
algorithms

Article

Efficient and Portable Distribution Modeling for Large-Scale
Scientific Data Processing with Data-Parallel Primitives

Hao-Yi Yang, Zhi-Rong Lin and Ko-Chih Wang *

����������
�������

Citation: Yang, H.-Y.; Lin, Z.-R.;

Wang, K.-C. Efficient and Portable

Distribution Modeling for Large-Scale

Scientific Data Processing with

Data-Parallel Primitives. Algorithms

2021, 14, 285. https://doi.org/

10.3390/a14100285

Academic Editor: Frank Werner

Received: 15 August 2021

Accepted: 27 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Information Engineering, National Taiwan Normal University,
Taipei 11677, Taiwan; 60847074s@ntnu.edu.tw (H.-Y.Y.); 60947081s@ntnu.edu.tw (Z.-R.L.)
* Correspondence: kcwang@ntnu.edu.tw

Abstract: The use of distribution-based data representation to handle large-scale scientific datasets is
a promising approach. Distribution-based approaches often transform a scientific dataset into many
distributions, each of which is calculated from a small number of samples. Most of the proposed
parallel algorithms focus on modeling single distributions from many input samples efficiently,
but these may not fit the large-scale scientific data processing scenario because they cannot utilize
computing resources effectively. Histograms and the Gaussian Mixture Model (GMM) are the most
popular distribution representations used to model scientific datasets. Therefore, we propose the use
of multi-set histogram and GMM modeling algorithms for the scenario of large-scale scientific data
processing. Our algorithms are developed by data-parallel primitives to achieve portability across
different hardware architectures. We evaluate the performance of the proposed algorithms in detail
and demonstrate use cases for scientific data processing.

Keywords: large-scale data processing; scientific dataset; distribution-based approach; parallel
algorithm; data-parallel primitive

1. Introduction

Thanks to the power of modern supercomputers, scientists in various fields can
use computer programs to simulate real-world phenomena with higher resolution. In
addition, the development of data analysis and visualization technology has also helped
these scientists to understand such datasets better. With the increasing size of scientific
datasets, the challenges of analysis and visualization tasks continue to grow. The classic
data analysis and visualization workflow needs to write the raw data produced by the
simulation into the hard disk first and then conduct subsequent analysis. This workflow
will suffer from storage space limitations and I/O bottlenecks if the dataset size is huge.
Therefore, scientists are currently more inclined to process the scientific data in situ [1,2]
while the data is still in the supercomputer’s memory. The primary purpose of the in
situ workflow is to keep only the crucial information for data analysis and reduce the
size of data to be written to the hard disk. Although many techniques can reduce the
size of datasets, such as subsampling, lossy compression, etc., distribution-based data
representation [1,3,4] is an emerging method of handling the large-scale scientific data
problem, which can not only compactly represent the dataset, but also retain important
statistical characteristics to facilitate data analysis tasks.

It is commonly agreed that distribution modeling is a time-consuming task when model-
ing distribution from a huge amount of samples. It is imperative to parallelize the distribution-
fitting process and fully utilize the supercomputer’s power, as its use time is costly. Although
many parallel single-distribution fitting algorithms have been proposed [5–7], these algo-
rithms focus on modeling single distribution from a huge amount of input samples. For
distribution-based scientific data modeling, a dataset is often transformed into multiple distri-
butions and each distribution is calculated from a small number of samples. A classic example
is to represent an ensemble dataset [8] by distributions. In an ensemble dataset, simulation

Algorithms 2021, 14, 285. https://doi.org/10.3390/a14100285 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-7241-1939
https://doi.org/10.3390/a14100285
https://doi.org/10.3390/a14100285
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14100285
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14100285?type=check_update&version=2


Algorithms 2021, 14, 285 2 of 25

produces hundreds to thousands of data values at each spatial location, and scientists are
usually interested in studying the statistical characteristics in different spatial regions. If
representing an ensemble dataset whose spatial resolution is 2563 and the sample count at
each spatial location is 100, we have to model 2563 distributions, each of which is calculated
from just 100 samples. Therefore, the parallel single-distribution fitting algorithms cannot fit
the scenario of scientific data modeling well because they could lead to insufficient parallelism,
and they still do not maximize the use of the supercomputer’s resources.

In this paper, we propose parallel algorithms for distribution-based scientific data
modeling. We develop our algorithms based on data-parallel primitives, because many
such frameworks have been proposed, such as Thurst [9], VTK-m [10], and PISTON [11],
and algorithms implemented by these frameworks can be portable across different com-
puting backends, such as GPUs and multi-core CPUs. Some supercomputer systems
are heterogeneous clusters, such as the Darwin cluster in Los Alamos National Labo-
ratory, in which different nodes may be equipped with different computing hardware.
Our data-parallel primitive-based algorithms can facilitate the data process that is run
on supercomputers with different types of computing nodes. In this work, we propose
parallel multi-set distribution modeling algorithms for multi-variant histogram [3,12–15]
and GMM [1,2,4,15–17] modeling, because these are the most popular non-parametric and
parametric distribution representations in the scientific data modeling, respectively.

The rest of the paper is organized as follows. Section 2 discusses related work about
distribution data processing techniques, parallel distribution modeling works, and data-
parallel primitives. Section 3 briefly introduces the data format of scientific datasets and
the popular distribution-based approaches for handling large-scale scientific datasets, and
defines the data-parallel primitives we will use to design our proposed algorithms. The
proposed histogram modeling and GMM modeling algorithms are introduced in Sections 4
and 5, respectively. Section 6 shows the performance of the proposed algorithms, the influence
of parameters, and the scalability using multiple scientific datasets. Section 7 demonstrates
the use case of the proposed algorithms on scientific data processing and analysis. Section 9
discusses the pros and cons of our approach by comparing with other parallel options.
Section 8 concludes this paper and discusses future work.

2. Related Work
2.1. Distribution-Based Large Data Processing and Analysis

Many distribution-based approaches have been proposed to handle, analyze, and visualize
large-scale scientific datasets. Liu et al. [16] modeled ensemble data into several GMMs, and
then used specific methods to convey the uncertainty. Li et al. [8] modeled the particle data
using several multivariant GMMs after partitioning the dataset and then found the partitions
with poor modeling quality to optimize. Thompson et al. [3] approximated the topological
structure and fuzzy isosurface by partitioning the data into several histogram representations.
Dutta et al. [1,2,18] used GMM to represent datasets compactly in an in situ environment.
Furthermore, Wang et al. [4,15,19] used distributions to compactly store volume, time-varying,
ensemble datasets for the post-hoc data analysis and visualization. Chaudhur et al. [20,21]
and Lee et al. [12] employed distribution to conduct efficient data query and visualization.
Wei et al. [13,14] used bitmap index to efficiently support both single and multivariant distri-
bution queries for data analysis. Chen et al. [22] applied Gaussian distribution to model the
uncertainty of the pathline in time-varying flow field datasets. Thus, even if the purposes of the
applications are different, it is certain that modeling several distributions is indeed a frequently
used technique for scientific data processing and reduction.

2.2. Parallelization of Modeling Distribution

Many parallel algorithms have been proposed to model single distribution from a huge
amount of input samples. Kumar et al. [5] used CUDA to parallelize GMM modeling on
the GPU. Kwedlo et al. [6] proposed an algorithm for parallel modeling of GMM on NUMA
systems using OpenMP. Shams et al. [7] employed CUDA to parallelize the calculation of



Algorithms 2021, 14, 285 3 of 25

a histogram on the GPU. These algorithms focus on developing algorithms for specific
hardware (CPU or GPU) to provide efficient distribution computation. However, they only
consider single distribution modeling. Hence, these parallel algorithms cannot fully utilize
the hardware resources and provide good performance when we seek to model multiple
distributions from multiple small sample sets concurrently.

2.3. Data Parallel Primitives

It has been more than 30 years since Blelloch [23] proposed the parallel vector model,
which treats a vector as a whole to be operated. With the development of this concept, data-
parallel primitives(DPP) became a choice for parallel computing. For those algorithms that
are suitable for vectorization, parallelization through DPP can achieve better acceleration
results. In the application of optimizing probabilistic graphical models, Lessley et al. [24]
found that DPP has a better acceleration performance than OpenMP.

DPP does not only accelerate computation, it also achieves cross-platform capability
through encapsulation. For example, NVIDIA’s Thrust [9] and VTK-m [10] are libraries
that provide several DPPs which can be compiled on multiple platforms. Many previous
studies are devoted to hardware optimization when parallelizing certain algorithms on
specific systems. Austin et al.[25] proposed a distributed memory parallel implementation
of Tucker decomposition. Hawick et al.[26] proposed a distributed parallel algorithm for
geographic information systems. The above research focuses on the underlying differences
in memory access time or data communication time caused by different implementation
methods of specific hardware. DPP can help us save the time of optimizing specific
hardware implementations and provide good portability. Yenpure et al. [27] used DPP to
deal with the problem of point merging. Larsen et al. [28] proposed a volume rendering
algorithm based on DPP, which can support cross-platform execution. Lessley et al. [29]
proposed a cross-platform hash table and conflict resolution method. Li et al. [30] used
wavelet compression to solve the problem of IO bottlenecks caused by excessive datasets
and achieved cross-platform advantages through DPP. In addition, Lessley et al. [31]
proposed an algorithm based on DPP to solve the maximal clique enumeration problem.
The DPP-based algorithms have comparable performance to parallel algorithms designed
for specific platforms and even better portability. Therefore, users only have to write the
code once using data-parallel primitives and can run the parallel programs on different
computing backends by simply changing the complication options. DPP allows users to
focus on the development of high-level algorithms without worrying about the underlying
optimization, or even portability. This significantly reduces the programming time. In
addition, the above algorithms are designed to solve problems in different fields, which
also demonstrates that DPP can be used to develop parallel versions of various algorithms.

3. Background
3.1. Scientific Dataset

Scientific data are records of the observation or simulation of phenomena that occur in
nature. To store the data from the continuous spatial space in a file, we usually decouple the
data into attributes and the domain structure. Figure 1a,b show an example of a scientific
dataset, with its domain structure and attributes. The domain structure describes the
topological structure of a scientific dataset, which specifies the relationship among locations
for storing data values. The attributes are the data values obtained from simulation or
observation at grid points. The data value at a grid point could be a scalar or a vector. If
grid points in a scientific dataset are arranged in a regular grid, this scientific dataset is
called a structured grid dataset. Because the arrangement is regular, each grid point can be
indexed through (i, j) in 2D or (i, j, k) in 3D, etc. The grid points can have many different
appearances. In this paper, we will focus on the datasets stored by the simplest structured
grid illustrated in Figure 1b. If a dataset stores data values in the spatial space and the data
value at each grid point is a scalar value, we call it a volume dataset. If the data value on
each grid point is a vector, we call it a vector dataset. If each grid point stores multiple data



Algorithms 2021, 14, 285 4 of 25

values and each data value comes from a simulation run, we call the dataset an ensemble
dataset, and the data from one simulation run is called an ensemble member. We illustrate
the ensemble dataset in Figure 1c.

(a) Hurricane pressure (b) Structured grids (c) Ensemble dataset

Figure 1. (a) is the visualization of a 2D slice of a 3D hurricane pressure dataset; (b) is the illustration
of the corresponding grid structure of (a) and the pressure values are stored at grid points; (c) is an
illustration of an ensemble dataset. In this example, we have n ensemble members and each ensemble
member is a volume data or vector data from the same simulation.

3.2. Distribution-Based Scientific Data Modeling

A dataset could be enormous if the spatial resolution of the volume dataset and vector
dataset, or the number of members of the ensemble dataset, is large. When the dataset
size increases, data I/O and analysis time will increase and obstruct the data analysis
pipeline. One of the most popular approaches for handling large scientific datasets is to
model datasets using distributions. For example, Dutta et al. [1] and Thompson et al. [3]
divided a volume dataset into sub-blocks, where data values of each sub-block are stored
by a univariant GMM or histogram when the spatial resolution of the dataset is huge.
Li et al. [17] used the same idea to model vectors in a sub-block with a multivariant GMM
to store the vector dataset compactly. Figure 2a illustrates the above ideas. This distribution-
based approach reduces the data size and preserves the statistical characteristics to support
the post-hoc analysis task more accurately. Another example is that scientists are usually
interested in analyzing the statistical characteristics across all members in the ensemble
dataset instead of individual members. Liu et al. [16] modeled data values at each grid
point in an ensemble data using a univariant GMM and store. This compact distribution
representation reduces the storage requirement, and the statistical characteristics can still
be visualized in the post-hoc analysis stage. Figure 2b illustrates this distribution-based
ensemble data representation. More sophisticated distribution-based representations for
scientific datasets have been proposed, as discussed in Section 2.1.

(a) Block distribution modeling (b) Grid-based ensemble data modeling

Figure 2. (a) illustrates the approach that uses a distribution to model data values in each sub-block
to compactly represent a volume or vector dataset. If the data is a vector dataset, the distributions
should be multivariant distributions; (b) shows the use of a distribution to model data values of all
ensemble members at the same grid point to compactly store an ensemble dataset.



Algorithms 2021, 14, 285 5 of 25

3.3. Data Parallel Primitives

In this paper, we use parallel data primitives to parallelize the algorithms for histogram
and GMM modeling. To form the basic units of parallelized algorithms, various algorithms
can be produced through the permutations and combinations of many DPPs. In this section,
we will briefly introduce a few DPP functions used in this paper.

Map receives N arrays with length K and an operator as arguments, and it returns
M arrays of length K. N and M are determined by the operators in the parameters. Map
will map the input arrays to output arrays by running the input operator on each element
independently. For example, C=MAP(A,B,operator=Add()) will compute C[i]=A[i]+B[i]
for all elements. Map primitive and user-defined operators are generally used to replace
the traditional loop procedure.

Reduce receives an array and an operator as arguments and returns an output value.
REDUCE builds a merge tree and uses multiple threads to merge all elements of the
input array into a final output at the same time through the input operator. For example,
C=REDUCE(A, operator=ADD()) will add all values together and store the result in C.
ReduceByKey is similar to REDUCE, but needs an additional key array with the same
length as the input array. ReduceByKey merges values in the input array which have the
same corresponding elements in the key array into a single value using the operator. If the
key array has N unique values, the length of the output array should be N.

Gather receives an array A of length N and an index array B of length M, and returns
an array C of length M. For each element Bi in array B, Gather copies the (Bi)

th value in
array A to Ci.

4. Histogram Modeling Using Data-Parallel Primitives

The histogram [32,33] is a popular non-parametric distribution representation which
has been widely used in many fields [3,15,34–36]. A histogram divides the data value
domain into bins and calculates the number (frequency) of input samples that belong
to each bin. If the input samples are single-variant, the histogram contains pairs of bin
index and frequency, {(BinID0, Freq0), (BinID1, Freq1), ..., (BinIDB−1, FreqB−1)} , where
B is the number of desired bins. If the input samples are multi-variant, the histogram
also shows pairs of bin index and frequency. The major difference is that BinIDi in the
multi-variant histogram consists of multiple indices, according to the number of variables
of input samples. When modeling multi-variant data using the histogram, the number
of bins of the histogram is ∏V−1

v=0 binsv where binsv is the number of bins of vth variable.
The number of bins is large, so that the frequencies of many bins may be 0. Therefore, a
sparse histogram representation, which does not store the bins with 0 frequency, is often
used to save the storage. This section will introduce the algorithm to calculate multiple
histograms using data-parallel primitives. Each histogram is computed from a set of input
samples. Figure 3 is an example of modeling a scientific dataset using histograms. The
resolution of the dataset is 8 × 4 and it is divided into two 4 × 4 sub-blocks (sets) to
calculate two histograms. We first introduce the serial version of a multi-set histogram
modeling algorithm, then introduce the parallel version algorithm using data-parallel
primitives.

Algorithm 1 is the pseudo-code of the serial version of the multi-set histogram model-
ing algorithm. Sample respectively uses TotalSets, NumO f SamplesInEachSet and Variable
to represent the number of sets, the number of samples in each set, and the number of vari-
ables of all the samples. NumO f Bins is an array whose length is the same as the number
of variables. Each element of NumO f Bins stores the number of bins of the corresponding
variable.



Algorithms 2021, 14, 285 6 of 25

Figure 3. An example of dividing a scientific dataset into two sets and transforming the data values
in each set into a histogram.

Freq is the output array to store multi-set histograms. The length of Freq is the total
number of sets, and each element is a dictionary to store a histogram of samples of a set. This
algorithm first calculates the Range of all samples and the Interval of the corresponding
variable. Range stores the value range of each variable of all samples. Interval stores the
value interval of a bin of each variable. Then, we use the interval to calculate the bin indices
for all samples. The following two main steps are used to compute the histograms:

• Use each bin interval in Interval to compute the bin index of the corresponding
variable of the samples (Lines 9–11).

• The sample’s bin indices of all variables are used as the key of the dictionary to
accumulate the number of occurrences of the key (Line 12).

Dictionary (Line 7) is used to store the histogram of a set. Each item of a dictionary
has a key/value pair. The key is a combination of bin indices of all variables. The value
is the frequency of the corresponding bin indices. The get function at Line 12 returns the
value of a key. If the key does not exist, the get function returns the default value, 0. We
use the dictionary because we can use sparse representation to avoid storing large amounts
of bins with zero frequency.

Algorithm 1 Serial Version of the Multi-set Histogram Algorithm
1: Input : Samples[TotalSets][NumO f SampleInEachSets][Variable]
2: Input : NumO f Bins[Variabel]
3: Output : Freq[TotalSets]
4: Range← RangeO f (Sample)
5: Interval ← Range/NumO f Bins
6: for s = 1, 2, . . . , TotalSets do
7: Freq[s]← dict{}
8: for n = 1, 2, . . . , size(Sample[s]) do
9: for v = 1, 2, . . . , size(Variable) do

10: BinIndexO f EachVar[n]← f loor(Sample[s][n][v]/Interval[v])
11: end for
12: Freq[s][BinIndexO f EachVar][n]← Freq[s].get(BinIndexO f EachVar, 0)+1
13: end for
14: end for

Algorithm 2 is the DPP version algorithm. At the top of the algorithm, there are five
input arrays and two output arrays. Sample stores all samples from all sets. SetID stores
the set ID of the corresponding element in Sample so the lengths of Sample and SetID
are the same. Each element of NumberO f Bins stores the number of desired bins of the
corresponding variable. Max[i] and Min[i] are the maximal and minimal values of the
ith variable. We then model the input samples with the same set ID into one histogram.
The lengths of the output array HistoIndex and HistoCount are M, which is determined
by the total number of non-zero frequency bins. An element of HistoIndex stores the set
ID and multi-variant index of a bin. The corresponding element of HistoCount stores the
frequency the bin.



Algorithms 2021, 14, 285 7 of 25

Algorithm 2 DPP Version of the Multi-set Histogram Modeling Algorithm
1: Input : Sample[N]
2: Input : SetID[N]
3: Input : NumO f Bins[Variable]
4: Input : Min[Variable]
5: Input : Max[Variable]
6: Output : HistoIndex[M]
7: Output : HistoCount[M]
8: Range←Map(Max, Min,Operator=Sub()).
9: Interval ←Map(Range, NumO f Bins,Operator=Divide())

10: BinIndex ←Map(Sample, Interval,Operator=ComputeBinID())
11: OneDIndex ←Map(SetID, BinIndex,Operator=NDIndexTo1DIndex())
12: SortedOneDIndex ←Sort(OneDIndex)
13: CountArray[n]← [1, 1, . . . , 1]
14: HistoCount←ReduceByKey(CountArray, SortedOneDIndex,Operator=Sum())
15: UniOneDIndex ←Unique(SortedOneDIndex)
16: HistoIndex ←OneDIndextoNDIndex(UniOneDIndex)

The main purpose of computing multi-set histograms is to determine the number of
samples whose set ID and multi-variant bin index are the same. To achieve this purpose in
parallel, we can divide the process into the following three main steps:

• Calculate the multi-variant bin index of all samples in parallel (Line 10).
• Use 1D index to encode the set ID and multi-variant index of a sample (Line 11).
• Count the the number of samples whose 1D indices are the same (Line 14).

The idea of the second step is the same as converting the index of a multi-dimensional
array into a 1D index. This calculation is completed by the operator NDIndexTo1DIndex
at Line 11 using Equation (1).

OneDIndex[n] = SetID ∗
V−1

∑
i=0
{BinIndex[n][i] ∗

i−1

∏
j=0

NumO f Bin[j]} (1)

OneDIndex stores the 1D indices of all samples and is used as the key in ReduceByKey
at Line 14 to compute the number of samples whose 1D indices are the same. The major
advantage of using the 1D index as the key to execute the ReduceByKey is that most
of the data-parallel primitives libraries implement ReduceByKey by using scalar values
as the key. At Line 15, we get unique indices and store them in UniOneDIndex. The
length UniOneDIndex must be the same as HistoCount. Finally, we compute HistoIndex
from OneDindex through operator OneDIndexToNDIndex. OneDIndexToNDIndex is the
reversed process of NDIndexTo1DIndex, which converts the 1D index back to the set ID
and multi-variant index.

5. Gaussian Mixture Model Modeling Using Data-Parallel Primitives

The Gaussian Mixture Model is a parametric distribution representation. It can
represent a complicated distribution using a few parameters to provide a compact and
accurate distribution representation. Therefore, GMM has been widely used to facilitate
scientific data reduction and visualization [2,8,17–19,37,38].

GMM is an extension of a single Gaussian distribution; it is a statistical model that
decomposes the distribution of samples into the weighted sum of K Gaussian distributions.
GMM expresses the weighted sum of these K Gaussian components by Equation (2).

p(x|Θ) =
K

∑
i=1

wi ∗ g(x|µi, Σi) (2)

where x is the D-variant sample, wi is the weight of the ith Gaussian component, and
∑K

i=1 wi = 1, g(x|µi, Σi) is the probability density of x on the D-variate Gaussian distri-
bution with the mean vector, µi, and the covariance matrix, Σi. The definition of Θ is
represented by Equation (3), which is called the parameter set of the Gaussian Mixture
Model.

Θ = {wi, µi, Σi}, i = 1, 2, . . . , K. (3)



Algorithms 2021, 14, 285 8 of 25

The expectation-maximization (EM) algorithm is generally used to estimate param-
eters of a GMM of the given samples. The EM algorithm estimates the parameters by
maximizing the following likelihood function through an iterative process:

arg min
Θ

L(Θ) =
N

∑
i=1

K

∑
k=1

wk ∗ g(xi|µk, Σk) (4)

where Θ represents the parameters of GMM and xi is the ith input sample. K is the number
of Gaussian components. wk, µk, and Σk represent the weight, mean vector, and covariance
matrix of the kth Gaussian component, respectively.

Algorithm 3 is the pseudo code of the serial version of the multi-set EM algorithm
for GMM modeling. Each set of input samples will be modeled by a GMM. The input
array, Samples, contains samples from all sets. As the input samples could be multi-variant,
an input sample, Sample[i][j], is a vector whose length is determined by the number of
variables of the input dataset. Samples[i] is all input samples of ith set and size(Samples[i])
is the total number of input samples of the ith set. The loop at Line 5 iterates through each
set to fit the samples to a GMM with K Gaussian components.

Algorithm 3 Serial Version of the Multi-set EM Algorithm
1: Input : Samples[TotalSets][]
2: Output : Weight[TotalSets][K]
3: Output : Mean[TotalSets][K]
4: Output : CovMatrix[TotalSets][K]
5: for s = 1, 2, . . . , TotalSets do
6: /*Init*/
7: NumSetSamples← size(Samples[s])
8: Init(Resp) // lengths of Resp dimensions: Resp[NumSetSamples][K]
9: for iteration = 1, 2, . . . , MaxInterations do

10: /*M-step*/
11: /*Weight estimation*/
12: for k = 1, 2, . . . , K do
13: for x = 1, 2, . . . , NumSetSamples do
14: UNWeight[k]← UNWeight[k] + Resp[x][k]
15: end for
16: Weight[k]← UNWeight[k]/NumSetSamples //weight normalization
17: end for
18: /*Mean estimation*/
19: for k = 1, 2, . . . , K do
20: for x = 1, 2, . . . , NumSetSamples do
21: Mean[k]← Mean[k] + Resp[x][k] ∗ Samples[s][x]/UNWeight[k]
22: end for
23: end for
24: /*Covariance matrix estimation*/
25: for k = 1, 2, . . . , K do
26: for x = 1, 2, . . . , NumSetSamples do
27: MeanDeviation← Samples[s][x]−Mean[k]
28: CovMatrix[k]← CovMatrix[k] + Resp[x][k] ∗MeanDeviation∗Transpose(MeanDeviation)/unWeight[k]
29: end for
30: end for
31: /*E-step*/
32: PreProbNorm← ProbNorm
33: /*Maximum likelihood computation*/
34: for k = 1, 2, . . . , K do
35: for x = 1, 2, . . . , NumSetSamples do
36: Prob[x][k]←Weight[k]∗PDF(Samples[s][x]|Mean[k], CovMatrix[k])
37: ProbNorm← ProbNorm + Prob[x][k]
38: end for
39: end for
40: ProbNorm← ProbNorm/NumSetSamples
41: /*Responsibility update*/
42: for x = 1, 2, . . . , NumSetSamples do
43: for k = 1, 2, . . . , K do
44: Resp[x][k]← Prob[x][k]/ProbNorm
45: end for
46: end for
47: /*Check whether the iteration should stop*/
48: if Abs(ProbNorm, PreProbNorm) < StopThreshold then
49: break
50: end if
51: end for
52: end for



Algorithms 2021, 14, 285 9 of 25

In the initialization step, we set the responsibilities between all input samples and
Gaussian components. The responsibilities are stored in the Resp array. Resp[i][k] can be
interpreted as the probability that the Sample[i] is generated by the kth Gaussian component.
Therefore, responsibilities between ith sample and all Gaussian components must satisfy
∑K

j=1 Resp[i][j] = 1. Resp will be updated through the EM algorithm and used to update
the parameters of GMMs. The EM algorithm will iterate the following three steps to update
Resp, and thereby estimate the parameters Θ of GMM of each set:

• M-step: use the current Resp to estimate the parameter Θ (Line 10).
• E-step: compute the maximum likelihood of current GMM, and update responsibilities

between all samples and current Gaussian components of the corresponding GMM,
and store responsibilities in Resp (Line 31).

• Check whether the maximum likelihood has converged (Line 48).

When the algorithm is finished, the estimated weights, mean vectors, and covariance
matrices of all GMMs are stored in Weight, Mean, and CovMatrix, respectively.

5.1. Input and Output Arrays

In this section, we introduce the proposed Data-Parallel Primitive (DPP) version of the
multi-set EM algorithm. We first introduce the format of input and output arrays in the DPP
version algorithm (Algorithm 4). Figure 4 is an example of input and output arrays. Our
goal is to compute multiple EM results from multiple sets of samples concurrently using
data-parallel primitives. A GMM is used to model samples of a set. The number of input
samples of each set could be different and the samples might be multi-variant samples. All
GMMs produced by our algorithm have the same number of Gaussian components (K).
We then flatten most of the arrays in the DPP version algorithm, because flat arrays are
easier to process with data-parallel primitives, to maximize the parallelization.

Figure 4. Examples of input and output arrays of running EM algorithm with two sets of samples
when the number of Gaussian components (K) of each GMM is 2. In this example, Sample[0] to
Sample[3] are all in the first set and Sample[4] to Sample[7] are in the second set. wi,j, µi,j, and Σi,j are
the parameters of the jth Gaussian component in the ith set.

All the input samples are stored in an 1D array Sample. SetID is an array whose length
is the same as that of Sample. Each element of SetID stores the set ID of the corresponding
sample in Sample. Weight, Mean, and CovMartix store the parameters of GMMs of all
sets. As all GMMs have the same number of Gaussian components, the length of Weight,
Mean, and CovMartix is S ∗ K, where S is the total number of sets and K is the number of
Gaussian components of a GMM. These three arrays respectively store the w, µ, and Σ of
each Gaussian component, which are the parameters Θ of GMM. Weight[i], Mean[i], and



Algorithms 2021, 14, 285 10 of 25

CovMatrix[i], respectively, represent w, µ, and Σ of the bi/Kcth Gaussian component in the
(i%K)th set.

Resp is an array that stores all responsibilities between samples and the Gaussian
components of the corresponding GMM. So, the size of Resp is ∑S

s=0 K ∗ ns = K ∗∑S
s=0 ns =

K ∗ N where ns is the number of input samples of the sth set and N is the total number
of input samples. In the algorithm of GMM modeling, Resp is an important array which
is used to estimate new parameters of GMMs, and is also updated by GMMs and input
samples. The values of Resp at Line 8 of Algorithm 3 are randomly set. A responsibility in
Resp is computed from a sample and a Gaussian component which consists of a weight,
mean vector, and a covariance matrix. The elements in SampleIndex and CompIndex are
indices of the sample and the Gaussian component, respectively, used to compute the
corresponding responsibility, respectively. These arrays are used to assist our parallel
algorithm to complete multiple tasks using data-parallel primitives, such as computing
Resp array from Sample, Weight, Mean, and CovMatrix. The details will be introduced in
the following sections.

Algorithm 4 DPP Version of the Multi-set EM Algorithm
1: Input : Sample[N]
2: Input : SetID[N]
3: Input : SampleIndex[N ∗ K]
4: Input : CompIndex[N ∗ K]
5: Input : Resp[N ∗ K]
6: Output : Weight[S ∗ K]
7: Output : Mean[S ∗ K]
8: Output : CovMatrix[S ∗ K]
9: /*Flatten Samples*/

10: FlattenSample← Gather(Sample, SampleIndex)
11: FlattenSetID ← Gather(SetID, SampleIndex)
12: Counter[N ∗ K]← [1, 1, . . . , 1]
13: NumSetSamples←ReduceByKey(Counter, CompIndex,Operator=Add())
14: for iteration = 1, 2, . . . , MaxInterations do
15: /*M-step:Weight*/
16: unWeight←ReduceByKey(Resp, CompIndex,Operator=Add())
17: Weight←Map(unWeight, NumSetSamples,Operator=Division())
18: /*M-step:Mean Vector*/
19: Temp←Map(FlattenSample, Resp,Operator=Multiply())
20: Mean←ReduceByKey(Temp, CompIndex,Operator=Add())
21: Mean←Map(Mean, unWeight,Operator=Division())
22: /*M-step:Covariance Matrix*/
23: FlattenMean← Gather(Mean, CompIndex)
24: MeanDeviation←Map(FlattenSample, FlattenMean,Operator=Subtract())
25: MADTrans←Map(MeanDeviation,Operator=Transpose())
26: Temp←Map(MeanDeviation, MADTrans,Operator=Multiply())
27: Temp←Map(Temp, Resp,Operator=Multiply())
28: CovMatrix ←ReduceByKey(Temp, CompIndex,Operator=Add())
29: CovMatrix ←Map(CovMatrix, unWeight,Operator=Division())
30: /*E-step*/
31: PreProbNorm← ProbNorm
32: FlattenWeight← Gather(Weight, CompIndex)
33: FlattenCov← Gather(CovMatrix, CompIndex)
34: Temp←Map(FlattenSample,FlattenMean,FlattenCov,Operator=PDF())
35: Prob←Map(Temp, FlattenWeight,Operator=Multiply())
36: ProbNorm←ReduceByKey(Prob, FlattenSetID,Operator=Add())
37: /*Compute the new responsibility*/
38: FlattenPN ←Gather(ProbNorm, FlattenSetID)
39: Resp←Map(Prob,FlattenPN,Operator=Division())
40: /*Check whether the iteration should stop*/
41: Compare←Map(ProbNorm, PreProbNorm,Operator=AbsDiff())
42: if Reduce(Compare,Operator=Add()) < StopThreshold then
43: break
44: end if
45: end for

5.2. M-Step

In this step, three parameters, w, µ, and Σ, of all Gaussian components are estimated
from Resp and Sample concurrently. The aim is to duplicate the Sample array to create
proper pairs between responsibilities and samples, and use data-parallel primitives to
compute the information we need.



Algorithms 2021, 14, 285 11 of 25

5.2.1. Weight Estimation

In general, the Gaussian component’s weight represents the Gaussian component’s
contribution in the GMM, or the weight of a Gaussian component can be interpreted as
how much ratio of input samples can be drawn from the Gaussian component.

To calculate the weights of all Gaussian components from all sets, we should use data-
parallel primitives to add up responsibilities that belongs to the same Gaussian. To achieve
this goal, we prepare an array, CompIndex, whose length is the same as Resp array. Values
in CompIndex indicate the Gaussian component ID of the corresponding value in Resp
array. The component ID of a Gaussian component is unique among Gaussian components
of all GMMs. Then, we can use the ReduceByKey primitive to compute non-normalized
weights of all Gaussian components from all sets (Line 16 in Algorithm 4). We illustrate this
process in Figure 5. To normalize the weights, we use the MAP primitive to divide each
weight by the number of samples in the set (Line 17 in Algorithm 4). Figure 6 illustrates
how to calculate NumSetSamples for the weight normalization.

Figure 5. In this example, there are two sets of samples, and each GMM has two Gaussian components.
Ri,j is the probability that the Sample[i] is generated by the jth Gaussian component. ui,j is the non-
normalized weight of the jth Gaussian component in the ith set.

Figure 6. The generation process of NumSetSamples.

5.2.2. Mean Vector Estimation

At Line 21 in Algorithm 3, the loop shows the procedure of the serial algorithm to
estimate new mean vectors, Mean, of a GMM. In this step, mean vectors are computed
from the responsibilities (Resp), the non-normalized weight (unWeight), and input samples
(Sample).

From Lines 19–23 in Algorithm 3, we know that in order to compute mean vectors of a
GMM with K Gaussian components, an input sample will be accessed K times. To use the
data-parallel primitives to complete this calculation, we duplicate the Sample array so that
the length of the duplicated array is the same as the Resp array. To achieve this goal, we
need the SampleIndex array; this has a length of N ∗K. The content consists of all indices of
the Sample array repeated K times. Figure 7 illustrates the procedure that uses SampleIndex
to create a duplicated sample array, FlattenSample. We only create FlattenSample once
before the main loop of the EM algorithm because input samples never change (Line 10 in
Algorithm 4). Then, we can apply the Map and ReduceByKey primitives to calculate the
mean vectors of all GMMs concurrently. Figure 8 illustrates the computation of the mean
vectors, which corresponds to Lines 19 to Line 21 in Algorithm 4.



Algorithms 2021, 14, 285 12 of 25

Figure 7. The generation process of FlattenSample. For example, x0 is copied twice because each
GMM has two Gaussian components and each sample will be accessed to compute Resp.

Figure 8. The computation process of Mean. Ri,j is a responsibility computed from the ith sample
and jth Gaussian component. µi,j is the mean vector of the jth Gaussian component in the ith set.

5.2.3. Covariance Matrix Estimation

Line 5 and Lines 25–27 in Algorithm 3 compute the differences between a sample
and all mean vectors in the corresponding set. The corresponding code segment in the
DPP version algorithm is Lines 10, 23, and 24 in Algorithm 4. To parallelize this operator
using data-parallel primitives, we need two arrays that store all combinations of samples
and mean vectors to compute MeanDeviation in parallel. These two arrays store dupli-
cated samples: FlattenSample, introduced in Section 5.2.2 and duplicated mean vectors,
FlattenMean, produced by Line 23 in Algorithm 4, where CompIndex is the predefined ar-
ray used to correctly produce FlattenMean. Figure 9 and the top part of Figure 10 illustrate
this computation.

Lines 5, 25, 26, and 28 in Algorithm 3 compute the covariance matrices of all sets
using responsibilities, mean deviations, and unnormalized weights. The corresponding
code segment in the DPP version algorithm is Lines 25–29 in Algorithm 4. Each mean
deviation has to be multiplied with the transpose of itself. Lines 25 and 26 complete this
calculation in parallel using MAP primitives. Note that each element in MeanDeviation
is an n by 1 vector, where n is the number of variables of the input samples. Therefore,
the operation at Line 26 is a vector multiplication, and an element in the output array,
Temp, is an n by n matrix. The second part of Figure 10 and the first part of Figure 11
illustrate this operation. In addition, the multiplication of responsibility, mean deviation,
and the transpose of mean deviation that belong to the same Gaussian component are
ultimately accumulated in a matrix. Each matrix is divided by the unnormalized weight of
the corresponding Gaussian component to update the covariance matrix of the Gaussian
component. This operation is completed in parallel by Lines 28 and 29 in Algorithm 4.
Figure 11 illustrates this computation.



Algorithms 2021, 14, 285 13 of 25

Figure 9. Illustration of the creation of duplicated mean vectors (Line 23 in Algorithm 4). In this
example, the GMM of each set has two Gaussian components, and each mean vector will match with
four samples because every set has four input samples. Therefore, the length of the duplicated mean
vector array is 16 (the total number of mean vectors multiplied by the sample count in each set).

Figure 10. Illustration of computation of mean deviations and the transpose of mean deviations. mk
i,j

is the mean deviation computed from the mean vector of the jth Gaussian component in the ith set
and the kth sample.

Figure 11. Illustration of computation of covariance matrices of all sets. mk
i,j is an n by 1 vector, Tk

i,j is

a 1 by n vector, tk
i,j is an n by n matrix, and Ri,j is a scalar value.

5.3. E-Step

Line 5 and Lines 34–39 in Algorithm 3 estimate the weighted probability densities
between all samples and all Gaussian components of the corresponding GMM, and add
up all of the weighted probability densities of each set. Therefore, each GMM calculates a
ProbNorm. The corresponding code segment in the DPP version algorithm is Lines 31–36
in Algorithm 4. To compute probability densities between all samples and all Gaussian
components of the corresponding GMM, we need arrays which store all combinations
among input samples, weights, mean vectors, and covariance matrices. These arrays store



Algorithms 2021, 14, 285 14 of 25

duplicated samples (FlattenSample), weights (FlattenWeight), mean vectors (FlattenMean),
and covariance matrices (FlattenCov). We have created FlattenSample and FlattenMean
in previous steps. Similar to the procedure for FlattenMean, we create FlattenWeight and
FlattenCov at Lines 32 and 33 in Algorithm 4. In Line 34, a MAP primitive with the PDF()
operator is used to calculate the probability density of any pair between a sample and a
Gaussian component. Note that a covariance matrix decomposition is required to compute
the probability density of a sample. We directly use an external library to compute the
decomposition and do not design the algorithm. To fairly evaluate our algorithm, our
evaluation also does not involve this part. Line 35 uses a MAP primitive to compute the
weighted probability density using multiple probability density with the corresponding
weight. Finally, the probabilities that belongs to the same GMM are added to obtain a value.
To complete this task in parallel, we need an array, FlattenSetID, with the same length as
FlattenSample array. An element in FlattenSetID indicates the set ID of the corresponding
sample in FlattenSample. As input samples never change, we prepare FlattenSetID at
Line 11 in Algorithm 4. Figure 12 illustrates the process to create FlattenSetID. Line 36 in
Algorithm 4 aggregates probabilities that belong to the same GMM to compute ProbNorm
array. Figure 13 illustrates the above calculation.

Figure 12. Illustration of creating the array which stores the corresponding set ID of FlattenSample
array.

Figure 13. Illustration of E-step computation by data-parallel primitives. wi,j, µi,j, and σi,j are the
weight, mean vector, and covariance matrix of the jth Gaussian component in the ith set. tk

i,j is a

probability density computed from the kth sample and the jth Gaussian component in the ith set. Ni

is ProbNorm of the GMM of ith set.

5.4. Responsibility Update

Line 5 and Lines 42–46 in Algorithm 3 divide all weighted probability densities by the
ProbNorm of the corresponding set to compute the Resp array. The corresponding code
segment in the DPP version algorithm is Line 38 and 39 in Algorithm 4. To complete this
task in parallel, we should first prepare an array, FlattenPN, whose length is the same
as Prob. Each element in FlattenPN is a value from ProbNorm whose set ID is the same
as the corresponding element in Prob. This task is completed by Line 38 in Algorithm 4.
Line 39 uses a MAP primitive to calculate the responsibilities by computing element-wise
division of Prob and FlattenPN in parallel. Figure 14 illustrates the process of updating
responsibilities by data-parallel primitives.



Algorithms 2021, 14, 285 15 of 25

Figure 14. Illustration of the process of updating responsibilities by data-parallel primitives.

5.5. EM Termination Conditions

When the likelihood value (ProbNorm) of each GMM starts to oscillate, it means that the
estimation of the GMM has converged to the local optimum, and we can stop the algorithm to
save the computational resource. At Lines 41 and 42 in Algorithm 4, we use Map to compute
the absolute difference between each value in ProbNorm before and after updating and use the
Reduce primitive to calculate the sum of all differences. If the sum is less than a StopThreshold,
it means the algorithm has reached stable status. In addition, if the number of iteration reaches
the limit set by the user, the EM algorithm should also stop. We simply use the loop at Line 14
in Algorithm 4 to check this termination condition. In any case, as long as the program ends the
iteration, the current parameters Θ are the fitting result of the EM algorithm.

5.6. Improvement of the Shared Memory Environment

Algorithm 4 duplicates Sample, Weight, Mean, and CovMatrix to enable paralleliza-
tion using data-parallel primitives. The algorithm can be used on both distributed memory
and shared memory environments because all the arrays processed by data-parallel prim-
itives are equal in length, and can easily be distributed to computing nodes or threads.
However, duplicating Sample, Weight, Mean, and CovMatrix needs extra computational
time. If we run the algorithm on a shared memory environment, the duplication is not
necessary because we can randomly access arrays.

We have to use the MAP primitive with a customizing operator which can access some
input arrays randomly. The operator must have the same number of arguments as the
MAP primitive, and their arguments have one-to-one correspondence. The arguments in
brackets are the array that the operator can randomly access. All elements of the arguments
without brackets are computed concurrently. Therefore, the lengths of all arguments
without brackets and the output array must be the same. The code segment defines the
computation of each element of the arguments without brackets. Line 18 and the operator
defined at Line 43 in Algorithm 5 is an example of the MAP primitive with a customizing
operator.

Algorithm 5 is the most efficient algorithm for shared memory parallelization. It has the
same aim as Algorithm 5; the difference is its use of the MAP primitives with a customizing
operator to avoid the array duplication. We remove Line 10 in Algorithm 4. Furthermore,
Line 19, Lines 23–24, Lines 32–35, and Lines 38–39 in Algorithm 4 are replaced by the MAP
primitives at Line 18, Line 22, Line 30, and Line 34 in Algorithm 5, respectively. In addition,
we remove most of the Gather primitives used to duplicate arrays in Algorithm 5.



Algorithms 2021, 14, 285 16 of 25

Algorithm 5 DPP Version of the Multi-set EM Algorithm for Shared Memory Environment
1: Input : Sample[N]
2: Input : SetID[N]
3: Input : SampleIndex[N ∗ K]
4: Input : CompIndex[N ∗ K]
5: Input : Resp[N ∗ K]
6: Output : Weight[S ∗ K]
7: Output : Mean[S ∗ K]
8: Output : CovMatrix[S ∗ K]
9: /*Flatten Samples*/

10: FlattenSetID ← Gather(SetID, SampleIndex)
11: Counter[N ∗ K]← [1, 1, . . . , 1]
12: NumSetSamples←ReduceByKey(Counter, CompIndex,Operator=Add())
13: for iteration = 1, 2, . . . , MaxInterations do
14: /*M-step:Weight*/
15: unWeight←ReduceByKey(Resp, CompIndex,Operator=Add())
16: Weight←Map(unWeight, NumSetSamples,Operator=Division())
17: /*M-step:Mean Vector*/
18: Temp←Map(SampleIndex, Resp, Sample,Operator=MultiplyResponsibilityAndSample())
19: Mean←ReduceByKey(Temp, CompIndex,Operator=Add())
20: Mean←Map(Mean, unWeight,Operator=Division())
21: /*M-step:Covariance Matrix*/
22: MeanDeviation←Map(SampleIndex, CompIndex, Sample, Mean,Operator=getMeanDeviation())
23: MADTrans←Map(MeanDeviation,Operator=Transpose())
24: Temp←Map(MeanDeviation, MADTrans,Operator=Multiply())
25: Temp←Map(Temp, Resp,Operator=Multiply())
26: CovMatrix ←ReduceByKey(Temp, CompIndex,Operator=Add())
27: CovMatrix ←Map(CovMatrix, unWeight,Operator=Division())
28: /*E-step*/
29: PreProbNorm← ProbNorm
30: Prob←Map(SampleIndex, CompIndex, Sample, Weight, Mean, CovMatrix,Operator=getWeightProb())
31: ProbNorm←ReduceByKey(Prob, FlattenSetID,Operator=Add())
32: /*Compute the new responsibility*/
33: FlattenPN ←Gather(ProbNorm, FlattenSetID)
34: Resp←Map(FlattenSetID, Prob, ProbNorm,Operator=getNewResponsibility())
35: /*Check whether the iteration should stop*/
36: Compare←Map(ProbNorm, PreProbNorm,Operator=AbsDiff())
37: if Reduce(Compare,Operator=Add()) < StopThreshold then
38: break
39: end if
40: end for
41: function MULTIPLYRESPONSIBILITYANDSAMPLE(s, r, SAMPLE[])
42: return r ∗ SAMPLE[s]
43: end function
44: function GETMEANDEVIATION(s, c, SAMPLE[], MEAN[])
45: return SAMPLE[s]−MEAN[c]
46: end function
47: function GETWEIGHTPROB(s, c, SAMPLE[], WEIGHT[], MEAN[], COVMATRIX[])
48: return WEIGHT[c]∗PDF(SAMPLE[s], MEAN[c], COVMATRIX[c])
49: end function
50: function GETNEWRESPONSIBILITY(setID, p, PROBNORN[])
51: return p/PROBNORN[setID])
52: end function

5.7. Covariance Matrix Computation Simplification

If the number of the variables of input samples is D, the size of the covariance matrix is
D by D. We already know the covariance matrix must be a symmetric matrix. Considering
the step that the covariance matrix involves, except for the vector multiplication in Line 26
of Algorithm 4, all other operations are scalar operations, so the covariance matrix is still a
symmetric matrix, as follows:

Σs,k =

 c0,0 . . . cD−1,0
...

. . .
...

c0,D−1 . . . cD−1,D−1


DxD

(5)

where Σs,k is the covariance matrix of the kth Gaussian component of the GMM in the sth

set.
Due to the symmetry of the covariance matrix, we can only compute the lower

triangular matrix of the covariance matrix to simplify the computation and reduce the
memory requirement. From Lines 22–24 in Algorithm 5, we know that a covariance matrix
is computed from a mean vector and an input sample. Therefore, each element ci,j in
a covariance matrix Σs,k can be computed by Equation (6). With this method, we only
access the elements in the lower triangular matrix to complete any computation related



Algorithms 2021, 14, 285 17 of 25

to the covariance matrix, to save the computational time and memory. In addition, from
Equation (6), we know that the computation of each element in the covariance matrix is
independent. We can compute each element in parallel to maximize the parallelization:

ci,j = cj,i = ∑
index∈I

Rindex,k ∗ (xindex
i − µindex,k

i ) ∗ (xindex
j − µindex,k

j ) (6)

where I = {index|SetID[index] = s}.
Figure 15 is a schematic diagram of the process of computing the covariance matrix

when there are three variables of the input samples.

Figure 15. In this example, two 3-variate GMMs are modeled at the same time, and each GMM has
two Gaussian components. The level of parallelism is 2 ∗ 2 ∗ 3 ∗ (1+ 3)/2 = 24 when the optimization
introduced in this section is applied.

6. Experiment

In this section, we evaluate the impact of parameters and the number of threads on
the execution time of our proposed algorithms using three different scientific datasets.
We conduct the experiments on a supercomputer, Taiwania 2. Each node of Taiwania 2
has two Intel Xeon Gold 6154 18-Cores 3.0GHz and eight NVIDIA® Tesla® V100 SXM2.
We implement our proposed algorithms using the VTK-m library [10], a platform that
enables scientists to develop scientific data analysis and visualization algorithms using
data-parallel primitives. VTK-m supports both CPU and GPU computing backends. When
using CPU as the computing backend, VTK-m allows users to use either Intel Threading
Building Block (TBB) or OpenMP libraries to run the program using multiple CPU cores.
The programs for the performance evaluations of our proposed algorithms which are
carried out on CPU are implemented by a VTK-m library that uses Intel TBB.

The three datasets are listed as follows:

• Dataset 1 is hurricane pressure volume data. The resolution is 500 × 500 × 100 and
each grid point is a scalar value.

• Dataset 2 is dark matter momentum vector data. The resolution is 64 × 64 × 64 and
each grid point is a three-variant vector.

• Dataset 3 is dark matter density ensemble data with 1000 ensemble members. The res-
olution of each ensemble member is 64 × 64 × 64 and each grid point is a scalar value.

The dataset1 is provided by Scivis Contest 2004 and can be downloaded from its web-
site [39]. Dataset2 and dataset3 are produced by Nyx simulation. The simulation can be
downloaded from its official website [40], and we run the simulation by ourselves to generate
dataset2 and dataset3. For datasets 1 and 2, we subdivide them into several sub-blocks ac-
cording to the given block size, and calculate a distribution from samples in each sub-block.
As datasets 1 and 2 have different resolutions, we have different block size settings for
these two datasets. We subdivide dataset 1 into blocks with block sizes of 8, 16, 32, and



Algorithms 2021, 14, 285 18 of 25

64, and subdivide dataset 2 into block sizes of 2, 4, 8, and 16. For dataset 3, we calculate a
distribution from samples across all ensemble members at the same grid points. Therefore,
we will compute 64 × 64 × 64 distributions, and each distribution is calculated from 1000
samples.

6.1. Performance Analysis of the Algorithms

Tables 1 and 2 show the speedup of the proposed histogram and GMM modeling algo-
rithms using a different number of threads on CPU and GPU. We use the execution time for
single thread CPU of each dataset as the baseline to calculate the speedup of different settings.
When we use two cores, the speedup of both the algorithms and all datasets is almost doubled.
When we use 18 cores, the worst speedup of the histogram modeling algorithm is 13.30 times
and the worst speedup of the GMM modeling algorithm is 14.74 times. Therefore, both the
proposed algorithms have good scalability from using two cores to 18 cores on the CPU. We
also test the same algorithms on one NVIDIA® Tesla® V100 SXM2 GPU. As the GPU has a
much more extensive computing thread, we gain 48-98x speedup on histogram modeling and
71-460x speedup on GMM modeling for different datasets.

Table 1. Speedup of our proposed parallel multi-set histogram modeling algorithm.

Computing Node Dataset 1 Dataset 2 Dataset 3

1-core CPU 1 1 1
2-core CPU 1.985425841 1.988104127 2.001024069
4-core CPU 3.8213887 3.84097158 3.888216077
8-core CPU 7.162903579 7.223857685 7.471058016
16-core CPU 12.47168401 12.56068722 13.72269326
18-core CPU 13.30148627 13.55864188 14.22243753
GPU 98.5314432 37.02952644 48.27058739

Table 2. Speedup of our proposed parallel multi-set GMM modeling algorithm.

Computing Node Dataset 1 Dataset 2 Dataset 3

1-core CPU 1 1 1
2-core CPU 1.988480932 1.993276194 1.985682702
4-core CPU 3.918983877 3.991065867 3.871235734
8-core CPU 7.615474127 7.840609266 7.441185576
16-core CPU 14.35827021 15.54666768 13.37958625
18-core CPU 15.91859022 17.77076412 14.74770303
GPU 141.2707969 460.7890873 71.19877168

6.2. Parameter Analysis of the Algorithms
6.2.1. Histogram

Figure 16 shows the results of the three datasets using 16 3.0 GHz cores to run the parallel
histogram modeling algorithm. We can observe that both different block sizes and bin counts
have an impact on the execution time. If the block size is smaller or bin count is larger, the
execution time will increase. If the block size is smaller (the number of sets increases) or the
number of bins is larger, we will have more unique 1D indices (keys) in the array at Line 14 of
Algorithm 2. Therefore, more threads are required when the ReduceByKey primitive merges
elements with the same key. If the number of samples required to be parallelized is greater than
the number of available threads, the execution time will increase.



Algorithms 2021, 14, 285 19 of 25

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 16. The execution time of our proposed parallel histogram modeling algorithm. We run it for
three datasets on a 16-core CPU under given parameter settings. Dataset 3 is an ensemble data so
there is no block size to change.

6.2.2. GMM

In this subsection, we divide the steps of the EM algorithm into five parts to analyze
the execution time. They are:

• Time for the E-step.
• Time to update the weights.
• Time to update mean vectors.
• Time to flatten the covariance matrix.
• Time to update the covariance matrix.

Since the number of iterations of the EM algorithm is not fixed, we report the execution
time of each step on average for comparison. We can observe the changes in the execution
time of these five different steps when the number of Gaussian components and the block
size change.

Gaussian component: Figure 17 shows the average execution time of three different
datasets with different numbers of Gaussian components. In all datasets, each step requires
more execution time when the number of Gaussian components increases. This is because
the amount of calculation in each step is positively correlated with the number of Gaussian
components in the EM algorithm.

Block size: Figure 18 shows the changes in execution time of dataset 1 and dataset
2 when different block sizes are used. We can observe that a smaller block size setting
requires a longer execution time in each dataset; this is because a smaller block size setting
generates more blocks. Therefore, the total number of sets, S, in Algorithm 5 will increase
and the execution time, except for E-step, will increase.



Algorithms 2021, 14, 285 20 of 25

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 17. The execution time of GMM modeling if the number of Gaussian components is changed.
The block size of (a,b) is fixed to 16. In the figures, orange, gray, yellow, blue, and green bars are
the execution times of E-step, mean vector updating, covariance matrix flattening, and covariance
matrix updating, respectively.

(a) Dataset 1 (b) Dataset 2

Figure 18. We fix the number of Gaussian components to 4 and change the block size to conduct
this experiment, using dataset1 and dataset2 on the CPU using 16 core. In the figures, orange, gray,
yellow, blue, and green bars are the execution time of E-step, mean vector updating, covariance
matrix flattening, and covariance matrix updating, respectively. Dataset 3 is an ensemble data so
there is no block size to change.

7. Use Cases

In this use case, we are going to use a more complicated distribution representation to
demonstrate our proposed algorithms. Wang et al. [4] proposed a compact distribution-
based representation for volume scientific datasets. Their approach subdivides volume
data into multiple sub-blocks. The data values in a sub-block are decoupled into value
distribution and location information. The value distribution of a sub-block is represented
by a histogram. The location information is represented by 3-variant GMMs. If the number
of histogram bins is B, the sub-block should store B 3-variant GMMs. Each GMM describes
the occurrence probability of data values that belong to a bin in the sub-block space.



Algorithms 2021, 14, 285 21 of 25

Each block’s histogram and 3-variant GMMs can be combined using the Bayes rule to
compute the value distribution at each grid point and perform arbitrary data analysis
and visualization tasks. We use the proposed parallel histogram and GMM modeling
algorithms to compute the distribution representation of a hurricane pressure dataset,
Isabel. The spatial resolution of Isabel is 500 × 500 × 100, and the size of Isabel is 95MB.
We divide the dataset into sub-blocks, and the size of each sub-block is 16 × 16 × 16. So,
Isabel is divided into 32 × 32 × 7 blocks. Each sub-block is modeled by a single-variant
histogram with 128 bins. If the frequency of a bin is not 0, we have to compute a 3-variant
GMM for the bin. Therefore, we have to compute 7186 histograms and 46226 GMMs in
total for the Isabel dataset. We run this use case on NVIDIA® Tesla® V100 SXM2. The
time of the histograms and GMMs modeling using the proposed algorithms are 0.165064
seconds and 2.35(0.117 per iteration) seconds, respectively. We also use the Bayes rule
described in [4] to compute the value distribution at each grid point and use the data value
with the highest probability at each grid point to reconstruct the volume. Figure 19 is the
visualization using uncertain isosurface and volume rendering techniques to show the
reconstructed dataset. It also validates the correctness of the proposed algorithms using a
real scientific dataset.

(a) Volume rendering from raw
data

(b) Rendering from recon-
structed data

(c) Uncertain isosurface with
isovalue of 90

Figure 19. The result of using the two proposed parallel multi-set distribution modeling algorithms
in a real application.

8. Conclusions and Future Work

This paper presents parallel algorithms of multi-variant histogram and GMM model-
ing. The algoithms are designed for distribution-based large-scale scientific data processing.
The algorithms can efficiently model histograms and GMMs from samples that are divided
into multiple sets. We use data-parallel primitives to develop the algorithms because many
data-parallel primitives have been used to develop libraries which can execute a code
on different hardware architectures, such as multi-core CPU and GPU, without rewriting
the code. Therefore, scientists can easily deploy the data processing algorithms on the
computing hardware they have. We demonstrate the efficiency of the proposed algorithms
and influence of parameters, such as the size of sets, the number of Gaussian components
of GMM, the number of bins of histogram, and the number of threads. We also demonstrate
the proposed algorithms using two distribution-based scientific data representations. In
the future, we would like to extend our work to a parallel library for large-scale scientific
data processing and analysis to facilitate the scientists’ research. The library should support
more popular data models and file formats of scientific datasets. We should also develop
more parallel algorithms for scientific data analysis and visualization from distribution-
based representations. The proposed algorithms in this paper will be the core algorithms
in the library.

9. Discussion

This section will discuss the pros and cons of the proposed parallel multi-set distri-
bution modeling algorithms. We will compare our proposed algorithm with the serial



Algorithms 2021, 14, 285 22 of 25

algorithm and the extension version of the parallel single distribution modeling algorithm.
The serial algorithms are simply Algorithm 1 and 3. Several parallel single distribution
modeling algorithms are already proposed. A straightforward way to extend them to deal
with the multi-set distribution modeling problem is to iterate through every set and use
the existing parallel single distribution modeling algorithm to concurrently model samples
of each set to a distribution. We call it a parallel single-set distribution modeling algorithm
in this subsection. The reported computation time in this section is carried out on a CPU
and by the Dataset1 introduced in Section 6.

Tables 3 and 4 show that the simple serial algorithm is faster than our algorithm when
we only use a single core. This is because our algorithm requires extra computation to
organize data from all sets for the parallel computation when more cores are available.
When only one core is available, our algorithm will spend more time because the total
computation load of our algorithm is more than the simple serial algorithm. However,
compared with the simple serial algorithm, our algorithm can utilize more computing
cores to reduce the total computation time. The computation time of our algorithm is much
shorter than the simple serial algorithm when eight cores are available. If more threads are
available, our algorithms can further reduce the computation time.

We also compare our algorithm with the parallel single-set distribution modeling algo-
rithm. We use OpenMP to implement parallel single-set distribution modeling algorithms
and a loop to iterate through all sets. One of the main differences between our proposed
and parallel single-set algorithms is the number of parallel procedure calls. The single-set
algorithm concurrently processes the data samples that belong to a set to generate one dis-
tribution and uses a loop to iterate through all sets. Our proposed algorithm concurrently
processes data samples from all sets and generates all distributions. Therefore, the number
of the parallel procedure calls of the parallel single-set algorithm is much larger than our
proposed algorithm. We know that a parallel procedure not only needs to spend time
sharing works to all threads but also has to synchronize all threads at the end of the parallel
procedure to ensure the program can leave the parallel procedure and continue. The work
sharing and thread synchronization are the overhead of a parallel procedure. Although the
overhead is usually very short, it will count up to a large amount if the program calls the
parallel procedure many times.

The columns with block size 8 in Tables 3 and 4 show that our algorithm has a much
better speedup than the parallel single-set algorithm. In this experiment, the dataset is
subdivided into around 50 thousand sets if the block size is 8. Therefore, the parallel
single-set algorithms have to pay overhead to handle the work sharing and the thread
synchronization and not gain a good speedup. In addition, if more cores are used, the
overhead is essentially longer because more threads are required to synchronize. Therefore,
it does not guarantee that the total computation time is shorter if more cores are used. The
single-set GMM modeling has a negative speedup because it uses much more parallel
primitives than the histogram modeling. We also carry out the same experiment but change
the block size to 2. In this experiment, the dataset is subdivided into around three million
sets. The number of sets of the block size of 2 is much more than that of 8. In Tables 3 and 4,
we can observe that the computation time of the single-set algorithms becomes much
longer because it has to handle much more overhead. By contrast, the computation time of
our proposed algorithms stays on the same scale.



Algorithms 2021, 14, 285 23 of 25

Table 3. The computation time of our proposed parallel multi-set histogram algorithm and the
parallel single-set histogram modeling algorithm. The computation time is in seconds.

Number of Cores Serial Single-Set Ours Single-Set Ours
8 × 8 × 8 2 × 2 × 2 2 × 2 × 2 8 × 8 × 8 8 × 8 × 8

1-core CPU 1.28263 4.61334 11.7526 1.49209 10.3738
2-core CPU - 8.29002 5.96604 1.11556 5.55225
4-core CPU - 9.03034 3.05083 0.842128 2.66296
8-core CPU - 14.3831 1.59801 0.810271 1.4501
16-core CPU - 22.0338 0.911604 0.900354 0.77688
32-core CPU - 64.3039 0.544077 1.57874 0.482417

Table 4. The computation time of our proposed parallel multi-set EM algorithm and the parallel
single-set histogram modeling algorithm.

Number of Cores Serial Single-Set Ours Single-Set Ours
8 × 8 × 8 2 × 2 × 2 2 × 2 × 2 8 × 8 × 8 8 × 8 × 8

1-core CPU 4.71137 67.3893 58.118. 6.01607 30.7055
2-core CPU - 106.751 29.4688. 7.48694 15.606
4-core CPU - 114.94 14.8209. 8.21759 7.79179
8-core CPU - 182.37 7.57408. 8.27328 3.93791
16-core CPU - 434.22 4.01025. 12.071 2.10316
32-core CPU - 645.74 2.19219. 22.6585 1.08166

Author Contributions: Conceptualization, K.-C.W.; Project administration, K.-C.W.; Resources, K.-
C.W.; Software, H.-Y.Y., Z.-R.L. and K.-C.W.; Supervision, K.-C.W.; Writing—original draft, H.-Y.Y.,
Z.-R.L. and K.-C.W.; Writing—review & editing, K.-C.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by “Ministry of Science and Technology, Taiwan” grant number
“109B0054”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dutta, S.; Chen, C.M.; Heinlein, G.; Shen, H.W.; Chen, J.P. In situ distribution guided analysis and visualization of transonic jet

engine simulations. IEEE Trans. Vis. Comput. Graph. 2016, 23, 811–820. [CrossRef] [PubMed]
2. Dutta, S.; Shen, H.W.; Chen, J.P. In Situ prediction driven feature analysis in jet engine simulations. In Proceedings of the 2018

IEEE Pacific Visualization Symposium (PacificVis), Kobe, Japan, 10–13 April 2018; pp. 66–75.
3. Thompson, D.; Levine, J.A.; Bennett, J.C.; Bremer, P.T.; Gyulassy, A.; Pascucci, V.; Pébay, P.P. Analysis of large-scale scalar data

using hixels. In Proceedings of the 2011 IEEE Symposium on Large Data Analysis and Visualization, Providence, RI, USA, 23–24
October 2011; pp. 23–30.

4. Wang, K.C.; Lu, K.; Wei, T.H.; Shareef, N.; Shen, H.W. Statistical visualization and analysis of large data using a value-based
spatial distribution. In Proceedings of the 2017 IEEE Pacific Visualization Symposium (PacificVis), Seoul, Korea, 18–21 April 2017;
pp. 161–170.

5. Kumar, N.P.; Satoor, S.; Buck, I. Fast parallel expectation maximization for gaussian mixture models on gpus using cuda. In
Proceedings of the 2009 11th IEEE International Conference on High Performance Computing and Communications, Seoul,
Korea, 25–27 June 2009; pp. 103–109.

6. Kwedlo, W. A parallel EM algorithm for Gaussian mixture models implemented on a NUMA system using OpenMP. In
Proceedings of the 2014 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Seoul,
Korea, 25–27 June 2014; pp. 292–298.

7. Shams, R.; Kennedy, R. Efficient histogram algorithms for NVIDIA CUDA compatible devices. In Proceedings of the ICSPCS
2007, Dubai, United Arab Emirates, 24–27 November 2007; pp. 418–422.

http://doi.org/10.1109/TVCG.2016.2598604
http://www.ncbi.nlm.nih.gov/pubmed/27875195


Algorithms 2021, 14, 285 24 of 25

8. Li, G.; Xu, J.; Zhang, T.; Shan, G.; Shen, H.W.; Wang, K.C.; Liao, S.; Lu, Z. Distribution-based particle data reduction for in-situ
analysis and visualization of large-scale n-body cosmological simulations. In Proceedings of the 2020 IEEE Pacific Visualization
Symposium (PacificVis), Tianjin, China, 3–5 June 2020; pp. 171–180.

9. Bell, N.; Hoberock, J. Thrust: A productivity-oriented library for CUDA. In GPU Computing Gems Jade Edition; Elsevier:
Amsterdam, The Netherlands, 2012; pp. 359–371.

10. Moreland, K.; Sewell, C.; Usher, W.; Lo, L.t.; Meredith, J.; Pugmire, D.; Kress, J.; Schroots, H.; Ma, K.L.; Childs, H.; et al. Vtk-m:
Accelerating the visualization toolkit for massively threaded architectures. IEEE Comput. Graph. Appl. 2016, 36, 48–58. [CrossRef]
[PubMed]

11. Sewell, C.M. Piston: A Portable Cross-Platform Framework for Data-Parallel Visualization Operators; Technical Report; Los Alamos
National Lab. (LANL): Los Alamos, NM, USA, 2012.

12. Lee, T.Y.; Shen, H.W. Efficient local statistical analysis via integral histograms with discrete wavelet transform. IEEE Trans. Vis.
Comput. Graph. 2013, 19, 2693–2702. [PubMed]

13. Wei, T.H.; Dutta, S.; Shen, H.W. Information guided data sampling and recovery using bitmap indexing. In Proceedings of the
2018 IEEE Pacific Visualization Symposium (PacificVis), Kobe, Japan, 10–13 April 2018; pp. 56–65.

14. Wei, T.H.; Chen, C.M.; Woodring, J.; Zhang, H.; Shen, H.W. Efficient distribution-based feature search in multi-field datasets. In
Proceedings of the 2017 IEEE Pacific Visualization Symposium (PacificVis), Seoul, Korea, 18–21 April 2017; pp. 121–130.

15. Wang, K.C.; Wei, T.H.; Shareef, N.; Shen, H.W. Ray-based exploration of large time-varying volume data using per-ray proxy
distributions. IEEE Trans. Vis. Comput. Graph. 2019, 26, 3299–3313. [CrossRef] [PubMed]

16. Liu, S.; Levine, J.A.; Bremer, P.T.; Pascucci, V. Gaussian mixture model based volume visualization. In Proceedings of the IEEE
Symposium on Large Data Analysis and Visualization (LDAV), Seattle, WA, USA, 14–15 October 2012; pp. 73–77.

17. Li, C.; Shen, H.W. Winding angle assisted particle tracing in distribution-based vector field. In Proceedings of the SIGGRAPH
Asia 2017 Symposium on Visualization, Bangkok, Thailand, 27–30 November 2017; pp. 1–8.

18. Dutta, S.; Shen, H.W. Distribution driven extraction and tracking of features for time-varying data analysis. IEEE Trans. Vis.
Comput. Graph. 2015, 22, 837–846. [CrossRef] [PubMed]

19. Wang, K.C.; Xu, J.; Woodring, J.; Shen, H.W. Statistical super resolution for data analysis and visualization of large scale
cosmological simulations. In Proceedings of the 2019 IEEE Pacific Visualization Symposium (PacificVis), Bangkok, Thailand,
23–26 April 2019; pp. 303–312.

20. Chaudhuri, A.; Lee, T.Y.; Shen, H.W.; Peterka, T. Efficient range distribution query in large-scale scientific data. In Proceedings of
the 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), Atlanta, GA, USA, 13–14 October 2013; pp.
125–126.

21. Chaudhuri, A.; Wei, T.H.; Lee, T.Y.; Shen, H.W.; Peterka, T. Efficient range distribution query for visualizing scientific data. In
Proceedings of the 2014 IEEE Pacific Visualization Symposium, Yokohama, Japan, 4–7 March 2014; pp. 201–208.

22. Chen, C.M.; Biswas, A.; Shen, H.W. Uncertainty modeling and error reduction for pathline computation in time-varying flow
fields. In Proceedings of the 2015 IEEE Pacific Visualization Symposium (PacificVis), Hangzhou, China, 14–17 April 2015;
pp. 215–222.

23. Blelloch, G.E. Vector Models for Data-Parallel Computing; MIT Press: Cambridge, MA, USA, 1990; Volume 2.
24. Lessley, B.; Perciano, T.; Heinemann, C.; Camp, D.; Childs, H.; Bethel, E.W. DPP-PMRF: Rethinking optimization for a probabilistic

graphical model using data-parallel primitives. In Proceedings of the 2018 IEEE 8th Symposium on Large Data Analysis and
Visualization (LDAV), Berlin, Germany, 21–21 October 2018; pp. 34–44.

25. Austin, W.; Ballard, G.; Kolda, T.G. Parallel tensor compression for large-scale scientific data. In Proceedings of the 2016 IEEE
international parallel and distributed processing symposium (IPDPS), Chicago, IL, USA, 23–27 May 2016; pp. 912–922.

26. Hawick, K.A.; Coddington, P.D.; James, H.A. Distributed frameworks and parallel algorithms for processing large-scale
geographic data. Parallel Comput. 2003, 29, 1297–1333. [CrossRef]

27. Yenpure, A.; Childs, H.; Moreland, K.D. Efficient Point Merging Using Data Parallel Techniques; Technical Report; Sandia National
Lab. (SNL-NM): Albuquerque, NM, USA, 2019.

28. Larsen, M.; Labasan, S.; Navrátil, P.A.; Meredith, J.S.; Childs, H. Volume Rendering Via Data-Parallel Primitives. In Proceedings
of the 15th Eurographics Symposium on Parallel Graphics and Visualization, Cagliari, Sardinia, Italy, 25–26 May 2015; pp. 53–62.

29. Lessley, B.; Li, S.; Childs, H. HashFight: A Platform-Portable Hash Table for Multi-Core and Many-Core Architectures. Electron.
Imaging 2020, 2020, 376-1–376-13. [CrossRef]

30. Li, S.; Marsaglia, N.; Chen, V.; Sewell, C.M.; Clyne, J.P.; Childs, H. Achieving Portable Performance for Wavelet Compression
Using Data Parallel Primitives. In Proceedings of the 17th Eurographics Symposium on Parallel Graphics and Visualization,
Barcelona, Spain, 12–13 June 2017; pp. 73–81.

31. Lessley, B.; Perciano, T.; Mathai, M.; Childs, H.; Bethel, E.W. Maximal clique enumeration with data-parallel primitives. In
Proceedings of the IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV), Phoenix, AZ, USA, 2 October 2017;
pp. 16–25.

32. Esbensen, K.H.; Guyot, D.; Westad, F.; Houmoller, L.P. Multivariate Data Analysis: In Practice: An Introduction to Multivariate
Data Analysis and Experimental Design. Available online: https://www.google.com/books?hl=en&lr=&id=Qsn6yjRXOaMC&
oi=fnd&pg=PA1&dq=Multivariate+data+analysis:+in+practice:+an+introduction+to+++multivariate+data+analysis+and+
experimental+design&ots=cD1l2TqOT2&sig=1CUTO79G3V3-gGuEODBYBODjDJs (accessed on 26 September 2021).

http://dx.doi.org/10.1109/MCG.2016.48
http://www.ncbi.nlm.nih.gov/pubmed/28113158
http://www.ncbi.nlm.nih.gov/pubmed/24051836
http://dx.doi.org/10.1109/TVCG.2019.2920130
http://www.ncbi.nlm.nih.gov/pubmed/31170075
http://dx.doi.org/10.1109/TVCG.2015.2467436
http://www.ncbi.nlm.nih.gov/pubmed/26529731
http://dx.doi.org/10.1016/j.parco.2003.04.001
http://dx.doi.org/10.2352/ISSN.2470-1173.2020.1.VDA-376
https://www.google.com/books?hl=en&lr=&id=Qsn6yjRXOaMC&oi=fnd&pg=PA1&dq=Multivariate+data+analysis:+in+practice:+an+introduction+to+++multivariate+data+analysis+and+experimental+design&ots=cD1l2TqOT2&sig=1CUTO79G3V3-gGuEODBYBODjDJs
https://www.google.com/books?hl=en&lr=&id=Qsn6yjRXOaMC&oi=fnd&pg=PA1&dq=Multivariate+data+analysis:+in+practice:+an+introduction+to+++multivariate+data+analysis+and+experimental+design&ots=cD1l2TqOT2&sig=1CUTO79G3V3-gGuEODBYBODjDJs
https://www.google.com/books?hl=en&lr=&id=Qsn6yjRXOaMC&oi=fnd&pg=PA1&dq=Multivariate+data+analysis:+in+practice:+an+introduction+to+++multivariate+data+analysis+and+experimental+design&ots=cD1l2TqOT2&sig=1CUTO79G3V3-gGuEODBYBODjDJs


Algorithms 2021, 14, 285 25 of 25

33. Zhang, Y. Improving the accuracy of direct histogram specification. Electron. Lett. 1992, 28, 213–214. [CrossRef]
34. Jones, M.; Viola, P. Fast Multi-View Face Detection. Available online: https://www.researchgate.net/profile/Michael-Jones-66

/publication/228362107_Fast_multi-view_face_detection/links/0fcfd50d35f8570d70000000/Fast-multi-view-face-detection.
pdf (accessed on 26 September 2021).

35. Chakravarti, R.; Meng, X. A study of color histogram based image retrieval. In Proceedings of the Sixth International Conference
on Information Technology: New Generations, Las Vegas, NV, USA, 27–29 April 2009; pp. 1323–1328.

36. Bachtis, D.; Aarts, G.; Lucini, B. Extending machine learning classification capabilities with histogram reweighting. Phys. Rev. E
2020, 102, 033303. [CrossRef] [PubMed]

37. Hazarika, S.; Biswas, A.; Shen, H.W. Uncertainty visualization using copula-based analysis in mixed distribution models. IEEE
Trans. Visual Comput. Graphics 2017, 24, 934–943. [CrossRef] [PubMed]

38. Hazarika, S.; Dutta, S.; Shen, H.W.; Chen, J.P. Codda: A flexible copula-based distribution driven analysis framework for
large-scale multivariate data. IEEE Trans. Visual Comput. Graphics 2018, 25, 1214–1224. [CrossRef] [PubMed]

39. IEEE Visualization 2004 Contest. Available online: http://vis.computer.org/vis2004contest/ (accessed on 26 September 2021).
40. Nyx Simulation. https://amrex-astro.github.io/Nyx/ (accessed on 26 September 2021).

http://dx.doi.org/10.1049/el:19920132
https://www.researchgate.net/profile/Michael-Jones-66/publication/228362107_Fast_multi-view_face_detection/links/0fcfd50d35f8570d70000000/Fast-multi-view-face-detection.pdf
https://www.researchgate.net/profile/Michael-Jones-66/publication/228362107_Fast_multi-view_face_detection/links/0fcfd50d35f8570d70000000/Fast-multi-view-face-detection.pdf
https://www.researchgate.net/profile/Michael-Jones-66/publication/228362107_Fast_multi-view_face_detection/links/0fcfd50d35f8570d70000000/Fast-multi-view-face-detection.pdf
http://dx.doi.org/10.1103/PhysRevE.102.033303
http://www.ncbi.nlm.nih.gov/pubmed/33075969
http://dx.doi.org/10.1109/TVCG.2017.2744099
http://www.ncbi.nlm.nih.gov/pubmed/28866523
http://dx.doi.org/10.1109/TVCG.2018.2864801
http://www.ncbi.nlm.nih.gov/pubmed/30130206
http://vis.computer.org/vis2004contest/
https://amrex-astro.github.io/Nyx/

	Introduction
	Related Work
	Distribution-Based Large Data Processing and Analysis
	Parallelization of Modeling Distribution
	Data Parallel Primitives

	Background
	Scientific Dataset
	Distribution-Based Scientific Data Modeling
	Data Parallel Primitives

	Histogram Modeling Using Data-Parallel Primitives
	Gaussian Mixture Model Modeling Using Data-Parallel Primitives
	Input and Output Arrays
	M-Step
	Weight Estimation
	Mean Vector Estimation
	Covariance Matrix Estimation

	E-Step
	Responsibility Update
	EM Termination Conditions
	Improvement of the Shared Memory Environment
	Covariance Matrix Computation Simplification

	Experiment
	Performance Analysis of the Algorithms
	Parameter Analysis of the Algorithms
	Histogram
	GMM


	Use Cases
	Conclusions and Future Work
	Discussion
	References

