Ant Colony Optimization with Warm-Up
Abstract
:1. Introduction
2. Literature Review
3. Warm-Up
3.1. General Considerations
3.2. The Notation Used
- are the iterations of the warm-up process;
- are the nodes of the graph;
- C is the matrix of costs, where each element is the cost associated to the edge ;
- T is the pheromone matrix of the ACO, where each element is the pheromone on the edge ;
- is the matrix of probabilities in iteration m, where each element is the probability to increase the pheromone on the edge during the iteration m;
- is the matrix of updates in iteration m, where each element says how much the pheromone on the edge is supposed to be increased during the iteration m;
- are classic and well-known parameters of the ACO [1]: and define the probability to select a specific edge according to the pheromone on it, is known as evaporation rate and defines the decrease of the pheromone that takes place at each iteration, Q defines the quantity of pheromone laid by the ants at each iteration, and, is the starting pheromone on each edge;
- is a variant of , with a different value used during the warm-up;
- is the identity matrix of size ;
- ∘ is the Hadamard product.
3.3. The Procedure
3.4. The Parameters Tuning
4. Computational Experiments
4.1. General Considerations
4.2. The Comparison Algorithms
4.3. Collected Information
4.4. Results Obtained on Generic TSP Instances
4.5. Results Obtained in the Simulation of the Real Warehouse
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Shi, X.; Marchese, M.; Liang, Y. An ant colony optimization method for generalized TSP problem. Prog. Nat. Sci. 2008, 18, 1417–1422. [Google Scholar] [CrossRef]
- Cheng, C.B.; Mao, C.P. A modified ant colony system for solving the traveling salesman problem with time windows. Math. Comput. Model. 2007, 46, 1225–1235. [Google Scholar] [CrossRef]
- Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 344, 243–278. [Google Scholar] [CrossRef]
- Deneubourg, J.L.; Aron, S.; Goss, S.; Pasteels, J.M. The self-organizing exploratory pattern of the argentine ant. J. Insect Behav. 1990, 3, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.; Hertz, A. Ants can colour graphs. J. Oper. Res. Soc. 1997, 48, 295–305. [Google Scholar] [CrossRef]
- Guan, B.; Zhao, Y.; Li, Y. An improved ant colony optimization with an automatic updating mechanism for constraint satisfaction problems. Expert Syst. Appl. 2021, 164, 114021. [Google Scholar] [CrossRef]
- Socha, K.; Sampels, M.; Manfrin, M. Ant algorithms for the university course timetabling problem with regard to the state-of-the-art. Work. Appl. Evol. Comput. 2003, 2611, 334–345. [Google Scholar]
- Bertolini, M.; Melloni, R.; Neroni, M. Order Picking: A Comparison of Heuristic and Metaheuristic Approaches. 25th Summer School Francesco Turco. Available online: https://drive.google.com/file/d/1SbF1pwCfHJKUdq4ohGfiE2azIvvxF8OO/view (accessed on 11 October 2021).
- De Santis, R.; Montanari, R.; Vignali, G.; Bottani, E. An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses. Eur. J. Oper. Res. 2018, 267, 120–137. [Google Scholar] [CrossRef]
- Gambardella, L.M.; Taillard, É.; Agazzi, G. Macs-vrptw: A multiple colony system for vehicle routing problems with time windows. In New Ideas in Optimization; McGraw-Hill Ltd.: Maidenhead, UK, 1999. [Google Scholar]
- Bell, J.E.; McMullen, P.R. Ant colony optimization techniques for the vehicle routing problem. Adv. Eng. Inform. 2004, 18, 41–48. [Google Scholar] [CrossRef]
- Meuleau, N.; Dorigo, M. Ant colony optimization and stochastic gradient descent. Artif. Life 2002, 8, 103–121. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Wang, C.; Wang, J. Ant colony optimization for resource-constrained project scheduling with generalized precedence relations. In Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, Sacramento, CA, USA, 5 November 2003; pp. 284–289. [Google Scholar]
- Merkle, D.; Middendorf, M.; Schmeck, H. Ant colony optimization for resource-constrained project scheduling. IEEE Trans. Evol. Comput. 2002, 6, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, C.; Ziegler, H. Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. Eur. J. Oper. Res. 2004, 155, 426–438. [Google Scholar] [CrossRef]
- Gambardella, L.M.; Dorigo, M. An ant colony system hybridized with a new local search for the sequential ordering problem. INFORMS J. Comput. 2000, 12, 237–255. [Google Scholar] [CrossRef] [Green Version]
- Blum, C. Beam-ACO—Hybridizing ant colony optimization with beam search: An application to open shop scheduling. Comput. Oper. Res. 2005, 32, 1565–1591. [Google Scholar] [CrossRef]
- Singh, H.; Kaur, P. ACO with Heuristic Desirability for Web Page Positioning Problem. In Metaheuristic and Evolutionary Computation: Algorithms and Applications; Springer: Singapore, 2021; pp. 463–475. [Google Scholar]
- Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Stützle, T.; Hoos, H.H. MAX–MIN ant system. Future Gener. Comput. Syst. 2000, 16, 889–914. [Google Scholar] [CrossRef]
- Valdez, F. Swarm Intelligence: A Review of Optimization Algorithms Based on Animal Behavior. Recent Adv. Hybrid Intell. Syst. Based Soft Comput. 2020, 915, 273–298. [Google Scholar]
- Afshar, A.; Massoumi, F.; Afshar, A.; Mariño, M.A. State of the art review of ant colony optimization applications in water resource management. Water Resour. Manag. 2015, 29, 3891–3904. [Google Scholar] [CrossRef]
- Zhou, Y. Runtime analysis of an ant colony optimization algorithm for TSP instances. IEEE Trans. Evol. Comput. 2009, 13, 1083–1092. [Google Scholar] [CrossRef]
- Bellaachia, A.; Alathel, D. A local pheromone initialization approach for ant colony optimization algorithm. In Proceedings of the IEEE International Conference on Progress in Informatics and Computing, Shanghai, China, 16–18 May 2014; pp. 133–138. [Google Scholar]
- Dai, Q.; Ji, J.; Liu, C. An effective initialization strategy of pheromone for ant colony optimization. In Proceedings of the Fourth International on Conference on Bio-Inspired Computing, Beijing, China, 16–19 October 2009; pp. 1–4. [Google Scholar]
- Mavrovouniotis, M.; Yang, S. Adapting the pheromone evaporation rate in dynamic routing problems. In European Conference on the Applications of Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 606–615. [Google Scholar]
- Shuang, B.; Chen, J.; Li, Z. Study on hybrid PS-ACO algorithm. Appl. Intell. 2011, 34, 64–73. [Google Scholar] [CrossRef]
M | Problem 1 # Nodes: 20) | Problem 2 (# Nodes: 30) | Problem 3 (# Nodes: 40) | ||||
---|---|---|---|---|---|---|---|
Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | ||
200 | 0.5 | 58,526 | 3050 | 61,487 | 5541 | 68,708 | 6035 |
0.9 | 58,765 | 3257 | 65,716 | 6749 | 74,444 | 9170 | |
1.0 | 46,455 | 720 | 49,971 | 0 | 55,726 | 948 | |
400 | 0.5 | 52,711 | 2255 | 65,110 | 5605 | 71,279 | 5114 |
0.9 | 56,299 | 6108 | 67,829 | 4789 | 73,006 | 2915 | |
1.0 | 46,017 | 355 | 49,971 | 0 | 55,609 | 1069 | |
600 | 0.5 | 56,691 | 4502 | 64,197 | 3450 | 73,063 | 5743 |
0.9 | 72,054 | 2056 | 65,191 | 7032 | 81,485 | 4261 | |
1.0 | 46,434 | 166 | 50,020 | 306 | 55,800 | 491 |
G | N | ACO | ACOWU | Dai | Bellaachia | ||||
---|---|---|---|---|---|---|---|---|---|
Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | ||
0 | 20 | 4453 | 162 | 4471 | 159 | 4496 | 130 | 5154 | 463 |
0 | 30 | 6079 | 513 | 5539 | 118 | 5497 | 230 | 5994 | 134 |
0 | 40 | 6915 | 422 | 6468 | 171 | 6782 | 387 | 7421 | 444 |
0 | 50 | 7487 | 199 | 7563 | 382 | 7565 | 518 | 8472 | 380 |
0 | 60 | 9250 | 392 | 8236 | 276 | 8106 | 166 | 9080 | 884 |
1 | 20 | 4276 | 115 | 4062 | 121 | 4146 | 89 | 4993 | 382 |
1 | 30 | 5663 | 298 | 5261 | 148 | 5627 | 420 | 6162 | 475 |
1 | 40 | 6849 | 589 | 6061 | 373 | 6301 | 226 | 7502 | 794 |
1 | 50 | 7550 | 637 | 6940 | 216 | 7414 | 404 | 8152 | 178 |
1 | 60 | 9415 | 1278 | 7861 | 408 | 8293 | 828 | 9572 | 479 |
2 | 20 | 4693 | 389 | 4494 | 47 | 4503 | 148 | 4964 | 136 |
2 | 30 | 5731 | 243 | 5500 | 210 | 5687 | 252 | 6484 | 254 |
2 | 40 | 6940 | 594 | 6233 | 269 | 6698 | 408 | 7639 | 585 |
2 | 50 | 8853 | 1029 | 7873 | 95 | 9076 | 552 | 9101 | 492 |
2 | 60 | 9462 | 348 | 8612 | 271 | 9266 | 801 | 10,457 | 677 |
3 | 20 | 3906 | 157 | 3808 | 68 | 3874 | 42 | 4512 | 340 |
3 | 30 | 5529 | 241 | 5243 | 141 | 5514 | 185 | 6359 | 459 |
3 | 40 | 7097 | 499 | 6562 | 140 | 6955 | 413 | 7914 | 503 |
3 | 50 | 7686 | 569 | 7049 | 217 | 7798 | 458 | 8308 | 770 |
3 | 60 | 9041 | 470 | 8028 | 150 | 8261 | 628 | 9309 | 585 |
4 | 20 | 4729 | 261 | 4407 | 167 | 4510 | 165 | 5206 | 185 |
4 | 30 | 5696 | 541 | 5344 | 270 | 5857 | 312 | 6271 | 229 |
4 | 40 | 7324 | 404 | 6586 | 266 | 7342 | 344 | 7710 | 331 |
4 | 50 | 8092 | 757 | 7400 | 139 | 8113 | 160 | 9145 | 774 |
4 | 60 | 9090 | 779 | 8234 | 296 | 8730 | 49 | 9355 | 494 |
G | N | ACO | ACOWU | Dai | Bellaachia | ||||
---|---|---|---|---|---|---|---|---|---|
Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | ||
0 | 20 | 1080 | 944 | 1632 | 627 | 1063 | 737 | 804 | 938 |
0 | 30 | 638 | 1143 | 862 | 881 | 700 | 880 | 1157 | 684 |
0 | 40 | 992 | 887 | 1497 | 480 | 654 | 491 | 707 | 307 |
0 | 50 | 2005 | 549 | 1261 | 648 | 407 | 460 | 977 | 532 |
0 | 60 | 1064 | 691 | 647 | 360 | 1666 | 299 | 1078 | 1002 |
1 | 20 | 310 | 154 | 919 | 401 | 1100 | 490 | 381 | 373 |
1 | 30 | 713 | 428 | 935 | 780 | 728 | 747 | 1092 | 251 |
1 | 40 | 672 | 852 | 812 | 666 | 809 | 916 | 1046 | 958 |
1 | 50 | 2050 | 1258 | 1112 | 889 | 1581 | 593 | 840 | 497 |
1 | 60 | 1186 | 910 | 1081 | 969 | 1274 | 836 | 896 | 687 |
2 | 20 | 972 | 715 | 837 | 607 | 883 | 195 | 609 | 387 |
2 | 30 | 1598 | 982 | 1083 | 355 | 1321 | 956 | 612 | 370 |
2 | 40 | 598 | 277 | 1344 | 896 | 1293 | 794 | 1406 | 728 |
2 | 50 | 1072 | 660 | 1262 | 699 | 644 | 549 | 1192 | 953 |
2 | 60 | 1542 | 993 | 1613 | 934 | 1275 | 532 | 1394 | 610 |
3 | 20 | 1089 | 687 | 1101 | 686 | 987 | 640 | 648 | 447 |
3 | 30 | 1509 | 983 | 969 | 596 | 1672 | 881 | 846 | 533 |
3 | 40 | 982 | 1044 | 1202 | 977 | 981 | 682 | 973 | 798 |
3 | 50 | 1860 | 1034 | 727 | 947 | 866 | 1063 | 885 | 806 |
3 | 60 | 570 | 243 | 819 | 369 | 1836 | 900 | 766 | 376 |
4 | 20 | 739 | 880 | 1348 | 917 | 1254 | 1067 | 586 | 227 |
4 | 30 | 1065 | 607 | 1341 | 912 | 621 | 521 | 907 | 813 |
4 | 40 | 1391 | 770 | 458 | 635 | 1575 | 1016 | 911 | 663 |
4 | 50 | 1918 | 984 | 868 | 812 | 981 | 634 | 584 | 318 |
4 | 60 | 1197 | 1110 | 566 | 357 | 815 | 956 | 1178 | 1168 |
G | N | ACO | ACOWU | Dai | Bellaachia | ||||
---|---|---|---|---|---|---|---|---|---|
Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | ||
0 | 20 | 0.639 | 0.302 | 0.794 | 0.074 | 0.617 | 0.211 | 0.504 | 0.264 |
0 | 30 | 1.034 | 0.69 | 1.19 | 0.519 | 1.168 | 0.572 | 1.339 | 0.335 |
0 | 40 | 2.018 | 0.739 | 2.401 | 0.379 | 1.764 | 0.491 | 2.001 | 0.201 |
0 | 50 | 4.022 | 0.475 | 3.922 | 0.785 | 2.298 | 0.702 | 3.66 | 1.049 |
0 | 60 | 5.469 | 1.931 | 4.065 | 0.876 | 6.816 | 0.863 | 4.515 | 2.083 |
1 | 20 | 0.349 | 0.043 | 0.504 | 0.107 | 0.553 | 0.128 | 0.355 | 0.098 |
1 | 30 | 1.008 | 0.242 | 1.097 | 0.371 | 0.978 | 0.424 | 1.124 | 0.142 |
1 | 40 | 1.568 | 0.752 | 1.876 | 0.563 | 1.799 | 0.81 | 2.032 | 0.727 |
1 | 50 | 3.788 | 1.248 | 3.053 | 0.991 | 3.9 | 0.884 | 2.815 | 0.708 |
1 | 60 | 4.765 | 1.808 | 4.902 | 2.114 | 5.695 | 2.089 | 4.717 | 1.688 |
2 | 20 | 0.63 | 0.25 | 0.566 | 0.189 | 0.572 | 0.077 | 0.513 | 0.123 |
2 | 30 | 1.669 | 0.559 | 1.386 | 0.242 | 1.514 | 0.57 | 1.051 | 0.224 |
2 | 40 | 1.869 | 0.355 | 2.556 | 0.795 | 2.556 | 0.486 | 2.675 | 0.717 |
2 | 50 | 3.833 | 1.192 | 4.048 | 1.422 | 3.054 | 1.078 | 3.7 | 1.295 |
2 | 60 | 5.965 | 2.003 | 6.11 | 1.496 | 5.815 | 1.269 | 5.97 | 1.593 |
3 | 20 | 0.692 | 0.226 | 0.718 | 0.229 | 0.686 | 0.22 | 0.538 | 0.15 |
3 | 30 | 1.578 | 0.465 | 1.44 | 0.429 | 1.598 | 0.356 | 1.236 | 0.354 |
3 | 40 | 2.011 | 0.863 | 2.37 | 0.569 | 2.229 | 0.669 | 2.142 | 1.046 |
3 | 50 | 4.535 | 1.258 | 2.936 | 1.394 | 3.235 | 1.708 | 3.203 | 1.504 |
3 | 60 | 4.087 | 0.6 | 4.716 | 0.979 | 6.637 | 1.81 | 4.121 | 0.966 |
4 | 20 | 0.459 | 0.211 | 0.669 | 0.27 | 0.573 | 0.227 | 0.419 | 0.059 |
4 | 30 | 1.182 | 0.35 | 1.295 | 0.453 | 0.923 | 0.301 | 1.05 | 0.434 |
4 | 40 | 2.334 | 0.736 | 1.44 | 0.626 | 2.394 | 0.865 | 1.828 | 0.64 |
4 | 50 | 3.795 | 0.964 | 2.826 | 1.222 | 2.988 | 0.933 | 2.312 | 0.467 |
4 | 60 | 4.375 | 1.93 | 3.347 | 0.77 | 3.724 | 1.741 | 4.196 | 1.889 |
Cost of the Best Solution Found | ||||||||
---|---|---|---|---|---|---|---|---|
N | ACO | ACOWU | Dai | Bellaachia | ||||
Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | |
20 | 543 | 13 | 552 | 15 | 537 | 9 | 714 | 37 |
30 | 604 | 14 | 626 | 15 | 616 | 18 | 864 | 34 |
40 | 804 | 30 | 781 | 18 | 778 | 18 | 1070 | 44 |
50 | 806 | 30 | 755 | 8 | 792 | 43 | 1138 | 69 |
60 | 1026 | 144 | 1001 | 56 | 995 | 46 | 1420 | 74 |
Solutions Explored before Finding the Best | ||||||||
N | ACO | ACOWU | Dai | Bellaachia | ||||
Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | |
20 | 1157 | 738 | 707 | 520 | 610 | 555 | 335 | 246 |
30 | 1111 | 542 | 860 | 665 | 1091 | 293 | 921 | 477 |
40 | 1266 | 590 | 1041 | 343 | 1660 | 846 | 1230 | 280 |
50 | 1009 | 771 | 1721 | 781 | 1656 | 861 | 1096 | 466 |
60 | 1273 | 1036 | 1925 | 401 | 1460 | 950 | 544 | 373 |
Computational Times | ||||||||
N | ACO | ACOWU | Dai | Bellaachia | ||||
Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | Avg. | St.Dev. | |
20 | 0.473 | 0.162 | 0.366 | 0.111 | 0.365 | 0.121 | 0.289 | 0.055 |
30 | 0.982 | 0.249 | 0.872 | 0.309 | 0.948 | 0.131 | 0.876 | 0.218 |
40 | 1.824 | 0.43 | 1.617 | 0.266 | 1.961 | 0.494 | 1.722 | 0.217 |
50 | 2.334 | 0.838 | 3.103 | 0.748 | 3.022 | 0.716 | 2.494 | 0.553 |
60 | 3.821 | 1.626 | 4.847 | 0.425 | 3.983 | 1.274 | 2.672 | 0.653 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neroni, M. Ant Colony Optimization with Warm-Up. Algorithms 2021, 14, 295. https://doi.org/10.3390/a14100295
Neroni M. Ant Colony Optimization with Warm-Up. Algorithms. 2021; 14(10):295. https://doi.org/10.3390/a14100295
Chicago/Turabian StyleNeroni, Mattia. 2021. "Ant Colony Optimization with Warm-Up" Algorithms 14, no. 10: 295. https://doi.org/10.3390/a14100295
APA StyleNeroni, M. (2021). Ant Colony Optimization with Warm-Up. Algorithms, 14(10), 295. https://doi.org/10.3390/a14100295