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Abstract: High-resolution remote sensing image building target detection has wide application value
in the fields of land planning, geographic monitoring, smart cities and other fields. However, due
to the complex background of remote sensing imagery, some detailed features of building targets
are less distinguishable from the background. When carrying out the detection task, it is prone
to problems such as distortion and the missing of the building outline. To address this challenge,
we developed a novel building target detection method. First, a building detection method based
on rectangular approximation and region growth was proposed, and a saliency detection model
based on the foreground compactness and local contrast of manifold ranking is used to obtain the
saliency map of the building region. Then, the boundary prior saliency detection method based on
the improved manifold ranking algorithm was proposed for the target area of buildings with low
contrast with the background in remote sensing imagery. Finally, fusing the results of the rectangular
approximation-based and saliency-based detection, the proposed fusion method improved the Recall
and F1 value of building detection, indicating that this paper provides an effective and efficient
high-resolution remote sensing image building target detection method.

Keywords: optical remote sensing images; building target detection; saliency model; data fusion

1. Introduction

Accurate building target detection has important scientific and practical significance
in urban 3D modeling and urban dynamic change management. The problem of building
target detection has been a research hotspot in the field of remote sensing; however, timely
and accurate detection of building targets on high-resolution remote sensing images is a
challenge. With the development of remote sensing technology, the spatial resolution of
optical remote sensing images has been gradually improved, and nowadays it has entered
the sub-meter level, and the related research on remote sensing images has become an
important part of the field, providing unprecedented opportunities for the development of
remote sensing applications [1–3].

Building target detection based on remote sensing images has been developed rapidly
with the development and popularization of remote sensing technology [4–6]. At present,
the research on building detection based on remote sensing images at home and abroad can
be mainly divided into three types of methods based on geometric structure, supervised
classification and texture features.

Compared with the non-building backgrounds, the building targets have relatively
regular geometric structures, and their geometric features are the most obvious and typical
characteristics of buildings, which are inherent properties not easily affected by changes
in external temperature, humidity, and light. Therefore, geometric structure-based detec-
tion methods are one of the most popular methods in the research of building detection.
Mi et al. [7] used Scale Invariant Feature Transform (SIFT) (in Table A1) and adaptive win-
dowed Hoff transform to extract the corner points of building targets and the line segments
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forming the boundary for detection. Zhang et al. [8] proposed a building detection method
for very high spatial resolution (VHR) images based on the classical local binarization
algorithm. The geometric structure-based approach is popular for research. It takes advan-
tage of the fact that the basic structure of the building target is composed of a rectangle of
different shapes, so it adopts the detection of right angles, line segments or corner points
of the rectangular structure to extract features such as point, line, surface features and
gradient features of the building, and then realize the detection of the building.

With the rapid development and application of deep learning, there are more and more
examples of deep learning algorithm applications in building detection, including YOLO
series, CNN, ImageNet, DeconvNet and many other algorithms. Vakalopoulou et al. [9]
used a very large training dataset for supervised classification, using powerful CNNs
and a huge pre-trained ImageNet to extract buildings, with good quantitative validation
results, but high difficulty and huge time consumption to obtain the training dataset.
Zhang et al. [10] proposed a method for automatic detection of suburban buildings based
on super-scale saliency sliding window detection of candidate regions combined with
CNNs. Liu et al. [11] proposed a hierarchical building detection framework based on
deep-learning models. The Gaussian pyramid technique is used to construct a generative
model of multi-layer training samples, and a building area suggestion network is proposed
to quickly extract candidate building areas. Convolutional neural networks (CNNs) are
used to build a multi-layer building detection model for detecting building targets in
remote sensing images. The advantages of the deep-learning-based approach are high
accuracy and ease of use, while the disadvantages are high difficulty in obtaining training
datasets and high time consumption.

Texture features contain image color, contrast, gray-scale histogram, gray-scale co-
occurrence matrix, all of which are very important information for the target detection
process of remote sensing images. Sidike et al. [12] proposed an adaptive local texture
feature detection method based on continuous background removal. Manandhar et al. [13]
proposed to extract buildings based on contextual and spectral difference segmentation.
First, a single-class support vector machine (SVM) is used to determine artificial structures,
such as buildings, roads, and then a conditional threshold is used for texture segmentation
to extract buildings, and finally noise, vegetation and shadows are removed from the
candidate building areas.

Currently, the basic concept of optical remote sensing image building target detection
research is to use feature differences, that is, the geometric structure, color, contrast and
spectral characteristics of the building target itself to separate the building target from the
background, but when applied to remote sensing images with low resolution, or when the
contrast between the building area and the background area in the image is low, most of
the methods are difficult to maintain a strong applicability. Local occlusion of buildings,
different lighting conditions, and different types of interference, such as stacks, ships,
playgrounds, and flower beds, all seriously affect the detection results. Moreover, most
of the methods aim to detect the top surface of the building target, which is difficult to
detect when there is a silhouette of the building target in the image. The existing building
target detection methods, deep learning-based building detection methods are more widely
used. Among them, the pixel-based classification and recognition methods can hardly
consider the neighborhood information around the pixels, so the contours of buildings
cannot be well guaranteed. The existing wavelet transform-based building detection
methods, which is difficult for the detection of complex building backgrounds and the
study of complex building roofs. Combining the above problems and shortcomings, it is
important to study building detection techniques that resist low contrast between building
targets and background, detect the contours of building targets, and remove various types
of interference.

The remainder of this paper is organized as follows. Section 2 introduces the experimental
data used in this work, details the specific workflow of research, including building detection
based on rectangular approximation and region growing, building detection based on multi-
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feature saliency, fusion of the rectangular approximation-based and saliency-based detection
results, and evaluation. Section 3 is a comparative analysis of experimental results. Discussions
and conclusions are presented in Sections 4 and 5, respectively.

2. Data and Methodology
2.1. Data

The details of the data used for the experiments are shown in Tables 1 and 2. This
experiment used the Jilin-1 Gaofen 03-1 satellites with a spatial resolution of 1 m, and the
image acquisition date is 11 October 2020. The study area is located in Yokosuka, Japan.
Four representative images were intercepted from the original image for experimentation.

Table 1. Jilin-1 Gaofen 03-1 satellite imagery information.

Data/Resolution Roll Satellite Angle Pitch Satellite Angle Yaw Satellite Angle

JL1GF03B01/1m −25.60 1.29 2.98

Table 2. Captured experimental image information.

Image Place/Time Size Space Occupied

Image I
Image II
Image III
Image IV

Port/10 November
2020

700 × 700 (I)
700 × 700 (II)
800 × 800 (III)
700 × 700 (IV)

407 KB (I)
483 KB (II)
509 KB (III)
422 KB (IV)

The optical remote sensing images used in this experiment and the corresponding
ground truth maps are shown in Figure 1.
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Figure 1. The original experimental images and the corresponding ground truth maps. (a) Original image I, (b) Ground
truth I, (c) Original image II, (d) Ground truth II, (e) Original image III, (f) Ground truth III, (g) Original image IV, (h) Ground
truth IV.

2.2. Methodology

This paper focuses on the research of building target detection based on optical remote
sensing images. First, since the common components of a typical geometric structure
of the vertical top view of a building are right-angle primitives composed of mutually
perpendicular line segments, right-angle primitives are obtained using the broken line
segment connection method and the right-angle detection method based on voting strategy.



Algorithms 2021, 14, 300 4 of 20

Then, the inner and outer corners are classified to achieve multiple shapes of building top
surface detection, and finally the complete top surface area of the building is obtained by
using the image segmentation algorithm based on region growth. However, detection by
shape features only can lead to problems such as incomplete detection of the building target
facade area and inaccurate results caused by light occlusion. Therefore, the compactness
and local contrast-based saliency model of the manifold ranking algorithm is introduced,
while considering the low contrast between the building target areas and the background
in remote sensing images, and then using the boundary priori saliency detection of the
improved manifold ranking algorithm. The bounding box proposal is introduced to remove
the environmental noise, and finally the final saliency map is obtained by integrating
each detection result and setting the adaptive threshold to obtain the mask map. The
rectangular approximation-based and the saliency-based detection results are fused and
the interference in the ocean area is removed to obtain the final detection results. In this
paper, the unbold notations represent scalars, the lowercase boldface letters represent
vectors, and the uppercase boldface letters represent matrices.

2.2.1. Building Detection Based on Rectangular Approximation and Region Growth

The geometric structure of a typical vertical top view of a building, including L-
shaped building, concave building, rectangular building and cross-shaped building, has
a common component of right-angle primitives composed of mutually perpendicular
line segments, and the extraction of such right-angle primitives with the rectangular
approximation technique based on right-angle primitives can better extract buildings with
different vertical top views of geometric structures. Figure 2 presents the flowchart of the
algorithm used in this study.
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Figure 2. The flowchart of building detection based on rectangular approximation.

Extracting right-angle primitives of buildings requires the detection of line segments
in remote sensing images. The LSD-based line segment detection method has a faster
extraction speed and has been successfully applied in airport detection and the road
detection of remote sensing images. For this purpose, the line segments of remote sensing
images are extracted using the LSD [14] method, and the line segment detection results are
shown in Figure 3.
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The results of LSD show that the extracted line segments are fractured at the point
where the gradient changes strongly. In order to prevent the fracture of the boundary line
of the building from adversely affecting the building detection results, a fractured line
segment connection method is constructed to optimize the LSD detection results.

Connectable broken line segments satisfy the approximate covariance as well as the
small distance in the direction of covariance. Based on these two properties, the following
criterion can be constructed to discriminate whether all straight-line pairs are broken pairs.〈

li, lj
〉

‖li‖2‖lj‖2
≤ δ1 (1)

〈
di1 − dj1,⊥

(
ci − cj

)〉
‖⊥
(
ci − cj

)
‖2

≤ δ2 (2)

min
k,m∈{1,2}

(〈
dik − djm, ci − cj

〉
‖ci − cj‖2

)
≤ δ3, (3)

where li, lj, di1, dj1, ci, cj are the vector of the ith and the jth line segments, the coordinates
of the endpoint 1 of the ith and the jth line segments, the coordinates of the midpoint of the
ith and the jth line segments, respectively. k, m ∈ {1, 2} represents endpoint 1 or endpoint
2 of the line segment, and δ1, δ2, δ3 are the threshold values.

The first discriminant indicates the cosine of two line segments, that is, line segment
parallelism detection. ⊥

(
ci − cj

)
indicates the zero space of

(
ci − cj

)
. The second discrim-

inant indicates the projection of the distance of the endpoints of the line segment in the
⊥
(
ci − cj

)
direction is less than the threshold, that is, line segment co-linearity detection.

The third discriminant indicates the projection of the line segment composed of any end-
points of two line segments in

(
ci − cj

)
is less than the threshold, that is, line segment break

length discrimination.
The above three discriminatory formulae are parallelism, covariance and fracture

distance discriminations, and the current line segment pair is connected if the above condi-
tions are satisfied. Removing vehicles and other interfering line segments further improves
the accuracy of subsequent building target extraction and reduces the computational effort.

We construct a right-angle primitive extraction method to detect the right-angle
primitives of buildings. Given that the mutually perpendicular line segments of buildings
in remote sensing images may not be adjacent, the right-angle primitive detection method
needs to be ambiguous to tolerate the case of non-adjacent perpendicular line segments.
A position-angle voting space V ∈ RM×N×A is created for extracting potential right-angle
primitives, where M is the number of rows of the image, N is the number of columns of
the image, and A is the number of intervals of the angle. For each straight-line segment l,
the neighboring entrances centered at each endpoint at the corresponding entrance of the
position angle voting space are voted simultaneously as shown in Equation (4).

V(i + τ, j + τ, α + τ) = V(i + τ, j + τ, α + τ) + 1 − ε ≤ τ ≤ ε, (4)

where i, j and α are the row and column coordinates of an endpoint of the line segment and
the direction of the line segment, respectively. The line segment direction can be calculated
simply using the inverse cosine, which is shown in Equation (5).

α = round
(

arccos
(
〈li, β〉
‖li‖2

)
/∆α

)
, (5)
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where β is the horizontal unit vector and ∆α is the angular interval. After traversing all
the line segments, the potential right-angle primitives are extracted using the following
Equation (6).

R = V&V ×3 F

F(i, j) =
{

1 i f |j− i| = A/2
0 otherwise

(6)

where F is the shift matrix, R is the right-angle primitive detection result, ×3 represents the
third dimension of V is multiplied by F, and A is the number of intervals of the angle.

For a typical L-shaped and cross-shaped building, the endpoints of the right-angle
edges of the outer corners of the building are dependent on the two inner corners of the
building and are oriented in the opposite direction to the right-angle primitives of the outer
corners. Using this feature, all right-angle primitives in the voting space are traversed, and
whether the right-angle primitive is the building outer corner primitive is determined by
Equation (7).

max{α− α1, α− α2} ≤ δ, (7)

where α is the right-angle primitive to be identified, α1 and α2 are the right-angle primitives
at the endpoints of the right-angle edges of the primitive, and δ is the outer-angle threshold.
If the above conditions are satisfied, then α is considered to be an exterior right-angle
primitive, otherwise α is an interior right-angle primitive.

Based on the final right-angle primitive extraction results, a rectangular region can be
obtained using the right-angle and the two sides enclosing the right-angle, which can be
considered as the building region.

Since the studied building targets include L-shaped buildings, concave buildings,
rectangular buildings and cross-shaped buildings, a single rectangular approximation can
only obtain a local area of the building top surface. In order to obtain the complete building
top surface, we combine the similar spectral characteristics of the building top surface,
extract the seed points in the rectangular area formed by the right-angle edges, and use the
proposed restricted region growth algorithm to obtain complete building top surface. The
specific steps are as follows.

Step 1: Extract the seed points contained in the right-angle edges.
Step 2: The larger rectangular area enclosed by the extensions of the right-angled

edges is used as the maximum growth region.
Step 3: Execution of region growth algorithm.
The complete segmentation of the building is achieved using the region growing

algorithm to obtain the final detection results.

2.2.2. Diffusion-Based Saliency Model

In order to improve the accuracy of building detection and reduce missed detection
and misjudgment, the saliency model is used for building target detection. The specific
flowchart is shown in Figure 4.
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In order to improve the accuracy of building detection and reduce missed detection
and misjudgment, the saliency model is used for building target detection. The specific
flowchart is shown in Figure 4. First, the SLIC super-pixel segmentation method is used.
This method uses the K-means algorithm to generate the super-pixels, and the color values
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and spatial distances of the images together define the distance metric function used for
clustering. The results of super-pixel segmentation are shown in Figure 5.
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After generating the SLIC super-pixel model, a construction graph G = (V,E) is ob-
tained, where V represents the node, E represents the undirected edge connecting the
nodes, and the saliency values of adjacent nodes are very similar with high probability.
And any two boundary nodes of the construction graph are adjacent to each other, thus
forming a closed-loop graph, which can effectively reduce the geodesic distance of similar
super-pixels, and then optimize the ranking results of the manifold ranking algorithm.

Assuming that Ni denotes the set of neighboring points of node vi, and all nodes
around the image boundary are considered as neighboring points of each other. Cal-
culate the distance between the nodes in the CIELab color space, that is, the difference
between the mean values of the superpixels corresponding to the two nodes and normalize
them to obtain the incidence matrix W and use manifold ranking algorithm to achieve
saliency propagation.

The tightness of the super-pixel blocks is defined by the degree of similarity between
super-pixel blocks and spatial location, and to describe the similarity between super-pixels
more precisely, define A =

[
aij
]

N×N as the color similarity metric between a pair of super-
pixels vi and vj, where aij = exp

(
−‖ci − cj‖/σ2), and use the manifold ranking algorithm

to propagate the similarity between super-pixels to obtain HT = (D− αW)−1A, where the
computed result H =

[
hij
]

N×N is the executed diffusion of the similarity metric matrix. The
method for calculating the spatial variance of the super-pixel vi is shown in Equation (8).

sv(i) =
∑N

j=1 hij · nj · ‖bj − ui‖

∑N
j=1 hij · nj

, (8)

where nj is the number of pixels of super-pixel vj and bj =
[
bx

j , by
j

]
is the center of mass of

super-pixel vj and defines the spatial mean µi =
[
µx

i , µ
y
i

]
as Equation (9).

µx
i =

∑N
j=1 hij ·nj ·bx

i

∑N
j=1 hij ·nj

µ
y
i =

∑N
j=1 hij ·nj ·b

y
i

∑N
j=1 hij ·nj

(9)

The saliency map calculated by the diffusion-based foreground compactness saliency [15]
detection method is shown in Equation (10).

Scom(i) = 1− Norm(sv(i)), (10)
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where Norm(.) is the function that normalizes the data to 0–1.
Define the Lab color space distance ld(i) of the super-pixel vi and its neighboring

super-pixels as Equation (11).

ld(i) =
∑j∈Ni

Scom(j) · nj

∑j∈Ni
nj

·max
j∈Ni
‖ci − cj‖. (11)

The smaller the value of ld(i), the higher the probability that the super-pixel vi belongs
to the background. The ld value smaller than the ld mean is set to 0. To improve the reliabil-
ity of foreground detection and the overall quality of the saliency region segmentation, the
distribution metric of super-pixel vi relative to the center of mass of the compactness-based
saliency map Scom is defined as Equation (12).

dm(i) =
∑N

j=1 mij · nj · ‖bj − us‖

∑N
j=1 mij · nj

, (12)

where mij is the spatial distance similarity measure of a pair of super-pixels vi and vj,
defined as mij = aij · exp(−‖bi − bj‖/σ2). µs = [µsx, µsy] is the center of mass of the
compactness-based saliency map Scom. us is calculated in the same way as Equation (9).

µsx =
∑N

i=1 Scom(i)·ni ·bx
i

∑N
i=1 Scom(i)·ni

µsy =
∑N

i=1 Scom(i)·ni ·b
y
i

∑N
i=1 Scom(i)·ni

(13)

Combining the Lab color space distance ld and the distribution metric dm to define the
local contrast, the N-dimensional column vector lc is obtained, as shown in Equation (14).

lc(i) = ld(i) · (1− Norm(dm(i))). (14)

The local contrast lc saliency map [16] tends to highlight the boundaries rather than
the entire region. The lc saliency map is propagated using a manifold ranking algorithm to
obtain an N-dimensional column vector Sloc = Norm((D− αW)−1lc).

First, after the image is super-pixel segmented, a preliminary saliency map is gener-
ated using the algorithm of Reference [17] with background seeds and a modified manifold
ranked diffusion model. The method uses the boundary super-pixel nodes of the exper-
imental image as background seeds to rank the other super-pixel regions. The saliency
maps of the four boundary priors are constructed by taking the upper boundary, lower
boundary, left boundary and right boundary, respectively. The saliency map using the left
boundary prior Sl is represented as Equation (15).

Sl(i) = 1− Norm(f∗(i)) i= 1, 2, . . . , N, (15)

where i is the subscript of the super-pixel node in the experimental image and Norm(f∗(i))
represents the normalized vector of f∗. Similarly, the saliency map Sr for the right boundary
prior, the saliency map St for the top boundary prior, and the saliency map Sb for the bottom
boundary prior are obtained. The saliency maps of the four boundary priors are integrated
to obtain the saliency map: Sbq(i) = Sl(i)× Sr(i)× St(i)× Sb(i).

The compactness-based, local contrast-based, and boundary prior-based saliency
maps are fused, and the fusion results are shown in Equation (16).

Sinit = Norm(εcomScom + ε locSloc + εbdSbd), (16)

where ε represents the weights of the calculation results of the three saliency maps.
In this paper, Edge Boxes proposed in Reference [18] is chosen to generate saliency

objects from edges. This algorithm outputs the number of bounding boxes and the score
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of each bounding box, but the number of generated bounding boxes is large, resulting in
a large computational effort. According to Reference [19], the outliers with too large or
too small sizes of the bounding boxes are removed, and then the bounding boxes of the
regions without high saliency within the boxes are removed. For each super-pixel node,
the average score is calculated from the scores of the screened bounding boxes, which is
calculated as Equation (17).

mo
i = ∑Q

j=1 Gj · δ
(
vi ∈ Ωj

)
, (17)

where Q is the number of bounding boxes Ωj, Gj is the score of the bounding box Ωj, and
δ(vi ∈ Ωj) is the indicator function, vi ∈ Ωj is 1, otherwise is 0. Get the foreground mask
map Mo =

(
mo

i
)

N , and calculate do
ii = exp

(
−mo

i
)
, Do =

(
do

ii
)

N×N , with the other elements
outside the diagonal as 0.

According to the definition of the construction graph, Sinit calculates the new degree
matrix Dc and the new weight matrix Wc. Combining Mo to obtain the refined saliency
map, the refined saliency map is generated by the proposed optimization method in
Reference [20].

g∗ = min
g

1
2

{
gT
[

Dc −Wc + µ2

(
I− Dc

vc

)]
g+‖g− Sinit‖2 + gTDog

}
. (18)

The three terms in the formula define different constraint terms. The first two terms
correspond to the improved manifold ranking algorithm, the first term is to maintain the
continuity of the salient values, so that the detected building target is a whole rather than
scattered small areas. The second item is to constrain the difference between the refined
saliency map and the saliency map before refinement must not be too large, to maintain the
consistency of the detection results, which can play the role of mutual supervision of the
two detection results. The third item is to reflect the role of removing the background noise
of the bounding box proposal, which can suppress the external environment area that does
not belong to the bounding box proposal and highlight the target area of the building.

The optimal solution of Equation (18) is expressed as:

g =

[
Dc −Wc + µ2

(
I− Dc

vc

)
+ Do

]−1
Sinit. (19)

The saliency map obtained by combining the bounding box proposal is expressed as:

S f inal = Norm(g). (20)

2.2.3. Pixel-Level Fusion and Interference Removal

The building target detection results based on rectangular approximation and diffusion
saliency have been obtained previously, and the two detection results are fused in order
to improve the accuracy and recall. In the first two methods of building detection, the
screening of detection results is more stringent. The method to fuse the detection results is
shown in Equation (21).

R = Rrec ∪ Rsal , (21)

where Rrec represents the mask map generated by the rectangular approximation-based
building target detection method and Rsal represents the mask map generated by the
multi-feature saliency detection method.

Most of the false alarms in the detected building targets are due to the fact that stacks,
various types of ships and vessels in the port area have great similarity in shape and color
to the building targets. In order to solve this problem, improve the accuracy of building
target detection and reduce false alarms, this paper separates the ocean area from the
land area. By observing the remote sensing images, it is found that the image brightness
of the water area is lower than that of the land area, which can be used as the basis for
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segmentation. Use the image segmentation method of region growth to obtain the ocean
area. First, the grayscale threshold of the image is calculated by using Otsu algorithm.
Then, randomly select the seed points of the sea surface that satisfy Equation (22) [21].

P(x, y) =
{

1∀(x1, y1) ∈ U(x, y), I(x1, y1) < threshold
0∃(x1, y1) ∈ U(x, y), I(x1, y1) ≥ threshold

, (22)

where U(x, y) represents the neighborhood of point (x, y) and I represents the gray value
of each pixel of the experimental image.

Then the region growth is performed, the growth condition is I(x, y) < b×mean(R(x, y)),
where b = 1.2, R(x, y) represents the part of the region growth that has been completed,
and mean(.) is to calculate the mean value of the grown part.

After obtaining the ocean area mask, the fused experimental results are combined
with the land area mask by Equation (23) to obtain a mask map of the building targets in
the land area. ~ means to take the opposite.

R f inal = Rinit ∩ (∼ Rsea). (23)

2.2.4. Evaluation

In this paper, we applied four pixel-level quantitative evaluation metrics, namely
accuracy, precision, recall and F1 [22].

Accuracy is expressed as:

Accuracy =
∑n

i=1 pi,i

∑n
j=1 ∑n

i=1 pi,j
, (24)

where pi,j represents the total number of pixels that belong to class i and are assigned to
class j and n represents the number of categories.

True positive (TP), false positive (FP), and false negative (FN) represent the number of
correctly extracted classes, incorrectly extracted classes, and missing classes, respectively.
Using these counts, recall, precision and F1 are defined as:

Recall =
TP

TP + FN
(25)

Precision =
TP

TP + FP
(26)

F1 = 2× Precision× Recall
Precision + Recall

. (27)

3. Result
3.1. Analysis of Building Detection Results Based on Shape Features

The parameters to be set for building detection based on rectangular approximation
are as follows: the detected line segment length screening range is set to [20, 400], the
angle range of the two line segments considered to form a right-angle is [80◦, 100◦], and
the maximum distance between endpoints is 15. The experimental results are shown in
Figure 6.
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Comparing the mask map with the ground truth map reveals that although most of
the targets can be detected, there are some false detections in the mask map due to the fact
that the selected image is the port area and thus both the trestle and the ship at the port
may have a similar shape to the building target, that is, a structure composed of right-angle
primitives. There is also a phenomenon of missed detection. For this reason, other features
of the target are added to improve the detection accuracy and recall.

3.2. Results of the Diffusion-Based Saliency Model

The compactness-based, local contrast-based, and boundary prior-based saliency
maps are fused, and the weights of the three saliency maps are assigned to obtain the
saliency map fusion result. For overcoming the complex environment around the building,
a bounding box proposal is introduced to optimize the saliency map detection results.

The prospect compactness saliency maps are shown in Figure 7. The local contrast
saliency maps are shown in Figure 8. The improved boundary priori saliency maps are
shown in Figure 9. The saliency maps after fusion are shown in Figure 10. The foreground
mask maps are shown in Figure 11.
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The saliency maps obtained by combining the bounding box proposal are shown in
Figure 12. To observe the improvement of the saliency map more visually, the change of the
histogram before and after obtaining the foreground mask map is shown in Figure 13. It
can be seen that the interference in the environmental background except for the building
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target is suppressed to some extent. By combining the information from the initial saliency
map and the object map, the final saliency map has better results in highlighting objects
and suppressing background noise.
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The experimental parameters of this paper are designed as follows:

(1) The number of super-pixel nodes N used in the SLIC model: The SLIC model abstracts
the input image into uniform and compact regions. If N is too small, different
objects will be mapped to the same super-pixel, which will lead to a decrease in
the accuracy of saliency object detection. If N is too large, saliency objects will be
mapped to different super-pixels, which may incorrectly suppress saliency regions.
The parameter N = 100 is set in the experiment based on compactness and local
contrast saliency detection method. The improved saliency detection method with
manifold ranking and boundary prior sets the parameter N = W · H/600, where W
and H are the width and height of the experimental image;

(2) σ for controlling the decay rate of the exponential function: The highest accuracy was
achieved when σ2 = 0.1 in the experiment;

(3) The equilibrium parameters of the manifold ranking algorithm: The parameters of
the literature “Ranking on Data Manifolds” [17] are set with α = 0.99 and µ2 = 0.5;

(4) After experimental verification, the fusion parameters are chosen as follows: εcom = 0.3,
ε loc = 0.2, εobj = 0.5 for the best detection of the saliency map.

After obtaining the saliency map, the threshold value Tf ∈ [0, 255] of the saliency
map is changed from 0 to 255 in order to obtain a better detection effect, and the value of
the evaluation index corresponding to the threshold value is calculated by comparing the
binary mask map and the binary ground truth map obtained by setting different thresholds
of the saliency map, and the change curve of the evaluation indicator is shown in Figure 14.
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Figure 9 shows the curves of accuracy, precision, recall and F1 score of the mask map
calculated from the saliency map compared with the ground truth map for the case of the
threshold value Tf ∈ [0, 255]. The blue line marked in the figure is the threshold position
with the highest F1 score, and the adaptive threshold Ta is defined as Equation (28).

Ta =
2

W · H ∑W
i=1 ∑H

i=1 S(i, j)− 10, (28)
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where W and H are the width and height of the saliency map S. The saliency map is
thresholded with Ta to obtain a mask map for building target detection, which is used for
the next step of image fusion.

3.3. Fusion and Analysis of Detection Results

Eliminating the scattered small area interference points, the final obtained building
target detection results are shown in Figure 15.
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As can be seen from Figure 15, after separating the ocean area, the interference
brought by various types of ships and trestles was significantly reduced, and the accuracy
of building target detection was improved.

The accuracy, precision, recall, and F1 of the rectangular approximation-based detec-
tion results, saliency-based detection results, two mask fusions, and detection results after
interference removal were calculated for images I, II, III, and IV, as shown in Tables 3–6.

Table 3. Image I detection results.

Accuracy Precision Recall F1

Rectangular
approximation-based 0.9012 0.7419 0.6445 0.6898

Saliency-based 0.9328 0.9207 0.6627 0.7706
Fusion 0.9204 0.7456 0.8087 0.7759

Interference removal 0.9310 0.8131 0.7730 0.7925
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Table 4. Image II detection results.

Accuracy Precision Recall F1

Rectangular
approximation-based 0.8689 0.6429 0.6547 0.6487

Saliency-based 0.9134 0.8317 0.6663 0.7398
Fusion 0.8842 0.6445 0.8336 0.7270

Interference removal 0.8958 0.6807 0.8216 0.7445

Table 5. Image III detection results.

Accuracy Precision Recall F1

Rectangular
approximation-based 0.9094 0.5515 0.7422 0.6329

Saliency-based 0.9373 0.8343 0.5045 0.6288
Fusion 0.9173 0.5700 0.8715 0.6892

Interference removal 0.9310 0.6277 0.8473 0.7212

Table 6. Image IV detection results.

Accuracy Precision Recall F1

Rectangular
approximation-based 0.9080 0.6970 0.7289 0.7126

Saliency-based 0.9211 0.9038 0.5550 0.6877
Fusion 0.9166 0.6965 0.8275 0.7564

Interference removal 0.9257 0.7430 0.8018 0.7712

From the statistics of the evaluation indicators of the above detection results, it can
be seen that the proposed building target detection method, which combines rectangular
approximation-based and saliency-based detection results, is able to improve in accuracy,
recall, and F1 compared to the detection results of buildings with a single feature. Simul-
taneously, the overall evaluation index is further improved by removing the ocean area,
eliminating the possibility of ships and trestles that cause interference being detected.

4. Discussion

From the experimental results, it can be seen that typical straight line segment detec-
tion methods include Hough line detection, LSD and radon transform. Among them, the
detection results of the better performing LSD have broken line segments, which is unfa-
vorable to the extraction of right-angle primitives of buildings. Therefore, the constructed
broken straight line segment criterion is used to effectively recover the line segments in the
image by connecting the broken line segments with parallelism, covariance and broken
distance criterion. The detection method of right-angle primitives has ambiguity to tolerate
the case of non-adjacent perpendicular straight line segments, and we establish a voting
space V ∈ RM×N×A of position angles for the extraction of potential right-angle primitives,
which obtains the building area and constrains the contour boundary of the building.

The compactness-based, local contrast-based, and boundary prior-based saliency maps
are fused, and the weights of the three saliency maps are assigned to obtain the saliency map
fusion result. For overcoming the complex environment around the building, a bounding
box proposal is introduced to optimize the saliency map detection results. Finally, the
detection method based on rectangular approximation and the saliency detection method
are combined to further improve the detection of buildings.

The proposed method preserves the contour boundary of the building well, and is
an effective method for building detection. Among the existing building target detection
methods, deep learning-based building detection methods are more widely used, and
we find that many studies are based on pixels to classify buildings. The pixel-based
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classification and recognition methods can hardly consider the neighborhood information
around the pixels, so the contours of buildings cannot be well guaranteed [23].

The existing wavelet transform-based building detection methods, which use different
data sources for research, use the binary wavelet transform to detect building edges,
which is difficult for the detection of complex building backgrounds and the study of
complex building roofs [24–26]. Therefore, enhancing building detection constraints can be
effective for building extraction, and ensuring the geometric contour of the building while
guaranteeing the accuracy of building extraction is the next focus of our research.

5. Conclusions

In this study, building detection in remote sensing image applications was studied.
To make the detection of building targets in remote sensing images more accurate, a
novel building detection method was developed by fusing the results of the rectangular
approximation-based and saliency-based methods to avoid leakage and false detection
using individual features. First, for the geometric structure of the top surface of the building
target is mostly right-angle primitives composed of mutually perpendicular line segments,
this paper proposed a building detection method based on rectangular-approximation
and region growth and obtained the saliency map of the building area using a saliency
detection model based on the foreground compactness and local contrast of the manifold
ranking algorithm. Then, the boundary priori saliency detection method based on the
improved manifold ranking algorithm was adopted to successfully detect building targets
with low contrast with the background, and the saliency detection results were integrated.
Next, introduce the bounding box proposal to remove the environmental noise to obtain
the final saliency map, and set the adaptive threshold to obtain the mask map. Finally, the
detection results based on rectangular approximation and saliency map were combined
and the ocean area in the image was segmented to remove the interference of ships and
trestles to achieve the detection of building targets.

In summary, the building target detection method using the fusion of rectangular
approximation and saliency detection can avoid the problems of false detection and missing
the detection of building targets caused by the fewer gray levels and low resolution of
remote sensing images, low contrast between targets and background, shadow occlusion,
uneven illumination, and improve the accuracy of building target detection compared with
the building target detection method using a single image feature.
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Appendix A

Table A1 lists all the acronyms used in this paper.



Algorithms 2021, 14, 300 19 of 20

Table A1. All the acronyms used in this paper.

Abbreviation Full Name

SIFT Scale Invariant Feature Transform
VHR Very High Spatial Resolution
CNN Convolutional Neural Network
SVM Support Vector Machine
LSD Line Segment Detector
SLIC Simple Linear Iterative Clustering
TP True Positive
FP False Positive
FN False Negative
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