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Abstract: Chimp Optimization Algorithm (ChOA), a novel meta-heuristic algorithm, has been
proposed in recent years. It divides the population into four different levels for the purpose of
hunting. However, there are still some defects that lead to the algorithm falling into the local
optimum. To overcome these defects, an Enhanced Chimp Optimization Algorithm (EChOA) is
developed in this paper. Highly Disruptive Polynomial Mutation (HDPM) is introduced to further
explore the population space and increase the population diversity. Then, the Spearman’s rank
correlation coefficient between the chimps with the highest fitness and the lowest fitness is calculated.
In order to avoid the local optimization, the chimps with low fitness values are introduced with
Beetle Antenna Search Algorithm (BAS) to obtain visual ability. Through the introduction of the
above three strategies, the ability of population exploration and exploitation is enhanced. On this
basis, this paper proposes an EChOA-SVM model, which can optimize parameters while selecting
the features. Thus, the maximum classification accuracy can be achieved with as few features as
possible. To verify the effectiveness of the proposed method, the proposed method is compared with
seven common methods, including the original algorithm. Seventeen benchmark datasets from the
UCI machine learning library are used to evaluate the accuracy, number of features, and fitness of
these methods. Experimental results show that the classification accuracy of the proposed method is
better than the other methods on most data sets, and the number of features required by the proposed
method is also less than the other algorithms.

Keywords: Chimp Optimization Algorithm; highly disruptive polynomial mutation; Spearman’s
rank correlation coefficient; Beetle Antennae Search Algorithm; support vector machine

1. Introduction

With society gradually becoming digitalized, the question of how to extract useful
information effectively from complex and huge data has become the focus of research in
recent years. Machine learning is one of the important research fields of information recog-
nition and pattern recognition in data sets [1]. It has been widely used due to its strong
data processing ability. Machine learning is evolving from computer science [2], which is a
multidisciplinary and interdisciplinary major. It covers probability theory, statistics, approx-
imate theory, and complex algorithms, and it can design efficient and accurate prediction
algorithms [3]. It can be divided into supervised learning and unsupervised learning ac-
cording to the learning mode [4]. SVM is one of the most widely used supervised learning
algorithms. Vapnik and other researchers built the cornerstone of SVM [5]. It is widely used
in pattern recognition [6,7], text recognition [8], biomedical [9–11], imaging medicine [12],
anomaly detection [13] and in other fields. SVM classifies feature spaces into two cate-
gories and defines a non-parametric method for finding decision boundaries [14]. SVM has
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shown excellent performance in many problems [15]. Using the support vector machines to
solve problems can improve generalization performance, improve computational efficiency,
reduce running time, and produce a very accurate classification model [16,17]. The Support
Vector Machines can solve both linear and nonlinear classification problems. When the
data set is linearly inseparable, the nonlinear problem is usually transformed into a linear
problem. Then, the data set can be used to construct an optimal hyperplane in the feature
space, so that the feature space can be divided into two classes more easily [18]. However,
when machine learning processes high-dimensional data sets, there will be problems such
as noise and redundant data [19]. In this case, feature selection [20] can be used to reduce
the number of features.

Feature selection is to select the optimal feature subset from the original data set [21].
According to the form of feature selection, the feature selection methods can be divided
into the following three types: filter, wrapper, and embedded [22–24]. The wrapper-based
approach is used in this article. The wrapper method, which relies on the classification
method [25], is more efficient than the other two, but its computational intensity is relatively
greater [26]. The filter method [27] uses numerous indicators to evaluate and select high-
order features according to their discriminant attributes [28]. After that it will select the
subset with the richest information [29]. The main idea of the wrapper approach is to treat
the selection of subsets as a search optimization problem. At first it will generate different
combinations, then evaluate them, and finally compare them with other combinations.
The wrapper method is often used in feature selection problems due to the superiority of
its calculation results, and the wrapper method can directly interact with classifier [30].
The wrapper method can be effectively combined with the meta-heuristic optimization
algorithm so to achieve better practical application effect.

In recent years, many researchers have combined optimization algorithms with SVM
to solve problems. Influenced by this, this paper tries to combine ChOA with SVM for
feature selection and parameter optimization. ChOA is a new meta-heuristic optimization
algorithm proposed by Khishe and Mosavi in 2019 [31] which is inspired by the hierarchy
mechanism of chimps in nature when they are hunting. It can solve the problem of slow
convergence and local optimum when it is solving the serious dimensional problems.
However, the ChOA still has some shortcomings. Firstly, the population diversity of
the algorithm is insufficient in the initial stage. Secondly, there is a risk of falling into
local optimal in the final search stage. Therefore, an Enhanced Chimp Optimization
Algorithm is proposed in this paper. Three strategies have been introduced successively,
including highly disruptive polynomial mutation [32], Spearman’s correlation coefficient,
and Beetle Antennae Search Algorithm [33]. In the initial stage, HDPM is used to increase
the population’s variety, which improved the detection ability of the optimization algorithm.
Due to the updating of the position of the chimp being determined by each level of chimp,
this paper will improve the global search ability of chimps by improving the position
updating ability of lower level chimps. The algorithm firstly introduces the Spearman’s
rank correlation coefficient to calculate the distance between low grade and high grade
chimp. For the lower chimps that are far away from the higher chimps, this paper will
introduce the beetle antenna search algorithm. It can make the chimps with low fitness
achieve the visual ability, thus they can change their movement direction according to the
surrounding environment. This strategy improves the local and global search ability of the
chimps with lower fitness. On this basis, this paper proposes an EChOA-SVM model. This
model is used for feature selection and parameter optimization at the same time to obtain
good classification accuracy and performance. The main contributions of this paper are
summarized as follows:

1. An Enhanced Chimp Optimization Algorithm is proposed to solve the shortcomings
of the ChOA and make it better applied to feature selection problems.

2. HDPM strategy is introduced in the initial stage to enhance the population diversity.
3. Spearman’s rank correlation coefficient helps to identify the chimps that need to be

improved. Then BAS is introduced to improve the positions updating ability.
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4. The EChOA-SVM model is used for feature selection and SVM parameter optimiza-
tion simultaneously. The model is evaluated by 17 benchmark data sets in UCI
machine learning library [34]. In order to verify the effectiveness of this method,
it is compared with seven optimization algorithms, such as ChOA [31], GWO [35],
WOA [36], ALO [37], GOA [38], MFO [39], and SSA [40].

The structure of this article is as follows. Section 2 reviews relevant literatures.
Section 3 briefly introduces the basic principle of the ChOA. Section 4 proposes a new
EChOA, then introduces the related theory of EChOA-SVM. In Section 5, compared and
analyzed the experimental results.

2. Literature Review

Optimization algorithms have been widely used in different fields such as medicine,
multi-objective optimization, data classification, feature selection, and Support Vector
Machine optimization. Zhao and Zhang proposed a Learning-based Evolutionary Multi-
objective Algorithm [41]. By comparing five algorithms, the proposed algorithm is signifi-
cantly superior to the other compared algorithms in determining the convergence and the
approximation of the Pareto front. Dulebenets proposed an Adaptive Polyploid Memetic
Algorithm to solve the cross-docking terminal vehicle scheduling problem [42]. This algo-
rithm can assist the correct operation planning of CDT. Liu, Wang and Huang proposed
an Alternative Algorithm to deal with Multiobjective optimization problems [43] which is
proven to be better than other many-objective evolutionary algorithms. Furthermore, it
is easily extended to solve constrained multi-objective optimization problems. Junayed
et al., established an optimization model and solution algorithm to optimize the factory-
in-a-box supply chain [44]. Gianni et al., Established specific rules or formulas that can
distinguish bacterial from viral meningitis by machine learning methods [45]. The method
even achieved 100% accuracy in detecting bacterial meningitis. Panda and Majhi used
the Salp Swarm Algorithm to train the Multilayer Perceptron for data classification [46].
Compared with other classical optimization algorithms, the results show that this method
is very advantageous.

This paper mainly studies the application of optimization algorithm in feature selec-
tion and support vector machine optimization. Feature selection is to select the optimal
feature subset from the original data set, which can be regarded as an optimization prob-
lem [47]. In order to obtain a better classification accuracy, it is necessary to input the
optimal SVM parameters into the feature subset. The selection of the feature subset will
also affect the parameters of SVM. Therefore, in order to obtain the ideal classification
accuracy, both feature selection and optimization of SVM parameters are required [48].
Huang and Wang [49] proposed a GA algorithm for feature selection and support vector
machine parameter optimization simultaneously. Compared with other methods, the
proposed method can achieve higher classification accuracy with fewer features. Shih-Wei
Lin et al. [50] proposed a feature selection and parameter optimization method based on
SA, and compared the method with grid algorithm. The results showed that the proposed
method could significantly improve the classification accuracy. Heming Jia and Kangjian
Sun proposed an IBMO-SVM classification model [51]. This model can help SVM to find the
optimal feature subset and parameters at the same time. Compared with other optimiza-
tion algorithms, this model shows good performance on both low and high dimensional
data sets. The ECHOA-SVM model, which is proposed in this paper, is inspired by these
methods.

3. Chimp Optimization Algorithm (ChOA)

ChOA is a mathematical model that is based on intelligent diversity [31]. Driving,
chasing, blocking and attacking are accomplished by four different types of chimps, which
are accomplished by attackers, obstacles, chasers, and drivers. The four hunting steps are
completed in two stages. The first stage is the exploration stage, and the second stage is the
exploitation stage. The exploration stage includes driving, blocking, and chasing the prey.
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As for the exploitation stage, it has to attack the prey. In which, the driving and chasing are
represented by Equations (1) and (2).

d =
∣∣∣c · xprey(t)−m · xchimp(t)

∣∣∣ (1)

xchimp(t + 1) = xprey(t)− a · d (2)

where xprey is the vector of prey position, xchimp is the vector of chimp position, t is the
number of current iterations, a, c, m are coefficient vectors and they can be obtained
through Equations (3)–(5).

a = 2 · f · r1 - f (3)

c = 2 · r2 (4)

m = chaotic_value (5)

where f non-linearly declined from 2.5 to 0, r1 and r2 is the random number between 0 and
1, and m is the chaotic vector. The dynamic coefficient f can be selected for different curves
and slopes, thus chimps can use different abilities to search the prey.

Chimps can update their positions based on the other chimps, and this mathematical
model can be represented by Equations (6) and (8).

dAttacker = |c1xAttacker −m1x|
dBarrier = |c2xBarrier −m2x|
dChaser = |c3xChaser −m3x|
dDriver = |c4xDriver −m4x|

(6)

x1 = xAttacker − a1(dAttacker)
x2 = xBarrier − a2(dBarrier)
x3 = xChaser − a3(dChaser)
x4 = xDriver − a4(dDriver)

(7)

x(t + 1) =
x1 + x2 + x3 + x4

4
(8)

4. Enhanced Chimp Optimization Algorithm (EChOA)
4.1. Highly Disruptive Polynomial Mutation (HDPM)

The highly disruptive polynomial mutation is the improved version of the polynomial
mutation method. It can solve the shortcoming that the polynomial mutation method may
fall into local optimum when the variable is close to the boundary [32]. Equations (9)–(12)
show the process of HDPM changes the xi

δ1 =
xi − lb
ub− lb

(9)

δ2 =
ub− xi
ub− lb

(10)

δk =

 [(2r) + (1− 2r) ∗ (1− δ1)
ηm+1]

1
ηm+1−1

, r ≤ 0.5

1− [2(1− r) + 2(r− 0.5) ∗ (1− δ2)
ηm+1]

1
ηm+1 , otherwise

(11)

xi = xi + δk(ub− lb) (12)

where ub and lb represent the upper and lower boundaries of the search space. r is a
random number between 0 and 1. ηm is a distribution exponential, which is a non-negative
number. As can be seen from the above formula, HDPM can explore the entire search space.
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4.2. Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation coefficient is a statistical index to reflect the degree of
the relationship between two groups of variables, which is figured upon a level basis. The
formula for calculating as Equation (13).

ρ = 1−
6∑ d2

i
n(n2 − 1)

(13)

where di is the difference of grades among each pair of samples, and n is the dimension of
the series. If the absolute value of the correlation coefficient is equal to 1, then the two series
are monotonically correlated; otherwise, they are uncorrelated.

4.3. Beetle Antennae Search Algorithm (BAS)

The long-horned beetle has two too long antennae, which can combine the scent of
prey to expand detection range and act as a protective alarm mechanism [33]. The beetle
explores nearby areas by swinging its antennae on one side of its body to accept the smell.
The beetle will move toward to the side where it detects a high odor concentration, as it
is shown in Figure 1. The Beetle Antennae Search Algorithm is designed based on this
property of beetles.

Figure 1. Schematic diagram of beetle movement [52].

The search direction of beetles is represented by Equation (14).

→
b =

rnd(k, 1)
‖rnd(k, 1)‖ (14)

where
→
b is the direction vector of the beetle, rnd is a random function, and k is the dimension

of the position.
Next, Equation (15) respectively presents the search behaviors on the left and right

sides to simulate the activity tracking of the beetle.

xl = xt + dt
→
b

xr = xt − dt
→
b

(15)
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where xl and xr respectively represent the locations within the left and right search areas,
xt represents the beetle’s position at tth time instant, and dt represents the perceived length
of the antenna, which will gradually decrease with the passage with time.

The position update of the beetle can be represented by Equation (16).

xt = xt−1 + δt
→
b sign( f (xr)− f (xl)) (16)

where δ is the step size of the search, which initial scope should be equal to the search area,
and the sign represents the sign function. The odor concentration at x is expressed by f (x),
which is also known as the fitness function.

4.4. Improvement Strategy

Although the original ChOA divides the chimps into four different levels to complete
the hunting process, the algorithm still has two obvious defects when applied to higher
dimensional problems. The first disadvantage is that in the initial stage of the population it
lacks the population diversity. The other disadvantage is there is a risk of falling into the
local optimal in the final search stage. Therefore, this article proposes an Enhanced Chimp
Optimization Algorithm, which can be better applied to feature selection problems.

Three strategies including HDPM, Spearman’s rank correlation coefficient, and BAS
algorithm are introduced into EChOA based on the original algorithm. First, the HDPM
strategy is introduced to enhance the population diversity in the initialization phase. The
traditional polynomial mutation (PM) has almost no effect when the variable is close to
the boundary. The HDPM strategy uses Equation (12) to generate the mutation location of
the chimp, which helps further to explore the regions and boundaries of the initial space.
In this way, even if the variables are on the search boundary, the search space can be fully
utilized to ensure the diversity of the population. Second, the Spearman’s rank correlation
coefficient between the driver and attacker chimp is calculated. As it can be seen from
Equation (7), position update is jointly determined by all chimps of different grades. By
improving the position of the lower chimp, the population can avoid falling into local
optimal effectively. The distance between the driver and the attacker can be determined by
calculating the Spearman’s rank correlation coefficient of the two by Equation (13). The two
chimp species are negatively or uncorrelated when Spearman’s rank correlation coefficient
is less than or equal to 0. This will show whether the driver and the attacker are close or
far away. Finally, the BSA is introduced for the chimp which is far away from the attacker.
The position of the chimp is improved by using Equation (16), which makes it acquire the
visual ability. Thus, they can judge the surrounding environment and decide the direction
of movement. This increases the performance of the driver chimp and avoids local optimal.

4.5. EChOA for Optimizing SVM and Feature Selection

EChOA-SVM firstly uses optimization algorithm to search the optimal feature subset,
and then classify the feature subset by SVM. In the feature selection, the positions of
population are separated into 0 and 1 by logical function. If the feature corresponds to 1,
the feature will be selected; if the feature corresponds to 0, the feature will not be selected.
Since the selection of kernel function and its parameters is related to the performance of
SVM, in order to obtain better classification accuracy, EChOA is also needed to optimize
the parameters. The EChOA-SVM model generates the primary agents through the penalty
parameter c and the nuclear parameter g, and calculates the fitness value to evaluate the
chimp’s positions. Finally outputs the optimal value of c, g and the best accuracy to obtain
the final classification result.

The description of the EChOA-SVM is shown as follows. The flow chart is shown in
Figure 2.
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1. Initialize the population, position and fitness value of the chimps.
2. SVM randomly generates the values of c and g, and then calculates the initial fit-

ness value.
3. The training model is obtained by training set in support vector machine.
4. Reorder the population to get the agent position and fitness value after sorting.

Figure 2. The flow chart of EChOA-SVM.

5. Experimental Results and Discussion
5.1. Datasets Details

The implementation of the proposed algorithm is done using Matlab. Seventeen data
sets from the University of California at Irvine (UCI) machine learning repository [34]
has been selected to evaluate the proposed EChOA-SVM approach. Table 1 describes the
number of instances, the number of features, and the number of classes of the data set.
Seventeen data sets of different sizes and latitudes are selected to observe the performance
of the algorithm at different scales.

All the experimental series are carried out on Matlab R2016a, and the computer is
configured as Intel(R) Core (TM) i5-1035G1 CPU @ 1.00 GHz 1.19 GHz, using Microsoft
Windows 10 system. Each experiment is run ten times independently to reduce the random
influence. In addition, the general parameters are set as follows: the population size is 30,
and each run is set to 100 iterations as stopping criteria.
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Table 1. List of data sets.

Data Set Features Instances Classes

Balance 4 625 3
Bupa 6 345 2

Coimbra 9 116 2
Dermatology 34 358 6

Diagnostic 10 683 4
Divorce 18 170 2

Glass 10 214 6
Heart 13 270 2

Iris 4 150 3
Knowledge 5 258 4

Liver 6 345 2
Lymphography 18 148 8

Sonar 60 208 2
Teaching Assistant Evaluation (TAE) 5 151 3

Transfusion 4 748 2
Wine 13 178 3
Zoo 16 101 7

5.2. Parameters Setting

In order to verify the optimization performance of EChOA-SVM, this paper compares
the algorithm with different meta-heuristic algorithms such as ChOA [31], GWO [35],
WOA [36], ALO [37], GOA [38], MFO [39] and SSA [40].

All settings and parameters that are used in the experiments for all algorithms are
presented in Table 2.

Table 2. Parameter settings of different algorithms.

Algorithm Parameters Value

EChOA

ηm 1
C 2
K 0.95
f [0, 2.5]

m Gauss chaotic

ChOA
f [0, 2.5]

m Gauss chaotic
GWO α [0, 2]

WOA
α [0, 2]
a2 [−2, −1]

ALO
Number of search agents 30

Number of iterations 100

GOA

cMin 0.00001
cMax 1

Number of search agents 30
Number of iterations 100

MFO
α [−2, −1]
b 1
t [−2, −1]

SSA
c1 [2 × 10−16, 2]
c2 [0, 1]
c3 [0, 1]
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5.3. Results and Discussion

In order to compare the different feature selection methods with the method proposed
in this paper, three indexes are used in this paper [53].

1. Accuracy: Accuracy represents the ratio between the number of correct classification
and the actual number, which is reflecting the accuracy of the classifier recognition
results. It is an important index to evaluate algorithm performance;

2. The number of features: The number of features reflects ability of eliminate redun-
dancy. It shows whether the method can find the optimal feature subset;

3. Fitness value: Fitness value can reflect the advantages and disadvantages of the solu-
tion selected by the classifier. The better fitness value can get the better the solution.

Table 3 shows the mean and the standard deviation of the accuracy. Figure 3 presents
the boxplot charts of the accuracy for eight used data sets. The boxplots are shown for
the seventeen values of classification accuracy that are given by each algorithm at the
end of the SVM training. The boxplots indicate the improved performance of EChOA for
optimizing the SVM.

Figure 3. Cont.
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Figure 3. Boxplot charts for the accuracy of EChOA and other algorithms based on 8 data sets.

The performance of EChOA is better than other optimization algorithms in terms of
average accuracy. EChOA obtains the best performance on 13 data sets out of the 17 data
sets, which accounts for 76.5% of the total data sets. For the other four data sets, EChOA
also has strong competitiveness. Although EChOA do not achieve the highest accuracy
in Coimbra, Dermatology and Glass, its classification accuracy ranked the third among
the eight optimization algorithms, just next to GWO and WOA. It is noteworthy that the
accuracy of EChOA is 10 percent higher than ChOA on Bupa data sets. It is 12 percent
higher than GWO on the Knowledge data set and 18 percent higher than GWO on the
Lymphography data set. At the same time, it can be seen from the box chart that each
optimization algorithm generates ten accuracies in the process of running each data set ten
times. From the perspective of their distribution, the accuracy of EChOA is very stable. The
accuracy of the EChOA optimization algorithm hardly changes significantly in the 17 data
sets. Especially in the Coimbra and Heart data sets, the EChOA optimization algorithm is
still very stable in the case that the accuracy of almost all optimization algorithms varies
significantly each time. All these show the superiority of the EChOA algorithm.

Table 4 shows the mean and the standard deviation of the number of the features.
Figure 4 presents the histogram of the number of features for all used data sets. We can
intuitively see that the number of features required by EChOA is almost below the average
of the number of features of all the algorithms. There are only two data sets do not get the
best results (Bupa and Transfusion), which accounts for only 11.8 percent of the total. In
Liver data set EChOA even requires only one feature. It shows that EChOA can use space
more efficiently. In the analysis of classification accuracy, it has been found that EChOA’s
classification accuracy is lower than GWO and WOA in Coimbra, Dermatology and Glass.
However, it is not difficult to find in Table 4 that the number of features required by
EChOA in these three data sets is less than GWO and WOA. Especially in the Dermatology
data set, EChOA required nearly seven fewer features than GWO and WOA. It can be
seen in Figure 4, in Coimbra, Dermatology, Divorce and Liver data sets, there are two or
three optimization algorithms with far higher features counts than the other optimization
algorithms, but EChOA never had this situation. It should be noticed that the number of
features required by CHOA is much higher than that of EChOA in Dermatology and Wine
data sets, which also indicates the superiority of EChOA over CHOA and other algorithms
in the quantitative aspect of features.
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Table 3. Mean and standard deviation of classification accuracy for all data sets with applying feature selection.

EChOA ChOA GWO WOA ALO GOA MFO SSA

Balance
mean 8.9853 × 10−1 8.9073 × 10−1 8.8640 × 10−1 8.9376 × 10−1 8.9120 × 10−1 8.9120 × 10−1 7.7344 × 10−1 8.9120 × 10−1

std 6.4825 × 10−3 4.1199 × 10−3 1.5513 × 10−2 2.6349 × 10−3 1.2413 × 10−16 1.2413 × 10−16 6.5830 × 10−2 1.2413 × 10−16

Bupa mean 6.8217 × 10−1 6.1943 × 10−1 6.6380 × 10−1 6.4002 × 10−1 6.2106 × 10−1 6.2260 × 10−1 6.2378 × 10−1 6.2204 × 10−1

std 5.8192 × 10−3 7.1396 × 10−3 3.6625 × 10−2 3.3470 × 10−2 3.9715 × 10−3 3.2047 × 10−3 8.5538 × 10−3 5.7270 × 10−3

Coimbra
mean 6.5348 × 10−1 6.5348 × 10−1 7.2414 × 10−1 7.0518 × 10−1 6.2930 × 10−1 6.0818 × 10−1 5.7930 × 10−1 6.0858 × 10−1

std 3.8460 × 10−3 7.1953 × 10−3 5.2065 × 10−2 9.1744 × 10−2 2.8621 × 10−2 1.7562 × 10−2 2.3106 × 10−2 1.1583 × 10−2

Dermatology mean 8.6590 × 10−1 8.5010 × 10−1 9.6087 × 10−1 9.4638 × 10−1 7.5922 × 10−1 7.5752 × 10−1 6.0560 × 10−1 8.0838 × 10−1

std 1.2205 × 10−2 6.9936 × 10−3 2.1811 × 10−2 3.1929 × 10−2 2.4481 × 10−2 4.6042 × 10−2 8.1800 × 10−2 2.6113 × 10−2

Diagnostic mean 9.6607 × 10−1 9.5450 × 10−1 9.6516 × 10−1 9.6430 × 10−1 9.5842 × 10−1 9.5754 × 10−1 9.3558 × 10−1 9.5842 × 10−1

std 6.1598 × 10−3 4.4034 × 10−3 3.7997 × 10−3 6.0828 × 10−3 1.2969 × 10−3 2.0683 × 10−3 9.6469 × 10−3 1.2969 × 10−3

Divorce
mean 9.8044 × 10−1 9.7768 × 10−1 9.7650 × 10−1 9.7298 × 10−1 9.1764 × 10−1 9.4236 × 10−1 8.9176 × 10−1 9.1412 × 10−1

std 6.3689 × 10−3 2.6386 × 10−3 4.1719 × 10−3 1.4765 × 10−2 2.1989 × 10−2 1.9255 × 10−2 6.6920 × 10−3 3.1768 × 10−3

Glass
mean 6.8067 × 10−1 6.7290 × 10−1 9.8813 × 10−1 7.5796 × 10−1 6.3924 × 10−1 6.5048 × 10−1 5.8410 × 10−1 6.7010 × 10−1

std 1.1775 × 10−2 1.2341 × 10−2 2.3159 × 10−3 7.1049 × 10−1 1.5296 × 10−2 2.5891 × 10−2 4.9679 × 10−2 3.7157 × 10−2

Heart
mean 8.4230 × 10−1 8.3207 × 10−1 7.8594 × 10−1 7.4666 × 10−1 8.0370 × 10−1 7.9738 × 10−1 7.4740 × 10−1 8.0888 × 10−1

std 4.7606 × 10−3 8.5448 × 10−3 2.2868 × 10−2 8.8013 × 10−2 6.4086 × 10−3 9.3041 × 10−3 3.8271 × 10−2 1.7667 × 10−2

Iris
mean 9.6400 × 10−1 9.5337 × 10−1 9.6268 × 10−1 9.6268 × 10−1 9.5734 × 10−1 9.4934 × 10−1 9.3068 × 10−1 9.4268 × 10−1

std 8.9443 × 10−3 1.1547 × 10−2 3.6697 × 10−3 3.6697 × 10−3 8.9592 × 10−3 7.5910 × 10−3 4.0173 × 10−2 3.6697 × 10−3

Knowledge mean 9.5675 × 10−1 9.5087 × 10−1 8.5426 × 10−1 8.9692 × 10−1 9.5350 × 10−1 9.4660 × 10−1 9.0542 × 10−1 9.5428 × 10−1

std 1.8385 × 10−3 2.3714 × 10−3 7.9861 × 10−2 4.6400 × 10−2 2.7577 × 10−3 1.2371 × 10−2 3.9133 × 10−2 3.2630 × 10−3

Liver
mean 6.6937 × 10−1 6.3383 × 10−1 6.6844 × 10−1 6.4350 × 10−1 6.3248 × 10−1 6.2490 × 10−1 6.2142 × 10−1 6.2610 × 10−1

std 3.2716 × 10−3 1.3395 × 10−2 1.6609 × 10−2 6.4846 × 10−3 1.4266 × 10−2 4.2024 × 10−3 5.9997 × 10−3 0.0000

Lymphography mean 5.1556 × 10−1 5.0900 × 10−1 4.3778 × 10−1 4.3512 × 10−1 4.7432 × 10−1 4.7568 × 10−1 4.2838 × 10−1 4.7566 × 10−1

std 4.1004 × 10−3 7.7942 × 10−3 3.2275 × 10−2 2.8920 × 10−2 1.1088 × 10−2 2.0061 × 10−2 1.5544 × 10−2 1.6980 × 10−2

Sonar
mean 8.4137 × 10−1 8.2373 × 10−1 8.0578 × 10−1 8.3368 × 10−1 7.2978 × 10−1 7.8076 × 10−1 7.4040 × 10−1 7.1252 × 10−1

std 9.4701 × 10−2 4.0880 × 10−2 4.4297 × 10−2 3.1638 × 10−2 5.6004 × 10−2 1.0441 × 10−1 1.2143 × 10−1 1.1694 × 10−1

TAE
mean 6.1110 × 10−1 6.0840 × 10−1 5.7084 × 10−1 5.8940 × 10−1 6.0290 × 10−1 6.1132 × 10−1 5.9206 × 10−1 6.0174 × 10−1

std 2.3812 × 10−3 1.1533 × 10−3 2.9963 × 10−3 1.6228 × 10−2 5.4282 × 10−3 1.7858 × 10−2 1.7293 × 10−2 9.0329 × 10−3

Transfusion
mean 7.7713 × 10−1 7.6380 × 10−1 7.7218 × 10−1 7.7004 × 10−1 7.6200 × 10−1 7.6414 × 10−1 7.6280 × 10−1 7.6392 × 10−1

std 4.1429 × 10−3 3.1177 × 10−3 9.3082 × 10−3 6.1788 × 10−3 0.0000 4.7852 × 10−3 1.7889 × 10−3 2.6631 × 10−3

Wine
mean 8.5562 × 10−1 9.5503 × 10−1 9.3147 × 10−1 9.0674 × 10−1 6.9776 × 10−1 6.4616 × 10−1 4.5506 × 10−1 7.7416 × 10−1

std 3.7552 × 10−2 1.4873 × 10−2 1.6064 × 10−2 4.0183 × 10−2 1.4329 × 10−1 1.0406 × 10−1 6.0622 × 10−2 1.1504 × 10−1

Zoo
mean 9.8119 × 10−1 9.8010 × 10−1 9.2377 × 10−1 9.3565 × 10−1 9.6139 × 10−1 9.5743 × 10−1 9.0892 × 10−1 9.6337 × 10−1

std 3.1307 × 10−3 9.0554 × 10−4 3.4310 × 10−2 1.9383 × 10−2 8.6684 × 10−3 1.3241 × 10−2 2.1790 × 10−2 1.1479 × 10−2
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Table 4. Mean and standard deviation of the number of features for all data sets with applying feature selection.

EChOA ChOA GWO WOA ALO GOA MFO SSA

Balance
mean 2.3333 2.6667 3.2000 2.8000 3.8000 2.8000 3.2000 3.4000

std 5.7735 × 10−1 5.7735 × 10−1 1.3038 7.1274 × 10−1 4.4721 × 10−1 8.3666 × 10−1 4.4721 × 10−1 8.9443 × 10−1

Bupa mean 2.0000 1.6667 3.0000 2.8000 1.2000 1.6000 2.2000 1.4000
std 0.0000 5.7735 × 10−1 1.8708 1.7889 4.4721 × 10−1 5.4772 × 10−1 4.4721 × 10−1 5.4772 × 10−1

Coimbra
mean 1.2000 1.4000 4.0000 4.2000 1.6000 1.4000 1.8000 1.4000

std 4.4721 × 10−1 5.4772 × 10−1 1.7321 1.6432 8.9443 × 10−1 5.4772 × 10−1 8.3666 × 10−1 5.4772 × 10−1

Dermatology mean 7.6667 8.6667 1.4000 × 10 1.4400 × 10 1.1000 × 10 1.0800 × 10 1.3000 × 10 9.8000
std 5.7735 × 10−1 5.7735 × 10−1 6.2450 3.1305 7.0711 × 10−1 1.0954 2.9155 1.6432

Diagnostic mean 1.6667 2.3333 4.0000 4.4000 1.8000 2.2000 3.6000 2.0000
std 5.7735 × 10−1 2.3333 1.8708 2.0736 4.4721 × 10−1 4.4721 × 10−1 8.9443 × 10−1 0.0000

Divorce
mean 2.0000 2.6000 7.4000 8.4000 3.8000 3.0000 6.4000 4.0000

std 7.0711 × 10−1 5.4772 × 10−1 1.1402 2.4083 8.3666 × 10−1 1.5811 1.6733 7.0711 × 10−1

Glass
mean 3.3333 4.3333 5.3333 5.0000 4.4000 4.6000 5.2000 3.6000

std 5.7735 × 10−1 5.7735 × 10−1 2.5166 4.8000 1.6733 1.3416 1.3038 1.8166

Heart
mean 2.6667 3.0000 6.2000 5.6000 4.2000 4.4000 4.0000 4.0000

std 5.7735 × 10−1 1.0000 1.4832 2.0736 4.4721 × 10−1 5.4772 × 10−1 1.5811 1.4142

Iris
mean 1.2000 2.3333 2.2000 2.0000 1.8000 1.4000 1.4000 1.6000

std 4.4721 × 10−1 5.7735 × 10−1 8.3666 × 10−1 7.0711 × 10−1 8.3666 × 10−1 5.4772 × 10−1 8.9443 × 10−1 5.4772 × 10−1

Knowledge mean 1.7500 2.3333 2.2000 3.8000 2.0000 2.2000 2.2000 2.0000
std 5.0000 × 10−1 5.7735 × 10−1 1.7889 1.0954 0.0000 4.4721 × 10−1 8.3666 × 10−1 0.0000

Liver
mean 1.0000 1.3333 4.6000 3.2000 1.6000 1.2000 2.4000 1.2000

std 1.0000 5.7735 × 10−1 8.9443 × 10−1 8.3666 × 10−1 5.4772 × 10−1 4.4721 × 10−1 5.4772 × 10−1 4.4721 × 10−1

Lymphography mean 6.4000 7.3333 7.8000 9.4000 7.6000 7.2000 8.8000 7.4000
std 5.4772 × 10−1 5.7735 × 10−1 2.6833 2.6077 5.4772 × 10−1 1.9235 1.6432 1.1402

Sonar
mean 1.4667 × 10 1.7333 × 10 2.6000 × 10 3.3600 × 10 2.4600 × 10 2.6400 × 10 2.8600 × 10 2.3400 × 10

std 2.0817 2.3094 2.9155 4.0373 2.5100 4.1593 3.1305 2.3022

TAE
mean 1.6667 2.3333 2.2000 2.4000 3.0000 3.0000 3.4000 2.8000

std 5.7735 × 10−1 1.1547 4.4721 × 10−1 5.4772 × 10−1 0.0000 0.0000 8.9443 × 10−1 4.4721 × 10−1

Transfusion
mean 3.0000 2.3333 2.4000 2.8000 2.0000 2.2000 2.0000 2.2000

std 0.0000 1.1547 5.4772 × 10−1 8.3666 × 10−1 7.0711 × 10−1 1.0954 0.0000 8.3666 × 10−1

Wine
mean 2.6000 6.0000 3.8000 5.8000 3.4000 4.0000 4.6000 3.0000

std 8.4327 × 10−1 1.0000 1.7512 1.7512 2.0736 2.0000 1.5166 1.0000

Zoo
mean 5.0000 6.2500 5.7000 7.4000 6.2000 6.2000 7.3000 6.3000

std 6.6667 × 10−1 9.5743 × 10−1 3.1990 3.2042 8.6684 × 10−3 7.8881 × 10−1 1.4944 1.2517
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Figure 4. Histogram for the number of features of EChOA and other algorithms based on 17 data sets.

Table 5 shows the mean and the standard deviation of the fitness. Figure 5 presents
the line chart of the fitness for six used data sets. The lines in Figure 5 represents the con-
vergence curves of corresponding algorithm. The fitness value of EChOA is the minimum
in all the 12 data sets, and the convergence time is very short. The convergence speed of
Coimbra, Dermatology, Diagnostic, Divorce and Heart data sets is all higher than ChOA,
and some fitness values are also lower than ChOA. At the same time, EChOA convergence
curve is relatively flat, in the performance of each data set is relatively good, which are
almost below to the average fitness value, does not appear similar to GOA (e.g., Liver) in a
certain data set fitness value too much higher than the other algorithms. As it can be seen
from Figure 5, the convergence curve of EChOA in the Heart data set is smoother than
other algorithms, which shows that the local search ability of the algorithm has been greatly
improved. EChOA algorithm can achieve the maximum objective function value when the
number of iterations is less than 10 on Dermatology and Divorce data sets, which is earlier
than other optimization algorithms. This indicates that the convergence rate of EChOA is
improved. As you can see, EChOA is better and more stable than most algorithms.
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Table 5. Mean and standard deviation of fitness values for all data sets with applying feature selection.

EChOA ChOA GWO WOA ALO GOA MFO SSA

Balance
mean 1.1070 × 10−1 1.1437 × 10−1 1.3420 × 10−1 1.1218 × 10−1 1.1720 × 10−1 1.1470 × 10−1 2.3226 × 10−1 1.1620 × 10−1

std 1.9079 × 10−3 1.4434 × 10−3 3.0616 × 10−2 1.4595 × 10−3 1.1180 × 10−3 2.0917 × 10−3 6.4041 × 10−2 2.2361 × 10−3

Bupa mean 3.3020 × 10−1 3.7293 × 10−1 3.3786 × 10−1 3.6106 × 10−1 3.7214 × 10−1 3.7282 × 10−1 3.7646 × 10−1 3.7248 × 10−1

std 7.6531 × 10−3 9.8150 × 10−4 3.5019 × 10−2 3.2445 × 10−2 7.6026 × 10−4 9.3113 × 10−4 8.5483 × 10−3 9.3113 × 10−4

Coimbra
mean 3.4442 × 10−1 3.4464 × 10−1 2.7756 × 10−1 2.9656 × 10−1 3.6810 × 10−1 3.9710 × 10−1 4.1846 × 10−1 3.8880 × 10−1

std 3.7090 × 10−3 7.3310 × 10−3 4.9871 × 10−2 8.9737 × 10−2 2.8289 × 10−2 3.4474 × 10−2 2.3793 × 10−2 1.0957 × 10−2

Dermatology mean 1.3580 × 10−1 1.5097 × 10−1 4.2833 × 10−2 5.7340 × 10−2 2.4160 × 10−1 2.4320 × 10−1 3.9430 × 10−1 1.9258 × 10−1

std 1.2653 × 10−2 7.1066 × 10−3 2.0294 × 10−2 3.1561 × 10−2 2.4253 × 10−2 4.5528 × 10−2 8.1597 × 10−2 2.6259 × 10−2

Diagnostic mean 3.7460 × 10−2 4.2600 × 10−2 3.8480 × 10−2 3.9760 × 10−2 4.2980 × 10−2 4.4240 × 10−2 6.7380 × 10−2 4.3180 × 10−2

std 5.6241 × 10−3 0.0000 2.8639 × 10−3 6.3830 × 10−3 1.4738 × 10−3 2.4006 × 10−3 1.0348 × 10−2 1.2969 × 10−3

Divorce
mean 3.0560 × 10−2 2.3240 × 10−2 2.7420 × 10−2 3.1460 × 10−2 8.3660 × 10−2 5.8720 × 10−2 1.1072 × 10−1 8.7260 × 10−2

std 4.3206 × 10−3 2.5938 × 10−3 4.3568 × 10−3 1.4762 × 10−2 2.2144 × 10−2 1.9400 × 10−2 7.4221 × 10−3 2.9458 × 10−3

Glass
mean 3.1980 × 10−1 3.2820 × 10−1 1.4633 × 10−2 2.4464 × 10−1 3.6154 × 10−1 3.5062 × 10−1 4.1692 × 10−1 3.3020 × 10−1

std 1.1755 × 10−2 1.2429 × 10−2 2.5166 × 10−3 2.9145 × 10−1 1.4406 × 10−2 2.6367 × 10−2 4.8918 × 10−2 3.8471 × 10−2

Heart
mean 1.6360 × 10−1 1.6877 × 10−1 2.1670 × 10−1 2.5512 × 10−1 1.9754 × 10−1 2.1170 × 10−1 2.5312 × 10−1 1.9228 × 10−1

std 8.6603 × 10−4 8.9489 × 10−3 2.2128 × 10−2 8.7301 × 10−2 6.7122 × 10−3 1.7476 × 10−2 3.8069 × 10−2 1.8465 × 10−2

Iris
mean 3.8140 × 10−2 4.8700 × 10−2 3.9460 × 10−2 4.1960 × 10−2 4.5240 × 10−2 5.3160 × 10−2 7.2140 × 10−2 5.9260 × 10−2

std 7.7661 × 10−3 1.1432 × 10−2 2.8183 × 10−3 2.8183 × 10−3 6.8178 × 10−3 6.6842 × 10−3 4.1966 × 10−2 3.6150 × 10−3

Knowledge mean 4.7150 × 10−2 4.9667 × 10−2 1.4868 × 10−1 1.0966 × 10−1 5.0020 × 10−2 5.1460 × 10−2 9.8040 × 10−2 4.9260 × 10−2

std 1.9000 × 10−3 5.7735 × 10−4 7.9223 × 10−2 4.6659 × 10−2 2.7225 × 10−3 8.1076 × 10−3 3.7952 × 10−2 3.2153 × 10−3

Liver
mean 3.5083 × 10−1 3.6473 × 10−1 4.9214 × 10−1 3.5930 × 10−1 3.6650 × 10−1 4.9214 × 10−1 3.7932 × 10−1 3.7214 × 10−1

std 1.8717 × 10−3 1.2240 × 10−2 2.6909 × 10−1 7.1554 × 10−3 1.3778 × 10−2 2.6909 × 10−1 6.5933 × 10−3 7.6026 × 10−4

Lymphography mean 4.8520 × 10−1 4.9017 × 10−1 5.6088 × 10−1 5.6442 × 10−1 5.2464 × 10−1 5.2308 × 10−1 5.7058 × 10−1 5.2320 × 10−1

std 2.7386 × 10−4 7.5692 × 10−3 3.2668 × 10−2 2.7232 × 10−2 1.0873 × 10−2 2.0454 × 10−2 1.6228 × 10−2 1.6372 × 10−2

Sonar
mean 1.6070 × 10−1 1.7740 × 10−1 1.9664 × 10−1 1.7028 × 10−1 2.7160 × 10−1 2.2144 × 10−1 2.6176 × 10−1 2.8852 × 10−1

std 9.2529 × 10−2 4.0124 × 10−2 4.4221 × 10−2 3.1281 × 10−2 5.5205 × 10−2 1.0308 × 10−1 1.2014 × 10−1 1.1603 × 10−1

TAE
mean 3.8797 × 10−1 3.9147 × 10−1 4.2888 × 10−1 4.1128 × 10−1 3.9280 × 10−1 4.1524 × 10−1 4.1066 × 10−1 3.9240 × 10−1

std 1.8448 × 10−3 2.3094 × 10−3 2.9516 × 10−3 1.6103 × 10−2 0.0000 2.0485 × 10−2 1.8461 × 10−2 8.9443 × 10−4

Transfusion
mean 2.3203 × 10−1 2.3800 × 10−1 7.7218 × 10−1 2.3462 × 10−1 2.4060 × 10−1 7.6414 × 10−1 2.3880 × 10−1 2.3754 × 10−1

std 5.0143 × 10−3 1.7321 × 10−4 9.3082 × 10−3 4.5329 × 10−3 1.7678 × 10−3 4.7852 × 10−3 2.4900 × 10−3 2.0780 × 10−3

Wine
mean 1.4506 × 10−1 4.9100 × 10−2 7.1150 × 10−2 9.6780 × 10−2 3.0180 × 10−1 2.8960 × 10−1 5.4302 × 10−1 2.2590 × 10−1

std 3.6823 × 10−2 1.4126 × 10−2 1.6038 × 10−2 3.9600 × 10−2 1.4065 × 10−1 2.5621 × 10−2 6.0944 × 10−2 1.1317 × 10−1

Zoo
mean 2.1740 × 10−2 2.3525 × 10−2 7.9040 × 10−2 6.8210 × 10−2 4.2120 × 10−2 4.6050 × 10−2 9.4730 × 10−2 4.0220 × 10−2

std 3.1362 × 10−3 6.1847 × 10−4 3.2862 × 10−2 1.8403 × 10−2 9.0828 × 10−3 1.3499 × 10−2 2.1928 × 10−2 1.1204 × 10−2
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Figure 5. The line chart for the fitness of EChOA and other algorithms based on 17 data sets.
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6. Conclusions

This work presents a novel hybrid method for optimizing SVM based on the EChOA.
The proposed approach is able to tune the parameters of the SVM kernel and at the same
time can find the best accuracy. Experimental results show that the proposed algorithm
is effective in improving the classification accuracy of SVM. The experimental results
show that the EChOA algorithm has certain advantages over the other seven optimization
algorithms in terms of accuracy, feature number and fitness value, and its comprehensive
performance is relatively stable. All these indicate that the EChOA algorithm is very
competitive.

Although EChOA can effectively improve the exploitation and exploration of ChOA,
EChOA introduces three strategies at the same time that increase the complexity of the
algorithm. Therefore, it is necessary to consider how to reduce ineffective improvement
strategies to alleviate this problem. In subsequent studies, some parallel strategies such as
co-evolutionary mechanism can be introduced.

In the future research, EChOA can be applied in multi-objective problems, social
manufacturing optimization, and video coding optimization. Simultaneously, the ECHOA-
SVM model that proposed in this paper can be studied in a larger scale. It can also be
applied to other practical problems like data mining.
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