
algorithms

Article

Sampling Effects on Algorithm Selection for Continuous
Black-Box Optimization

Mario Andrés Muñoz 1,* and Michael Kirley 2

����������
�������

Citation: Muñoz, M.A.; Kirley, M.

Sampling Effects on Algorithm

Selection for Continuous Black-Box

Optimization. Algorithms 2021, 14, 19.

https://doi.org/10.3390/a14010019

Received: 9 November 2020

Accepted: 6 January 2021

Published: 11 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
2 School of Computer and Information Systems, The University of Melbourne, Parkville, VIC 3010, Australia;

mkirley@unimelb.edu.au
* Correspondence: munoz.m@unimelb.edu.au

Abstract: In this paper, we investigate how systemic errors due to random sampling impact on
automated algorithm selection for bound-constrained, single-objective, continuous black-box op-
timization. We construct a machine learning-based algorithm selector, which uses exploratory
landscape analysis features as inputs. We test the accuracy of the recommendations experimentally
using resampling techniques and the hold-one-instance-out and hold-one-problem-out validation
methods. The results demonstrate that the selector remains accurate even with sampling noise,
although not without trade-offs.

Keywords: algorithm selection; black-box optimization; single-objective continuous optimization;
exploratory landscape analysis; performance prediction; randomized heuristics

1. Introduction

A significant challenge in continuous optimization is to quickly find a target solu-
tion to a problem lacking algebraic expressions, calculable derivatives or a well-defined
structure. For such black-box problems, the only reliable information available is the
set of responses to a group of candidate solutions. Bound-constrained, single-objective,
continuous Black-Box Optimization (BBO) problems arise in domains such as science and
engineering [1]. Topologically, these problems can have local and global optima, large
quality fluctuations between adjacent solutions, and inter-dependencies among variables.
Such problem characteristics are typically unknown. Furthermore, BBO problems com-
monly involve computationally intensive simulations. Hence, finding a target solution is
difficult and expensive.

Automated algorithm selection and configuration [2–7] solves this problem by con-
structing a machine learning model that uses Exploratory Landscape Analysis (ELA)
features [8] as inputs, where the output is a recommended algorithm. To calculate the
ELA features, a sample of candidate solutions must be estimated. Since performance is
measured in terms of the number of function evaluations, the added cost of extracting the
features must be low enough to avoid significant drops in performance. Precise features
are obtained as the sample size increases [9–14]; hence, approximated features are used
in practice [5–7,15]. However, even these successful works acknowledge that with small
sample sizes, feature convergence cannot be guaranteed and uncertainty on their values
can exist.

There is limited literature exploring the reliability of approximated features. In [16],
we explored the effect that translations had on the features, when the cost function is bound-
constrained, demonstrating that translations led to phase transitions; hence, providing
evidence of non-generality of the features across instances. Renau et al. [17] explored
the robustness of the features against the random sampling, number of sample points,
and the expressiveness in terms of ability to discriminate problems. Focusing on a fixed
dimension of five and seven feature sets, they determined that most features are not robust

Algorithms 2021, 14, 19. https://doi.org/10.3390/a14010019 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-7254-2808
https://orcid.org/0000-0002-6030-858X
https://doi.org/10.3390/a14010019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14010019
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/14/1/19?type=check_update&version=3

Algorithms 2021, 14, 19 2 of 20

against the sampling. Saleem et al. [12] proposed a method to evaluate features based on a
ranking of similar problems and Analysis of Variance (ANOVA), which does not require
machine learning models or confounding experimental factors. Focusing on 12 features,
four benchmark sets in two- and five-dimensions, and four one-dimensional transformed
functions, they identified that some features effectively capture certain characteristics
of the landscape. Moreover, they emphasize the necessity to examine the variability of
a feature with different sample sizes, as some can be estimated with small sizes, while
others not. Škvorc et al. [13] used ELA to develop a generalized method for visualizing a
set of arbitrary optimization functions, focusing on two- and ten-dimensional functions.
By applying feature selection, they showed that many features are redundant, and most
are non-invariant to simple transformations such as scaling and shifting. Then, Renau
et al. [18] identified that the choice of sample generator influences the convergence of
the features, depending on their space-covering characteristics. Finally, in more recent
work [14], we explored the reliability of five well-known ELA feature sets on a larger set of
dimensions, across multiple sample sizes, using a systematic experimental methodology
combing exploratory and statistical validation stages, which statistical significance tests
and resampling techniques to minimize the computational costs. The results showed that
some features are highly volatile for particular functions and sample sizes. In addition,
a feature may have significantly different values between two instances of a function due
to the bounds of the input space. This implies that the results from an instance should
not be generalized across all instances. Moreover, the results show evidence of a curse of
the modality, which means that the sample size should increase with the number of local
optima in the function.

However, none of these works explore the effect that uncertainty on the features has
on the performance of automated algorithm selectors. In this paper, we examine this issue
by constructing an automated algorithm selector based on a multi-class, cost-sensitive
Random Forest (RF) classification model, which weighted each observation according to the
difference in performance between algorithms. We validated our selector on new instances
of observed and unobserved problems, achieving good performance with relatively small
sample sizes. Then, using resampling strategies, we estimate the systemic error on the
selector, demonstrating that randomness in the sample has a minor effect on the accuracy.
These results demonstrate that as long as the features are informative, and have low
variability, the systemic error on the selector will be small. This conclusion is the main
contribution of our paper. The data generated from our experiments has been collected
and is available in the LEarning and OPtimization Archive of Research Data (LEOPARD)
v1.0 [19].

The remainder of the paper is organized as follows: Section 2 describes the continuous
BBO problem and its characteristics using the concepts of fitness landscape, neighborhood,
and basin of attraction. In addition, this section describes the algorithm selection frame-
work [20] on which the selector is based. Section 3 presents the components of the selector.
Section 4 describes the implementation and validation procedure. We present the results in
Section 6. Finally, Section 7 concludes the paper with a discussion of the findings and the
limitations of this work.

2. Background and Related Work
2.1. Black-Box Optimization and Fitness Landscapes

Before describing the methods employed, let us define our notation. Without losing
generality over maximization, we assume minimization throughout this paper. The goal
in a bound-constrained, single-objective, continuous black-box optimization problem is
to minimize a cost function f : X → Y where X ⊂ RD is the input space, Y ⊂ R is the
output space, and D ∈ N∗ is the dimensionality of the problem. A candidate solution x ∈ X is
a D-dimensional vector, and the scalar y ∈ Y is the candidate’s cost. A continuous BBO
problem is the one such that f is unknown; the gradient information is unavailable or
uninformative; and there is a lack of specific goals or solution paths. Only the inputs

Algorithms 2021, 14, 19 3 of 20

and the outputs of the function are reliable information, and they are analyzed without
considering the internal workings of the function. Therefore, a target solution, xt ∈ X ,
is found by sampling the input space.

To find a target solution we may use a search algorithm, which is a systematic pro-
cedure that takes previous candidates and their cost as inputs, and generates new and
hopefully less costly candidates as outputs. For this purpose, the algorithm maintains a
simplified model of the relationship between solutions and costs. The model assumes that
the problem has an exploitable structure. Hence, the algorithm can infer details about the
structure of the problem by collecting information during the run. We call this structure
fitness landscape [21], which is defined as the tuple L = (X , f , d), where d denotes a dis-
tance metric that quantifies the similarity between candidates in the input space. Similar
candidates are those where the distance between each one of them is less than a radius
r → 0 [22], forming a neighborhood, Nr(x) ⊂ X , which defines associations between the
candidates in the input space.

A local optimum is a candidate xl ∈ X such that y > yl for all x ∈ Nr(xl). We denote the
set of local optima as Xl ⊂ X . The global optimum for a landscape L is a candidate xo ∈ X
such that yl ≥ yo for all xl ∈ Xl . We denote the set of global optima as Xo ⊆ Xl . A fitness
landscape can be described using the cardinality of Xl and Xo. An unimodal landscape is
the one such that |Xo| = |Xl | = 1. A multimodal landscape is the one such that |Xl | > 1.
A closely related concept is smoothness, which refers to the magnitude of the change in cost
between neighbors. A landscape can be informally classified as rugged, smooth, or neutral.
A rugged landscape has large cost fluctuations between neighbors. It presents several local
optima and steep ascents and descents. A neutral landscape has large flat areas or plateaus,
where changes in the input fail to generate significant changes in the output. At these
extremes, both gradient and correlation values are uninformative [23].

The set of local optima Xl can constitute a pattern known as the global structure,
which can be used to guide the search for xt. If the global structure is smooth, it may
provide exploitable information. If the global structure is rugged or nonexistent, finding an
optimum can be challenging, even impossible [24]. It is also possible to find problems that
exhibit deceptiveness, i.e., the global structure and gradient information leads the algorithm
away from an optimum, resulting in a performance similar to a random search [23].

A landscape can also be described using its basins of attraction, which is the subset of
X in which a local search always converges to the same local optimum. The shape of the
basins of attraction is a key attribute of the fitness landscape. Landscapes with isotropic or
spherical basins have a uniform gradient direction. Landscapes with anisotropic or non-
spherical basins are the result of non-uniform variable scaling. This means that changes
in one variable result in smaller changes in cost compared to changes in other variables.
A successful search in such landscapes requires a small change over one variable and a
large change in the others. Anisotropic basins might be non-elliptical. These problems
cannot be broken into smaller problems of lower dimensionality, each of which is easier to
solve [24]. These problems are non-separable.

In summary, the concepts of basin of attraction, neighborhood and fitness landscape
are useful to describe the characteristics of a given optimization problem. The char-
acteristics can be described qualitatively when the structure of the function is known,
using descriptors such as rugged or unimodal [24]. On the other hand, the characteristics
of the function are unknown in a BBO problem. In addition, the only information available
for black-box problems is the set of candidate solutions and their cost values. As such,
data-driven methods are the only approach to acquire appropriate knowledge about the
structure of the landscape.

A search algorithm should produce xt in finite time. However, the algorithm may
converge prematurely, generating candidates in a small area without finding xt. This effect
is a direct consequence of the model the algorithm maintains of the problem, which is
a hard coded bias in the algorithm [25]. The impact that the problem characteristics
have on algorithm performance is significant [26]. Both theoretical and experimental

Algorithms 2021, 14, 19 4 of 20

studies demonstrate that each algorithm exploits the problem structure differently. As a
consequence, no algorithm can solve all possible problems with the best performance [27].
In addition, the relationship between problem structure and algorithm performance is
unclear. Furthermore, the significant algorithmic diversity compromises our ability to
deeply understand all reported algorithms. Consequently, practitioners may find the
algorithm selection stage to be a stumbling block. Most likely, a practitioner will select
and adjust/modify one or two algorithms—including their parameters—hoping to obtain
the best performance. However, unless the hard coded bias in the algorithm matches the
landscape characteristics, we misplace computational resources and human effort. Ideally,
we should use an automatic algorithm selection framework.

2.2. The Algorithm Selection Framework

Rice [20] proposed an algorithm selection framework based on measurements of
the characteristics of the problem. Successful implementations of this framework can be
found in graph coloring, program induction, satisfiability, among other problem domains
[28–31]. Our interpretation of the framework results in the selector illustrated in Figure 1,
whose components are:

f

c αb

ρ

Problem
Instance

Feature
Extraction

Algorithm
Selection

Instance
Features

Performance
Evaluation

Selected
Algorithm

Algorithm
Performance

Problem
Set

Algorithm
Set

Figure 1. Diagram of the algorithm selector based on Rice’s framework [20]. The selector has three main components:
Performance evaluation, Feature extraction, and Algorithm selection.

• Problem set (F) contains all the relevant BBO problems. It is hard to formally define
and has infinite cardinality.

• Algorithm set (A) contains all search algorithms. This set potentially has infinite
cardinality.

• Performance evaluation is a procedure to evaluate the solution quality or speed of a
search algorithm α in a function f , using a performance measure, ρ.

• Feature extraction is a procedure where an input sample, X, is evaluated in the problem
instance, resulting in an output sample, Y. These two samples are then used to calculate
the ELA features, c, as illustrated in Figure 2.

• Algorithm selection is a procedure to find the best algorithm αb using c. Its main
component is the learning model [28], as illustrated in Figure 2. The learning model
maps the characteristics to the performance of a subset of complementary or well-
established algorithms, A ⊂ A, also known as algorithm portfolio. A method known
as pre-selector constructs A. The learning model is trained using experimental data
contained in the knowledge base [32]. To predict the best performing algorithm for a
new problem, it is necessary to estimate c and evaluate the model.

Algorithms 2021, 14, 19 5 of 20

Input
Sample

Output
Sample

Y = f (X)

Feature
Extraction

Feature 1

Feature m

Pre-processing

Problem
Instance

Algorithm
Selection

Algorithm
Set

Knowledge
Base

Learning model

...

f

X

Y

αb

Selected
Algorithm

c

Instance
Features

ρ

Algorithm
Performance

Algorithm
pre-selection

Model Training
and Validation

Figure 2. Details of the feature extraction and algorithm selection processes.

3. Methods

In this section, we describe the architecture of the selector. Section 3.1 describes the
structure of the learning model. Section 3.2 describes the details of the ELA features used
as inputs. Section 3.3 describes the expected running time [33], which is used measure of
algorithm performance.

3.1. Learning Model

We use as learning model a multi-class classification model, in which each class
represents the best performing algorithm, instead of a regression model, which predicts the
actual performance of the algorithms. Classification avoids the censoring issue existing in
regression, i.e., one or more algorithms cannot find a target solution for all the problems in
the training set, leaving gaps on the knowledge base. Although these gaps may be ignored
or corrected, it is still possible for a regression model to overestimate the performance [30].
On the other hand, a classification model will be properly fitted if there is at least one
algorithm that finds the target solution.

An ensemble of Binary Classification (BC) models is used where each one pro-
duces a probability score, R

(
αi, αj

)
∈ [0, 1], as output, where

{
αi, αj

}
are candidate al-

gorithms in a set A. This score represents the truth level of αi � αj. Correspondingly,
R
(
αj, αi

)
= 1−R

(
αi, αj

)
. The pairwise scores are combined to generate an algorithm

score, Σ(αi) = ∑αi 6=αj
R
(
αi, αj

)
. The selected algorithm is the one that maximizes Σ(·) [34].

The architecture of the model is illustrated in Figure 3 for a portfolio of four algorithms.
This architecture does have some shortcomings worth acknowledgment. The number of
individual BC models increases atO

(
|A|2

)
. However, as shown by Bischl et al. [35], only a

small number of algorithms are required to obtain good performance in many domains.
Moreover, it is possible for the model to select the worst performing algorithm due to a
classification error. This results in performance degradation on problems for which all the
algorithms find target solutions, or no solution at all, or if only one algorithm finds a target
solution.

Algorithms 2021, 14, 19 6 of 20

BC model
(α1 � α2)

BC model
(α1 � α3)

BC model
(α1 � α4)

BC model
(α2 � α3)

BC model
(α2 � α4)

BC model
(α3 � α4)

C
a
lc
u
la
te

a
n
d
so
rt

sc
o
re
s

R1,2

R1,3

R1,4

R2,3

R2,4

R3,4

Pre-processing

Learning Model

c

Instance
Features

αb

Selected
Algorithm

Model Training
and Validation

Figure 3. Structure of the multi-class learning model for A = {α1, α2, α3, α4}. The six BC models take the vector ELA

features c as input and generate a probability score, R
(

αi, αj

)
, which are used to generate a recommended algorithm αb

as output.

3.2. Exploratory Landscape Analysis Features

As inputs to the selector, we use the features summarized in Table 1, as they are
quick and simple to calculate. Furthermore, these features can share a sample obtained
through a Latin Hypercube Design (LHD), guaranteeing that the differences observed
between features depend only on the instance, and not on sample size or sampling method.
For example, the convexity and local search methods described by [8] use independent
sampling approaches; hence, they cannot share a sample between them nor with the
methods in Table 1. The convexity method takes two candidates,

{
xi, xj

}
, and forms a

linear combination with random weights, xk. Then, the difference between yk and the
convex combination of yi and yj is computed. The result is the number of iterations out of
1000 in which the difference is less than a threshold. Meanwhile, the local search method
uses the Nelder–Mead algorithm, starting from 50 random points. The solutions are
hierarchically clustered to identify the local optima of the function. The basin of attraction
of a local optimum, xl , i.e., the subset from X from which a local search converges to xl ,
is approximated by the number of algorithm runs that terminate at each xl . Both sampling
approaches do not guarantee the resulting sample is unbiased; hence, reusable. Besides
ensuring a fair comparison, sharing a LHD sample reduces the overall computational cost,
as no new candidates must be taken from the space.

Algorithms 2021, 14, 19 7 of 20

Table 1. Summary of the ELA features employed in this paper. Each one of them was scaled using the listed approach.

Method Feature Description Scaling

D Dimensionality of the problem log10
Surrogate models R̄2

LI Adjusted coefficient of determination of a linear regression model including variable
interactions

Unit scaling

R̄2
Q Adjusted coefficient of determination of a purely quadratic regression model Unit scaling

CN Ratio between the minimum and the maximum absolute values of the quadratic
term coefficients in the purely quadratic model

Unit scaling

Significance ξ(D) Significance of D-th order z-score, tanh
ξ(1) Significance of first order z-score, tanh

Cost distribution γ(Y) Skewness of the cost distribution z-score, tanh
κ(Y) Kurtosis of the cost distribution log10, z-score
H(Y) Entropy of the cost distribution log10, z-score

The adjusted coefficient of determination, R̄2, measures the fit of linear or quadratic
least squares regression models. This approach estimates the level of modality and the
global structure [8], and it can be thought of as measuring the distance between a problem
under analysis and a reference one [29]. To provide information about variable scaling,
the ratio between the minimum and the maximum absolute values of the quadratic term
coefficients in the quadratic model, CN, is also calculated [8].

The mutual information can be used as a measure of non-linear variable depen-
dency [36]. Let V = {1, . . . , D} be a set of variables indexes, and V ⊂ V be a combination
of such variables. The information significance, ξ(V), is calculated as follows:

ξ(V) =
I(XV ; Y)

H(Y)
(1)

where H(Y) is the information entropy, I(XV ; Y) = H(XV) + H(Y) − H(XV , Y) is the
mutual information, with Y ⊂ Y being the cost of X. The information entropy of a
continuous distribution is estimated through a kd-tree partition method [37] and it is not
bounded between [0, 1]. Let k = |V| be the order of information significance. The mean
information significance of order k is defined as:

ξ(k) =
1

(D
k)

∑
V⊂V ,|V|=k

ξ(V) (2)

Please note that as D increases the number of possible variable combinations increases.
Therefore, we limit ourselves to k = {1, D}.

The probability distribution of Y may indicate whether the function is neutral, smooth
or rugged, as well as the existence or lack of a global structure [8]. The shape of the distri-
bution is characterized by estimating the sample skewness, γ(Y), and kurtosis, κ(Y) [8],
and entropy, H(Y) [38].

Other reported measures with similar sampling simplicity were discarded as they are
co-linear with those in Table 1 [16]. For example: Fitness distance correlation [39], FDC,
is co-linear with R̄2

Q (ρ = 0.714). Dispersion at 1%, DISP1%, is co-linear with D (ρ = 0.714).
The adjusted coefficient of determination of a linear regression model, R̄2

L, is co-linear
with R̄2

LI (ρ = 0.860). The adjusted coefficient of determination of a quadratic regression
model including variable interactions, R̄2

QI , is co-linear with R̄2
Q (ρ = 0.871). The minimum

of the absolute value of the linear model coefficients [8], min(βL), is co-linear with H(Y)
(ρ = 0.865). The maximum of the absolute value of the linear model coefficients, max(βL),
is co-linear with H(Y) (ρ = 0.915). Significance of second order [36], ξ(2), is co-linear
with ξ(D) (ρ = 0.860). Finally, the length scale entropy [40], H(r), is co-linear with H(Y)
(ρ = 0.888).

Algorithms 2021, 14, 19 8 of 20

3.3. Algorithm Performance Measure

To measure the efficiency of an algorithm—and indirectly the selector—we use the
expected running time, T̂, which estimates the average number of function evaluations
required by an algorithm to reach yt within a target precision for the first time [33]. A nor-
malized, log-transformed version is calculated as follows:

T̂(f , α, et) = log10

(
1
D

#FEs((yb − yt) ≥ et)

#succ

)
(3)

where et is the target precision, #FEs((yb − yt) ≥ et) is the number of function evaluations
over all runs where the best cost, yb, is greater than the optimal cost, and #succ is the
number of successful runs. The distribution T̂ is log-transformed to compensate for its
heavy left tail, i.e., most problems require many function evaluations to reach the target.
When some runs are unsuccessful, T̂ depends on the termination criteria of the algorithm.
The average expected running time over a subset of problems, F, is defined as:

T(F, α, et) =
1
|F| ∑

f∈F
T̂(f , α, et) (4)

4. Selector Implementation

To implement the selector, our first step is to choose representative subsets for the
problem, F , and algorithm, A, spaces. We use the MATLAB implementation of the Com-
paring Continuous Optimizers (COCO) noiseless benchmarks v13.09 [33] as representative
of F . The motivation for this choice of benchmark problems revolves around practical
advantages. For example, there is a wealth of data collected about the performance of a
large set of search algorithms, and there are established conventions on the number of
dimensions and the limits on the function evaluation budget. The software implementa-
tion of COCO generates instances by translating and rotating the function in the input
and output spaces. For example, let f (x) = ‖R(x− xo)‖2 + yo be a functions in COCO,
where R is an orthogonal rotation matrix, xo and yo cause translational shifts on the input
and output space respectively. A function instance is generated by providing values for R,
xo, and yo. To allow replicable experiments, the software uniquely identifies each instance
using an index. For each function at each dimension, we analyze instances [1, . . . , 15] at
D = {2, 5, 10, 20}, giving us a total of 1440 problem instances for analysis.

As a representative subset of the algorithm space, A ⊂ A, we have used a subset of
algorithms from the Black-Box Optimization Benchmarking (BBOB) sessions, composed of
(1 + 2)m

s CMA-ES, BIPOP-CMA-ES, LStep and Nelder–Mead with Resize and Half-Runs.
Corresponding results are publicly available at the benchmark website
(http://coco.gforge.inria.fr/doku.php). The subset was selected using ICARUS (Identifica-
tion of Complementary algoRithms by Uncovered Sets), a heuristic method to construct
portfolios based on uncovered sets, a concept derived from voting systems theory [41].
As a comparison algorithm we use a portfolio composed of the BFGS, BIPOP-CMA-ES,
LSfminbnd, and LSstep algorithms (BBLL) [2]. In contrast to our automatically selected
portfolios, the algorithms in this portfolio were manually selected to minimize T over
all the benchmark functions within a target of 10−3. The descriptions of all algorithms
employed are presented in Table 2.

http://coco.gforge.inria.fr/doku.php

Algorithms 2021, 14, 19 9 of 20

Table 2. Summary of the algorithms employed in this paper, which were selected using ICARUS [41] and the publicly
available results from the BBOB sessions at the 2009 and 2010 GECCO Conferences. Algorithm names are as used for the
dataset descriptions available at http://coco.gforge.inria.fr/doku.php?id=algorithms.

Algorithm Description Reference

(1 + 2)m
s CMA-ES A simple CMA-ES variant, with one parent and two offspring, sequential selection, mirroring and random restarts.

All other parameters are set to the defaults.
[42]

BFGS The MATLAB implementation (fminunc) of this quasi-Newton method, which is randomly restarted whenever a
numerical error occurs. The Hessian matrix is iteratively approximated using forward finite differences, with a step
size equal to the square root of the machine precision. Other than the default parameters, the function and step
tolerances were set to 10−11 and 0, respectively.

[43]

BIPOP-CMA-ES A multistart CMA-ES variant with equal budgets for two interlaced restart strategies. After completing a first run
with a population of size λdef = 4 + b3 + ln Dc, the first strategy doubles the population size; while the second

one keeps a small population given by λs =

⌊
λdef

(
1
2

λ`
λdef

)U [0,1]2
⌋

, where λ` is the latest population size from the

first strategy, λ, and U [0, 1] is an independent uniformly distributed random number. Therefore, λs ∈ [λdef, λ/2].
All other parameters are at default values.

[44]

LSfminbnd The MATLAB implementation (fminbnd) of this axis parallel line search method, which is based on the golden
section search and parabolic interpolation. It can identify the optimum of quadratic functions in a few steps. On
the other hand, it is a local search technique; it can miss the global optimum (of the 1D function).

[45]

LSstep An axis parallel line search method effective only on separable functions. To find a new solution, it optimizes
over each variable independently, keeping every other variable fixed. The STEP version of this method uses
interval division, i.e., it starts from an interval corresponding to the upper and lower bounds of a variable, which is
divided by half at each iteration. The next sampled interval is based on its “difficulty,” i.e., by its belief of how
hard it would be to improve the best-so-far solution by sampling from the respective interval. The measure of
difficulty is the coefficient a from a quadratic function f (x) = ax2 + bx + c, which must go through the both
interval boundary points.

[45]

Nelder–Mead A version of the Nelder–Mead algorithm that uses random restarts, resizing and half-runs. In a resizing step,
the current simplex is replaced by a “fat” simplex, which maintains the best vertex, but relocates the remaining
ones such that they have the same average distance to the center of the simplex. Such steps are performed every
1000 algorithm iterations. In a half-run, the algorithm is stopped after 30× D interations, with only the most
promising half-runs being allowed to continue.

[46]

As our next step, we calculate the ELA features. Ideally, if the features are to be used
for algorithm selection, their additional computational cost should be a fraction of the cost
associated with a single search algorithm, which is usually bounded at 104 × D function
evaluations [33]. Belkhir et al. [47] and Kerschke et al. [15] use sample sizes of 30× D and
50× D respectively, which are close to the population size of an evolutionary algorithm.
However, Belkhir et al. [47] establishes that 30× D produces poor approximations of the
feature values, although they can be improved by training and resampling a surrogate
model. Nevertheless, their experiments also demonstrate that most features for the COCO
benchmark set level-off between 102 × D and 103 × D. These results are supported by
Škvorc et al. [13], who determined that for D = 2 a sample size of at least 200× D was
necessary to guarantee convergence.

Given this evidence, and to balance the cost of our computations, we set the lower
bound for the sample size at 102 × D, corresponding to 1% of the budget, and the upper
bound at 103 ×D, corresponding to 10% of the budget, which we consider to be reasonable
sample sizes. We divided the range between 102 × D and 103 × D into five equally sized
intervals in base-10 logarithmic scale, aiming to produce a geometric progression analogous
to the progression in D. As a result, we have five samples for each dimension. The samples
have sizes n equal to {100, 178, 316, 562, 1000} × D points, where each one is roughly
80% larger than the previous. We generate the input samples, X, using MATLAB’s Latin
Hypercube Sampling function lhsdesign with default parameters.

We generate the output sample, Y f ,i, by evaluating X in one of the first 15 instances
of the 24 functions from COCO, guaranteeing that the differences observed on the ELA
features only depend on the function value and sample size, as illustrated in Figure 4. As D
increases, the size of X becomes relatively smaller because the input space has increased

http://coco.gforge.inria.fr/doku.php?id=algorithms

Algorithms 2021, 14, 19 10 of 20

geometrically, while the sample has increased linearly. This is an unavoidable limitation
due to the curse of dimensionality. The combination of input/output sample are analyzed
using the features. To sum up, the input patterns database for a sample size n has a total of
1440 observations, one per each instance, with ten predictors. All data used for training is
made available in the LEarning and OPtimization Archive of Research Data (LEOPARD)
v1.0 [19].

f1,1 (x) Y1,1

f1,15 (x) Y1,15

f24,1 (x) Y24,1

f24,15 (x) Y24,15

...

Instance
Evaluation

...

Instance
Evaluation

Input
Sample

X

Output
Sample

Output
Sample

Figure 4. Instance evaluation procedure. An input sample X ∈ X is evaluated in all the problem
instances fi,j, i = 1, . . . , 24, j = 1, . . . , 15, where i is the function index, and j the instance index. The
result is an output sample Y f ,i ∈ Y . The procedure guarantees that the differences among measures
only depend on the output sample.

5. Selector Validation

Given the data-driven nature of the ELA features, the randomness and size of the
input sample used to calculate may also affect accuracy. Therefore, through the validation
process we aim to answer the following questions:

Q1 Does the selector’s accuracy increases with the size of the sample used to calculate the
ELA features?

Q2 What is the effect of the sample randomness on the selector performance?

The validation process is based on the Hold-One-Instance-Out (HOIO) and Hold-One-
Problem-Out (HOPO) approaches proposed by Bischl et al. [2]. For HOIO, the data from
one instance of each problem at all dimensions is removed from the training set. For HOPO,
all the instances for one problem at all dimensions are removed from the training set. HOIO
measures the performance for instances of problems previously observed; whereas HOPO
measures the performance for instances of unobserved problems.

To answer Q1, we train 30 different models for each validation approach, and average
the performance over them. We use a cost-sensitive Random Forest (RF) classification
model with 100 binary trees, which weighted each observation according to the difference
in performance between algorithms [48] as BCs. The performance is measured for each
value of n in terms of the success, best and worst-case selection, and total failure rates.
The Success Rate (SR) is the percentage of solved problems by the selector; the Best Case
Selection Rate (BCSR) is the percentage of problems for which the best algorithm was
selected; the Worst-Case Selection Rate (WCSR) is the percentage of problems for which
the worst algorithm was selected; and the Total Failure Rate (TFR) is the percentage of
unsolved problems due to selecting the worst performing algorithm. To summarize the
efficiency and accuracy results of the selector, we define a normalized performance score,
ραT , as follows:

ραT (F, α, et) =
T(F, αT , et)

SR(F, αT , et)
· SR(F, α, et)

T(F, α, et)
(5)

Algorithms 2021, 14, 19 11 of 20

where αT is a baseline algorithm for which ραT = 1. For our cases, the baseline algorithm
will be the BBLL portfolio with random selection, ρRB.

Once we have verified that the architecture of the selector produces satisfactory
results, we address Q2. To do this, we estimate the empirical probability distribution of
each feature, p̂r(ck). There are multiple approaches to this problem. For example, to take
multiple, independent trial sets per function [17], which guarantees the most accurate
estimator of p̂r(ck), although with the substantial computational of cost collecting the
function responses and calculating the features, particularly as n and D increase. Another
approach is to train a surrogate model with a small sample, and then resample from the
model [47], which provides a low computational cost estimate of p̂r(ck), although the
resample also includes assumptions generated by the surrogate which may not correspond
to the actual function. Moreover, parametric assumptions cannot be made, and there is
no guarantee of fulfilling asymptotic convergence. Therefore, we use bootstrapping [49]
to estimate p̂r(ck), which allows us to use one, potentially small sample, hence it can be
applied on expensive problems, without adding assumptions to the methodology.

Bootstrapping is a type of resampling method that uses the empirical distribution
to learn about the population distribution as follows: Let Z = {z1, . . . , zn}, zi = (xi, yi),
i = 1, . . . , n be a sample of n independent and identically distributed random variables
drawn from the distribution pr(Z). We can consider ck = T(pr(Z)) to be a summary statistic
of pr(Z), for example the mean, the standard deviation, or in our case an ELA feature.
Let Z∗j , j = 1, . . . , N be a bootstrap sample, which is a new set of n points independently
sampled with replacement from Z. From each one of the N bootstrap samples, we calculate
a bootstrap statistic, ĉ∗k,j, also in our case a feature. In other words, from each sample of
size n we create N resamples with replacement, also of size n, from which we estimate
all the features. This feature vectors are fed into the meta-models during the HOIO and
HOPO validation. With N = 2000, we estimate the 95% confidence intervals and bias
of
{

T, SR, BCSR, WCSR, TFR
}

for all values of n. The confidence intervals are estimated
using Efron’s non-parametric corrected percentile method [50], i.e., we compute the 2.5th
and 97.5th percentiles of the bootstrap distributions for each performance measure.

6. Results
6.1. Performance of the Selector

We now provide an answer to the questions formulated above. The results show that
a larger value of n does not translate to higher selection accuracy, while greatly increasing
the cost for easier problems. The remaining budget to find a solution decreases due to an
increase of fevals/D used to estimate the ELA features. Furthermore, changes in the input
sample have minor effects on the performance. This implies that the selector is reliable
even with noisy features, suggesting that their variance is small. Let us examine the results
in detail.

The performance of the best algorithm for a given problem is illustrated in Figure 5 for
the ICARUS/HOPO and BBLL portfolios. We observe that BIPOP-CMA-ES is the dominant
algorithm for {10, 20} dimensions in both portfolios. The Nelder–Doerr algorithm replaces
BFGS in the ICARUS/HOPO portfolio, resulting in deterioration of T̂ for { f1, f5}. There are
specialized algorithms for particular problems regardless of the number of dimensions,
e.g., LSstep is the best for { f3, f4}. Table 3 shows the performance of the individual
algorithms, the selectors during HOIO and HOPO. In addition, the results from an oracle,
i.e., a method which always selects the best algorithm without incurring any cost, and a
random selector are presented. The performance is measured as T, the 95% Confidence
Interval (CI) of T̂, SR, SR, BCSR, WCSR, TFR and ρRB. In boldface are the best values
of each performance measure over each validation method and n/D. The table shows
that only the oracles achieve SR = 100%, with the ICARUS portfolio having the best
overall performance with ρRB = 2.136 during HOPO. The table also shows that T is
always the lowest for n/D = 100, given that less of the budget is used to calculate the
ELA features. Highest SR is achieved with n/D = 562 for the ICARUS portfolios and

Algorithms 2021, 14, 19 12 of 20

n/D = 1000 for the BBLL portfolio. However, the differences with smaller n may not
justify the additional cost. For example, a SR of {HOIO : 99.7%, HOPO : 93.6%} and a
WCSR of {HOIO : 0.5%, HOPO : 4.2%} is achieved with n/D = 100 for the ICARUS sets, a
difference of {HOIO : −0.1%, HOPO : −1.7%} in SR and {HOIO : 0.1%, HOPO : −1.6%}
in WCSR for n/D = 562. Compared with total random selection, the selectors’ WCSR
and TFR are at least one order of magnitude smaller. Table 3 also shows on average a
decrease on BCSR of ≈ 40%, an increase of WCSR and TFR of ≈7% and ≈3% respectively;
although the results for the ICARUS sets are below average for WCSR and TFR, indicating
better performance. Furthermore, SR is always above 90% for the ICARUS sets, while SR
falls below 90% during HOPO for the BBLL set. Only BIPOP-CMA-ES with ρRB = 1.823
can match the overall performance of a selector.

0 1 2 3 4 5 6 7 8

T

0

5

10

15

20

25

P
ro

bl
em

 in
de

x

2D
5D
10D
20D

(1+2)m
s

CMA-ES

BIPOP-CMA-ES
LSstep
Nelder-Mead

(a) ICARUS/HOPO portfolio

0 1 2 3 4 5 6 7 8

T

0

5

10

15

20

25

P
ro

bl
em

 in
de

x

2D
5D
10D
20D
BFGS
BIPOP-CMA-ES
LSfminbnd
LSstep

(b) BBLL portfolio

Figure 5. Performance of the best algorithm in terms of T̂ for each problem. The lines represent the dimension of the
problem. The Nelder–Doerr algorithm replaces BFGS in the ICARUS/HOPO portfolio in most of the problems.

Algorithms 2021, 14, 19 13 of 20

Table 3. Performance of each algorithm and the selector, in terms of T, 95% confidence interval of T̂, SR and ρRB, which is
the normalized performance score against random selection using the BBLL portfolio. In boldface are the lowest values for
each performance measure over each validation method and n.

n
D T 95% CI T̂ SR BCSR WCSR TFR ρRB

(1 + 2)m
s CMA-ES 2.852 [0.781, 5.159] 66.7% 1.511

BFGS 2.633 [0.349, 4.648] 43.8% 1.074
BIPOP-CMA-ES 3.397 [1.107, 6.411] 95.8% 1.823
LSfminbnd 3.092 [1.105, 5.172] 27.1% 0.566
LSstep 3.306 [2.085, 5.169] 30.2% 0.591
Nelder–Mead 2.765 [0.694, 5.455] 59.4% 1.388

ICARUS

HOIO

100 3.287 [2.011, 6.409] 99.7% 98.6% 0.5% 0.3% 1.960
178 3.341 [2.257, 6.409] 99.6% 98.9% 0.3% 0.3% 1.926
316 3.417 [2.503, 6.410] 99.7% 98.9% 0.4% 0.2% 1.885
562 3.509 [2.752, 6.410] 99.8% 99.1% 0.3% 0.2% 1.837
1000 3.622 [3.001, 6.410] 99.7% 99.1% 0.4% 0.3% 1.779

ORACLE 3.092 [0.410, 6.410] 100.0% 100.0% 0.0% 0.0% 2.090
RAND 3.178 [0.737, 5.529] 56.5% 33.3% 33.3% 18.5% 1.148

HOPO

100 3.269 [2.025, 6.409] 93.6% 60.6% 4.2% 2.0% 1.851
178 3.293 [2.279, 5.529] 92.5% 55.9% 4.3% 0.7% 1.814
316 3.371 [2.508, 5.529] 93.8% 61.1% 4.7% 1.9% 1.798
562 3.510 [2.755, 6.410] 95.4% 60.9% 5.9% 1.3% 1.756
1000 3.618 [3.020, 6.410] 92.7% 57.4% 8.1% 2.3% 1.656

ORACLE 3.025 [0.770, 6.410] 100.0% 100.0% 0.0% 0.0% 2.136
RAND 3.093 [0.847, 5.468] 63.2% 25.9% 26.2% 15.6% 1.320

BBLL

HOIO

100 3.264 [2.011, 6.409] 99.4% 98.3% 0.7% 0.5% 1.968
178 3.321 [2.257, 6.409] 99.5% 98.8% 0.6% 0.4% 1.936
316 3.401 [2.503, 6.410] 99.5% 98.8% 0.5% 0.4% 1.891
562 3.495 [2.752, 6.410] 99.7% 99.1% 0.5% 0.3% 1.843
1000 3.611 [3.001, 6.410] 99.7% 99.0% 0.5% 0.3% 1.784

HOPO

100 3.228 [2.052, 5.402] 87.7% 59.7% 10.2% 6.7% 1.755
178 3.310 [2.281, 5.402] 90.0% 60.2% 9.6% 4.7% 1.757
316 3.353 [2.517, 5.176] 88.5% 59.8% 9.6% 5.7% 1.707
562 3.435 [2.759, 5.177] 88.5% 58.6% 8.2% 5.4% 1.665
1000 3.571 [3.024, 5.436] 90.5% 61.2% 10.5% 4.6% 1.638

ORACLE 3.040 [0.410, 6.410] 100.0% 100.0% 0.0% 0.0% 2.126
RAND 3.170 [0.737, 5.529] 49.1% 25.0% 25.0% 14.3% 1.000

Figure 6 illustrate the SR against T̂ for the complete benchmark set. Figure 6a shows
the results of individual algorithms, while Figure 6b shows the performance of such
oracle as solid lines and the random selector as dashed lines for the ICARUS/HOIO,
ICARUS/HOPO, and BBLL portfolios. As expected from Figure 5a, the ICARUS/HOPO
oracle has a degradation in performance in the easier 10% of the problems. On the top 10%
of the problems the performance of the three oracles is equivalent. The ICARUS/HOPO
oracle has a small improvement on performance between 10% and 90% of the problems.
Figure 6c,d illustrate the performance of the selectors for n/D = {100, 1000}. The shaded
region indicates the theoretical area of performance, with the upper bound representing
the ICARUS oracle and the lower bound random selection. Although it is unfeasible
to match the performance of the oracle, due to the cost of extracting the ELA measures
and a BCSR less than 100%, the figure shows the performance improvement against
random selection. During HOIO, the ICARUS selector surpasses random selection at
106 fevals/D with n/D = 100, representing 5.9% of the problems; and at 1349 fevals/D with
n/D = 1000, representing 31.2% of the problems. During HOPO, the ICARUS selector
surpasses random selection at 168 fevals/D with n/D = 100, representing 9.9% of the
problems; and at 1620 fevals/D with n/D = 1000, representing 40.3% of the problems.

Algorithms 2021, 14, 19 14 of 20

0 1 2 3 4 5 6 7 8

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
uc

ce
ss

 r
at

e

(1+2)m
s

CMA-ES

BFGS
BIPOP-CMA-ES
LSfminbnd
LSstep
Nelder-Mead

(a)

0 1 2 3 4 5 6 7 8

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
uc

ce
ss

 r
at

e

ICARUS/HOIO
ICARUS/HOPO
BBLL

(b)

0 1 2 3 4 5 6 7 8

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
uc

ce
ss

 r
at

e

BBLL
100

BBLL
1000

ICARUS
100

ICARUS
1000

(c)

0 1 2 3 4 5 6 7 8

T

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
S

uc
ce

ss
 r

at
e

BBLL
100

BBLL
1000

ICARUS
100

ICARUS
1000

(d)

Figure 6. Performance of the methods from Table 3 in terms of SR against T̂. Figure (a) illustrates the performance
of the individual algorithms, Figure (b) of the oracles and random selectors, Figure (c) of the selectors during HOIO,
and Figure (d) of the selectors during HOPO. For the latter two figures, solid lines represent oracles using n/D = 100,
while dashed lines represent oracles using n/D = 1000. The shaded region indicates the theoretical area of performance,
with the upper bound representing the ICARUS oracle and the lower bound random selection.

To understand where the selectors fail, we calculate the average SR, BCSR, WCSR
and TFR for a given problem or a given dimension during HOIO and HOPO validations.
Table 4 shows these results, where in boldface are the SR and BCSR less than 90%, and the
WCSR and TFR higher than 10%. The table shows that an instance of either { f23, f24}
have the highest possibility of remaining unsolved, despite the model having information
about other instances of these functions. Some problems, such as { f1, f2, f5}, have high
WCSR and low TFR values, which can be explained by their simplicity, as most algorithms
can solve them. The performance appears to be evenly distributed in terms of dimension.
Overall, the selector appears to struggle with those problems where only one algorithm
may be the best. Nevertheless, these results indicate that the architecture of the selector is
adequate for testing the effect of systemic errors.

Algorithms 2021, 14, 19 15 of 20

Table 4. Average SR across all for a given problem at a given dimension during HOIO and HOPO validations, and average
BCSR and WCSR for a given problem at a given dimension during HOPO validations. In boldface are the SR and BCSR
less than 90%, and the WCSR higher than 10%.

HOIO HOPO

SR BCSR WCSR TFR SR BCSR WCSR TFR

f1 100.0% 63.0% 9.2% 0.0% 100.0% 45.5% 15.0% 0.0%
f2 100.0% 69.8% 13.7% 0.0% 100.0% 55.0% 19.5% 0.0%
f3 99.8% 91.0% 0.2% 0.2% 100.0% 86.6% 0.1% 0.1%
f4 98.0% 89.1% 1.3% 1.0% 95.2% 82.2% 2.4% 2.2%
f5 100.0% 75.5% 11.1% 0.0% 100.0% 67.1% 18.4% 0.0%
f6 98.7% 88.8% 0.1% 0.1% 98.4% 86.9% 0.2% 0.2%
f7 98.7% 95.2% 0.4% 0.4% 98.3% 92.8% 0.9% 0.9%
f8 98.6% 74.1% 1.4% 1.4% 93.0% 59.6% 7.0% 7.0%
f9 100.0% 74.9% 0.0% 0.0% 100.0% 66.2% 0.0% 0.0%
f10 99.5% 83.6% 0.4% 0.4% 99.5% 76.2% 0.4% 0.4%
f11 99.0% 83.8% 0.8% 0.8% 99.2% 76.8% 0.8% 0.8%
f12 94.0% 81.7% 2.2% 0.0% 91.6% 76.4% 1.8% 0.0%
f13 97.1% 93.9% 1.7% 1.7% 95.3% 90.5% 2.8% 2.8%
f14 95.7% 79.9% 4.3% 4.3% 93.5% 70.7% 6.5% 6.5%
f15 99.7% 94.3% 1.0% 0.0% 99.0% 92.8% 1.2% 0.2%
f16 99.1% 94.9% 0.6% 0.6% 99.2% 95.4% 0.5% 0.5%
f17 91.8% 86.9% 1.9% 1.9% 90.2% 83.1% 1.5% 1.5%
f18 97.3% 92.7% 2.5% 2.5% 97.0% 91.1% 2.8% 2.8%
f19 99.7% 96.5% 0.3% 0.3% 95.6% 91.3% 2.5% 2.5%
f20 90.0% 81.9% 3.2% 0.0% 85.5% 74.5% 3.2% 0.0%
f21 100.0% 67.9% 0.0% 0.0% 100.0% 50.3% 0.0% 0.0%
f22 100.0% 75.7% 0.0% 0.0% 100.0% 67.8% 0.0% 0.0%
f23 80.8% 80.7% 9.0% 9.0% 66.9% 66.9% 16.4% 16.4%
f24 76.2% 71.8% 9.1% 9.1% 71.5% 68.0% 13.9% 13.9%

2 96.2% 79.6% 5.0% 2.0% 95.1% 73.2% 7.0% 2.6%
5 96.0% 83.7% 2.8% 1.2% 94.2% 77.2% 4.2% 2.0%
10 96.6% 82.0% 3.3% 1.4% 95.1% 74.4% 4.6% 2.5%
20 96.8% 86.0% 1.3% 1.0% 93.8% 77.4% 3.8% 2.7%

6.2. Sampling Effects on Selection

Table 5 shows the 95% CI of
{

T, SR, BCSR, WCSR, TFR
}

. The sub-index represents
estimation bias, defined as the difference between the bootstrap mean and the original mean,
which was presented in Table 3. A large bias implies that the estimated CI is less reliable. In
boldface are those intervals whose range is the smallest for a given validation. The lowest
bias is also in boldface. This table shows the smallest range is achieved with n/D = 1000,
implying more stable predictions are made the selector with a large sample size. This
also implies more stable ELA features. However, the differences are relatively minor. For
example, the difference between the upper and lower bounds of T represent 65 fevals/D
for n/D = 100, 63 fevals/D for n/D = 316, and 37 fevals/D for n/D = 1000. For SR, the
difference is 0.8% for n/D = 100, 0.6% for n/D = 316, and 0.4% for n/D = 1000. Hence,
the ELA features are sufficiently stable with a small n, to achieve reliable selection by the
selector.

Algorithms 2021, 14, 19 16 of 20

Table 5. Bootstrapped 95% CI of
{

T, SR, BCSR, WCSR, TFR
}

. The sub-index represents the bias of the estimation. In boldface are those intervals whose range is the smallest for a given
validation, and the lowest bias.

n
D T B̂ SRB̂ BCSRB̂ WCSRB̂ TFRB̂

ICARUS

HOIO

100 [3.283, 3.302]0.006 [98.1%, 99.2%]0.9% [94.2%, 96.8%]3.0% [0.8%, 2.2%]1.0% [0.2%, 1.2%]0.3%
178 [3.350, 3.372]0.019 [99.5%, 99.8%]0.1% [94.5%, 97.5%]2.6% [0.6%, 1.8%]0.7% [0.3%, 1.5%]0.5%
316 [3.417, 3.424]0.003 [99.6%, 100.0%]0.1% [97.7%, 98.7%]0.7% [0.2%, 0.6%]0.0% [0.1%, 0.4%]0.0%
562 [3.509, 3.512]0.002 [99.7%, 99.9%]0.0% [98.4%, 99.0%]0.4% [0.2%, 0.4%]0.0% [0.0%, 0.2%]0.1%

1000 [3.621, 3.623]0.000 [99.6%, 99.8%]0.0% [98.8%, 99.1%]0.1% [0.3%, 0.4%]0.0% [0.1%, 0.1%]0.2%

HOPO

100 [3.263, 3.278]0.003 [93.5%, 94.5%]0.3% [59.2%, 61.2%]0.4% [2.2%, 3.3%]1.5% [0.7%, 1.5%]0.8%
178 [3.260, 3.282]0.022 [91.7%, 92.6%]0.2% [56.3%, 58.4%]1.5% [2.5%, 3.6%]1.3% [2.0%, 3.0%]1.7%
316 [3.352, 3.365]0.012 [93.4%, 94.2%]0.0% [60.4%, 61.7%]0.0% [3.1%, 4.0%]1.1% [1.9%, 2.5%]0.3%
562 [3.496, 3.511]0.006 [95.3%, 96.0%]0.3% [60.9%, 62.3%]0.7% [4.5%, 5.4%]0.9% [3.3%, 4.1%]2.4%

1000 [3.611, 3.617]0.004 [92.5%, 93.0%]0.0% [56.7%, 57.7%]0.2% [7.1%, 7.8%]0.6% [4.9%, 5.4%]2.9%

BBLL

HOIO

100 [3.256, 3.277]0.002 [97.7%, 98.8%]1.0% [94.0%, 96.4%]3.0% [0.7%, 1.5%]0.4% [0.2%, 0.8%]0.1%
178 [3.332, 3.353]0.020 [99.4%, 99.7%]0.0% [94.2%, 97.3%]2.8% [0.4%, 1.2%]0.2% [0.2%, 0.9%]0.0%
316 [3.401, 3.407]0.003 [99.5%, 99.8%]0.2% [97.8%, 98.7%]0.5% [0.3%, 0.6%]0.1% [0.2%, 0.3%]0.2%
562 [3.495, 3.498]0.002 [99.6%, 99.8%]0.1% [98.3%, 99.0%]0.4% [0.3%, 0.5%]0.1% [0.1%, 0.2%]0.2%

1000 [3.610, 3.612]0.000 [99.6%, 99.8%]0.0% [98.8%, 99.1%]0.1% [0.3%, 0.5%]0.0% [0.2%, 0.2%]0.1%

HOPO

100 [3.231, 3.256]0.015 [87.8%, 89.2%]0.8% [58.8%, 60.8%]0.1% [8.7%, 10.0%]0.9% [2.8%, 3.6%]3.5%
178 [3.312, 3.334]0.012 [90.1%, 91.2%]0.6% [60.0%, 61.8%]0.7% [8.3%, 9.4%]0.8% [3.7%, 4.6%]0.5%
316 [3.357, 3.371]0.011 [89.0%, 89.8%]0.9% [59.6%, 60.7%]0.3% [8.8%, 9.7%]0.4% [3.8%, 4.3%]1.6%
562 [3.439, 3.447]0.008 [88.8%, 89.5%]0.7% [58.6%, 59.4%]0.4% [7.6%, 8.1%]0.3% [2.7%, 2.9%]2.6%

1000 [3.572, 3.578]0.003 [90.9%, 91.4%]0.7% [61.6%, 62.2%]0.7% [9.7%, 10.1%]0.5% [5.4%, 5.8%]1.0%

Algorithms 2021, 14, 19 17 of 20

7. Discussion

The overarching aim of this paper was to explore the effect that uncertainty in the
features has on the performance of automated algorithm selectors. To meet this aim,
we have designed, implemented and validated an algorithm selector, and analyzed the
effects that the features accuracy have on the selector performance. These methods were
described in Section 3. We have carried out an experimental validation using the COCO
noiseless benchmark set [33] as representative problems. The results described in Section 6
are encouraging, as they demonstrate that as long as the features are informative, and have
low variability, the selection error will be small. This conclusion is the main contribution
of our paper. However, there are several trade-offs in the selector performance associated
with the methodology employed. We discuss these points in detail below.

The results have shown that an increase in the sample size n does not improve SR
and BCSR. On the contrary, large sample sizes deteriorate the performance in terms of
T̂ for the easier problems. Although n = D× 102 is a reasonable cost for calculating the
ELA features, this cost could be distributed if each candidate used to calculate features
is also the starting point of a random restart. It is known that random restarts improve
the heavy-tailed behavior of optimization algorithms [51]. It may also be possible that
an optimal n exists for every problem instance and ELA measure. Potentially, n could
be decreased until the accuracy of the selector deteriorates. However, it should be noted
that the learning model does not predict the variance of T̂, which is an indicator of the
reliability of the algorithm. Therefore, the selector does not differentiate between reliable
and unreliable algorithms. A model that predicts the variance may improve the selector
accuracy. Further investigation of these issues is left for further research.

The results confirm that the ‘no-free-lunch’ theorem [27] still holds for the selector.
The cost of ELA stage decreases the selector performance in the simplest problems com-
pared to a method such as BFGS. Moreover, a parallel implementation of the portfolio
would certainly achieve a SR = 100% with a trade-off on T. However, it should be noted
that the component algorithms were selected using the complete information from the
knowledge base. Hence, it is an estimate of the ideal performance. A key advantage of the
selector is that after the allocated budget exceeds a threshold, performance gains are evi-
dent, particularly if the budget is a few orders of magnitude larger. Therefore, the selector
is competitive when the precision of the solution is more important than the computa-
tional cost. Considering a BBO problem, where there is no certainty about the difficulty,
the selector gives some assurances that a solution could be found with a small trade-off.
Additionally, the results show that the selector is robust to noise in the ELA features.

Due to their algorithmic simplicity and scalability with D, the ELA features allowed us
to ‘sample once and measure many’. Therefore, they reduced the cost measured as fevals/D
of the measuring phase. However, this does not mean that they are sufficient, complete
or even necessary. Therefore, other features may be investigated that may potentially
improve accuracy.

Finally, the reduced number of problems in the COCO benchmark set limits the
generality of our results. The set is considered to be a space filling benchmark set [2].
However, this conclusion was based on a graphical representation, which is dependent on
the employed ELA features. Therefore, we consider it necessary to add functions to the
training set. This can be accomplished by using an automatic generator [52] or examining
other existing benchmark sets. In conjunction with a visualization technique, this approach
may reveal new details about the nature of the problem set [31]. This is a significant
challenge in continuous BBO, for which the selector is a fundamental part of the solution.

Author Contributions: Conceptualization, M.A.M. and M.K.; methodology, M.A.M.; software,
M.A.M.; validation, M.A.M; formal analysis, M.A.M.; data curation, M.A.M.; writing—original draft
preparation, M.A.M.; writing—review and editing, M.K.; supervision, M.K.; funding acquisition,
M.A.M. All authors have read and agreed to the published version of the manuscript.

Algorithms 2021, 14, 19 18 of 20

Funding: This work was funded by The University of Melbourne through MIRS/MIFRS scholarships
awarded to M.A. Muñoz.

Data Availability Statement: The data presented in this study are openly available in FigShare at
DOI:10.6084/m9.figshare.c.5106758.

Acknowledgments: We thank Saman Halgamuge and Kate Smith-Miles for the support in the
preparation of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Lozano, M.; Molina, D.; Herrera, F. Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale

continuous optimization problems. Soft Comput. 2011, 15, 2085–2087. [CrossRef]
2. Bischl, B.; Mersmann, O.; Trautmann, H.; Preuß, M. Algorithm selection based on exploratory landscape analysis and cost-

sensitive learning. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation (GECCO’12),
Philadelphia, PA, USA, 7–11 July 2012; pp. 313–320. [CrossRef]

3. Muñoz, M.; Kirley, M.; Halgamuge, S. A Meta-Learning Prediction Model of Algorithm Performance for Continuous Optimization
Problems. In Proceedings of the International Conference on Parallel Problem Solving from Nature, PPSN XII, Taormina, Italy,
1–5 September 2012; Volume 7941, pp. 226–235. [CrossRef]

4. Abell, T.; Malitsky, Y.; Tierney, K. Features for Exploiting Black-Box Optimization Problem Structure. In LION 2013: Learning and
Intelligent Optimization; LNCS; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7997, pp. 30–36.

5. Belkhir, N.; Dréo, J.; Savéant, P.; Schoenauer, M. Feature Based Algorithm Configuration: A Case Study with Differential
Evolution. In Parallel Problem Solving from Nature—PPSN XIV; Springer International Publishing: Berlin/Heidelberg, Germany,
2016; pp. 156–166. [CrossRef]

6. Belkhir, N.; Dréo, J.; Savéant, P.; Schoenauer, M. Per instance algorithm configuration of CMA-ES with limited budget.
In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July 2017; [CrossRef]

7. Kerschke, P.; Trautmann, H. Automated Algorithm Selection on Continuous Black-Box Problems by Combining Exploratory
Landscape Analysis and Machine Learning. Evol. Comput. 2019, 27, 99–127. [CrossRef] [PubMed]

8. Mersmann, O.; Bischl, B.; Trautmann, H.; Preuß, M.; Weihs, C.; Rudolph, G. Exploratory landscape analysis. In Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation, (GECCO’11), Dublin, Ireland, 12–16 July 2011; pp. 829–836.
[CrossRef]

9. Jansen, T. On Classifications of Fitness Functions; Technical Report CI-76/99; University of Dortmund: Dortmund, Germany, 1999.
10. Müller, C.; Sbalzarini, I. Global Characterization of the CEC 2005 Fitness Landscapes Using Fitness-Distance Analysis. In Applica-

tions of Evolutionary Computation; LNCS; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6624, pp. 294–303. [CrossRef]
11. Tomassini, M.; Vanneschi, L.; Collard, P.; Clergue, M. A Study of Fitness Distance Correlation as a Difficulty Measure in Genetic

Programming. Evol. Comput. 2005, 13, 213–239. [CrossRef]
12. Saleem, S.; Gallagher, M.; Wood, I. Direct Feature Evaluation in Black-Box Optimization Using Problem Transformations.

Evol. Comput. 2019, 27, 75–98. [CrossRef] [PubMed]
13. Škvorc, U.; Eftimov, T.; Korošec, P. Understanding the problem space in single-objective numerical optimization using exploratory

landscape analysis. Appl. Soft Comput. 2020, 90, 106138. [CrossRef]
14. Muñoz, M.; Kirley, M.; Smith-Miles, K. Analyzing randomness effects on the reliability of Landscape Analysis. Nat. Comput.

2020. [CrossRef]
15. Kerschke, P.; Preuß, M.; Wessing, S.; Trautmann, H. Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models.

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO ’16), Denver, CO, USA, 20–24 July 2016; ACM:
New York, NY, USA, 2016; pp. 229–236. [CrossRef]

16. Muñoz, M.; Smith-Miles, K. Effects of function translation and dimensionality reduction on landscape analysis. In Proceedings
of the 2015 IEEE Congress on Evolutionary Computation (CEC) (IEEE CEC’15), Sendai, Japan, 25–28 May 2015; pp. 1336–1342.
[CrossRef]

17. Renau, Q.; Dreo, J.; Doerr, C.; Doerr, B. Expressiveness and robustness of landscape features. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO’19, Prague, Czech Republic, 13–17 July 2019; ACM Press: New York,
NY, USA, 2019; [CrossRef]

18. Renau, Q.; Doerr, C.; Dreo, J.; Doerr, B. Exploratory Landscape Analysis is Strongly Sensitive to the Sampling Strategy. In Parallel
Problem Solving from Nature—PPSN XVI; Bäck, T., Preuss, M., Deutz, A., Wang, H., Doerr, C., Emmerich, M., Trautmann, H., Eds.;
Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 139–153.

19. Muñoz, M. LEOPARD: LEarning and OPtimization Archive of Research Data. Version 1.0. 2020. Available online: https:
//doi.org/10.6084/m9.figshare.c.5106758 (accessed on 8 November 2020).

http://doi.org/10.1007/s00500-010-0639-2
http://dx.doi.org/10.1145/2330163.2330209
http://dx.doi.org/10.1007/978-3-642-32937-1_23
http://dx.doi.org/10.1007/978-3-319-45823-6_15
http://dx.doi.org/10.1145/3071178.3071343
http://dx.doi.org/10.1162/evco_a_00236
http://www.ncbi.nlm.nih.gov/pubmed/30365386
http://dx.doi.org/10.1145/2001576.2001690
http://dx.doi.org/10.1007/978-3-642-20525-5_30
http://dx.doi.org/10.1162/1063656054088549
http://dx.doi.org/10.1162/evco_a_00247
http://www.ncbi.nlm.nih.gov/pubmed/30592633
http://dx.doi.org/10.1016/j.asoc.2020.106138
http://dx.doi.org/10.13140/RG.2.2.23838.64327/1
http://dx.doi.org/10.1145/2908812.2908845
http://dx.doi.org/10.1109/CEC.2015.7257043
http://dx.doi.org/10.1145/3319619.3326913
https://doi.org/10.6084/m9.figshare.c.5106758
https://doi.org/10.6084/m9.figshare.c.5106758

Algorithms 2021, 14, 19 19 of 20

20. Rice, J. The Algorithm Selection Problem. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 1976; Volume 15,
pp. 65–118. [CrossRef]

21. Reeves, C. Fitness Landscapes. In Search Methodologies; Springer: Berlin/Heidelberg, Germany, 2005; pp. 587–610. [CrossRef]
22. Pitzer, E.; Affenzeller, M. A Comprehensive Survey on Fitness Landscape Analysis. In Recent Advances in Intelligent Engineering

Systems; SCI; Springer: Berlin/Heidelberg, Germany, 2012; Volume 378, pp. 161–191. [CrossRef]
23. Weise, T.; Zapf, M.; Chiong, R.; Nebro, A. Why Is Optimization Difficult? In Nature-Inspired Algorithms for Optimisation; SCI;

Springer: Berlin/Heidelberg, Germany, 2009; Volume 193, pp. 1–50. [CrossRef]
24. Mersmann, O.; Preuß, M.; Trautmann, H. Benchmarking Evolutionary Algorithms: Towards Exploratory Landscape Analysis.

In PPSN XI; LNCS; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6238, pp. 73–82. [CrossRef]
25. García-Martínez, C.; Rodriguez, F.; Lozano, M. Arbitrary function optimisation with metaheuristics. Soft Comput. 2012,

16, 2115–2133. [CrossRef]
26. Hutter, F.; Hamadi, Y.; Hoos, H.; Leyton-Brown, K. Performance prediction and automated tuning of randomized and parametric

algorithms. In CP ’06: Principles and Practice of Constraint Programming—CP 2006; LNCS; Springer: Berlin/Heidelberg, Germany,
2006; Volume 4204, pp. 213–228. [CrossRef]

27. Wolpert, D.; Macready, W. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
28. Smith-Miles, K. Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 2009, 41, 6:1–6:25.

[CrossRef]
29. Graff, M.; Poli, R. Practical performance models of algorithms in evolutionary program induction and other domains. Artif. Intell.

2010, 174, 1254–1276. [CrossRef]
30. Hutter, F.; Xu, L.; Hoos, H.; Leyton-Brown, K. Algorithm runtime prediction: Methods & evaluation. Artif. Intell. 2014, 206, 79–111.

[CrossRef]
31. Smith-Miles, K.; Baatar, D.; Wreford, B.; Lewis, R. Towards objective measures of algorithm performance across instance space.

Comput. Oper. Res. 2014, 45, 12–24. [CrossRef]
32. Hilario, M.; Kalousis, A.; Nguyen, P.; Woznica, A. A data mining ontology for algorithm selection and meta-mining. In

Proceedings of the Second Workshop on Third Generation Data Mining: Towards Service-Oriented Knowledge Discovery
(SoKD’09), Bled, Slovenia, 7 September 2009; pp. 76–87.

33. Hansen, N.; Auger, A.; Finck, S.; Ros, R. Real-Parameter Black-Box Optimization Benchmarking BBOB-2010: Experimental Setup;
Technical Report RR-7215; INRIA Saclay-Île-de-France: Paris, France, 2014.

34. Hüllermeier, E.; Fürnkranz, J.; Cheng, W.; Brinker, K. Label ranking by learning pairwise differences. Artif. Intell. 2008,
172, 1897–1916. [CrossRef]

35. Bischl, B.; Kerschke, P.; Kotthoff, L.; Lindauer, M.; Malitsky, Y.; Fréchette, A.; Hoos, H.; Hutter, F.; Leyton-Brown, K.; Tierney, K.;
et al. ASlib: A benchmark library for algorithm selection. Artif. Intell. 2016, 237, 41–58. [CrossRef]

36. Seo, D.; Moon, B. An Information-Theoretic Analysis on the Interactions of Variables in Combinatorial Optimization Problems.
Evol. Comput. 2007, 15, 169–198. [CrossRef]

37. Stowell, D.; Plumbley, M. Fast Multidimensional Entropy Estimation by k-d Partitioning. IEEE Signal Process. Lett. 2009,
16, 537–540. [CrossRef]

38. Marin, J. How landscape ruggedness influences the performance of real-coded algorithms: a comparative study. Soft Comput.
2012, 16, 683–698. [CrossRef]

39. Jones, T.; Forrest, S. Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms. In Proceedings of
the Sixth International Conference on Genetic Algorithms, Pittsburgh, PA, USA, 15–19 July 1995; Morgan Kaufmann Publishers
Inc.: Burlington, MA, USA, 1995; pp. 184–192.

40. Morgan, R.; Gallagher, M. Length Scale for Characterising Continuous Optimization Problems. In PPSN XII; LNCS; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 7941, pp. 407–416.

41. Muñoz, M.; Kirley, M. ICARUS: Identification of Complementary algoRithms by Uncovered Sets. In Proceedings of the 2016
IEEE Congress on Evolutionary Computation (CEC) (IEEE CEC’16), Vancouver, BC, Canada, 24–29 July 2016; pp. 2427–2432.
[CrossRef]

42. Auger, A.; Brockhoff, D.; Hansen, N. Comparing the (1+1)-CMA-ES with a Mirrored (1+2)-CMA-ES with Sequential Selection
on the Noiseless BBOB-2010 Testbed. In Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary
Computation (GECCO’10), Portland, OR, USA, 7–11 July 2010; Association for Computing Machinery: New York, NY, USA, 2010;
pp. 1543–1550. [CrossRef]

43. Ros, R. Benchmarking the BFGS Algorithm on the BBOB-2009 Function Testbed. In GECCO’09: Proceedings of the 11th Annual
Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers; ACM: New York, NY, USA, 2009;
pp. 2409–2414. [CrossRef]

44. Hansen, N. Benchmarking a bi-population CMA-ES on the BBOB-2009 Function Testbed. In GECCO’09: Proceedings of the 11th
Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers; ACM: New York, NY, USA,
2009; pp. 2389–2396. [CrossRef]

45. Pošík, P.; Huyer, W. Restarted Local Search Algorithms for Continuous Black Box Optimization. Evol. Comput. 2012, 20, 575–607.
[CrossRef]

http://dx.doi.org/10.1016/S0065-2458(08)60520-3
http://dx.doi.org/10.1007/0-387-28356-0_19
http://dx.doi.org/10.1007/978-3-642-23229-9_8
http://dx.doi.org/10.1007/978-3-642-00267-0_1
http://dx.doi.org/10.1007/978-3-642-15844-5_8
http://dx.doi.org/10.1007/s00500-012-0881-x
http://dx.doi.org/10.1007/11889205_17
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1145/1456650.1456656
http://dx.doi.org/10.1016/j.artint.2010.07.005
http://dx.doi.org/10.1016/j.artint.2013.10.003
http://dx.doi.org/10.1016/j.cor.2013.11.015
http://dx.doi.org/10.1016/j.artint.2008.08.002
http://dx.doi.org/10.1016/j.artint.2016.04.003
http://dx.doi.org/10.1162/evco.2007.15.2.169
http://dx.doi.org/10.1109/LSP.2009.2017346
http://dx.doi.org/10.1007/s00500-011-0781-5
http://dx.doi.org/10.1109/CEC.2016.7744089
http://dx.doi.org/10.1145/1830761.1830771
http://dx.doi.org/10.1145/1570256.1570336
http://dx.doi.org/10.1145/1570256.1570333
http://dx.doi.org/10.1162/EVCO_a_00087

Algorithms 2021, 14, 19 20 of 20

46. Doerr, B.; Fouz, M.; Schmidt, M.; Wahlstrom, M. BBOB: Nelder-Mead with Resize and Halfruns. In GECCO’09: Proceedings of the
11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers; ACM: New York, NY,
USA, 2009; pp. 2239–2246. [CrossRef]

47. Belkhir, N.; Dréo, J.; Savéant, P.; Schoenauer, M. Surrogate Assisted Feature Computation for Continuous Problems. In LION 2016:
Learning and Intelligent Optimization; Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg,
Germany, 2016; pp. 17–31. [CrossRef]

48. Xu, L.; Hutter, F.; Hoos, H.; Leyton-Brown, K. SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 2008,
32, 565–606. [CrossRef]

49. Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman & Hall: London, UK, 1993.
50. Efron, B. Nonparametric Standard Errors and Confidence Intervals. Can. J. Stat./ Rev. Can. Stat. 1981, 9, 139–158. [CrossRef]
51. Gomes, C.; Selman, B.; Crato, N.; Kautz, H. Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems.

J. Autom. Reason. 2000, 24, 67–100. [CrossRef]
52. Smith-Miles, K.; van Hemert, J. Discovering the suitability of optimisation algorithms by learning from evolved instances.

Ann. Math. Artif. Intel. 2011, 61, 87–104. [CrossRef]

http://dx.doi.org/10.1145/1570256.1570312
http://dx.doi.org/10.1007/978-3-319-50349-3_2
http://dx.doi.org/10.1613/jair.2490
http://dx.doi.org/10.2307/3314608
http://dx.doi.org/10.1023/A:1006314320276
http://dx.doi.org/10.1007/s10472-011-9230-5

	Introduction
	Background and Related Work
	Black-Box Optimization and Fitness Landscapes
	The Algorithm Selection Framework

	Methods
	 Learning Model
	 Exploratory Landscape Analysis Features
	 Algorithm Performance Measure

	 Selector Implementation
	 Selector Validation
	Results
	Performance of the Selector
	Sampling Effects on Selection

	Discussion
	References

