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Abstract: Two new initialization methods for K-means clustering are proposed. Both proposals
are based on applying a divide-and-conquer approach for the K-means‖ type of an initialization
strategy. The second proposal also uses multiple lower-dimensional subspaces produced by the
random projection method for the initialization. The proposed methods are scalable and can be
run in parallel, which make them suitable for initializing large-scale problems. In the experiments,
comparison of the proposed methods to the K-means++ and K-means‖methods is conducted using
an extensive set of reference and synthetic large-scale datasets. Concerning the latter, a novel high-
dimensional clustering data generation algorithm is given. The experiments show that the proposed
methods compare favorably to the state-of-the-art by improving clustering accuracy and the speed of
convergence. We also observe that the currently most popular K-means++ initialization behaves like
the random one in the very high-dimensional cases.

Keywords: clustering initialization; K-means‖; K-means++; random projection

1. Introduction

Clustering is one of the core techniques in data mining. Its purpose is to form groups
from data in a way that the observations within one group, the cluster, are similar to
each other and dissimilar to observations in other groups. Prototype-based clustering
algorithms, such as the popular K-means [1], are known to be sensitive to initialization [2,3],
i.e., the selection of initial prototypes. A proper set of initial prototypes can improve the
clustering result and decrease the number of iterations needed for the convergence of an
algorithm [3,4]. The initialization of K-means was remarkably improved by the work of
Arthur and Vassilvitskii [5], where they proposed the K-means++ method. There, the initial
prototypes are determined by favoring distinct prototypes, which in high probability are
not similar to the already selected ones.

A drawback of K-means++ is that the initialization phase requires K inherently se-
quential passes over the data, since the selection of a new initial prototype depends on
the previously selected prototypes. Bahmani et al. [6] proposed a parallel initialization
method called K-means‖ (Scalable K-means++). The K-means‖ speeds up initialization
by sampling each point independently and by updating sampling probabilities less fre-
quently. Independent sampling of the points enables parallelization of the initialization,
thus providing a speedup over K-means++. However, for example MapReduce-based
implementation of K-means‖ needs multiple MapReduce jobs for the initialization. The
MapReduce K-means++ method [7] tries to address this issue, as it uses one MapReduce
job to select K initial prototypes, which speeds up the initialization compared to K-means‖.
Suggestions of parallelizing the second, search phase of K-means have been given in several
papers (see, e.g., [8,9]). On a single machine, distance pruning approaches can be used to
speed up K-means without affecting the clustering results [10–14]. Besides parallelization
and distance pruning, data summarization is also a viable option for speeding up the
K-means clustering [15,16].
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Dimension reduction has had an important role in making clustering algorithms more
efficient. Over the years, various dimension reduction methods have been applied to
decrease the dimension of data in order to speed up clustering algorithms [17–20]. The key
idea for improved efficiency is to solve an approximate solution to the clustering problem
in a lower-dimensional space. Dimension reduction methods are usually divided into two
categories: feature selection methods and feature extraction methods [21]. Feature selection
methods aim to select a subset of the most relevant variables from the original variables.
Correspondingly, feature extraction methods aim to transform the original dataset into a
lower-dimensional space while trying to preserve the characteristics (especially distances
between the observations and the overall variability) of the original data.

A particular dimensional reduction approach for processing large datasets is the
random projection (RP) method [22]. Projecting data from the original space to a lower-
dimensional space while preserving the distances is the main characteristic of the RP
method. This makes RP very appealing in clustering, whose core concept is dissimilarity.
Moreover, classical dimension reduction methods such as the principal component analysis
(PCA) [23] become expensive to compute for high-dimensional spaces whereas RP remains
computationally efficient [24].

Fern and Brodley [18] proposed an ensemble clustering method based on RP. They
showed empirically that aggregation of clustering results from multiple lower-dimensional
spaces produced by RP leads to better clustering results compared to a single clustering in
lower-dimensional space produced by PCA or RP. Other combinations of K-means and RP
have been studied in several papers [17,25–27]. RP for K-means++ was analyzed in [28].
Generally, the main idea is to create a lower-dimensional dataset with RP and to solve the
ensuing K-means clustering problem with less computational effort. On the other hand,
one can also optimize clustering method’s proximity measure for small datasets [29].

In general, K-means clustering procedure typically uses a non-deterministic initializa-
tion, such as K-means++, followed by the Lloyd’s iterations [1] —with multiple restarts.
Prototypes corresponding to the smallest sum-of-squares clustering error are selected
as the final clustering result. In [30], such a multistart strategy was carried out during
the initialization phase, thus reducing the need to repeat the whole clustering algorithm.
More precisely, a parallel method based on K-means++ clustering of subsets produced by
the distribution optimally balanced stratified cross-validation (DOB-SCV) algorithm [31]
was proposed and tested. Here, such an approach is developed further with the help of
K-means‖ and RP. More precisely, we run K-means‖method in a low-dimensional subset
created by RP. In contrast to the previous work [30], the new methods also restrict the
number of Lloyd’s iterations in the subsets.

Vattani [32] showed by construction that the number of iterations, and thus the running
time, of the randomly initialized K-means algorithm can grow exponentially already in
small-dimensional spaces. As stated in the original papers [5,6], the K-means++ and K-
means‖ readily provide improvements to this both in theory and in practice. Concerning
our work, we have provided time complexity analysis for SK-means‖ in Section 3.1 and
for SRPK-means‖ in Section 3.2. In terms of time complexity, SRPK-means|| reduces the
time complexity of the initialization for large-scale high-dimensional data (this was also
confirmed by our experimental results) and provides better clustering results; thus, it
reduces need for restarts compared to the baseline methods. Reduced need for restarts also
improves the overall time complexity of K-means algorithm. In terms of clustering accuracy,
SK-means does this same effect for large-scale lower-dimensional datasets. Moreover, we
showed for the synthetic datasets (M-spheres) that the random projection variant of the
initialization (SRPK-means‖) can provide clear advantage in very high-dimensional cases,
where the distances can become meaningless for other distance-based initialization methods.

The main purpose of this article is to propose two new algorithms for clustering
initialization and compare them experimentally to the initializations of K-means++ and
K-means‖ using several large-scale datasets. To summarize the main justification of the
proposed methods: they provide better results compared to baseline methods with bet-
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ter or equal running time. The proposed initialization method reduces data processing
with sampling, subsampling, and dimensional reduction solving the K-means clustering
problem in a coarse fashion. Moreover, from the perspective of parallel computing, using
a parallelizable clustering method in the subset clustering allows fixing the number of
subsets and treating each subset locally in parallel, hence improving the scalability.

For quantified testing and comparison of the methods, we introduce a novel clustering
problem generator for high dimension spaces (see Section 3.4). Currently, challenging
simulated datasets for high-dimensional clustering problems are difficult to find. For
instance, the experiments with DIM datasets of tens or hundreds of dimensions in [4]
were inconclusive: all clustering results and cluster validation index comparisons behaved
perfectly without any errors. Therefore, better experimental datasets are needed and can
be produced with the proposed algorithm.

2. Existing Algorithms

In this section, we introduce the basic composition of the existing algorithms.

2.1. K-Means Clustering Problem and the Basic Algorithms

Let X = {x1, x2, ..., xN} be a dataset such that xi ∈ RM ∀1 ≤ i ≤ N, where M denotes
the dimension, and let C = {c1, c2, ..., cK} be a set of prototypes, where each prototype also
belongs to RM. The goal of the K-means clustering algorithm is to find a partition of X into
K disjoint subsets, by minimizing the sum-of-squares error (SSE) defined as

SSE(C) = ∑
x∈X

min
c∈C
‖c− x‖2. (1)

An approximate solution to the minimization problem with (1) is typically computed
by using the Lloyd’s K-means algorithm [1]. Its popularity is based on simplicity and
scalability. Even if the cost function in (1) is mathematically nondifferentiable because
of the min-operator, it is easy to show that after the initialization, the K-means type of
iterative relocation algorithm converges in finite many steps [4].

Prototype-based clustering algorithms, such as K-means, are initialized before the
prototype relocation (search) phase. The classical initialization algorithm, readily proposed
in [33], is to randomly generate the initial set of prototypes. A slight refinement of this
strategy is to select, instead of random points (from appropriate value ranges), random
indices and use the corresponding observations in data as initialization [34]. Because of
this choice, there cannot be empty clusters in the first iteration. Bradley and Fayyad [35]
proposed an initialization method where J randomly selected subsets of the data are first
clustered with K-means. Next, it forms a superset of the J × K prototypes obtained from
the subset clustering. Finally, the initial prototypes are achieved as the result of K-means
clustering of the superset.

Arthur and Vassilvitskii [5] introduced the K-means++ algorithm, which improves the
initialization of K-means clustering. The algorithm selects first prototype at random, and
then the remaining K− 1 prototypes are sampled using probabilities based on the squared
distances to the already selected set, thus favoring distant prototypes. The generalized form
of such an algorithm with different lp-distance functions and the corresponding cluster
location estimates was depicted in [4].

The parallelized K-means++ method, called K-means‖, was proposed by
Bahmani et al. [6] (see Algorithm 1). In Algorithm 1, and from here onwards, symbol
“#” denotes ’number of’. In the algorithm, sampling from X is conducted in a slightly
different fashion compared to K-means++. More precisely, the sampling probabilities
are multiplied with the over-sampling factor l and the sampling is done independently
for each data point. The initial SSE for the first sampled point ψ determines the number
of sampling iterations. K-means‖ runs O(log(ψ)) sampling iterations. For each itera-
tion, the expected number of points is l. Hence, after O(log(ψ)) iterations, the expected
number of points added to C is O(l log(ψ)). Finally, weights representing the accumula-
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tion of data around the sampled points are set and the result of the weighted clustering
then provides the K initial prototypes. K-means++ can be used to cluster the weighted
data (see Algorithm 1 in [36]). Selecting r = 5 instead of O(log(ψ)) rounds and set-
ting the over-sampling factor to 2K were demonstrated to be sufficient in [6]. Recently,
Bachem et al. [36] proved theoretically that small r instead of O(log(ψ)) iterations is suf-
ficient in K-means‖. A modification of K-means‖ for initializing robust clustering was
described and tested in [37].

Algorithm 1: K-means‖
Input: Dataset X, #clusters K, and over-sampling factor l.

Output: Set of prototypes C = {c1, c2, ..., cK}.

1: C← select point c1 uniformly random from X.

2: ψ← compute SSE(C).

3: for O(log(ψ)) times do

4: C′ ← sample each point x ∈ X independently with probability

l · d(x)2/SSE(C).

5: C← C ∪ C′

6: For each x in C attach a weight defined as the number of points in X closer to

x than any other point in C.

7: Do a weighted clustering of C into K clusters.

2.2. Random Projection

The background for RP [22] comes from the Johnson–Lindenstrauss lemma [38].
The lemma states that points in a high-dimensional space can be projected to a lower
dimension space while approximately preserving the distances of the points, when the
projection is done with a matrix whose elements are randomly generated. Hence, for an
N ×M dataset X, let R ∈ M× P be a random matrix. Then, the random projected data
matrix X̃ is given by X̃ = 1√

P
XR. The random matrix R consists of independent random

elements (rij) which can be drawn from one of the following probability distributions [22]:
rij = +1 with probability 1/2, or −1 with probability 1/2; or rij = +1 with probability 1/6,
0 with probability 2/3, or −1 with probability 1/6.

3. New Algorithms

Next we introduce the novel initialization algorithms for K-means, their parallel
implementations, and the novel dataset generator algorithm.

3.1. SK-Means‖
The first new initialization method for K-means clustering, Subset K-means‖ (SK-

means‖), is described in Algorithm 2. The method is based on S randomly sampled non-
disjoint subsets {X1, X2, ..., XS} from X of approximately equal size, such as X = ∪S

i=1Xi.
First, K-means‖ is applied in each subset, which gives the corresponding set of initial
prototypes Ci. Next, each initial prototype set Ci in Xi is refined with Tinit Lloyd’s iterations.
Tinit is assumed to be significantly smaller than the number of Lloyd’s iterations needed for
convergence. Then, SSE is computed locally for each Ci in Xi. Differently from the earlier
work [30], this locally computed SSE is now used as the selection criteria for the initial
prototypes instead of the global SSE. Computation of SSE for Xi in Step 3 is obviously much
faster than to compute it for the whole X. However, a drawback is that if the subsets are
too small to characterize the whole data, the selection of the initial prototypes might fail.
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Therefore, S should be selected such that the subsets are sufficiently large. For example,
if S is close to the number of samples in the smallest cluster, then this cluster will appear as
an anomaly for most of the subsets. On the other hand, this property can also be beneficial
to exclude anomalous clusters already in the initialization phase. Currently, there are no
systematic comparisons in the literature on the size of the subsets in sampling-based clustering
approaches [39]. In [35], the number of subsets was set to 10. Based on [30,35], this selection
appears reasonable for the sampling-based clustering initialization approaches.

Algorithm 2: SK-means‖
Input: Subsets {X1, X2, ..., XS} , #clusters K, and #Lloyd’s iterations Tinit.

Output: Set of prototypes C = {c1, c2, ..., cK}.

1: Ci ← for each subset Xi run K-means‖.

2: Ci ← for each subset Xi run Tinit Lloyd’s iterations initialized with Ci.

3: Compute local SSE for each Ci in Xi.

4: C← select prototypes corresponding to smallest local SSE.

The convergence rate of K-means is fast and the most significant improvements
in the clustering error are achieved during the first few iterations [40,41]. Therefore,
for the initialization purposes, Tinit can restricted, e.g., to 5 iterations. Moreover, since the
number of Lloyd’s iterations needed for convergence might vary significantly (e.g., [4]),
a restriction on the number of Lloyd’s iterations helps in synchronization, when a parallel
implementation of the SK-means‖method is used.

The computational complexity of the K-means‖ method is of the order O(rlNM),
where r is the number of initialization rounds. Therefore, SK-means‖ also has the complex-
ity of the order O(rlNM) in Step 1. In addition, SK-means‖ runs Tinit Lloyd’s iterations
with the complexity of O(TinitKNM), and computes local SSE with the complexity of
O(KNM). Hence, the total complexity of SK-means‖ is of the order O(rlNM + TinitKNM).

3.2. SRPK-Means‖
The second novel proposal, Subset Random Projection K-means‖ (SRPK-means‖),

adds RPs to SK-means‖. Since SK-means‖ mainly uses time in computing distances in
Steps 1 and 2, it is reasonable to speed up the distance computation with RP. The RP-based
method is presented in Algorithm 3. Generally, SRPK-means‖ computes a set of candidate
initial prototypes in a lower-dimensional space and then evaluates these in the original space.
As with Algorithm 2, the best set of prototypes based on the local SSE are selected.

Algorithm 3: SRPK-means‖
Input: Subsets {X1, X2, ..., XS} , #clusters K, #Lloyd’s iterations Tinit, and random

projection dimension P.
Output: Set of prototypes C = {c1, c2, ..., cK}.

1: Ri ← for each subset Xi generate M× P random matrix.
2: X̃i ← for each subset Xi compute 1√

P
XiRi

3: C̃i ← for each X̃i run K-means‖.
4: Ii ← for each X̃i run Tinit Lloyd’s iterations initialized with C̃i.
5: For each partitioning Ii compute prototypes Ci in original space Xi.
6: Compute local SSE for each Ci in Xi.
7: C← select prototypes corresponding to smallest local SSE.
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The proposal first computes a unique random matrix for each subset Xi. Then, the
P-dimensional random projected subset X̃i is computed in each subset Xi. Steps 3–4 are
otherwise the same as the Steps 1–2 in Algorithm 2, but these steps are applied for the
lower-dimensional subsets {X̃1, X̃2, ..., X̃S}. Next, the labels Ii for partitioning each subset
are used to compute Ci in the original space Xi. Finally, the local SSEs are computed, and
the best set of prototypes are returned as the initial prototypes. Please note that the last two
steps in Algorithm 3 are the same as Steps 3–4 in Algorithm 2. SRPK-means‖ computes
projected data matrices, which require a complexity of O(PNM) (naive multiplication) [17].
Execution of K-means‖ in the lower-dimensional space requires O(rlNP), and Tinit Lloyd’s
iterations requires O(TinitKNP) operations. Step 6 requires O(KNM) operations, since it
computes the local SSEs in the original space, so that the total computational complexity of
the SRPK-means‖method is O(PNM + rlNP + TinitKNP + KNM). Typically, applications
of RP are based on the assumption P << M. Thus, when the dimension of data M is
increased, the contribution of the second and the third term of the total computational
complexity start to diminish. Moreover, when both M and K are large compared to P,
the last term dominates the overall computational complexity. Therefore, in terms of
running time, SRPK-means‖ is especially suited for clustering large-scale data with very
high dimensionality into a large number of clusters.

Fern and Brodley [18] noted that clustering with RP produces highly unstable and
diverse clustering results. However, this can be exploited in clustering to find different
candidate structures of data, which then can be combined into a single result [18]. The pro-
posed initialization method in this paper uses a similar idea as it tries to find structures
from multiple lower-dimensional spaces that minimize the local SSE. In addition, selecting
a result that gives the smallest local SSE excludes the bad structures, which could be caused
by inappropriate Ri or Ci.

3.3. Parallel Implementation of the Proposed K-Means Initialization Algorithms

Bahmani et al. [6] implemented K-means‖ with the MapReduce programming model.
It can also be implemented by the Single Program Multiple Data (SPMD) programming
model with message passing. Then all the steps of the parallelized Algorithms 1–3 are
executed inside an SPMD block. Next, a parallel implementation of K-means‖ as depicted
in Algorithm 1 is briefly described, by using Matlab Parallel Computing Toolbox (PCT),
SPMD blocks, and message passing functions (see [42] for a detailed description about
PCT). First, data X is split into Q subsets of approximately equal size and then the subsets
are distributed to Q workers. Step 1 picks a random point from a random worker and
broadcasts this point to all other workers. In Step 2, each worker calculates distances and
SSE for its local data. Next, points are aggregated by calling gplus-function, after which the
aggregation distributes this sum to other workers. In Steps 4 and 5, each worker samples
points from its local data, the next points are aggregated to C′ by calling gop-function,
and then C′ is broadcasted to all workers. Again, distances and SSE are calculated similarly
as in Step 2. Each worker in Step 6 assigns weights based on its local data, after which the
weights are aggregated with gop-function. Finally, Step 7 is computed sequentially.

As with the parallel K-means‖ implementation, a parallel implementation of
Algorithm 2 with SMPD and message passing is described next. First, each subset Xi from
S subsets is split into J approximately equal size subsets and then these subsets are dis-
tributed to J× S workers, e.g., subset Xi is distributed to workers (i− 1)J + 1, ..., (i− 1)J + J.
In Steps 1–3, each subset of workers runs steps for subset Xi in parallel similarly as de-
scribed in the previous paragraph. For parallel Lloyd’s iterations, a similar strategy as
proposed in [8] can be used in Step 2. Steps 1–3 require calling modified gop-function and
gplus-function for the subset of workers; these functions were modified to support this
requirement. Finally, prototypes corresponding to the smallest local SSE from the subset i′

allocated workers (i′ − 1)J + 1, ..., (i′ − 1)J + J are returned as the initialization.
The parallel SRPK-means‖ in Algorithm 3 can be implemented in a highly similar

fashion to the parallel SK-means‖. More precisely, in Step 1, each worker (i − 1)J + 1,
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where i ∈ {1, 2, ..., S}, generates the random matrix Ri and broadcasts it to workers
(i− 1)J + 1, ..., (i− 1)J + J. In Step 2, each worker computes random projected data for its
local data. Steps 3–4 are otherwise computed similarly to the parallel SK-means‖ Steps 1
and 2, except these steps are executed for the projected subsets. In Step 5, the prototypes are
computed in the original space in parallel. Finally, Steps 6 and 7 are the same as Steps 3 and
4 in Algorithm 2. The parallel implementations of the proposed methods and K-means‖
are available in (https://github.com/jookriha/Scalable-K-means).

3.4. M-Spheres Dataset Generator

The novel dataset generator is given in Algorithm 4. Based on the method proposed
in ([43], p. 586), Algorithm 5 generates a random point that is on the M-dimensional sphere
centered on c with radius of d. The core principle is to draw M independent values from the
standard normal distribution and transform these with corresponding M-direction cosines.
The obtained M-dimensional vector is then scaled with the radius d and relocated with
the center c. The generated points are uniformly distributed on the surface of the sphere,
because of the known properties of the standard normal distribution (see [43] (p. 587) and
articles therein).

Algorithm 4: M-spheres dataset generator
Input: #clusters K, #dimensions M, #points per cluster NK, nearest center

distance dc, radius of M-sphere dr.

Output: Dataset X = {x1, x2, ..., xN}.
1: C← {(0,...,0)}.

2: if K > 1 then

3: c2 ← randsurfpoint(c1,dc).

4: C← C ∪ {c2}.
5: k← 2.

6: if K > 2 then

7: while k < K do

8: i← rand({1, 2, ..., k}).
9: ccand ← randsurfpoint(ci,dc)..

10: i∗ ← argminj ‖cj − ccand‖.
11: if i∗ == i then

12: C← C ∪ {ccand}.
13: k← k + 1.

14: k← 1.

15: X← {}.
16: while k ≤ K do

17: n← 1

18: while n ≤ NK do

19: d∗r ← rand((0, dr])

20: xnew ← randsurfpoint(ck,d∗r ).

21: X← X ∪ {xnew}.
22: n← n + 1

23: k← k + 1

The generator uses Algorithm 5 for generating K cluster centers so that ‖ci − cj‖ = dc,
where i 6= j, dc is the given distance between the centers, and both ci, cj then belong to

https://github.com/jookriha/Scalable-K-means
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the set of centers C. Finally, NK data points for each cluster are generated by applying
Algorithm 5 with a uniformly random radius from the interval (0, dr]. This means, in
particular, that points in a cluster are nonuniformly distributed and approximately 100a

dr
%

percentages of the points are within a M-dimensional sphere with radius a for 0 ≤ a ≤ dr.
In Algorithm 5, N(0, 1) denotes the standard normal distribution.

Algorithm 5: randsurfpoint(c,d)
Input: Sphere center c, sphere radius d.

Output: New point x∗.

1: m← 1.

2: S← 0.

3: while m ≤ M do

4: xm ← N(0, 1).

5: S← S + x2
m.

6: m← m + 1.

7: x∗ ← c + dS−1/2x

For simplicity, generation of the cluster centers starts from the origin. When the new
centers are randomly located with the fixed distance and then expanded as clusterwise data
in RM, the generator algorithm does not restrict the actual values of the generated data
and centers. Hence, depending on the input, data range can be large. However, this can be
alleviated with the min-max scaling as part of the clustering process.

4. Empirical Evaluation of Proposed Algorithms

In this section, empirical comparison between K-means++, K-means‖, SK-means‖,
and SRPK-means‖ is presented by using 21 datasets. In Section 4.1, the results are given
for 15 reference datasets. The performance of the methods was evaluated by analyzing
SSE, the number of iterations needed for convergence, and the running time. Finally, In
Section 4.2, we analyze the final clustering accuracy for six novel synthetic datasets that
highlight the effects of the curse of dimensionality in the K-means++ type initialization
strategies. The simulated clustering problems have been formed with the novel generator
described in Algorithm 4. The MATLAB implementation of the algorithm is available in
(https://github.com/jookriha/M_Spheres_Dataset_Generator).

4.1. Experiments with Reference Datasets

In this section, the results are shown and analyzed for 15 publicly available reference
datasets by considering separately the accuracy (Section 4.1.2), efficiency (Section 4.1.3),
and scalability (Section 4.1.4) of the algorithms.

4.1.1. Experimental Setup

Basic information about the datasets is shown in Table 1. The parallel implementations
of the proposed methods and K-means‖ (omitting K-means++ readily tested in [6]) were
applied to the seven largest datasets and serial implementations were used otherwise.
For the serial experiments, we used the following eight datasets: Human Activity Recog-
nition Using Smartphones (http://archive.ics.uci.edu/ml/index.php) (HAR), ISOLET
(ISO), Letter Recognition (LET), Grammatical Facial Expressions (GFE), MNIST (http:
//yann.lecun.com/exdb/mnist/) (MNI), Birch3 (http://cs.joensuu.fi/sipu/datasets/)
(BIR), Buzz in Social Media (BSM), and Covertype (COV). For the parallel experiments, the
following seven large high-dimensional datasets were used: KDD Cup 1999 Data (KDD),
US Census Data 1990 (USC), Oxford Buildings (http://www.robots.ox.ac.uk/~vgg/data/

https://github.com/jookriha/M_Spheres_Dataset_Generator
http://archive.ics.uci.edu/ml/index.php
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://cs.joensuu.fi/sipu/datasets/
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
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oxbuildings/) (OXB), Tiny Images (http://horatio.cs.nyu.edu/mit/tiny/data/) (TIN),
MNIST8M (M8M), RCV1v2 collection of documents (https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets) (RCV) and Street View House Numbers (http://ufldl.stanford.edu/
housenumbers/) (SVH). The BIR dataset [44] was selected to test SK-means‖ for low-
dimensional data. With the OXB dataset, we used the transformed dataset with 128-
dimensional SIFT descriptors extracted from the original dataset. For the TIN dataset, we
sampled a 20% subset from the Gist binary file (tinygist80million.bin), where 79,302,017
images are characterized with 384-dimensional Gist descriptors. The highest-dimensional
dataset was SVH, where we combined the training, testing, and validation subsets into
a single dataset. We excluded the attack type feature (class label) from the KDD dataset,
used the Twitter data for the BSM dataset, and restricted to the training dataset of the
HAR dataset. For the RCV dataset, we used the full industries test set (350 categories) and
selected 1000 out 47,236 features with the same procedure as in [45]. For the M8M and the
RCV datasets, we used the scaled datasets given in http://cs.joensuu.fi/sipu/datasets/,
all other datasets were min-max scaled into [−1, 1].

Table 1. Characteristics of datasets. The number of clusters K was chosen according to the known
number of classes or fixed by hand. The latter choice is indicated with symbol *.

Dataset #Observations (N) #Features (M) #Clusters (K)

HAR 7352 561 6
ISO 7797 617 26
LET 20,000 16 26
GFE 27,936 300 36
MNI 70,000 784 10
BIR 100,000 2 100
BSM 583,250 77 50 *
FCT 581,012 54 7
SVH 630,420 3072 100 *
RCV 781,265 1000 350
USC 2,458,285 68 100 *
KDD 4,898,431 41 100 *
M8M 8,100,000 784 265
TIN 15,860,403 384 100 *
OXB 16,334,970 128 100 *

In Section 3.1, we discussed the selection of parameter S. Because the results in [30,35]
and that the computing nodes’ have typically the number of cores in powers of two, we
fixed S = 8 in the experiments. This means that each dataset was randomly divided into 8
subsets, which were roughly of equal size. Matlab 2018a environment was used in the serial
experiments with the K-means++, K-means‖, SK-means‖ and SRPK-means‖ methods.
In Matlab 2018a version, we were not able to modify gop-function and gplus-function
(see Section 3.3). In Matlab R2014a environment, these modifications were possible for
the proposed methods. To follow the good practices of running time evaluation [46], all
the parallel experiments with the K-means‖, SK-means‖ and SRPK-means‖ methods were
run Matlab R2014a environment. The parallel algorithms were implemented with Matlab
Parallel Computing Toolbox with the SPMD blocks and message passing functions as
discussed in Section 3.3. The parallel experiments were run in a computer cluster using
Sandy Bridge nodes with 16 cores and 256 GB memory. A parallel pool of 32 workers
was used in the experiments; therefore, 4 workers were allocated for each subset. In the
parallel experiments, each worker had a 1

4 random disjoint partition of the subset on the
local workspace.

For all datasets we used the following settings: (i) for K-means‖: l = 2K and r = 5;
(ii) for SK-means‖ and SRPK-means‖: Tinit = 5 and S = 8; (iii) and for SRPK-means‖:
P ∈ {5, 10, 20, 40} and R with rij = ±1. Please note that occurrence of an empty cluster
for SRPK-means‖ is possible in rare cases when all S subsets produce an empty cluster.

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://horatio.cs.nyu.edu/mit/tiny/data/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
http://cs.joensuu.fi/sipu/datasets/
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(For instance, empty clusters appeared seven times in all the experiments with the syn-
thetic datasets as reported in Section 4.2). In these cases, we repeated the whole clustering
initialization from the start. After initialization, the Lloyd’s algorithm was executed until
the number of new assignments between the consecutive iterations was below or equal
to the threshold. For the five largest datasets (SVH, RCV, OXB, M8M and TIN) we set
this threshold to 1% of N and otherwise to zero. In the parallel experiments, runs were
repeated 10 times for each setting. In the serial experiments, runs were repeated 100 times
for each setting. Values for the number of clusters, K, are given in the last column of
Table 1. Since the MNIST8M dataset is constructed artificially from the original MNIST
dataset, we set K for MNIST8M based on the optimal value for MNIST used by
Gallego et al. [47]. Otherwise, the selection is either based on the known number of
classes or fixed arbitrarily (indicated with * in Table 1).

The quality of the clustering results between the methods was compared by using
SSE. The SSE values were computed with formula (1) for the whole data. Finally, statistical
comparison between the methods was performed with the nonparametric Kruskal-Wallis
test [48,49], since in most cases the clustering errors were not normally distributed. The
significance level was set to 0.05.

4.1.2. Results for Clustering Accuracy

SSE values after the initialization (initial SSE) and after the Lloyd’s iterations (final
SSE) are summarized in Table 2. For the initial SSE, we did not include any results from the
statistical testing because of differences in variances. Moreover, note that the assumption
of equal variances of the final SSEs underlying the Kruskal-Wallis test, as tested with the
Brown-Forsythe test, was only satisfied for SVH, RCV, USC, KDD, OXB, and M8M. For
most datasets (HAR, ISO, LET, GFE, MNI, BIR, BSM, FCT, and TIN), this assumption was
not satisfied.

Clearly, SK-means‖ and SRPK-means‖ outperform K-means‖ and K-means++ in
terms of the initial SSE. SRPK-means‖ with p = 40 reaches almost the same initialization
SSE level as SK-means‖. For the six largest datasets, SRPK-means‖ with p = 20 always had
smaller max-value of SSE after initialization than the min-value of K-means‖. K-means++
has about two times larger initial SSE than SK-means‖ and SRPK-means‖ (p = 40).

For all other datasets than SVH and TIN, the final clustering accuracy (SSE) was
statistically significantly different between the four methods. Overall, in terms of the final
clustering error, SRPK-means‖ achieved better final SSE than K-means‖ and K-means++.
Moreover, one can note that for 11 out of 15 datasets, the random projection-based initial-
ization was better than the main baseline K-means‖. In many cases, SK-means‖ gives better
final SSE than the baseline methods, but for the high-dimensional datasets, the results are
equally good compared to the baseline methods. One can notice, based on the statistical
testing, that the final SSE is highly similar for K-means++ and K-means‖. Please note that in
Table 2 the min-values of all methods for the final SSE are equal for small number of clusters
(K ≤ 10). This is probably due to the fact that the smaller number of possible partitions [50]
implies a smaller number of local minima compared to higher values of K.
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Table 2. Clustering accuracy using SSE. The statistically significant differences of the final SSE according to the Kruskal-Wallis test are indicated with ∗∗ in the first column. Symbols +, ∗, ‡, and †P′

indicate that the method has statistically significantly better SSE in a pairwise comparison with respect to K-means++ (K++), K-means‖ (K‖), SK-means‖ (SK‖), and SRPK-means‖ (SRPK‖) for
P = P′, respectively. The coefficient under the name of the data in the first column is the data-specific multiplier which scales the SSE to the true level. The best performances are highlighted in bold.

Initialization Final

K++ K‖ SK‖ SRPK‖ K++ K‖ SK‖ SRPK‖
Data Stats p = 5 P = 10 p = 20 p = 40 p = 5 P = 10 p = 20 p = 40

HAR ∗∗ median 2.5881 1.5577 1.3958 1.4474 1.4192 1.4074 1.4003 1.3803 1.3803 1.3707 +,∗ 1.3707 +,∗ 1.3707 +,∗ 1.3707 +,∗ 1.3707 +,∗

105 mad 0.1498 0.0436 0.0066 0.0250 0.0175 0.0132 0.0116 0.0203 0.0242 0.0057 0.0117 0.0087 0.0082 0.0064
max 3.2295 1.7367 1.4316 1.5269 1.4613 1.4504 1.4621 1.5461 1.5461 1.4126 1.4136 1.4110 1.4126 1.4094
min 2.2533 1.4782 1.3785 1.3971 1.3907 1.3859 1.3825 1.3707 1.3707 1.3707 1.3707 1.3707 1.3707 1.3707

ISO ∗∗ median 8.9267 5.5274 4.9617 5.7887 5.4478 5.198 5.0575 4.7811 4.7795 4.7617 +,∗ 4.7578 +,∗ 4.7558 +,∗ 4.7538 +,∗ 4.7575 +,∗

105 mad 0.1797 0.0575 0.0271 0.0927 0.0723 0.0486 0.0411 0.0287 0.0246 0.0202 0.0277 0.0306 0.0265 0.0267
max 9.4413 5.7650 5.0490 6.0687 5.6078 5.2900 5.1494 4.9228 4.8663 4.8529 4.8469 4.8824 4.8407 4.8787
min 8.4326 5.3859 4.8820 5.6207 5.2543 5.0629 4.9383 4.7142 4.7085 4.7087 4.7145 4.7099 4.7084 4.7180

LET ∗∗ median 1.7868 1.2356 1.1415 1.3543 1.2339 - - 1.1012 1.1014 1.0985 ∗ 1.0994 1.0989 - -
104 mad 0.0517 0.0176 0.0070 0.0372 0.0217 - - 0.0062 0.0060 0.0051 0.0064 0.0065 - -

max 2.1162 1.3133 1.1616 1.4327 1.2991 - - 1.1261 1.1192 1.1218 1.1175 1.1219 - -
min 1.6656 1.1771 1.1175 1.2617 1.1844 - - 1.0872 1.0873 1.0883 1.0876 1.0875 - -

GFE ∗∗ median 3.0103 2.0860 1.9218 2.1637 2.0463 1.9813 1.9506 1.8605 1.8550 1.8491 + 1.8398 +,∗,‡ 1.8397 +,∗,‡ 1.8407 +,∗,‡ 1.8420 +,∗,‡

105 mad 0.0994 0.0231 0.0155 0.0415 0.0258 0.0727 0.0704 0.0151 0.0146 0.0117 0.0129 0.0123 0.0119 0.0113
max 3.3933 2.1737 1.9793 2.2439 2.1042 2.0302 1.9990 1.9440 1.9105 1.8999 1.8783 1.8700 1.8757 1.8771
min 2.7908 2.0247 1.8819 2.0618 1.9802 1.9424 1.9039 1.8252 1.8197 1.8236 1.8172 1.8211 1.8227 1.8195

MNI ∗∗ median 1.9539 1.2495 1.1074 1.2156 1.1752 1.1458 1.1279 1.1013 1.1013 1.0979 +,∗ 1.0980 + 1.0979 +,∗ 1.0979 + 1.0980
107 mad 0.0624 0.0152 0.0032 0.0117 0.0093 0.0068 0.0048 0.0027 0.0024 0.0017 0.0023 0.0018 0.0026 0.0027

max 2.2474 1.3056 1.1171 1.2428 1.1968 1.1606 1.1390 1.1146 1.1075 1.1052 1.1046 1.1069 1.1105 1.1095
min 1.8138 1.2131 1.1006 1.1885 1.1472 1.1296 1.1136 1.0977 1.0977 1.0977 1.0977 1.0977 1.0977 1.0977

BIR ∗∗ median 3.0658 1.9912 1.8677 - - - - 1.8440 1.8187 1.7781 +,∗ - - - -
102 mad 0.1375 0.0544 0.0269 - - - - 0.0469 0.0451 0.0261 - - - -

max 3.4694 2.3346 1.9533 - - - - 2.0238 2.0943 1.8973 - - - -
min 2.6292 1.8770 1.8074 - - - - 1.7438 1.7409 1.7248 - - - -

BSM ∗∗ median 1.9621 1.1802 1.0780 1.4680 1.1957 1.1038 1.1012 1.1914 †,5 1.1631†5
1.0698
+,∗,†5,10 1.2124 1.1324 +,†,5

1.0800
+,∗,†,5,10

1.0903
+,∗,†,5,10

105 mad 0.1943 0.0741 0.0376 0.1593 0.0779 0.0511 0.0564 0.0818 0.0684 0.0374 0.1006 0.0741 0.0504 0.0577
max 2.5054 1.4593 1.1776 1.8995 1.4179 1.2237 1.2130 1.4205 1.4553 1.1684 1.5541 1.2875 1.1813 1.2063
min 1.5003 0.9999 0.9908 1.1971 0.9996 0.9779 0.9780 0.9929 0.9616 0.9739 1.0283 0.9668 0.9706 0.9664

FCT ∗∗ median 3.8766 2.2187 1.9273 2.2076 2.1004 2.0086 1.9773 1.9801 2.0000 1.9132+,∗,†,5−40 1.9781 1.9670 ∗ 1.9461
+,∗,†,5 1.9385+∗†5,10

106 mad 0.3322 0.1013 0.0343 0.0654 0.0581 0.0508 0.0380 0.0634 0.0784 0.0354 0.0542 0.0506 0.0466 0.0435
max 5.5290 2.5274 2.0294 2.4008 2.2494 2.1397 2.0698 2.2457 2.3487 2.0293 2.1752 2.1434 2.0852 2.0601
min 3.1329 1.9329 1.8645 2.0808 2.0013 1.8657 1.8652 1.8644 1.8644 1.8644 1.8644 1.8644 1.8644 1.8644

SVH median - 1.3559 1.0855 1.1820 1.1464 1.1155 1.0992 - 1.0703 1.0704 1.0704 1.0705 1.0706 1.0708
108 mad - 0.0636 0.0014 0.0185 0.0149 0.0075 0.0042 - 0.0003 0.0004 0.0005 0.0005 0.0003 0.0003

max - 1.5968 1.0889 1.2279 1.1765 1.1290 1.1083 - 1.0711 1.0720 1.0711 1.0717 1.0714 1.0712
min - 1.3027 1.0836 1.1639 1.1246 1.1082 1.0922 - 1.0696 1.0698 1.0698 1.0700 1.0703 1.0703

RCV ∗∗ median - 2.5506 2.1405 2.5897 2.4864 2.3575 2.2313 - 2.0876 2.0913 2.0780 2.0757 ∗,‡ 2.0702 ∗,‡,†,5 2.0715 ∗,‡,†,5

105 mad - 0.0233 0.0022 0.0138 0.0041 0.0045 0.0040 - 0.0027 0.0018 0.0019 0.0014 0.0026 0.0022
max - 2.5886 2.1427 2.5979 2.4945 2.3652 2.2363 - 2.0922 2.0951 2.0823 2.0778 2.0767 2.0755
min - 2.4849 2.1345 2.5647 2.4830 2.3523 2.2228 - 2.0812 2.0863 2.0764 2.0737 2.0688 2.0674
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Table 2. Cont.

Initialization Final

K++ K‖ SK‖ SRPK‖ K++ K‖ SK‖ SRPK‖
Data Stats p = 5 P = 10 p = 20 p = 40 p = 5 P = 10 p = 20 p = 40

USC ∗∗ median - 1.7014 1.1936 1.5530 1.3218 1.2284 1.1989 - 1.1903 1.1779 1.1736 ∗ 1.1688 ∗ 1.1718 ∗ 1.1709 ∗

107 mad - 0.0394 0.0036 0.0338 0.0217 0.0079 0.0037 - 0.0070 0.0057 0.0072 0.0091 0.0091 0.0049
max - 1.7671 1.2016 1.6178 1.3542 1.2415 1.2038 - 1.2020 1.1908 1.1803 1.1841 1.1869 1.1829
min - 1.6110 1.1877 1.4957 1.2799 1.2191 1.1934 - 1.1781 1.1712 1.1595 1.1566 1.1602 1.1667

KDD ∗∗ median - 30.5335 2.5466 3.1781 2.6651 2.5817 2.5162 - 2.5218 2.4726 2.4853 2.4582∗ 2.4755 2.4529 ∗

105 mad - 7.3666 0.0337 0.1019 0.0483 0.0562 0.0440 - 0.0372 0.0419 0.0698 0.0413 0.0464 0.0316
max - 58.0452 2.5962 3.3024 2.7083 2.6275 2.6367 - 2.6288 2.5432 2.6241 2.5223 2.5640 2.5406
min - 22.2667 2.4803 2.9935 2.5447 2.4483 2.4878 - 2.4614 2.4084 2.3961 2.3927 2.4032 2.4330

M8M ∗∗ median - 2.6631 2.2390 2.9313 2.6415 2.4185 2.3153 - 2.2159 2.2154 2.2139 ∗ 2.2139 ∗ 2.2141 ∗ 2.2139 ∗

108 mad - 0.0164 0.0009 0.0286 0.0150 0.0071 0.0041 - 0.0012 0.0008 0.0010 0.0009 0.0005 0.0009
max - 2.6959 2.2412 2.9835 2.6690 2.4299 2.3176 - 2.2203 2.2165 2.2162 2.2155 2.2145 2.2157
min - 2.6391 2.2376 2.8782 2.6192 2.4091 2.3043 - 2.2143 2.2131 2.2128 2.2126 2.2131 2.2132

TIN median - 10.7568 8.8782 9.7335 9.4194 9.2042 9.0595 - 8.8060 8.8065 8.8058 8.8075 8.8073 8.8073
107 mad - 0.1498 0.0057 0.1054 0.0879 0.0338 0.0139 - 0.0012 0.0014 0.0016 0.0018 0.0016 0.0030

max - 11.1649 8.8812 9.9343 9.5627 9.2543 9.0841 - 8.8091 8.8077 8.8091 8.8106 8.8093 8.8108
min - 10.4721 8.8623 9.5824 9.3339 9.1431 9.0474 - 8.8031 8.8029 8.8042 8.8047 8.8044 8.8024

OXB ∗∗ median - 1.7678 1.5375 1.6432 1.6249 1.6014 1.5829 - 1.5267 1.5268 1.5254 ∗,‡ 1.5256 ∗,‡ 1.5255 ∗‡ 1.5255 ∗,‡

108 mad - 0.0181 0.0004 0.0055 0.0058 0.0028 0.0017 - 0.0006 0.0002 0.0003 0.0005 0.0005 0.0004
max - 1.8224 1.5384 1.6575 1.6315 1.6082 1.5850 - 1.5286 1.5271 1.5258 1.5266 1.5262 1.5261
min - 1.7506 1.5367 1.6393 1.6162 1.5995 1.5797 - 1.5258 1.5259 1.5251 1.5250 1.5250 1.5250
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4.1.3. Results for Running Time and Convergence

Running time for the initialization (median of 10 runs) for the parallel experiments is
shown in Table 3. Running time for the initialization taken by K-means‖ is around 60–80%
of the running time of SK-means‖. SRPK-means‖ runs clearly faster than SK-means‖ for
datasets with dimensionality more than 100, and for the four highest-dimensional datasets,
SRPK-means‖ runs clearly faster than K-means‖. Please note that differences are small
between p = 5 and p = 40 for SRPK-means‖.

Table 3. Running time for the initialization in seconds. The best performances are highlighted in bold.

KDD USC OXB TIN M8M RCV SVH

K-means‖ 5.0 ± 0.1 3.0 ± 0.3 26.0 ± 1.8 52.1 ± 1.3 98.5±2.9 14.1 ± 1.8 13.7 ± 0.8
SK-means‖ 8.7 ± 0.2 5.0 ± 0.2 39.1 ± 0.5 65.8 ± 0.9 145.5 ± 0.6 20.6 ± 0.7 17.3 ± 0.2
SRPK-means‖ p = 5 7.9 ± 0.1 3.9 ± 0.1 23.7 ± 0.3 24.9 ± 0.4 32.2 ± 0.3 4.8 ± 0.1 3.4 ± 0.2
SRPK-means‖ p = 40 10.2 ± 0.2 5.6 ± 0.3 27.4 ± 0.6 28.5 ± 1.3 37.9 ± 0.6 5.6 ± 0.5 3.3 ± 0.2

The median number of Lloyd’s iterations needed for convergence after the initializa-
tion phase are summarized in Table 4, where the statistically significant differences are
denoted similarly as in Table 2. The assumption of equal variances was satisfied for all
datasets except for FCT. In general, SK-means‖ seems to require smaller number of Lloyd’s
iterations than K-means++ and K-means‖, which directly translates to faster running time
of the K-means search. Based on the statistical testing, SRPK-means‖ is better than or
equal compared to the baseline methods in terms of the number of iterations. Therefore,
SRPK-means‖ can also speed up the search phase of the K-means clustering method. In-
creasing the RP dimension from 5 to 40 further improved the speed of convergence for
SRPK-means‖. Out of the parameter values used in the experiments, selecting p = 40 gives
the best tradeoff between the running time and the clustering accuracy for SRPK-means‖.
Furthermore, note that there is no statistical difference between K-means++ and K-means‖
with respect to the number of Lloyd’s iterations.

Table 4. The number of iterations needed for convergence. The statistically significant differences according to the Kruskal-Wallis
test are indicated with ∗∗ after the dataset acronym. Symbols +, ∗, ‡, and †P′ indicate that the method has statistically significantly
faster convergence in a pairwise comparison with respect to K-means++ (K++), K-means‖ (K‖), SK-means‖ (SK‖), and SRPK-means‖
(SRPK‖) for P = P′, respectively. Median values are on a gray background. Corresponding median absolute deviation values are below
the median values. The best performances are highlighted in bold.

HAR ∗∗ ISO ∗∗ LET ∗∗ GFE ∗∗ MNI ∗∗ BIR BSM ∗∗ FCT ∗∗ SVH ∗∗ RCV ∗∗ USC KDD M8M ∗∗ TIN ∗∗ OXB ∗∗

K-means++ 25.5 31.5 79 62 86 94 36 14 - - - - - - -

±11.1 ±8.7 ±22.1 ±15.8 ±30.3 ±22.7 ±11.9 ±11.1 - - - - - - -

K-means‖ 28.5 33.5 68.5 59 86 97 35 9.5 32.5 20 81 82 31 37.5 27.5

±10.5 ±11.0 ±22.8 ±15.6 ±30.5 ±22.2 ±12.4 ±10.3 ±2.5 ±2.3 ±8.5 ±24.5 ±1.1 ±3.8 ±2.3

SK-means‖ 23.5 25.5 *,+,†,5 63 *,+,†,5,10 52 + 73 86.5 25.5 *,+,†,5 1 *,+†,5−40 28.5 †,5 19 86 72 24 *,†,5−20 33 *,†,5−20 22 *,†,5−40

±9.4 ±9.2 ±20.2 ±14.6 ±30.7 ±24.8 ±13.5 ±5.6 ±3.7 ±1.4 ±19.2 ±22.2 ±1.3 ±1.7 ±1.7

SRPK-means‖ p = 5 27 35 77 60 87 - 35 6 *,+ 35 20.5 93.5 96.5 33 40 28.5

±9.5 ±9.5 ±22.8 ±16.1 ±37.2 - ±12.1 ±4.2 ±2.1 ±1.3 ±31.4 ±25.2 ±1.5 ±2.5 ±1.6

SRPK-means‖ P = 10 19 *,+ 30 76.5 55.5 72.5 - 30.5 5 *,+ 32 20 83.5 78 31.5 38.5 28

±10.5 ±10.0 ±21.1 ±13.2 ±30.3 - ±11.4 ±5 ±2.2 ±1.3 ±19.8 ±24.2 ±1.7 ±3 ±1.8

SRPK-means‖ p = 20 20 *,+ 30 - 53.5 83 - 26.5 *,+,†,5 4 *,+ 30 17 *,†5 77 69 30 39 27.5

±9.0 ±8.7 - ±13.8 ±32.9 - ±10.6 ±4.8 ±2.1 ±1.2 ±17.2 ±18.9 ±1.2 ±2.6 ±2.1

SRPK-means‖ p = 40 19 *,+ 28 †,5 - 50 + 66 - 24 *,+,†,5 4 *,+,†,5,10 27 †,5 17 *,†,5,10 98.5 70 28.5 †,5 35.5 28.5

±9.4 ±9.1 - ±17.3 ±27.7 - ±11.8 ±5.3 ±2.9 ±0.9 ±27.4 ±25.4 ±2.0 ±4.5 ±2.6

4.1.4. Results for Scalability

We conducted scalability tests for TIN and SVH to show how running time varies
as a function of #processing elements (Matlab workers) and to demonstrate the benefits
of using SRPK-means‖ for a very high-dimensional dataset (SVH) when K is increased.
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We concentrated on the running time of the initialization and the corresponding SSE. We
performed scalability experiments in two parts: (1) Tests with TIN: #processing elements
was varied from 8 to 64 and K = 100 was fixed; (2) Tests with SVH: The number of clusters
was varied as K ∈ {100, 200, 400, 800} and #processing elements was fixed to 32. Otherwise,
we used the same parameter settings as in the previous experiments.

Median running time and SSE curves out of 10 runs are shown in Figure 1. Results
for the experiment 1 are shown in Figure 1a. In terms of Amdahl’s law [51], K-means‖
and SK-means‖ perform equally well: running time is nearly halved when #process-
ing elements is doubled from 8 to 16 and from 16 to 32. From this perspective, perfor-
mance of SRPK-means‖ is slightly worse than K-means‖ and SK-means‖. The results
for the experiment 2 are shown in Figure 1b,c. Clearly, for very high-dimensional data,
SRPK-means‖ runs much faster compared to K-means‖ and SK-means‖. As analyzed in
Section 3.2, the speedup for SRPK-means‖ is increased when K is increased. A similar
observation was made between K-means++ and RPK-means++ in [28]. Furthermore, when
K = 800, the speedup for SRPK-means‖ with respect to K-means‖ is 7–8 and with respect
to SK-means‖ 9–10. Moreover, according to Figure 1c, SRPK-means‖ (when p = 40) and
SK-means‖ sustain their accuracy when K is increased in a frame of K-means‖.
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Figure 1. Scalability.

4.2. Experiments with High-Dimensional Synthetic Datasets

Finally, to strengthen the evaluation, we next summarize experiments with novel syn-
thetic datasets, where symmetric, spherical clusters are hidden in a very high-dimensional
space. Comparison of K-means initialization methods for datasets with assured spherical
shape is clearly relevant because K-means restores such geometries during the clustering
process [4,6,44]. Please note that using SSE for high-dimensional data can be ambigu-
ous [52]. As we will next demonstrate, the SSE error difference of good and bad clustering
results in a high-dimensional space can be surprisingly small. To show this, we also analyze
the final clustering accuracy with normalized mutual information (NMI) [53] with the
actual entropies. Please note that it would have been uninformative to use NMI as a quality
measure for datasets in Section 4.1 because there we had no information on the cluster
geometry. Mutual Information (MI) can be defined as

MI(I, L) =
K

∑
k=1

K∗

∑
i=1

n(i)
k
n

log2

n(i)
k
n

n(i)

n
nk
n

, (2)
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where I refers to the cluster labels, L to the ground truth labels, K∗ to the number of unique
ground truth labels, and n denotes labels’ frequency counts. Then, NMI can be defined as

NMI(I, L) =
2MI(I, L)

H(I) + H(L)
, (3)

where H(I) = log2(K) and H(L) = log2(K
∗) denote the entropies of the cluster labels and

ground truth labels.
Details of the six generated datasets with Algorithm 4 are summarized in Table 5.

The generated datasets are referred as M-spheres. For each dataset, we set NK = 10, 000,
K = 10, and dr = 1. To demonstrate interesting effects in the clustering initialization, we
varied the nearest cluster center distance as dc = {0.05, 0.1, 0.2} and the data dimension
as M = {1000, 10, 000}. We set dc values to much smaller than dr in order to increase the
difficulty of the clustering problems. In Figure 2, PCA projections on the three largest
principal components show that the clusters are more separated for M = 10, 000 than
for M = 1000. For the M-spheres datasets, we used the serial implementations of the
initialization methods with the same settings as before.

Table 5. Characteristics of the synthetic datasets.

Dataset #Observations (N) #Features (M) #Clusters (K) Center Distance (dc) Radius (dr)

M-spheres-M1k-dc0.05 100,000 1000 10 0.05 1.0
M-spheres-M1k-dc0.1 100,000 1000 10 0.1 1.0
M-spheres-M1k-dc0.2 100,000 1000 10 0.2 1.0
M-spheres-M10k-dc0.05 100,000 10,000 10 0.05 1.0
M-spheres-M10k-dc0.1 100,000 10,000 10 0.1 1.0
M-spheres-M10k-dc0.2 100,000 10, 000 10 0.2 1.0

Results for the final clustering accuracy using NMI with 100 repeats are shown in
Figure 3. Clearly, SRPK-means‖ outperforms other methods in terms final clustering
accuracy for all the synthetic datasets. Moreover, if we compare the results between the
datasets with M = 1000 and M = 10, 000, we observe that the clustering accuracy for SRPK-
means‖ is improved when the dimensionality increases. The most significant difference is
obtained for the M-spheres-M10k-dc0.05 dataset, where K-means++ has a total breakdown
of the accuracy while SRPK-means‖ is able find the near optimal clustering result out of
100 repeats. Moreover, the accuracy of K-means++ is clearly worse compared to K-means‖
and SK-means‖ for very high-dimensional datasets. We tested K-means with random
initialization for this dataset and observed from the statistical testing that K-means++,
K-means‖ and SK-means‖ are no better than the random initialization in terms of NMI.
These results demonstrate that the use of distances in the K-means++ type of initialization
strategies can become meaningless in very high-dimensional spaces.

In Figure 4, scatter plots of SSE and NMI values show that the relative SSE difference
between worst possible clustering result (NMI = 0) and the optimal clustering result
(NMI = 1) can be surprisingly small for very high-dimensional data. Therefore, the
improvements for the final clustering accuracy in Table 2 can be much more significant
than the impression given by SSE in terms of how spherical clusters are found for high-
dimensional datasets.

Figures 3 and 4 illustrate the deteriorating behavior of the currently most popular
K-means++ initialization method in high dimensions. We especially observe that the
K-means++ initialization behaves like (i.e., is not better than) the random one in the
very high-dimensional cases. Such finding also suggests further experiments, where as a
function of the data dimension, emergence of such a behavior is being studied to identify
most appropriate random project dimensions to restore the quality of initialization and the
whole clustering algorithm.
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(a) M-spheres-M1k-dc0.05 (b) M-spheres-M1k-dc0.1

(c) M-spheres-M1k-dc0.2 (d) M-spheres-M10k-dc0.05

(e) M-spheres-M10k-dc0.1 (f) M-spheres-M10k-dc0.2

Figure 2. Synthetic dataset projections on the three largest principal components.
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Figure 3. NMI for the synthetic datasets.
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5. Conclusions

In this paper, we proposed two parallel initialization methods for large-scale K-means
clustering and a new high-dimensional clustering data generation algorithm to support
their empirical evaluation. The methods are based on divide-and-conquer type of K-means‖
approach and random projections. The proposed initialization methods are scalable and
fairly easy to implement with different parallel programming models.

The experimental results for an extensive set of benchmark and novel synthetic
datasets showed that the proposed methods improve clustering accuracy and the speed
of convergence compared to state-of-the-art approaches. Moreover, the deteriorating be-
havior of the K-means++ and K-means‖ initialization methods in high dimensions can be
recovered with the proposed RP-based approach to provide accurate initialization also for
high-dimensional data. Our experiments also confirmed the finding (e.g., [52]) that the
difference between the errors (SSE) of good and bad clustering results in high-dimensional
spaces can be surprisingly small also challenge cluster validation and cluster validation
indices (see [4] and references therein) in such cases.

Experiments with SRPK-means‖ method demonstrate that use of RP and K-means‖ is
beneficial for clustering large-scale high-dimensional datasets. In particular, SRPK-means‖
is an appealing approach as a standalone algorithm for clustering very high-dimensional
large-scale datasets. In future work, it would be interesting to test a RP-based local
SSE selection for SRPK-means‖, which uses the same RP matrix in each subset for the
initial prototype selection. In this case, use of sparse RP variants [54] or the mailman
algorithm [17] for the matrix multiplication could be beneficial, particularly in applications
where K is close to P. Furthermore, integrating the proposed methods into the robust K-
means‖ [37] would be beneficial for clustering noisy data, because the clustering problems
in these cases are especially challenging.
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