
D/m

Gn95/
Generations

Initial Node Placement 0.7919 0.2749 0.2177 0.2177 - -

ADENSGA 0.9392 0.2851 0.2676 0.2776 421.7 >200

D-ADENSGA 0.9443 0.2841 0.2682 0.2751 414.4 >200

AD-ADENSGA 0.9396 0.2888 0.2713 0.2788 413.1 >200
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(a) Average Coverage (b) Average Rest Energy

(c) Average Score (d) Max Score

Figure 10. The optimal results of ADENSGA, D-ADENSGA and AD-ADENSGA for node placement 5.

Table 4 shows that the coverage and rest energy of D-ADENSGA and AD-ADENSGA are all
much better than ADENSGA with less moving distance D. The optimization effect of AD-ADENSGA
is better than D-ADENSGA and ADENSGA. In addition, AD-ADENSGA can obtain the required
coverage faster than D-ADENSGA and ADENSGA.

In order to eliminate the contingency and ensure the optimization effect for different initial node
placements, two other random initial node placements are tested in this paper.

The results of node placement 6 are shown in Figure 11 and Table 5.

Table 5. Results for Node Placement 6.

Average
Coverage

Average Rest
Energy/J

Average
Score

Max
Score

Average
D/m

Gn95/
Generations

Initial Node Placement 0.8849 0.2758 0.2440 0.2440 - -

ADENSGA 0.9780 0.2907 0.2841 0.2931 397.8 41

D-ADENSGA 0.9783 0.2905 0.2840 0.2913 403.4 34

AD-ADENSGA 0.9741 0.2927 0.2850 0.2913 403.4 26

Figure 11a,b show that AD-ADENSGA can still achieve a certain coverage in less time, and it can
also achieve a best optimization effect on energy consumption. However, the optimization effect and
speed of D-ADENSGA are about the same as ADENSGA.
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(a) Average Coverage (b) Average Rest Energy

(c) Average Score (d) Max Score

Figure 11. The optimal results of ADENSGA, D-ADENSGA and AD-ADENSGA for node placement 6.

Figure 11c,d show that the optimization effect of AD-ADENSGA is better than D-ADENSGA
and ADENSGA.

Table 5 shows that the coverage and the rest energy of AD-ADENSGA are much better than
D-ADENSGA and ADENSGA. The optimization effect of D-ADENSGA is similar to ADENSGA,
but with a longer moving distance D. In addition, AD-ADENSGA can obtain the required coverage
faster than D-ADENSGA and ADENSGA.

The results of node placement 7 are shown in Figure 12 and Table 6.

Table 6. Results for Node Placement 7.

Average
Coverage

Average Rest
Energy/J

Average
Score

Max
Score

Average
D/m

Gn95/
Generations

Initial Node Placement 0.8697 0.2736 0.2379 0.2379 - -

ADENSGA 0.9741 0.2870 0.2792 0.2894 408.6 52

D-ADENSGA 0.9850 0.2902 0.2858 0.2919 411.8 21

AD-ADENSGA 0.9773 0.2911 0.2844 0.2911 396.1 33

Figure 12a,b show that D-ADENSGA can achieve higher coverage in the least time,
while AD-ADENSGA can achieve the best optimization effect on energy consumption. AD-ADENSGA
can also achieve higher coverage in less time, but the speed is slower than D-ADENSGA.

Figure 12c,d show that the optimization effect of D-ADENSGA is better than AD-ADENSGA,
and the optimization effect of AD-ADENSGA is better than ADENSGA.
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(a) Average Coverage (b)Average Rest Energy

(c) Average Score (d) Max Score

Figure 12. The optimal results of ADENSGA, D-ADENSGA and AD-ADENSGA for node placement 7.

Table 6 shows that the coverage and rest energy of both AD-ADENSGA and D-ADENSGA are
much better than ADENSGA with less moving distance D. The optimization effect of D-ADENSGA
is the best, but AD-ADENSGA can achieve a similar optimization effect with a shorter moving
distance D. In addition, D-ADENSGA can obtain the required coverage faster than AD-ADENSGA
and ADENSGA.

It can be concluded that both AD-ADENSGA and D-ADENSGA can achieve better optimization
results than ADENSGA, among which, AD-ADENSGA has the best optimization effect, speed and
stability. In other words, applying degressive encoding to a multi-objective optimization algorithm
is beneficial to solve the node placement problem of WSN. Due to the fixed rule of degressive ary
number encoding, D-ADENSGA can only achieve better optimization results in some initial node
placements. The adaptive change rule of ary number proposed in this paper is feasible. It can improve
the optimization performance and stability of the algorithm.

7. Conclusions

In this paper, degressive ary number encoding is applied to a multi-objective problem—node
placement problem. By comparing and analyzing the optimization effect of N-ary number encoding
for different ary number N, an adaptive degressive rule of ary number for a high dimensional
multi-objective optimization problem is proposed. The appropriate parameters are determined through
experiments. Based on ADENSGA, its encoding is improved to adaptive degressive ary number
encoding, and AD-ADENSGA is obtained.

Experiments show that the improved algorithm has a significant improvement in convergence
speed and the searching performance when solving the node placement problem. At the same time,
the algorithm has good stability and universality.
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