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Abstract: The distribution process in business-to-business materials trading is among the most
complex and in transparent ones within logistics. The highly volatile environment requires contin-
uous adaptations by the responsible decision-makers, who face a substantial number of potential
improvement actions with conflicting goals, such as simultaneously maintaining a high service level
and low costs. Simulation-optimisation approaches have been proposed in this context, for example
based on evolutionary algorithms. But, on real-world system dimensions, they face impractically
long computation times. This paper addresses this challenge in two principal streams. On the one
hand, reinforcement learning is investigated to reduce the response time of the system in a concrete
decision situation. On the other hand, domain-specific information and defining equivalent solutions
are exploited to support a metaheuristic algorithm. For these approaches, we have developed suitable
implementations and evaluated them with subsets of real-world data. The results demonstrate that
reinforcement learning exploits the idle time between decision situations to learn which decisions
might be most promising, thus adding computation time but significantly reducing the response
time. Using domain-specific information reduces the number of required simulation runs and guides
the search for promising actions. In our experimentation, defining equivalent solutions decreased the
number of required simulation runs up to 15%.

Keywords: simulation; optimization; machine learning; logistics; distribution networks

1. Introduction

Managing distribution networks is a challenging task for decision-makers. The specific
challenge in this field is the complex structure of a typical network, which is a multi-echelon
system with horizontal and vertical shortcuts in combination with huge numbers of nodes
as well as transported parts, each kind of which is defined as a stock keeping unit (SKU). In
addition, this kind of logistics operates in a highly volatile environment, requiring continu-
ous adaptations by the responsible managers who need to conduct frequent maintenance
and improvement decisions, especially on tactical horizons. In practice, decision-makers
face a substantial number of potential improvement actions, spanned by the huge number
of objects that can and have to be combined for suitable maintenance of the network [1,2].
Furthermore, conflicting goals, such as simultaneously maintaining a high service level
and low costs, characterized by specifically defined key performance indicators (KPIs) [3],
add to the complexity of the problem. Short delivery times versus low costs as well as a
large number of delivered SKUs by their due date versus a large number of fully completed
orders are other examples of conflicting goals in the network.

The first challenge is the specific shape of the problem. Traditional parameter optimi-
sation tasks—easily found in the broad literature—are described by a given (finite) number
of parameters, each with a given number of possible values. The size of the solution space,
in this case, is defined as the product of the number of all parameters. However, in the
network covered in this paper, there is an (in principle) unlimited number of actions to
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change the network, each of which could be any of a given limited set of actions, applied
to any of the object combinations. Therefore, traditional algorithms are not applicable
because of the daunting combinatorics. Just as an example, traditionally a parameter
entry of the algorithm stands for a specific characteristic of the underlying system. Here,
however, it only stands for any kind of action. Therefore, it is also the case that the sequence
of the elements is clearly relevant, in contrast to the cases that are usually found in the
state-of-the-art literature.

Due to their complexity, real-world networks cannot obtain a closed mathematical
formulation of the goal functions [4]. Therefore, an application might resort to a three-stage
solution procedure. In the first stage, changes to the system are defined that are expected
to keep or even improve the KPIs. In the second stage, a discrete event simulation (DES)
model [5] is run to determine basic logistical data, such as throughput times, in-time
delivery, or utilisation of resources. In the last stage, these data are used as in the real world
to calculate the KPIs, which then serve to judge the quality of the changes that have been
set up in the first stage.

This three-stage process can, of course, be conducted manually by human experts, but
there have been a number of trials to automate the optimisation of distribution networks.
Unfortunately, due to the huge solution space, there is again no closed mathematical for-
mulation to find a minimum or maximum of the desired KPIs, leading to the necessity
of applying heuristic algorithms, which do not deliver the optimum, but—hopefully—a
“suitably good” solution in finite time [6,7]. Specific heuristics would raise extremely
high development and implementation effort for such complex applications. Therefore,
reported implementations exploit metaheuristics, often biology-inspired, such as evolu-
tionary algorithms [8]. Metaheuristics are optimisation algorithms that are—at least up
to a point—independent of the specific application problem, with the great advantage
that new developments can be exploited for a multitude of applications, and, thus, very
sophisticated and efficient algorithms are available.

The scientific solution approach applied in this paper is consequently the method of
simheuristics [9], which combines DES used as an evaluation function with metaheuristics
for the optimisation. The major drawback of this approach is the time to produce promising
action proposals. The tremendous time requirements originate from the huge solution space
described before in combination with the significant runtimes of the complex simulation
models [10], the latter being in the range of minutes to even hours per single run.

There have been very different approaches proposed to face this problem. Optimisa-
tion of the metaheuristics performance itself is hardly promising, as the processing of these
algorithms covers only a very minor part of the total run time—by far the major part is
covered by the DES. An obvious idea is to develop advanced simulation models that can
evaluate the distribution system faster. Alternatives address the effort to obtain statistical
relevance, for example, find better controls for the number of required replications or adapt
such numbers to the degree that a specific solution seems to be promising [11–13]. This
article explores two different innovative ways.

Actually, the real performance challenge is not to minimise the effective computation
time TC of the computer resource, but to reduce the time required to present a decision
proposal TD, defined as the time span between the availability of data and the provision
of acceptable solution proposals. With metaheuristics, such as an evolutionary algorithm
(EA) [7], TD can only be reduced with respect to TC when additional resources are applied.
For example, using four computer processors instead of one will cut TD to about 25% of TC.
With ten computers, it will reduce to about 10% (assuming that the distribution overhead
is negligible). However, the tactical decisions are performed, for example, once per month
with a decision request three days after availability of field data in the data warehouse.
Thus, ten computers might idle 27 days waiting for the next decision request. The solution
approach is to apply machine learning, where a learning algorithm is operating for 90% of
the time, and in the concrete decision situation the acquired knowledge is used to quickly
find promising solutions. We consider deep reinforcement learning for this purpose, as
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it allows us to estimate the impact of specific changes, even if these have never been
simulated in the past, by using the “fuzzier” knowledge within the deep learning’s neural
network [14,15].

The second innovative idea is to get domain-specific information (DSI) back into our
metaheuristic algorithm [16]. We analyse three different approaches to use contextual
information for the acceleration of the heuristics machine. One approach exploits experi-
ence from previous (actual or simulated) applications of actions, following the idea that
actions that have shown to be helpful in the past might lead to good results in the future as
well. This method also allows us to exploit the idle time between the decision periods to
collect experience about the actions’ success and, thus, to improve the forecast power of the
success indicators. A second approach uses the classification of actions that either change
the network’s structure or else just its parameters, assuming that structural changes would
be more targeted if applied among the first actions of the action plan. The last idea assumes
that the actions are not independent, and one action being performed will influence the
impact of further actions. In this approach, the correlation among actions is computed for
data from the past and projected into future action plans. Again, idle time can be used to
calculate and continuously improve the correlation indicators.

Finally, the number of simulation runs could be reduced, and we discuss two ways
towards this goal. On the one hand, different action plans are analysed to determine
whether they can be predicted to gain identical results without the need to simulate both
of them. This would lead to performance improvement without reducing the result quality
(or, from a different point of view, to achieve better results within the same time frame).
On the other hand, the reduction of the solution space itself by grouping actions into
fewer selectable items is considered [17]. It can be assumed that this approach, quite
usual in real-world decision making, will lead to a significant reduction of simulation runs.
However, the reduction of the research space might exclude some even better solutions,
which in fact could be acceptable if the method leads to better solutions within a limited
given time frame.

For all these approaches, we have developed suitable implementations and evaluated
them with subsets of real-world data. In this paper, we give an overview of the imple-
mentation, present exemplary results, and make conclusions about the suitability of the
investigated approaches. The paper is organised as follows—Section 2 presents the related
work and Section 3 the considered optimisation approaches. Section 4 introduces the
general ideas and architecture of the developed logistics assistance system, and it clarifies
the relationship to real-world data. Sections 5–7 discuss the above-mentioned approaches
one by one, followed by an evaluation of the novel concepts in an evaluation based on
real-world data in Section 8. The discussion relates the major findings to the previous state
of the art and derives future research paths, followed by a summary of the achievements in
Section 9.

2. Related Work
2.1. Simulation of Distribution Systems

Management of logistics distribution systems is a complex task; hence, decision-
makers use models to represent and study these systems. A model is a “simplified re-
production of a planned or existing system with its processes in a different conceptual
or concrete system” [18] (p. 3). In the models, decision variables are under the control
of decision-makers and present the input to the models [19]. Decision-makers change
the values of decision variables and use the output of models to study the relationships
between the variables and the performance of the modelled system.

Distribution systems have a high degree of interaction between their entities and
are characterised as having time-dependent variables [18]; thus, mathematical models [5]
reach their limits in modelling distribution systems and, instead, simulation is used to
model them.
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Simulation studies are conducted in several phases that are, for example, illustrated
in the procedure model presented by Rabe et al. [20]. This model shows the phases
targeted to guarantee the building of a representative model of the system under study. It
highlights the importance of verification and validation of the model as well as the data in
the simulation study [21].

A variety of model representation techniques using simulation modelling have been
developed, such as DES [22]. The discrete event simulation is characterised as modelling
a system by focusing on its discrete states. Fanti et al. [23] claimed that DES is the
most preferred simulation approach for logistics systems. Pujawan et al. [24] modelled a
cement distribution system using DES to estimate costs and service level. In another study,
Fang and Li [25] evaluated various inventory scenarios using DES. Ivanov [26] studied
the effect of disruption at one point in a network using DES; he used DES to perform a
sensitivity analysis.

2.2. Optimisation of Distribution Systems

In optimisation problems, decision variables are optimised. These variables might
have continuous values or countable values [7]. Optimisation problems with countable
decision variables are integer programming problems, sometimes called combinatorial
optimisation problems [27]. Such problems are based on combinatorics [28], in which a
solution is formed from a finite space of elements to optimise an objective function [29].
Optimisation of distribution systems could be formulated as a combinatorial optimisation
problem [30], such as the travelling salesman problem, in which the task is to arrange a
tour through a number of cities to minimise the total travelled distance.

Greedy algorithms have been used to find the approximately optimal solutions of
simple combinatorial optimisation problems [31]. Adding constraints to these problems
or increasing their size increases the difficulties to solve them, and the problems might
become NP-hard [4]. The travelling salesman problem is an example of an NP-hard
problem that is solved by approximate methods (such as metaheuristics) to find promising
feasible solutions [31]. “A metaheuristic is a high-level problem-independent algorithmic
framework that provides a set of guidelines or strategies to develop heuristic optimisation
algorithms” [32] (p. 960).

Researchers used metaheuristics to solve a variety of combinatorial optimisation
problems, such as Osaba et al. [33]. Cybulski [34] found that evolutionary algorithms exhib-
ited promising performance in different benchmark combinatorial optimisation problems.
Other researchers combined metaheuristics and other methods in a hybrid approach [7],
such as the simheuristics approach [35].

2.3. Simheuristics

For the optimisation of complex systems, simulation and optimisation methods are
combined in simulation-optimisation methods [36], which depend on the optimisation algo-
rithm that is used and the simulation purpose. The VDI-Guideline 3633.12 [37] classifies the
relation between simulation and optimisation algorithms into four categories: “Category
A” in which simulation follows optimisation, “Category B” with optimisation following
the simulation, “Category C” integrating an optimisation algorithm in the simulation, and
“Category D” in which simulation is integrated in an optimisation algorithm.

A variety of optimisation algorithms could be combined with simulation, for example,
metaheuristics. The integration of simulation in metaheuristics is called simheuristics [35]
and is classified as “Category D” by VDI-Guideline 3633.12 [37]. Simheuristics combines
the power of metaheuristics and simulation. The metaheuristic algorithm forms solutions
that are evaluated by simulation with respect to the objective function in the optimisa-
tion problem.

Researchers have used simheuristics to solve a variety of combinatorial optimisation
problems. For example, Juan and Rabe [35] proposed an approach that outperformed a
traditional method to solve an inventory routing problem. They combined Monte Carlo
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simulation and the best-known heuristic that solves the problem. Juan et al. [9] proposed
a framework to handle a stochastic type of combinatorial optimisation problems with
moderate volatility. Jackson et al. [38] combined DES and a genetic algorithm to handle the
stochasticity in an inventory management problem. Discrete event simulation and a genetic
algorithm were used to design a supply network by Gutenschwager et al. [39]. Pages-
Bernaus et al. [40] investigated a facility location problem. They found that a simheuristic
approach outperformed other stochastic programming methods to solve the problem.

2.4. Literature Summary and Contributions

Distribution networks are complex networks with a large number of possible actions
that might be used to improve them. These networks are difficult to model adequately in
a mathematical formulation, and, thus, simulation is often used for their study. In order
to optimise such networks with their conflicting goals, metaheuristic algorithms could be
used to provide a “good solution”. Because these networks are complex, researchers have
found it beneficial to combine simulation and metaheuristics in a simheuristic approach to
optimise them. This approach forms the basis for a logistics assistance system (LAS) that is
described in Section 4. In the LAS, actions are selected to construct action plans in which
the order of the actions is significant. However, the LAS has a long decision proposal time,
because simulation forms the major part of the optimisation run time.

Researchers have suggested approaches to reduce the number of evaluations in an
optimisation algorithm, such as screening solutions [41]. Other researchers proposed
random biased selection of the solution’s elements to improve the optimisation [42]. None
of these strategies addressed the presented action plan problem that is a combinatorial
optimisation problem in which actions are selected.

Since decision-makers look for a “good solution” in a reasonable time for the decision
proposal even in large and complex networks, our paper proposes innovative approaches
to reduce this time. In the first approach, reinforcement learning is proposed to reduce
the decision proposal time. Sections 3.2 and 5 describe reinforcement learning and its
innovative implementation in the LAS. Another innovative approach defines a network’s
domain-specific information and utilises it to recommend actions (Section 6). The last pro-
posed approaches reduce the number of simulation runs by defining equivalent solutions
and reducing the actions’ search space (Section 7).

3. Optimisation Approaches
3.1. Evolutionary Algorithms

Evolutionary algorithms are metaheuristic algorithms developed to solve optimisation
problems. In evolutionary algorithms (EAs), solutions are represented as individuals in a
population. The individual’s definition and encoding depend on the optimisation problem
to be solved [43]. The individual might be presented as a string of binary numbers or real
numbers. A fitness value assigned to each individual represents the objective function
value associated with it. These individuals evolve in each generation and form a new
population. The fittest individuals evolve inspired by the theory of evolution defined by
Darwin. The selection of the individuals to evolve is facilitated by a biased selection, such
as roulette-wheel or tournaments [44,45].

In addition to “individual”, “population”, and “fitness” terms used in the EA, other
terms are used, such as “offsprings”, “crossover”, and “mutation” [7,43,45]. Offsprings
are individuals from the population that are reproduced using crossover and mutation.
In a crossover, parts of the individuals’ genes are exchanged between two individuals.
The crossover form depends on the number of exchange points along the individual’s
length, for example, one-point crossover, two-point crossover, and uniform crossover.
In uniform crossover, multiple crossing points are defined along the individual’s length.
Mutation modifies one individual to reproduce an offspring. One or more parts of the
individual are changed. Both crossover and mutation can be customised based on the
optimisation problem.
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The evolution of the individuals continues until a termination criterion is met, such
as reaching a specified number of generations or stagnation [7,45]. Stagnation is defined
when the best-found solution is not changed by the algorithm over a specific number
of generations.

Evolutionary algorithms can handle optimisation problems in different domains. For
example, an EA was used to minimise the service costs in marine container terminal
operations [46]. Pasha et al. [47] compared an EA and other algorithms for solving the
vehicle routing problem with a “factory-in-a-box” concept. The EA found the nearest
solution to the optimum in small-scale problem instances and better solutions than other
algorithms in large-scale problem instances. Evolutionary algorithms can detect promising
regions in the search space and be utilised in the learning process while solving optimisation
problems [48,49]. In online optimisation, the problems’ features change over time and are
unknown in advance. A learning-based EA was proposed to handle this problem [49].
Additionally, EAs were used to solve combinatorial optimisation problems, such as the
vehicle routing problem and the travelling salesman problem [7,48].

Evolutionary algorithms can handle multi-objective optimisation problems [50]. In
these problems, the non-dominated solutions, which outperform other solutions at least
in one of the objective functions, are stored, and the algorithm looks for solutions along
the Pareto front. Moradi [48] used a multi-objective evolutionary algorithm to minimise
the number of vehicles and the total travelled distance in the vehicle routing problem.
Researchers have utilised EAs in optimisation problems, including minimisation of energy
consumption. For example, Ji et al. [51] solved a multi-objective green express cabinet
assignment problem in urban last-mile logistics using probability-guided EA. They min-
imised total costs and energy consumption. The total makespan and total energy consump-
tion were minimised in the flow shop scheduling problem with sequence-dependent setup
times [52]. Petrowski and Ben-Hamida [43] stated that EAs for multi-objective problems
provide promising solutions in problems with less than four objective functions. Other
approaches proposed combining an EA and DES to solve optimisation problems, such as
optimising lead time and total inventory holding costs in job sequencing and buffer size
optimisation problems [53].

3.2. Deep Reinforcement Learning

In the field of reinforcement learning, the primary goal is to produce autonomous
agents that interact with their environments to learn optimal behaviours, improving over
time through trial and error. Although considerable successes in this field have been
reported in the past [14,54,55], previous approaches often lacked scalability and were
inherently limited to fairly low-dimensional problems [56]. In order to apply reinforcement
learning to problems approaching real-world complexity, agents need to be able to derive
efficient representations of the environment from high-dimensional inputs, and use these
representations to generalize past experiences to new situations [15]. In recent years,
improvements in the ability to process large amounts of data have led to considerable
progress in this field [57]. A major reason for the development in this regard is the
rise of deep learning, a class of representation learning with multi-layer artificial neural
networks [58–60]. The neural networks are called deep, because they have numerous
hidden layers between the input layer and the output layer and have, thus, an extensive
internal structure [61–63]. Combining several layers, a deep neural network can be used to
find compact low-dimensional representations in high-dimensional data, for example, in
audio, text, and images. Hence, deep neural networks can, hence, be used to progressively
build up abstract representations of data, and, thus, enable abstract learning. A particularly
successful type of deep neural network is the Convolutional Neural Network (CNN) [15,64].
CNNs leverage the fact that the analyzed data are composed of smaller details—referred
to as features—and trigger a decision about the entire data set by analyzing each feature
in isolation. By using the mathematical concept of convolution, CNNs are able to learn
patterns, for example, to associate object categories to raw image data. Applied in the
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context of reinforcement learning, a CNN can be used to approximate the internal value
function of the agent, and, thus, to map actions to constellations of data in a particular
state [65]. In this regard, effective progress has been made in addressing the curse of
dimensionality in the field of reinforcement learning [15,56]. Deep reinforcement learning is
supposed to be able to scale to decision-making problems that were previously unsolvable,
for example, settings with high-dimensional state and action spaces. Recent work in this
field has shown outstanding progress, which started with an algorithm that could learn
to play a range of Atari 2600 video games at super-human level, directly from screen
pixels [65]. A comprehensive survey of efforts in deep reinforcement learning can be found
in Reference [66].

4. Solution Architecture
4.1. A Logistics Assistance System

A logistics assistance system has been developed to assist decision-makers in distri-
bution networks using the Python programming language [16]. This LAS utilises basic
components related to a transactional system in a distribution network, such as Enterprise
Resource Planning. Figure 1 shows the architecture of the LAS. The data are extracted from
the transactional system and loaded into a data warehouse. KPIs are calculated, and any
deterioration of the value of a KPI beyond the previously assigned limit triggers an alert
in a corresponding key performance indicator management system (KPIMS) [67]. These
systems recommend potential actions that are designed to improve the value of the KPI. A
recommended action by the KPIMS is expected to increase the intrinsic value of the KPI
that triggers the alert, but it could reduce the intrinsic value of other KPIs. Since each of
the KPIMS recommends actions independently from the others, the LAS aims to consider
the impact of the actions on the entire network and improve the network’s performance as
a whole.

Figure 1. The architecture of the developed Logistics Assistance System (LAS) [68].
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In addition, the data are extracted from the transactional system by the model builder
into a data model to form the database of a data-driven simulation tool (Figure 1). Rabe and
Dross (2015) proposed the use of data-driven simulation tools to apply actions using SQL
statements, such as SimChain, which is a generic supply chain simulation model based
on the Siemens Plant Simulation tool [69]. The developers of the LAS used SimChain to
model a similar distribution network previously [70].

In the LAS, actions are derived from action types [71], which are defined by simulation
experts. An action type represents a generic description of an action, for example, centralis-
ing an SKU in a site without specifying the SKU and the site. To derive actions from the
action types, input parameters are specified, for example, SKU 1 in site A. Action types are
defined in the action type designer by decision-makers of the LAS using a domain-specific
modelling language. The action types are stored in an action type directory that can be
accessed by the KPIMS and the heuristic unit in the simheuristic framework (cf. Figure 1).
The actions recommended by the KPIMS and the actions derived from action types form
the search space of actions for the heuristic unit.

In the heuristic unit, the simheuristic approach is represented by simulation and
a metaheuristic algorithm. The metaheuristic algorithm explores the search space and
constructs action plans to be evaluated. The changes applied by actions are executed as
SQL statements in the database. These data are then transferred to a “shadowed data
warehouse”, which mimics the calculation of the operational KPI, but for simulated data.
The shadowed data warehouse is introduced in order to avoid any potential mix-up of the
simulated (experimental) data with the real operational data sets. The (simulated) KPIs
calculated from the shadowed data warehouse form the objective values to be optimised by
the metaheuristic. The construction and evaluation continue until a termination condition
is met. Then, suggested actions as an action plan are recommended to decision-makers,
who are the main users of the LAS.

4.2. Semantic Model for Action Types in Wholesale Logistics Networks

To increase the LAS’s flexibility and usability,decision-makers can model and integrate
user-generated action types. For this purpose, decision-makers can utilize a specifically
developed domain-specific modelling language, which is tailored to the model of action
types in wholesale logistics networks. Accessing the developed domain-specific modelling
language can be performed via the Action Type Designer, an integrated development
interface (IDE), providing all benefits of common IDEs such as code completion or syntax
highlighting.

All action types are based on the same semantic model. Therefore, the semantic model
of an action type must be capable of representing all required information for all possible
action types in a logistics network. Action types can be instantiated by adding type-specific
parameters to the semantic model’s attributes [72].

The attributes of the semantic model serve different purposes and are, thus, divided
into different categories. The first category of attributes has informative purposes, such as
the action type’s name , description, id, the owner’s id, and a list of ids for representing the
involved modellers.

Action types represent changes to the underlying simulation model. For the spec-
ification of these changes, functional attributes are used. The attribute input is used to
define the affected entities of the logistics network. To specify the effects on those entities,
statements of the domain-specific modelling language are used.

Meta information of action types is stored in meta-attributes of the semantic model.
For example, it may take some time to fully execute a set of actions in the real logistics
network. Therefore, the required time for executing actions is stored in the attribute time till
effect. Additionally, executing an action may entail costs. The costs of an action are stored
in the attribute total costs.

The semantic model additionally includes domain-specific information [68,73,74], for
example, the frequency or the impact of an action type on the logistics network, which can be
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stored in corresponding attributes of the model. Changes to the network can be categorised
into two different groups, structural and parametrical changes. A structural change alters the
structure of the network, for instance, adding new routes, sites, or SKUs to a site. Actions
that affect attributes of the logistics network’s entities are categorised as parametrical, for
example, increasing the safety stock or changing the frequency of a route. In addition,
correlations between different action types and their actions’ impact on the network can be
modelled. For example, when “centralising an assortment”, “increasing the safety stock”
of any centralised SKU might be a promising candidate for further actions. Thus, a positive
relation is defined between “centralise” and “increase the safety stock”.

After the parameterisation of an action type, the corresponding derived actions can
be stored in the semantic model’s attribute actions. An overview of the semantic model is
given in Table 1.

Table 1. The semantic model for action types in wholesale logistics networks, based on Reference [72].

Attribute Description Category

Actions List with all derived actions, depending on the logistics network’s state. Functional

Correlation Domain-specific information that specifies possible correlations and their
correlation factors with other action types. Domain-specific

Description Free description of the action type. Informative

Frequency Domain-specific information that specifies the frequency of the
implementation of derived actions. Domain-specific

Id Id of the action type. Informative

Impact Domain-specific information that specifies the impact of derived actions to the
underlying logistics network’s performance. Domain-specific

Input List of input parameters. Functional

Modelers List with ids of the involved modelers. Informative

Name Name of the action type. Informative

Owner Owner of the action type. Informative

Parametrical Domain-specific information that specifies, for an action type, whether the
corresponding changes are parametrical. Domain-specific

Statements List of statements, representing changes to the underlying logistics network. Functional

Structural Domain-specific information that specifies whether the corresponding changes
of the action type are structural. Domain-specific

Time till effect Required time for a corresponding action to take effect. Meta

Total costs The costs associated with the implementation of derived actions. Meta

4.3. Abstracting the Modelling of Action Types from the Underlying Simulation’s Data Base

Actions are closely related to the underlying simulation’s data model, resulting in
multiple issues. Modelling action types requires in-depth knowledge of the database’s
structure, for example, for specifying the areas of the database that are affected by applying
corresponding actions. Another issue arises when the database’s structure changes, for
example, when the simulation software is updated or a new simulation tool is introduced.
To address these problems, the authors propose to decouple the modelling of action types
from the underlying simulation data model [75].

When applying an action, a set of corresponding entities of the logistics network
needs to be adapted, accordingly. In a data-driven simulation, an entity can be described
by entries in a database’s table. To identify the correct entities, the table’s name and the
entities’ attributes are defined as part of statements in the modelling process of an action
type (Section 4.2). Thus, when applying an action, multiple entries in the database might
be changed (Figure 2).
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However, the simulation’s database and, therefore, the data model, are typically
predefined by the simulation tool that is being used. Thus, the data model is not easily
adjustable. When decoupling the modelling of action types from the data model of the
underlying simulation, an additional data model is required: an enterprise-specific data
model. This enterprise-specific data model can be structured in the way that best suits the
decision-makers’ knowledge and needs.

Using an enterprise-specific data model, action types can be specified against this
model and not against the simulation data model. To correctly convert actions into changes
to the simulation data model, each attribute of the simulation data model must be distinctly
linked to the corresponding attribute of the enterprise-specific data model (Figure 3). Such a
mapping can be defined, for example, in the form of a JSON-file. In the process of executing
an action, the information for the mapping between the two models is read from the
JSON-file, so that changes can be applied to the simulation data model, accordingly [75].

Figure 2. Applying an action directly to the simulation’s database.

Figure 3. Applying an action to the enterprise-specific data model and mapping the resulting changes
to the simulation data model.

By utilizing this approach, action types can be modelled against an enterprise-specific
data model, which can be adapted to the modellers’ knowledge and needs. This approach



Algorithms 2021, 14, 23 11 of 23

allows decision-makers to become modellers and to specify action types against a common
data structure and with known names of the entities and their attributes. Another advan-
tage of this approach is that when the simulation data model changes, only the mapping
must be adjusted and not all the definitions of the action types. This saves resources,
reduces the risk of faults, and improves the acceptance of the method in general.

5. Addressing the Performance Challenge: Deep Reinforcement Learning

As mentioned above, creating an algorithm that is able to master a varied range of
challenging tasks by teaching itself in a trial-and-error procedure is one of the major goals
of reinforcement learning. Reinforcement learning in general considers tasks in which
an agent interacts with an environment through a sequence of observations, actions, and
rewards. To use reinforcement learning successfully in situations approaching real-world
complexity, however, agents are confronted with a challenge: they have to derive efficient
representations of the environment from high-dimensional sensory inputs and use these to
generalize past experiences to new situations (cf. Section 3.2). The authors of Reference [15]
approached this challenge by creating an algorithm that used a Deep Q-Network (DQN) as
the central value function approximation.

Almost all reinforcement learning algorithms are based on estimating value functions.
The algorithm used for the DQN agent, Q-learning, is based on the Q-function, a function of
state-action pairs that expresses how beneficial it is for the agent to perform a given action
in a given state with respect to the expected return [76]. More formally, the Q-function
expresses the value of taking an action a in a state s under a policy π with respect to the
expected return starting from s, taking the action a, and thereafter following policy π. For
small problems, the Q-function can be stored as a table, but for larger problems, this table
quickly gets too large to be stored in memory. Moreover, the time and data required to fill
the table accurately would be too high. In many tasks to which one would like to apply
reinforcement learning, most states encountered will never have been experienced exactly
in the same way before. The only way to learn anything at all in these cases is to generalize
from previously experienced states to ones that have never been seen before. Hence, for
larger problems, the key issue is that some sort of function approximation is included. In
this regard, advances in deep neural networks have made it possible to approximate the
Q-function, for example, with a CNN.

Mnih et al. [15] tested an agent with a DQN on the Arcade Learning Environment
(ALE), which is a software framework designed to simplify the development of agents that
play arbitrary Atari 2600 games and, therefore, offers a method to evaluate the development
of general, domain-independent reinforcement learning agents [77]. Its source code is
publicly available on the Internet [78]. Through the ALE, researchers have access to several
dozen games through a single common interface. Eighteen actions can be input to the
game via a digital joystick: three positions of the joystick for each axis, plus a single
button. The DQN approach of Reference [15] outperformed the best existing reinforcement
learning methods on 43 of the 49 games without incorporating any of the additional prior
knowledge about the Atari 2006 games used by other approaches. In conclusion, the DQN
algorithm trained itself and reached super-human performance just by using the game
pixels as the observation and the game score as the reward signal from the environment.

The work by Mnih et al. [15] inspired the authors to test the DQN agent as a reinforce-
ment learning approach to the performance challenge, as discussed earlier in this article (cf.
Section 1). For the experiments, the general working principles of the DQN agent have been
retained, but the parameters of this agent have been slightly adjusted. The implementation
of the DQN has been built with the Python API for TensorFlow, an open-source software
library for numerical computations using data flow graphs [79]. After the reinforcement
learning agent applies an action to the database, the simulation model is instantiated and
the simulation is run as described above. A reward calculation function generates the
reward signal from the simulation output data by computing a scalar reward signal, using
the changes in costs and performance. The reward signal is then routed back to the DQN
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for training [80]. In order to express the state s of the logistics system configuration as
an image, a feature extraction function selects the different features from the tables in the
MySQL database and composes them into an image (Figure 4).

Figure 4. Graphical state representation (small image) and details of two exemplary image segments
(large images) [80].

The image has been designed to look similar to an Atari game screen in order to
make the problem accessible for the DQN agent. The general idea behind the design
of the state representation as an image is to profit from the research regarding further
domain-independent agents in the future.

Since the agent needs to learn a mapping from states to actions, the state representation
also needs to encode information that enables for concluding from states to actions. For
instance, if the agent is intended for learning to make a decision regarding the inventory,
useful information to make such a decision, for example, inventory levels and customer
demands, needs to be included in the state representation. For actions regarding, for
example, machines, other information is needed in the state representation. Thus, the
information needed in the state representation heavily depends on the action types available
in the system (see Section 4.2). Consequently, the features that have to be selected from the
MySQL database for the state s are derived from the action types used. In order to address
the requirements regarding the scalability of the state representation, the state image is
built from different image segments. Each segment corresponds to a segment type, similar
to the previously explained relationship between actions and action types. The size of each
segment is fixed. The actual segment size is derived from the size of the largest segment
type. The overall design was chosen to enable the CNN to more easily identify patterns
within the state data.

In order to generate a scalar reward signal for the reinforcement learning agent,
a decrease in the total costs after taking an action is translated into a positive reward.
An increase in the total costs, on the other hand, is translated into a negative reward.
Furthermore, besides the bare costs, the difference in the logistics performance before and
after applying the action is also incorporated into the reward. The authors have decided to
define a penalty cost that is multiplied with the percentage change in the service level. If
the service level decreases, a penalty is generated. If the service level increases, a bonus
payment is generated. The service level costs are meant to express the loss of customer
orders in the future due to unsatisfied customers, or the increase of customer orders from
satisfied customers. The difference in the logistics costs and the service level costs are
summed up and interpreted as the total costs caused by an action. Finally, these total costs
are scaled down to generate the final reward signal, which is sent back to the agent. The
scaling is done to get as close as possible to the architecture used in the original DQN
implementation.

6. Addressing the Performance Challenge: Exploiting Domain-Specific Information

The performance of the LAS can be evaluated based on the impact of the recommended
action plans on the distribution network and on the number of simulation runs. This section
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focuses on guiding the metaheuristic algorithm in the heuristic unit to find promising
actions to be added to the action plan. The approach investigates the potential actions
and explores information to guide the search. This information is called domain-specific
information and is added to the action type definitions, such as the type of changes, success,
and correlation (Section 4.2) [68,73,74].

6.1. Utilizing the Characteristics of Action Type Classes

The first illustrated DSI concerns the type of changes applied by an action. An action
can change a parametrical value of an entity in a distribution network, for example, the
stock level of an SKU at a site. Actions of this kind are called parametrical actions. For
example, an action that increases the stock level of SKU 1 at site A is a parametrical action.

Other actions might add an entity to the network or delete an entity. These actions
cause structural changes in the network, such as centralising SKU 1 at site A. These actions
cause structural and parametrical changes. Centralising SKU 1 at site A is realised by
several changes, for example, adding SKU 1 to site A if it is not at site A, removing SKU 1
from the other sites, establishing transport relations between site A and the other sites if
not currently existing, and specifying the parametrical values of SKU 1 at site A. This action
should define the parametrical values for the newly added entities, for example, SKU 1 at
site A, and the transport relations between site A and the other sites.

Accordingly, actions are classified as structural or parametrical based on their type
of changes. Structural actions cause significant changes in the network. Their changes
delete the impact of previously applied parametrical actions if they affect the same entity
in the network. For example, action a1 increases the stock level of SKU 1 at site B, and a2
centralises SKU 1 at site A. Action a2 removes SKU 1 at site B from the network when it is
applied. If a2 follows a1, the change in the stock level caused by a1 is removed by removing
the entity by a2.

In order to consider the structural and parametrical changes in the selection of actions,
the selection probability of an action is biased according to its type of changes and its
position in an action plan. Structural actions are preferred at the beginning of an action
plan and parametrical actions at its end. Figure 5 shows a proposed probability distribution
of actions’ types of changes that changes linearly along the length of an action plan, l. In
Equations (1) and (2), probS

i is the selection probability of structural actions at position i of
an action plan. If structural changes are selected, a structural action is selected from the
potential structural actions.

probS
i = probS

1 −
probP

1 − probS
1

l − 1
(i − 1), i = 1, 2, ..., l (1)

probP
i = 1 − probS

i . (2)

Figure 5. Probability distribution of actions’ types of changes along the length of an action plan.

6.2. Building on Success Experience

Another DSI is the success of actions in improving the performance of a distribution
network. The term success is defined with respect to an action. The impact of an action on
a network is investigated to determine whether it increases or decreases the performance
measures. For example, Figure 6 shows actions, a1 and a2, that increase the service level
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and an action, a4, that reduces the service level. Actions that increase the service level get a
higher success value than the actions that decrease the service level. Within the actions that
increase the service level, their impact of the actions varies, and accordingly, their success
value varies, such as a1 and a2 in Figure 6.

Figure 6. Impact of actions on the service level.

Actions with a high success value tend to increase the performance of the network,
and hence, increasing their selection probability might guide the metaheuristic algorithm to
construct promising action plans. Actions with a high success value get a higher selection
probability than actions with a lower success value. For example, the selection probabilities
of the actions in Figure 6 might be assigned as 0.32, 0.28, 0.24, and 0.16 to actions a1, a2, a3,
and a4, respectively.

While the success values of concrete actions can only be measured for the single and
parametrized actions themselves, these values cannot be expected to contribute to the
performance improvement, directly, because there is a low probability that the specific
current action has already been evaluated before and, thus, owns a success attribute.
Therefore, success may have to be regarded only indirectly: Measured success values of
actions are summarized for the respective action types, and this success attribute of the
action types is then used to steer the construction of action plans. With this procedure,
action types are preferred if the associated actions have often led to improvements in
the past.

6.3. Defining Relations between Actions

The last DSI that we propose is the correlation between two actions and their impact
on the performance of the network. In this context, the joint impact of a sequence of two
actions on the performance of a network is compared to their expected impact if they are
applied individually. In Figure 7, the expected impact of applying actions a1 and a2 is an
increase of 0.19% in the service level, given by the summation of the impact of the single
actions a1 (0.12%) and a2 (0.07%). Actually, the sequence a1 followed by a2 increases the
service level by only 0.15%. Thus, applying these two actions as [a1, a2] has a negative
influence (“−”). The sequence [a2, a1] causes an increase in the service level by 0.28%.
Thus, it has a positive impact (“+”) compared to the expected impact of the single actions.
Another example of the positive impact is the sequence [a1, a3]. If the expected impact of a
sequence does not differ from the actual impact, the relation is a weak relation (“∼”), for
example, sequence [a2, a3] in Figure 7.
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Figure 7. Impact of sequence of actions on the service level.

The correlation between actions could be tabulated in a correlation matrix. Rows
represent the first applied action in the sequence, and columns represent the second applied
action. The cells show the relation between the impact of a sequence of actions and their
expected impact on the network as “+”, “∼”, and “−” for positive, weak, and negative
relations, respectively. The relations extracted from Figure 7 are tabulated in Table 2. The
rest of the correlation matrix shows relations between other actions in the search space.

Table 2. Correlation matrix example.

a1 a2 a3 a4 a5 a6 ...
a1 ∼ − + ∼ − −
a2 + − ∼ − ∼ ∼
...

The cell between a1 and a1 is a duplication of an action. An action can be duplicated
by applying it twice. If an action increases the stock level of an SKU at a site by 10 units,
its duplication increases the stock level by 20 units. Accordingly, the performance of the
network is affected and might vary from the expected impact.

Similar to the previous section, applying actions affects the performance of the net-
work, and their impact might be used to guide the selection of actions to construct promis-
ing action plans. The selection probability of actions is increased if the actions are in a
positive relation with already selected actions. For example, if action a2 is selected, then
the recommended action is a1 to increase the service level (Table 2). Selecting a2 does not
increase the service level as expected, and selecting a3 does not influence the expected
increase in the value. Thus, the selection probability of a1 becomes higher than a3.

7. Addressing the Performance Challenge: Reducing the Number of Evaluations

Another performance measure of the LAS is the number of simulation runs, which we
define to be the number of objective function evaluations. In order to reduce the number
of evaluations of the objective function, a selective evaluation might be performed, or
evaluations might be skipped. In this research, the evaluation of the impact of an action
plan is skipped if the action plan has previously been evaluated [81].

Previously evaluated action plans might be identical to newly formed action plans, or
they can be equivalent to them. Equivalent action plans have an identical impact on the
performance of the distribution network, but are not identical action plans. Figure 8 shows
an example of equivalent action plans. These action plans cause the same changes in the
network and, hence, result in the same impact on the performance. The performance of an
equivalent action plan can directly be used, without again evaluating the performance of
the newly formed plan.



Algorithms 2021, 14, 23 16 of 23

Figure 8. Equivalent action plans: (a) action plans with interchangeable actions and (b) action plans with redundant actions.

In order to identify equivalent action plans we define interchangeable and redundant
actions. Interchangeable actions can be reordered in an action plan without affecting the
impact of the action plan on the performance of the network (Figure 8a). Actions a1 and a2
in Figure 8a have been reordered without affecting the applied changes and the impact
of the action plan on the service level; a1 and a2 are interchangeable actions. Actions that
affect different entities in the network can be reordered without affecting the impact of
the action plan. These actions are interchangeable if they do not interfere with an overall
parameter of the network, such as the capacity of a site. For example, a1 increases the stock
level of SKU 1 at site A, and a2 increases the stock level of SKU 2 at site A. Both actions
affect different entities in the network, SKU 1 at site A and SKU 2 at site A. Applying
the changes by any of the actions does not affect the changes applied by the other action.
However, if the total capacity of site A reaches its limit after applying any of these actions,
the resulting applied changes differ when the actions are swapped.

Redundant actions can be removed from the action plan without affecting the impact
of the action plan on the distribution network (Figure 8b). Action a5 has been removed
from the action plan in Figure 8b. The resulting action plan applies the same changes as
the original action plan, without removing a5, and the service remains unchanged. Action
a5 is a redundant action, because its removal has no effect on the changes applied in the
network. These actions can be duplicated structural actions. A structural action adds
or removes entities from the network, and its duplication repeats these changes without
causing additional changes in the network. A duplicated parametrical action that causes
incremental changes is not redundant, because it causes an incremental increase or decrease
in the value of the affected parameter.

Defining the equivalent action plans based on interchangeable and redundant actions
enables skipping the evaluation of an action plan. An action plan is rated as its equivalent
action plan that was evaluated previously.

Another approach reduces the number of actions to reduce the number of evaluations.
In this approach, actions are grouped. The grouped actions replace actions and form a
smaller search space of actions to be explored. For example, if two actions are grouped, the
search space of actions can be reduced from 100 actions to 50 actions. Exploring the search
space of 50 actions obviously requires a smaller number of evaluations.

The grouping criteria might be defined by the decision-maker, for example, grouping
actions that affect SKUs based on an SKU assortment at a site [17]. For example, a distribu-
tion network has two sites, site A and site B. Assortment 1 includes SKU 1 and SKU 2, and
assortment 2 includes SKU 3 and SKU 4. Then, action a1 that increases the stock level of
SKU 1 at site A and action a2 that increases the stock level of SKU 2 at site A are grouped
to form a new action a∗1 that increases the stock level of SKUs in assortment 1 at site A.
Similarly, action a3 that increases the stock level of SKU 1 at site B and a4 that increases the
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stock level of SKU 2 at site B are grouped to form the new action a∗2 that increases the stock
level of SKUs in assortment 2 at site B. The reduction in the number of actions depends on
the number of actions assigned to an assortment. As a result, the optimisation algorithm
explores a smaller number of actions.

In order to construct an action plan from the grouped actions, the number of selected
grouped actions is almost certainly lower than the length of the action plan. Four actions
are selected to form an action plan of length four. If two actions are grouped, they form
an action plan of length four. Therefore, this reduction in the number of selected actions
further reduces the number of potential action plans and the number of evaluations.

8. Evaluation and Results

In order to test the proposed approaches, we used a database from a distribution
network of an international material trading company. The database was extracted from
their enterprise resource planning system and was verified and validated according to a
procedure model presented by Rabe et al. [82]. In this research, we filtered this database
down to a subset of five sites and 30 SKUs. This database represents the database in
Figure 1. Then, we adapted the evolutionary algorithm to utilise the actions’ DSI. This
information is assigned to the action types, and from there then it is inherited to the derived
actions from the action types. The selection probability of actions is changed based on their
DSI. For example, considering the actions’ type of changes, the actions are classified as
structural and parametrical actions. The selection probability of these classes is changed
according to Equations (1) and (2). An action is selected randomly from the respective
selected class. Thus, the selection probability of actions is biased based on their type
of changes.

We compared a completely random selection of actions with a biased selection of
actions in the construction of action plans in the EA’s initial generation. The number of
generations that were required to stagnate and the quality of the corresponding recom-
mended action plans were recorded for the comparison. The quality of the action plans has
been evaluated based on the costs and the service level. Fifty individuals form a generation
in the EA. The crossover and mutation probabilities were set to 0.8 and 0.3, respectively.
The crossover forms, CR, were the one-point crossover, the two-point crossover, and the
uniform crossover. In mutation, MU, one randomly selected action was replaced, or multi-
ple actions were selected to be replaced. Each experiment setup was run ten times. Table 3
records the average performance and demonstrates the gap analysis of the difference
between random selection and the biased selection of actions.

Table 3. Comparison between random selection of actions and biased selection in an evolutionary
algorithm (EA) experiment using the gap analysis (CR = crossover form, MU = mutation form).

Random Selection Biased Selection Gap (Biased − Random)
CR MU c (e) sl (%) Ns c (e) sl (%) Ns c (e) sl (%) Ns

1-point 1-action 90,420 84.58 76 90,309 84.74 31 −111 0.2 −45
1-point multi 91,414 84.65 41 90,045 84.79 41 −1369 0.1 0
2-point 1-action 90,630 84.72 73 90,806 84.81 34 176 0.1 −39
2-point multi 90,673 84.69 65 91,340 84.83 43 667 0.1 −22
uniform 1-action 90,086 84.75 89 88,039 85.11 37 −2047 0.4 −52
uniform multi 91,699 84.72 63 92,292 85.03 32 593 0.3 −31

Next, we have tested the approach that exploits the definition of equivalent action
plans. In this experiment, the EA selected actions randomly, and the evaluation of an action
plan was skipped if an equivalent action plan was previously evaluated. Figure 9 shows
the time distribution during an experiment run when the crossover and the mutation
probabilities were set to 0.8 and 0.3, respectively. The number of simulation runs decreased
by more than 15%.
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Figure 9. The time distribution in (a) a reference EA experiment and (b) an EA experiment utilising
the equivalent action plans approach.

For the experimentation with the DQN agent, the authors assumed that one training
episode for the reinforcement learning agent consists of taking three actions. Hence, once
the three actions have been taken, the simulation is reset to its initial state and the agent
can start a new training episode. The hyper-parameters of the architecture have been kept
mostly the same for all the experiments. However, further architectures for the internal
DQN were tested. For each architecture, the reinforcement learning agent was trained
with at least 1000 episodes, each consisting of taking three actions, which resulted in
at least 3000 evaluative simulation runs for each architecture. In most of the cases, the
agent was able to gradually learn to take the best three actions possible for the initial state
of the logistics network after about half of the training episodes. By conducting these
experiments, the authors could demonstrate that a general reinforcement learning agent
was able to generate action plans just from its trained internal value function approximation.
Hence, in general, the presented approach can be used to reduce the response time TD
(cp. Section 1). However, as a drawback, the total runtime of each experiment took
several days. As expected, the bottleneck in terms of computing performance was not the
back-propagation through the CNN, but the simulation time needed for each evaluative
simulation run. Although the experiments have been performed on relatively small test
models of a logistics network, the results of the experiments with the DQN implementation
were promising, since they showed that a general purpose reinforcement learning agent can
in fact be trained to optimize a logistics network model solely from a state representation,
a reward signal, and the available actions types.

9. Discussion

The approaches explained in Sections 4 and 5 aim to improve the performance of
the LAS. This performance is evaluated based on the performance of the simheuristic’s
components – metaheuristics and simulation. The quality of found solutions is a major
performance measure to evaluate the metaheuristics used to solve an optimisation prob-
lem [7]. Additionally, the run time of the algorithm is used to evaluate it [83]. In this
research, we used the objective values of the found solutions and the number of simulation
runs to evaluate the recommended approaches. The number of simulation runs represents
the number of objective function evaluations, which is an indicator of the run time of an
algorithm to recommend a solution [27].

Researchers proposed approaches to improve the performance of the metaheuristics by
focusing on the analysis of the search space. For example, Bode et al. [41] screened solutions
before their evaluation. Karimi et al. [84] clustered the problem’s search space before
exploring it, and Ku and Arthanari [85] replaced the search space with a smaller space.
Furthermore, researchers have filtered the solutions to reduce the number of objective
function evaluations, such as Cai et al. [86] and Alsheddy et al. [13].

Other approaches have examined the search algorithms. They investigated improve-
ments to the local search, such as Alsheddy et al. [13], who aimed to escape from a local
optimum by introducing penalties. Other researchers have investigated machine learning
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and data mining to learn from the patterns [87,88]. Amaran et al. [89] stated that problem
information could be used to construct initial promising solutions as an input to the op-
timisation algorithm. Forming these solutions by selecting its parts randomly based on
problem information is called randomly biased selection [42].

In Section 6, we introduced an approach to guide the search of a metaheuristic algo-
rithm. In this approach, DSI is used to prioritise which actions to select while constructing
action plans. The experiments utilising the type of changes to construct action plans
showed promising results for identifying initial solutions for the algorithm. We used the
Mann-Whitney U test [90] to compare our approach to random selection of actions. The
null hypothesis in comparing the random selection and the biased selection is rejected
concerning decreasing costs, increasing the service level, and reducing the number of
generations to stagnate at p-values of 0.0961, 0.0000, and 0.0000, respectively. These results
suggest a significant impact of DSI on the performance of the metaheuristics of the LAS,
and our claims of recommending better solutions’ quality and decreasing the number of
generations to stagnate are accepted.

The domain-specific information can be used to alter the variation operators of the
found action plans in the subsequent iterations in a metaheuristic algorithm. In our research,
these operators are represented as modified crossover and mutation. Because initial
solutions based on the type of changes helped the algorithm to recommend better solutions
than the random selection of actions, we expect to get a similar effect in implementing them
in crossover and mutation. Combining different DSI is a field for further investigation.

In addition, we propose an approach to reduce the number of simulation runs by
defining equivalent solutions. This approach keeps a list of evaluated solutions and
increases the EA’s computational time a bit; but this is compensated by a reduction in
the number of simulation runs (Figure 9). The memory usage might be overcome if the
algorithm can have access to a table where this list of evaluated solutions is stored.

In conclusion, simulation runs consume a large portion of the computational time of
the algorithm run in a simheuristic approach. Our approach reduced this percentage and
enabled the algorithm to recommend solutions in shorter time.

10. Summary and Outlook

In this research, we have developed a logistics assistance system to support decision-
making in material trading networks. Decision-makers face a challenging task in selecting
actions to improve the performance of the networks. The developed LAS is based on a
simheuristics framework that combines simulation and metaheuristics. For the metaheuris-
tics, we have studied reinforcement learning and evolutionary algorithms. Additionally,
we have proposed approaches to address performance challenges of the LAS that are
represented as the quality of recommended actions and the number of simulation runs.
Our approaches are based on utilising domain-specific information, reducing the number
of actions, and defining equivalent solutions.

We have developed a suitable implementation and used a subset of real-world data
to evaluate our LAS. Our results show that reinforcement learning requires a significant
training time. However, after learning, it recommends promising actions upon request.
The domain-specific information approach guides the search of an optimisation algorithm
to select promising actions, and hence, improves the performance of the LAS. Defining
equivalent action plans has reduced the number of simulation runs by up to 15%.

Our approaches are limited to distribution networks. We defined and tested them
on a distribution network of an international trading company. In other networks or
applications, the specific definition of the domain-specific information as well as of the
equivalency of action plans should be studied.

For further research, we investigate other domain-specific information to guide the
selection of actions in the LAS. Taking advantage of combining reinforcement learning and
the evolutionary algorithm is another approach to be investigated. This combination re-
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quires the study of the schema to integrate both approaches. Furthermore, new parameters
might become necessary to be defined and initialised.
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