
algorithms

Article

DMFO-CD: A Discrete Moth-Flame Optimization Algorithm
for Community Detection

Mohammad H. Nadimi-Shahraki 1,2,* , Ebrahim Moeini 1,2, Shokooh Taghian 1,2 and Seyedali Mirjalili 3,4,*

����������
�������

Citation: Nadimi-Shahraki, M.H.;

Moeini, E.; Taghian, S.; Mirjalili, S.

DMFO-CD: A Discrete Moth-Flame

Optimization Algorithm for

Community Detection. Algorithms

2021, 14, 314. https://doi.org/

10.3390/a14110314

Academic Editors: Lijun Chang,

Ulrich Pferschy and Frank Werner

Received: 20 September 2021

Accepted: 26 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad 1584743311, Iran;
ebrahim.moeini64@sco.iaun.ac.ir (E.M.); sh.taghian@sco.iaun.ac.ir (S.T.)

2 Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad 1584743311, Iran
3 Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia,

Fortitude Valley, QLD 4006, Australia
4 Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
* Correspondence: nadimi@iaun.ac.ir or nadimi@ieee.org (M.H.N.-S.); ali.mirjalili@torrens.edu.au (S.M.)

Abstract: In this paper, a discrete moth–flame optimization algorithm for community detection
(DMFO-CD) is proposed. The representation of solution vectors, initialization, and movement strat-
egy of the continuous moth–flame optimization are purposely adapted in DMFO-CD such that it can
solve the discrete community detection. In this adaptation, locus-based adjacency representation is
used to represent the position of moths and flames, and the initialization process is performed by con-
sidering the community structure and the relation between nodes without the need of any knowledge
about the number of communities. Solution vectors are updated by the adapted movement strategy
using a single-point crossover to distance imitating, a two-point crossover to calculate the movement,
and a single-point neighbor-based mutation that can enhance the exploration and balance exploration
and exploitation. The fitness function is also defined based on modularity. The performance of
DMFO-CD was evaluated on eleven real-world networks, and the obtained results were compared
with five well-known algorithms in community detection, including GA-Net, DPSO-PDM, GACD,
EGACD, and DECS in terms of modularity, NMI, and the number of detected communities. Addi-
tionally, the obtained results were statistically analyzed by the Wilcoxon signed-rank and Friedman
tests. In the comparison with other comparative algorithms, the results show that the proposed
DMFO-CD is competitive to detect the correct number of communities with high modularity.

Keywords: community detection; complex network; optimization; metaheuristic algorithms; swarm
intelligence algorithms; moth–flame optimization algorithm

1. Introduction

The analysis of complex networks in real-world applications such as social, biological,
metabolic, and paper citation networks is receiving more attention from researchers and
experts [1,2]. The structure and function of a real-world network can be studied by graph
features such as small-world effect, power-law, or network transitivity [1,2]. An important
issue in most real-world networks is to find the hidden structures. Community detection
(CD) identifies these structures of a complex network, and the density of edges inside
these structures is higher than their outside. The more similarity between the members
of a community has been caused the community detection able to be used as a tool in the
analysis of complex networks structure [3]. CD has a significant role in social network
analysis, which includes the identification of friendship groups, relationship analysis,
identify influential people, detect terrorist attacks, use in link-prediction, or identify classes
in COVID-19 datasets [1,4,5].

Each network is mathematically represented by a graph consisting of nodes and
edges, which the nodes are connected to each other by edges. To detect a community in a
complex network, there are different criteria such as betweenness [2], modularity [6], node

Algorithms 2021, 14, 314. https://doi.org/10.3390/a14110314 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0135-1115
https://orcid.org/0000-0002-8872-8455
https://orcid.org/0000-0002-1443-9458
https://doi.org/10.3390/a14110314
https://doi.org/10.3390/a14110314
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14110314
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14110314?type=check_update&version=3

Algorithms 2021, 14, 314 2 of 27

similarity [7], normalized cut [8], and partition entropy [9]. In addition, some algorithms
detect the communities by approximate methods such as label propagation [10], which
at first, a label is allocated to each node, and then the labels of some nodes, which are
randomly selected, are propagated to other nodes. This method is continued until all
nodes have most of their neighbor nodes’ labels. In addition, many community detection
approaches determine communities by optimizing modularity that has been proposed by
Newman in 2004 [11]. In this approach, algorithms attempt to reach the optimal value of
the modularity by different methods [5,12–14].

Generally, detecting communities with modularity maximization in a network can
be considered as an optimization problem [15]. Metaheuristic algorithms are shown to
be effective approaches to solve complex problems in a reasonable time when compared
with exact methods [16]. A wide variety of metaheuristic algorithms have been introduced
such as differential evolution (DE) [17], particle swarm optimization (PSO) [18], cuckoo
search (CS) [19], grey wolf optimizer (GWO) [20], salp swarm algorithm (SSA) [21], whale
optimization algorithm (WOA) [22], and multi-verse optimizer (MVO) [23]. Due to the
arising challenges and complexities in real-world problems, there is still a need to propose
new or enhance the existed algorithms [24–32]. Although these algorithms are well suited
for solving problems with continuous search space, some algorithms such as genetic algo-
rithm (GA) [33] and ant colony optimization (ACO) [34] were proposed to solve problems
over discrete spaces. In addition, different methods were employed to develop the dis-
crete version of a continuous algorithm [35]. The metaheuristic algorithms are applied
for solving complex problems in different applications such as parameter identification
of solar cells [36], feature selection [37–41], scheduling and planning [42–44], disease diag-
nosis [45,46], clustering [47], medical applications [48–50], industrial applications [51–55],
and engineering optimization [56,57].

To use metaheuristic algorithms in community detection, each solution must be
modeled according to the requirements of CD’s problem, such that each solution can be
represented to an N-dimensional vector with discrete values. The dimension of such a
vector is equal to the number of network nodes and the value of each dimension depends
on the type of solution representation that is used. Two representations that are utilized to
represent the solution vectors are label-based representation and locus-based adjacency
representation (LAR) [14]. In addition, the objective function has a critical role in CD which
is a measurement for metaheuristic algorithms to determine the optimality of the detected
communities. Modularity [6], community score [58], modularity density [59], and partition
entropy [9] are some objective functions that are introduced into the CD problem. The
community detection problem is solved by using metaheuristic algorithms that imitate the
natural phenomenon such as [60–62].

The moth–flame optimization (MFO) [63] algorithm is designed to solve continuous
optimization problems inspired by the moths’ navigation mechanism to fly at night. The
moths fly toward the moon in a straight line by maintaining a fixed angle, which is
an effective mechanism for navigating long distances. Therefore, when the moth flies
toward the nearby artificial lights, this mechanism leads to flight in a spiral line. This
behavior is mathematically modeled in the MFO algorithm to solve global optimization
problems. The MFO algorithm is used in different applications such as feature selection [64],
software defect prediction (SDP) [65], economic dispatch problem [66], optimal power
flow [67], gene selection [68], classification [69], image segmentation [70], and photovoltaic
energy generation system [71]. Although MFO is used to solve many problems, it still has
insufficiencies, such as lack of population diversity [72], imbalance between exploitation
and exploration [73], and premature convergence [74]. To improve the performance of the
canonical MFO, enhanced or hybrid variants are proposed, such as in [74,75].

The main purpose of this paper is to adapt a continuous metaheuristic algorithm that
can be used to solve community detection and provide competitive results. Therefore,
in this paper, a discrete moth–flame optimization algorithm for community detection
(DMFO-CD) is proposed. To implement the proposed DMFO-CD algorithm, first, the

Algorithms 2021, 14, 314 3 of 27

representation of the canonical MFO is altered such that can be applied on a discrete
problem community detection by using locus-based adjacency representation (LAR). The
initial population of solution vectors is created using LAR, which detects the communities
without any prior knowledge. Then, the modularity function is used as the evaluation
criterion to calculate the fitness of the solution vectors and evaluate them. Next, the DMFO-
CD’s movement strategy is proposed by altering the canonical MFO’s movement strategy
such that the main concept of MFO is maintained and suitable for solving community
detection. Finally, after iterating the movement, evaluating, and updating the solution
vectors, the detected communities are obtained. To adapt MFO using community detection,
the position of moths and flames are modeled as solution vectors, which is represented
using locus-based adjacency representation (LAR). The initialization process is performed
by considering the network structure and the relation between the nodes. Then, the move-
ment strategy is performed to move the moth’s solution vectors around flames and update
their position. This movement is accomplished by an adapted strategy consisting of a
single-point crossover between the moth’s solution vector and corresponding flame to
imitate the distance calculated, the two-point crossover between the calculated distance
and corresponding flame for movement strategy, and the single-point neighbor-based
mutation to increase the exploration ability. To validate the proposed DMFO-CD algorithm,
a set of experiments were conducted on eleven real-world networks. The results were
compared with five well-known algorithms in community detection, including a discrete
particle swarm optimization with particle diversity and mutation that (DPSO-PDM) [13], a
genetic algorithm for community detection (GA-Net) [58], a genetic algorithm for detecting
communities in large-scale complex networks (GACD) [14], an enhanced genetic algorithm
for community detection (EGACD) [60], and a multi-objective evolutionary clustering algo-
rithm (DECS) [76]. The performance of the proposed DMFO-CD algorithm was evaluated
in terms of important evaluation criteria: modularity, normalized mutual information
(NMI), and the number of detected communities. Moreover, the proposed algorithm was
also statistically analyzed by Friedman [77] and Wilcoxon signed-rank tests [78]. The
comparison of results proves that the DMFO-CD is able to detect the correct number of
communities with better modularity than other comparative algorithms.

The rest of this paper is organized as follows: Section 2 presents a summary of the
relevant works on community detection. Section 3 presents the mathematical model of the
MFO algorithm. Section 4 contains the proposed DMFO-CD algorithm. The experimental
evaluation of DMFO-CD is presented in Section 5. Finally, the conclusion and future works
are given presented Section 6.

2. Related Work

Metaheuristics due to their acceptable performance in solving complicated real-world
problems have been broadly used to find communities in complex networks. As shown in
Figure 1, metaheuristic algorithms based on their inspiration can be classified into three
categories [26]: evolutionary, swarm intelligence, and physics-based algorithms. In the
related literature, almost all algorithms from the evolutionary category were used to solve
the community detection problem. Despite the simplicity of swarm intelligence algorithms,
they are less applied in this problem. In the following, some representative metaheuristic
algorithms that are used to find communities in complex networks are described.

Evolutionary algorithms are inspired by the biological evolution process of the species
in nature [24]. A population of individuals is iteratively processed by applying mutation,
crossover, and selection operators to improve the individuals. The genetic algorithm (GA)
is one of the well-known algorithms in this category, which was inspired by Darwin’s bio-
logical evolution theory. In [79], GA was employed to find the communities by optimizing
the Newman modularity. In the proposed algorithm, a one-way crossing over operation is
introduced in which two chromosomes are selected as parents, a node is randomly selected
from one of the parents. Then, the community label is determined, all the nodes with the
same label are found, and their labels are dedicated to another parent. In [58], GA-Net

Algorithms 2021, 14, 314 4 of 27

was proposed by Pizzuti, which is one of the state-of-the-art algorithms in community
detection. GA-Net detects the communities by the use of GA and the community score
(CS) as an objective function. CS measures the density of edges in each community and
better partitioning leads to get a better CS.

Algorithms 2021, 14, x FOR PEER REVIEW 4 of 28

Darwin’s biological evolution theory. In [79], GA was employed to find the communities
by optimizing the Newman modularity. In the proposed algorithm, a one-way crossing
over operation is introduced in which two chromosomes are selected as parents, a node
is randomly selected from one of the parents. Then, the community label is determined,
all the nodes with the same label are found, and their labels are dedicated to another par-
ent. In [58], GA-Net was proposed by Pizzuti, which is one of the state-of-the-art algo-
rithms in community detection. GA-Net detects the communities by the use of GA and
the community score (CS) as an objective function. CS measures the density of edges in
each community and better partitioning leads to get a better CS.

Shi et al. [14] proposed GACD, in which a kind of genetic representation is intro-
duced for use in community detection, which is called locus-based adjacency representa-
tion (LAR). In addition, the authors used a simple way of crossover and mutation based
on their representation. In another work, Moradi et al. [60] proposed an enhanced genetic
algorithm for community detection named EGACD by proposing a local search strategy.
The proposed strategy is to improve the accuracy and increase the convergence speed up
of the GACD algorithm. In EGACD, LAR is used to represent the individuals, and the
modularity index is applied to calculate the fitness. In [62], the GAOMA-net algorithm
was proposed by a special representation in which a memory and specific depth are ded-
icated to the network nodes. Then, the values of memory move by object migrating au-
tomata in depth, and the gene’s evolution is performed by the use of GA. GAOMA-net
can overcome the GA’s premature convergence and accelerate the convergence. Liu et al.
[76] proposed DECS to detect communities in evolving networks by adaptation of a ge-
netic algorithm on community detection.

Figure 1. A classification of metaheuristic algorithms used for community detection. Figure 1. A classification of metaheuristic algorithms used for community detection.

Shi et al. [14] proposed GACD, in which a kind of genetic representation is introduced
for use in community detection, which is called locus-based adjacency representation
(LAR). In addition, the authors used a simple way of crossover and mutation based on
their representation. In another work, Moradi et al. [60] proposed an enhanced genetic
algorithm for community detection named EGACD by proposing a local search strategy.
The proposed strategy is to improve the accuracy and increase the convergence speed up
of the GACD algorithm. In EGACD, LAR is used to represent the individuals, and the
modularity index is applied to calculate the fitness. In [62], the GAOMA-net algorithm was
proposed by a special representation in which a memory and specific depth are dedicated
to the network nodes. Then, the values of memory move by object migrating automata in
depth, and the gene’s evolution is performed by the use of GA. GAOMA-net can overcome
the GA’s premature convergence and accelerate the convergence. Liu et al. [76] proposed

Algorithms 2021, 14, 314 5 of 27

DECS to detect communities in evolving networks by adaptation of a genetic algorithm on
community detection.

The second category is swarm intelligence algorithms, which imitate the animals’
behaviors such as the movement of birds’ flocks, the echolocation behavior of bats, or
the navigation mechanism of moths at night. One of the most popular algorithms of
this category is particle swarm optimization (PSO) [18], which imitates the behavior of
bird flocks. In this algorithm, each bird is considered as a particle that is moved by its
current, local-best, and global-best positions. Rahimi et al. [61] proposed a multi-objective
particle swarm optimization algorithm for community detection in complex networks
named MOPSO-Net in which the PSO algorithm is adapted as a discrete algorithm by a
two-point crossover. At first, a crossover is performed between the current position and
local-best position; then, a two-point crossover is performed between the resulted position
and the global best position. Li et al. [13] developed an algorithm called DPSO-PDM with
improvements in PSO that controls the motion of each particle relative to its difference
from global best. With this strategy, when the particle diversity decreases, the algorithm
tries to increase it and vice versa. Li et al. [80] proposed DESSO/CD, which is a hybridized
version of an improved DE and social spider optimization (SSO) [81] algorithm. In the
proposed algorithm, the population is initialized and moved by the SSO algorithm, the
similarity of nodes is considered as local fitness function, and further improvement on
population is performed by the improved DE.

Liu et al. [82] proposed DMFO algorithm, which is a new algorithm for clustering,
with the equivalent aim of community detection. They adapted MFO by redesigning its
movement strategies for a discrete algorithm and kernel k-means and ratio cut use as multi-
objective functions. Zhao et al. [83] proposed ICSC, which is an improved CS algorithm to
detect communities in protein-protein interaction networks. Zhang et al. [84] proposed a
new algorithm named WOCDA to use on community detection with changes to the motion
equation of WOA. The movement strategy of WOA is adapted by updating the node label
with the label of most neighbor, one-way crossover, and updating the node label with a
random neighbor’s label. The third category regards physics-based algorithms, which are
inspired by physical rules in nature. Guendouz et al. [85] proposed a new algorithm by
use of black hole optimization algorithm in CD problem. In this algorithm initialization,
two new strategies, and evolution enhance the performance of the algorithm. Liu et al. [86]
proposed the EMACD algorithm, which is an evolutionary algorithm based on membrane
system for solving community detection problem. Kumar et al. [87] used graph embedding
for low-level vector representation, which can keep the topological features of the network,
and the communities are detected by a gravitational search algorithm and k-means.

3. The MFO Algorithm

The moth–flame optimization (MFO) algorithm is proposed by Mirjalili in 2015 [63],
which is inspired by the moth’s navigation mechanism in nature. The moths by maintaining
a fixed angle with the moon can fly long paths in a straight line during the night that is
called transverse orientation. This mechanism is effective only when the light source is
located in far distances, while flying toward nearby lights causes moths to move in a
spiral path, as shown in Figure 2. In the MFO algorithm, moths update their position
to reach the optimum solution by moving toward the flames in a spiral path. MFO is
a population-based algorithm in which the positions of moths and flames are stored in
MN × D and FN × D matrices as shown in Equations (1) and (2).

M =

 m1.1 · · · m1.D
...

. . .
...

mN.1 · · · mN.D

 (1)

Algorithms 2021, 14, 314 6 of 27

F =

 f1.1 · · · f1.D
...

. . .
...

fN.1 · · · fN.D

 (2)

where N is the population number and D is the dimension of the problem. In the first
iteration, F is the sorted moths’ population based on their calculated fitness. For other
iterations, the M and F are merged and sorted based on their fitness such that their first N
solutions are considered as new F. When the flames are identified, each moth is assigned
to a flame and its position is updated with a logarithmic spiral equation as shown in
Equation (3).

S
(

Mi, Fj
)
= Di × ebt × cos(2πt) + Fj (3)

where S is a spiral function, Di is the distance of the i-th moth and j-th flame, which is
described in Equation (4), t is a random number between in a range of [−1,1], and b is a
constant number that identifies the shape of the spiral.

Di =
∣∣Fj −Mi

∣∣ (4)

Algorithms 2021, 14, x FOR PEER REVIEW 6 of 28

where N is the population number and D is the dimension of the problem. In the first
iteration, F is the sorted moths’ population based on their calculated fitness. For other
iterations, the M and F are merged and sorted based on their fitness such that their first N
solutions are considered as new F. When the flames are identified, each moth is assigned
to a flame and its position is updated with a logarithmic spiral equation as shown in Equa-
tion (3).

𝑆൫𝑀௜ , 𝐹௝൯ = 𝐷௜ × 𝑒௕௧ × cos(2𝜋𝑡) + 𝐹௝ (3)

where S is a spiral function, Di is the distance of the i-th moth and j-th flame, which is
described in Equation (4), t is a random number between in a range of [−1,1], and b is a
constant number that identifies the shape of the spiral.

𝐷௜ = |𝐹௝ − 𝑀௜| (4)

To increase the exploitation ability of MFO, the number of flames is decreased in the
course of iterations as calculated by Equation (5).

 𝐹𝑙𝑎𝑚𝑒_𝑛𝑜 = 𝑟𝑜𝑢𝑛𝑑(𝑁 − 𝑙 ×
𝑁 − 𝑙

𝑇
) (5)

where T is the maximum number of iterations and l is the current iteration number.

Figure 2. Spiral movement of a moth around a flame

4. DMFO-CD: Discrete Moth–flame Optimization Algorithm for Community Detec-
tion

The purpose of the paper is to introduce a discrete moth–flame optimization algo-
rithm for community detection (DMFO-CD) is explained in this section. The methodology
for implementation of the proposed DMFO-CD algorithm shown in flowchart Figure 3
has two main steps: initialization and movement. This methodology is defined in the fol-
lowing sequence: In the initialization step, N moths are overspread to the restricted search
space, and the fitness of each moth is calculated by considering the objective function.
Thereafter, the moth population is sorted based on the obtained fitness and considered as
the flame population. In the second step, moths are moved around flames by an adapted
movement strategy to update their position. This process iterates until the terminating
criterion is satisfied. In the following, the procedure of the proposed DMFO-CD algorithm
is explained in detail.

Figure 2. Spiral movement of a moth around a flame.

To increase the exploitation ability of MFO, the number of flames is decreased in the
course of iterations as calculated by Equation (5).

Flame_no = round
(

N − l × N − l
T

)
(5)

where T is the maximum number of iterations and l is the current iteration number.

4. DMFO-CD: Discrete Moth–Flame Optimization Algorithm for
Community Detection

The purpose of the paper is to introduce a discrete moth–flame optimization algorithm
for community detection (DMFO-CD) is explained in this section. The methodology for
implementation of the proposed DMFO-CD algorithm shown in flowchart Figure 3 has
two main steps: initialization and movement. This methodology is defined in the following
sequence: In the initialization step, N moths are overspread to the restricted search space,
and the fitness of each moth is calculated by considering the objective function. Thereafter,
the moth population is sorted based on the obtained fitness and considered as the flame
population. In the second step, moths are moved around flames by an adapted movement
strategy to update their position. This process iterates until the terminating criterion is
satisfied. In the following, the procedure of the proposed DMFO-CD algorithm is explained
in detail.

Algorithms 2021, 14, 314 7 of 27
Algorithms 2021, 14, x FOR PEER REVIEW 7 of 28

Figure 3. The flowchart of DMFO-CD algorithm. Figure 3. The flowchart of DMFO-CD algorithm.

Algorithms 2021, 14, 314 8 of 27

4.1. Initialization

In the initialization step, the locus-based adjacency representation (LAR) [14] is used
to show the community structure of the network.

4.1.1. Representation

In our proposed DMFO-CD, the position of moths and flames are represented using
LAR as solution vectors through which moth Mi and flame Fi are D-dimensional vectors
Mi = {mi1, mi2, . . . , miD} and Fi = {fi1, fi2, . . . , fiD}, where D is the number of nodes in
the network. If there exists an edge between nodes r and s in the network, then in the
solution vector Mi, the value of mir is set by s, which means nodes r and s belong to
a same community. Once the network is represented by LAR, those nodes that have
connected to each other in any solution vector Mi construct a connected component. To
detect the communities hidden in Mi, a decoding procedure is applied to detect candidate
communities by tracking connected components. To illustrate using the LAR in DMFO-
CD, consider graph G, as a network consisting of ten nodes depicted in Figure 4a, the
solution vector Mi represented in Figure 4b. The communities decoded from the connected
components are shown in Figure 4c,d.

Algorithms 2021, 14, x FOR PEER REVIEW 8 of 28

4.1. Initialization
In the initialization step, the locus-based adjacency representation (LAR) [14] is used

to show the community structure of the network.

4.1.1. Representation
In our proposed DMFO-CD, the position of moths and flames are represented using

LAR as solution vectors through which moth Mi and flame Fi are D-dimensional vectors
Mi = {mi1, mi2, …, miD} and Fi = {fi1, fi2, …, fiD}, where D is the number of nodes in the network.
If there exists an edge between nodes r and s in the network, then in the solution vector
Mi, the value of mir is set by s, which means nodes r and s belong to a same community.
Once the network is represented by LAR, those nodes that have connected to each other
in any solution vector Mi construct a connected component. To detect the communities
hidden in Mi, a decoding procedure is applied to detect candidate communities by track-
ing connected components. To illustrate using the LAR in DMFO-CD, consider graph G,
as a network consisting of ten nodes depicted in Figure 4a, the solution vector Mi repre-
sented in Figure 4b. The communities decoded from the connected components are shown
in Figure 4c,d.

(a) (b)

(d) (c)

Figure 4. The methodology of community detection: (a) original network; (b) solution vector Mi;
(c) connected components constructed by Mi; (d) detected communities.

4.1.2. Initialization
To initialize the moths’ population using LAR, N solution vectors are generated and

distributed in the search space. The initialization process randomly assigns one of the
neighbor nodes or the best neighbor of the node [88] to dimension i. The best neighbor of
node i is one of its neighbor nodes that has the most common neighbors. An example of
finding the best node is shown in Figure 5. To find the best neighbor of node “3” in graph
G each of its neighbor nodes is checked and then a node with the most common neighbors
is selected. If there is more than one node with the most common neighbors, one of them
is selected randomly. To initialize the moth’s position, when rand, a randomly generated
number between 0 and 1, is less than the fixed parameter Prob (rand < Prob), a random
neighbor is selected, otherwise (rand > Prob), the best neighbor of the node is assigned.
This assignment guarantees that an existing connection in the network is kept in the initial
population. Then, the fitness of each moth’s solution vector is calculated by considering
the objective function, and the sorted moth population is considered as the flame popula-
tion.

Figure 4. The methodology of community detection: (a) original network; (b) solution vector Mi;
(c) connected components constructed by Mi; (d) detected communities.

4.1.2. Initialization

To initialize the moths’ population using LAR, N solution vectors are generated and
distributed in the search space. The initialization process randomly assigns one of the
neighbor nodes or the best neighbor of the node [88] to dimension i. The best neighbor of
node i is one of its neighbor nodes that has the most common neighbors. An example of
finding the best node is shown in Figure 5. To find the best neighbor of node “3” in graph
G each of its neighbor nodes is checked and then a node with the most common neighbors
is selected. If there is more than one node with the most common neighbors, one of them
is selected randomly. To initialize the moth’s position, when rand, a randomly generated
number between 0 and 1, is less than the fixed parameter Prob (rand < Prob), a random
neighbor is selected, otherwise (rand > Prob), the best neighbor of the node is assigned.
This assignment guarantees that an existing connection in the network is kept in the initial
population. Then, the fitness of each moth’s solution vector is calculated by considering the
objective function, and the sorted moth population is considered as the flame population.

Algorithms 2021, 14, 314 9 of 27
Algorithms 2021, 14, x FOR PEER REVIEW 9 of 28

(a) (b)

Figure 5. The best neighbor selection: (a) the neighbor set of node 3; (b) the common neighbors of
each neighbor of node 3.

4.2. Movement Strategy
In the continuous MFO, the moth flies around the flame in a spiral path as shown in

Equation (2). Since community detection is a discrete problem, the canonical MFO must
be adapted to detect communities of a network. Thus, in this paper, the canonical MFO is
adapted by altering the distance calculation and the spiral flight movement. The proposed
adaptation is performed by introducing: (1) a single-point crossover to calculate the dis-
tance, (2) a two-point crossover between the moth’s solution vector and corresponding
flame for movement strategy, and (3) a single-point neighbor-based mutation to increase
the exploration ability.

4.2.1. Distance Imitating Using Single-Point Crossover
In canonical MFO, the distance (Di) between the moth’s solution vectors and their

corresponding flames is calculated using Equation (4). DMFO-CD imitates the distance
calculating and generates Di by adapting a single-point crossover (⨞) operator [60]. The
crossover operator is used to combine two parent solutions Mi and Fi and generates two
new solutions Child1 and Child2 by Equation (6).

[𝐶ℎ𝑖𝑙𝑑ଵ. 𝐶ℎ𝑖𝑙𝑑ଶ] = ⨞(𝐹௜. 𝑀௜) (6)

Then, the fitness of each generated child is calculated, and the one that has better
fitness is selected as Di by Equation (7).

𝐷௜ = ቐ

𝐶ℎ𝑖𝑙𝑑ଵ 𝑖𝑓 𝑓(𝐶ℎ𝑖𝑙𝑑ଵ) > 𝑓(𝐶ℎ𝑖𝑙𝑑ଶ)

𝐶ℎ𝑖𝑙𝑑ଶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

An example of generating new solutions using the single-point crossover is shown
in Figure 6, where Figure 6a,b shows solution vectors Mi and Fi considered as parents. In
Figure 6c, a crossover point is randomly selected. To produce Child1, the values of Fi from
the beginning to the crossover point are copied and the rest values from the crossover
point to the endpoint of Mi are considered. Child2 is produced in reverse order such that
the first values are copied from Mi and then the values from the crossover point to the
endpoint of Fi are considered. Then, as shown in Figure 6d, Child2 is selected as Di due to
its better fitness.

Figure 5. The best neighbor selection: (a) the neighbor set of node 3; (b) the common neighbors of each neighbor of node 3.

4.2. Movement Strategy

In the continuous MFO, the moth flies around the flame in a spiral path as shown in
Equation (2). Since community detection is a discrete problem, the canonical MFO must
be adapted to detect communities of a network. Thus, in this paper, the canonical MFO is
adapted by altering the distance calculation and the spiral flight movement. The proposed
adaptation is performed by introducing: (1) a single-point crossover to calculate the
distance, (2) a two-point crossover between the moth’s solution vector and corresponding
flame for movement strategy, and (3) a single-point neighbor-based mutation to increase
the exploration ability.

4.2.1. Distance Imitating Using Single-Point Crossover

In canonical MFO, the distance (Di) between the moth’s solution vectors and their
corresponding flames is calculated using Equation (4). DMFO-CD imitates the distance
calculating and generates Di by adapting a single-point crossover (

Algorithms 2021, 14, x FOR PEER REVIEW 12 of 28

Algorithm 1: Algorithm of the Proposed DMFO-CD

Input: MaxIter (Maximum iterations), N (Number of moths), Prob, D (Number of net-

work nodes)

Output: best_flame

1. Begin

2. For i = 1: N

3. For d = 1: D

4. If rand < Prob

5. Mi,d ← Initializing using a random neighbor

6. Else

7. Mi,d ← Initializing using the best neighbor

8. End

9. End

10. End

11. Calculating moths’ fitness

12. Iter = 1

13. While Iter ≤ MaxIter

14. flame_no ← round (N–Iter × (N-1/MaxIter))

15. If Iter == 1

16. Sorting the moths based on their fitness

17. Determining flames’ population

18. Else

19. Merging moths’ and flames’ population

20. Sorting merged population based on fitness

21. Determining new flames

22. End

23. Determining best_flame

24. For i = 1: N

25. Di ← ⨞(Fi, Mi)

26. If i ≤ flame_no

27. Mi-tmp ← ⨝(Fi, Di)

28. Else

29. Mi-tmp ← ⨝(Fflame_no, Di)

30. End

31. Mi ← Single-point neighbor-based mutation (Mi-tmp)

32. End

33. Calculating moths’ fitness

34. Iter = Iter + 1

35. End while

36. Return best_flame

37. End

) operator [60]. The
crossover operator is used to combine two parent solutions Mi and Fi and generates two
new solutions Child1 and Child2 by Equation (6).

[Child1. Child2] =

Algorithms 2021, 14, x FOR PEER REVIEW 12 of 28

Algorithm 1: Algorithm of the Proposed DMFO-CD

Input: MaxIter (Maximum iterations), N (Number of moths), Prob, D (Number of net-

work nodes)

Output: best_flame

1. Begin

2. For i = 1: N

3. For d = 1: D

4. If rand < Prob

5. Mi,d ← Initializing using a random neighbor

6. Else

7. Mi,d ← Initializing using the best neighbor

8. End

9. End

10. End

11. Calculating moths’ fitness

12. Iter = 1

13. While Iter ≤ MaxIter

14. flame_no ← round (N–Iter × (N-1/MaxIter))

15. If Iter == 1

16. Sorting the moths based on their fitness

17. Determining flames’ population

18. Else

19. Merging moths’ and flames’ population

20. Sorting merged population based on fitness

21. Determining new flames

22. End

23. Determining best_flame

24. For i = 1: N

25. Di ← ⨞(Fi, Mi)

26. If i ≤ flame_no

27. Mi-tmp ← ⨝(Fi, Di)

28. Else

29. Mi-tmp ← ⨝(Fflame_no, Di)

30. End

31. Mi ← Single-point neighbor-based mutation (Mi-tmp)

32. End

33. Calculating moths’ fitness

34. Iter = Iter + 1

35. End while

36. Return best_flame

37. End

(Fi. Mi) (6)

Then, the fitness of each generated child is calculated, and the one that has better
fitness is selected as Di by Equation (7).

Di =

{
Child1 i f f (Child1) > f (Child2)
Child2 otherwise

(7)

An example of generating new solutions using the single-point crossover is shown
in Figure 6, where Figure 6a,b shows solution vectors Mi and Fi considered as parents.
In Figure 6c, a crossover point is randomly selected. To produce Child1, the values of Fi
from the beginning to the crossover point are copied and the rest values from the crossover
point to the endpoint of Mi are considered. Child2 is produced in reverse order such that
the first values are copied from Mi and then the values from the crossover point to the
endpoint of Fi are considered. Then, as shown in Figure 6d, Child2 is selected as Di due to
its better fitness.

Algorithms 2021, 14, 314 10 of 27Algorithms 2021, 14, x FOR PEER REVIEW 10 of 28

(a) (b)

(c) (d)

Figure 6. Distance imitating using the single-point crossover: (a) solution vector Fi and its commu-
nities; (b) solution vector Mi and its communities; (c) generating Child1 and Child2; (d) Child2 with
better fitness is selected as Di.

4.2.2. The Movement Strategy Using Two-Point Crossover
To adapt the MFO movement strategy, a two-point crossover (⨝) [61] is applied be-

tween Di and the corresponding flame. The corresponding flame of Mi is either Fi or Fflame_no
in which flame_no is calculated by Equation (5). Regarding the canonical MFO, the moths
update their position with respect to their corresponding flame by Equation (8).

[𝑀஼௛௜௟ௗ . 𝑀஼௛௜௟ௗଶ] = ቐ

⨝(𝐹௜ . 𝐷௜) 𝑖𝑓 𝑖 ≤ 𝑓𝑙𝑎𝑚𝑒_𝑛𝑜

⨝(𝐹௙௟௔௠௘_௡௢. 𝐷௜) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8)

In this two-point crossover, two points are randomly selected as crossover points,
and the values of Di and the corresponding flame are combined to each other based on a
crossover point to generate two new solutions MChild1 and MChild2. Then, the fitness of each
child is calculated and the one that has better fitness is selected as Mi-tmp using Equation
(9).

𝑀௜ି௧௠௣ = ቐ

𝑀஼௛௜௟ௗଵ 𝑖𝑓 𝑓(𝑀஼௛௜௟ௗଵ) > 𝑓(𝑀஼௛௜௟ௗଶ)

𝑀஼௛௜௟ௗଶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9)

To better understand, an example of two-point crossover is provided in Figure 7 in
which Figure 7a,b shows solution vectors of Fi and Di, and Figure 7c is a two-point cross-
over to generate MChild1 and MChild2. In Figure 7d, MChild2 is selected as Mi-tmp due to its better
fitness.

Figure 6. Distance imitating using the single-point crossover: (a) solution vector Fi and its communities; (b) solution vector
Mi and its communities; (c) generating Child1 and Child2; (d) Child2 with better fitness is selected as Di.

4.2.2. The Movement Strategy Using Two-Point Crossover

To adapt the MFO movement strategy, a two-point crossover (1) [61] is applied
between Di and the corresponding flame. The corresponding flame of Mi is either Fi or
Fflame_no in which flame_no is calculated by Equation (5). Regarding the canonical MFO, the
moths update their position with respect to their corresponding flame by Equation (8).

[MChild1. MChild2] =

{
1 (Fi. Di) i f i ≤ f lame_no
1
(

Ff lame_no. Di

)
otherwise

(8)

In this two-point crossover, two points are randomly selected as crossover points,
and the values of Di and the corresponding flame are combined to each other based on
a crossover point to generate two new solutions MChild1 and MChild2. Then, the fitness
of each child is calculated and the one that has better fitness is selected as Mi-tmp using
Equation (9).

Mi−tmp =

{
MChild1 i f f (MChild1) > f (MChild2)
MChild2 otherwise

(9)

To better understand, an example of two-point crossover is provided in Figure 7
in which Figure 7a,b shows solution vectors of Fi and Di, and Figure 7c is a two-point
crossover to generate MChild1 and MChild2. In Figure 7d, MChild2 is selected as Mi-tmp due to
its better fitness.

4.2.3. Single-Point Neighbor-Based Mutation

To increase the exploration ability of the DMFO-CD algorithm, a single-point neighbor-
based mutation [58] is performed on all moths’ solution vectors. In this mutation, the
solution vector Mi is updated such that each Mi-tmp a node is randomly selected, and its

Algorithms 2021, 14, 314 11 of 27

value is replaced by the number of a node selected randomly from its neighbor set. This
limitation guarantees that the obtained solution vector Mi does not exit from the solution
space. Figure 8 further illustrates the process of this mutation on Mi-tmp that results in Mi.

Algorithms 2021, 14, x FOR PEER REVIEW 11 of 28

(a) (b)

(c) (d)

Figure 7. Generating new solutions using the two-point crossover: (a) solution vector Fi and its com-
munities; (b) solution vector Di and its communities; (c) generating MChild1 and MChild2; (d) MChild1 with
better fitness is selected as Mi-tmp.

4.2.3. Single-Point Neighbor-Based Mutation
To increase the exploration ability of the DMFO-CD algorithm, a single-point neigh-

bor-based mutation [58] is performed on all moths’ solution vectors. In this mutation, the
solution vector Mi is updated such that each Mi-tmp a node is randomly selected, and its
value is replaced by the number of a node selected randomly from its neighbor set. This
limitation guarantees that the obtained solution vector Mi does not exit from the solution
space. Figure 8 further illustrates the process of this mutation on Mi-tmp that results in Mi.

(a) (b) (c)

Figure 8. Updating Mi using the single-point neighbor-based mutation: (a) randomly selecting a
node; (b) randomly selecting a neighbor; (c) replacing value of selected node using its selected
neighbor.

After updating all moths’ solution vectors, their fitness is calculated using a fitness
function explained in the next section. Then, to determine the flames population for the
next iteration, the current moths and flames populations are merged and sorted based on
their fitness value. Thereafter, N best flames are selected as new flames. The pseudo-code
of the proposed DMFO-CD is shown in Algorithm 1.

Figure 7. Generating new solutions using the two-point crossover: (a) solution vector Fi and its communities; (b) solution
vector Di and its communities; (c) generating MChild1 and MChild2; (d) MChild1 with better fitness is selected as Mi-tmp.

Algorithms 2021, 14, x FOR PEER REVIEW 11 of 28

(a) (b)

(c) (d)

Figure 7. Generating new solutions using the two-point crossover: (a) solution vector Fi and its com-
munities; (b) solution vector Di and its communities; (c) generating MChild1 and MChild2; (d) MChild1 with
better fitness is selected as Mi-tmp.

4.2.3. Single-Point Neighbor-Based Mutation
To increase the exploration ability of the DMFO-CD algorithm, a single-point neigh-

bor-based mutation [58] is performed on all moths’ solution vectors. In this mutation, the
solution vector Mi is updated such that each Mi-tmp a node is randomly selected, and its
value is replaced by the number of a node selected randomly from its neighbor set. This
limitation guarantees that the obtained solution vector Mi does not exit from the solution
space. Figure 8 further illustrates the process of this mutation on Mi-tmp that results in Mi.

(a) (b) (c)

Figure 8. Updating Mi using the single-point neighbor-based mutation: (a) randomly selecting a
node; (b) randomly selecting a neighbor; (c) replacing value of selected node using its selected
neighbor.

After updating all moths’ solution vectors, their fitness is calculated using a fitness
function explained in the next section. Then, to determine the flames population for the
next iteration, the current moths and flames populations are merged and sorted based on
their fitness value. Thereafter, N best flames are selected as new flames. The pseudo-code
of the proposed DMFO-CD is shown in Algorithm 1.

Figure 8. Updating Mi using the single-point neighbor-based mutation: (a) randomly selecting a node; (b) randomly
selecting a neighbor; (c) replacing value of selected node using its selected neighbor.

After updating all moths’ solution vectors, their fitness is calculated using a fitness
function explained in the next section. Then, to determine the flames population for the
next iteration, the current moths and flames populations are merged and sorted based on
their fitness value. Thereafter, N best flames are selected as new flames. The pseudo-code
of the proposed DMFO-CD is shown in Algorithm 1.

Algorithms 2021, 14, 314 12 of 27

Algorithm 1: Algorithm of the Proposed DMFO-CD
Input: MaxIter (Maximum iterations), N (Number of moths), Prob, D (Number of network nodes)
Output: best_flame

Begin
For i = 1: N

For d = 1: D
If rand < Prob

Mi,d ← Initializing using a random neighbor
Else

Mi,d ← Initializing using the best neighbor
End

End
End
Calculating moths’ fitness
Iter = 1
While Iter ≤MaxIter

flame_no← round (N–Iter × (N-1/MaxIter))
If Iter == 1

Sorting the moths based on their fitness
Determining flames’ population

Else
Merging moths’ and flames’ population
Sorting merged population based on fitness
Determining new flames

End
Determining best_flame
For i = 1: N

Di ←

Algorithms 2021, 14, x FOR PEER REVIEW 12 of 28

Algorithm 1: Algorithm of the Proposed DMFO-CD

Input: MaxIter (Maximum iterations), N (Number of moths), Prob, D (Number of net-

work nodes)

Output: best_flame

1. Begin

2. For i = 1: N

3. For d = 1: D

4. If rand < Prob

5. Mi,d ← Initializing using a random neighbor

6. Else

7. Mi,d ← Initializing using the best neighbor

8. End

9. End

10. End

11. Calculating moths’ fitness

12. Iter = 1

13. While Iter ≤ MaxIter

14. flame_no ← round (N–Iter × (N-1/MaxIter))

15. If Iter == 1

16. Sorting the moths based on their fitness

17. Determining flames’ population

18. Else

19. Merging moths’ and flames’ population

20. Sorting merged population based on fitness

21. Determining new flames

22. End

23. Determining best_flame

24. For i = 1: N

25. Di ← ⨞(Fi, Mi)

26. If i ≤ flame_no

27. Mi-tmp ← ⨝(Fi, Di)

28. Else

29. Mi-tmp ← ⨝(Fflame_no, Di)

30. End

31. Mi ← Single-point neighbor-based mutation (Mi-tmp)

32. End

33. Calculating moths’ fitness

34. Iter = Iter + 1

35. End while

36. Return best_flame

37. End

(Fi, Mi)
If i ≤ flame_no

Mi-tmp ← 1(Fi, Di)
Else

Mi-tmp ← 1(Fflame_no, Di)
End
Mi ← Single-point neighbor-based mutation (Mi-tmp)

End
Calculating moths’ fitness
Iter = Iter + 1

End while
Return best_flame
End

4.3. Fitness Function

Fitness function measures the quality of partitioning of the network during the opti-
mization process and converges the algorithm to detect optimum communities; therefore,
fitness function plays a key role. In this study, the modularity Q, which was proposed by
Newman et al. [11], is used to evaluate the fitness of moths. The greater value of modularity
demonstrates the better quality of partitioning. Consider a network is partitioned into the
k communities; thus, its modularity can be calculated by Equation (10) [60]:

Q =
k

∑
s=1

[
ls
m
−
(

ds

2m

)2
]

(10)

where m is the number of edges, k is the number of detected communities, ls is the number
of edges joining nodes of the community k, and ds is the sum of the degrees of the nodes
belonging to the community k. In Equation (10), ls

m is the fraction of edges inside a

community and its value represent the strength of that community,
(

ds
2m

)2
is the expected

fraction of edges that could be in a random network without any community structure,

Algorithms 2021, 14, 314 13 of 27

and it represents the weakness of a community; therefore, the partitioning quality would
be calculated by distracting these two terms.

5. Experimental Evaluation

The performance of the proposed DMFO-CD algorithm was evaluated on eleven
real-world datasets, and the results were compared with five state-of-the-art algorithms in
community detection, consisting of DPSO-PDM [13], GA-Net [58], GACD [14], EGACD [60],
and DECS [76]. The proposed and comparative algorithms were implemented in MATLAB
2020b except for GA-Net and DECS; its executable MATLAB code [89,90] was used. All
experiments were run on a CPU, Intel Core (TM) i7-3770 3.4GHz with 12.0 Gb real memory.
The performance comparison was based on various metrics consisting of modularity (Q),
normalized mutual information (NMI) [91], and the number of detected communities. The
overall performance of the algorithms was statistically analyzed by two non-parametric
statistical tests Friedman [77] and Wilcoxon signed-rank [78].

5.1. Datasets Description

The proposed DMFO-CD algorithm was tested on eleven real-world network datasets
known as social networks consists of Zachary’s karate club (karate) [92], American College
football (football) [2], Bottlenose Dolphins (dolphins) [93], co-purchase political books
(polbooks) [94], WebKB network [95] includes four datasets, adjective Noun network
(adjnoun) [12], Email-Eu-core network (email-Eu) [96], and DBLP network (dblp) [97]. The
details and statistical information of the networks are described as follows.

Zachary’s karate club (karate) network is a friendship network that has been divided
into two factions based on the conflict between the administrators of the club. In this
study, an unweighted version of the network was used to detect the factions only based
on the friendship relations. This network contains 34 nodes, 78 edges, and has two real
communities as shown in Figure 9a.

Bottlenose dolphins (dolphins) network is about 62 dolphins that lived in Doubtful
Sound, New Zealand and were collected by Lusseau et al. [93]. The members of this
bottlenose dolphin’s community had been studied in a 7 years’ period and during that time
they did not have any permanent migration or immigration. The observed community
structure between these dolphins was temporally stable, which had not been seen in other
bottlenose dolphins population. This dataset consists of 62 nodes, 159 undirected edges,
and has two real communities as shown in Figure 9b.

American college football (football) network consists of 115 American football teams
of Division IA colleges that have played with each other during a season in 2000 [2]. Nodes
represent teams and edges represent the regular season games between the two teams.
The network includes 115 nodes, 1226 edges, and is grouped into 12 teams as shown in
Figure 9c.

Political books (polbooks) network contains 105 American political books that have
sold on Amazon’s online store. The books purchased by a same person have been con-
nected by an edge to each other. All books are divided by Newman [94] based on the
descriptions and reviews posted on Amazon, into three classes of “liberal”, “neutral”, and
“conservative”. This network includes 105 nodes, 441 edges, and three real communities as
shown in Figure 9d.

WebKB network [95] consists of four datasets webkb-cornell, webkb-texas, webkb-
washington, and webkb-wisconsin including of the webpages of computer science de-
partment of four universities Cornell University, University of Texas at Austin, University
of Washington, and University of Wisconsin. In these datasets, each node represents a
webpage, and each edge shows there is a hyperlink between two webpages. These web-
pages are classified into faculty, staff, student, project, and course. In addition, in these
datasets, each university is considered as a separate dataset, with the Cornell University
consisting of 195 nodes and 304 edges, University of Texas having 187 nodes and 328 edges,

Algorithms 2021, 14, 314 14 of 27

University of Washington having 265 nodes and 446 edges, and University of Wisconsin
also having 265 nodes and 530 edges.

Adjective Noun (adjnoun) network dataset prepared by Newman [12] consists of
the most common adjacent adjective and noun that are come in the novel David Copperfield
by Charles Dickens. In this dataset, each node represents an adjective or noun, and each
edge represents a pair of words that adjacent with each other. In addition, each word has
one of adjective or noun class.

Algorithms 2021, 14, x FOR PEER REVIEW 14 of 28

teams. The network includes 115 nodes, 1226 edges, and is grouped into 12 teams as
shown in Figure 9c.

Political books (polbooks) network contains 105 American political books that have
sold on Amazon’s online store. The books purchased by a same person have been con-
nected by an edge to each other. All books are divided by Newman [94] based on the
descriptions and reviews posted on Amazon, into three classes of “liberal”, “neutral”, and
“conservative”. This network includes 105 nodes, 441 edges, and three real communities
as shown in Figure 9d.

WebKB network [95] consists of four datasets webkb-cornell, webkb-texas, webkb-
washington, and webkb-wisconsin including of the webpages of computer science depart-
ment of four universities Cornell University, University of Texas at Austin, University of
Washington, and University of Wisconsin. In these datasets, each node represents a
webpage, and each edge shows there is a hyperlink between two webpages. These
webpages are classified into faculty, staff, student, project, and course. In addition, in
these datasets, each university is considered as a separate dataset, with the Cornell Uni-
versity consisting of 195 nodes and 304 edges, University of Texas having 187 nodes and
328 edges, University of Washington having 265 nodes and 446 edges, and University of
Wisconsin also having 265 nodes and 530 edges.

Adjective Noun (adjnoun) network dataset prepared by Newman [12] consists of
the most common adjacent adjective and noun that are come in the novel David Copperfield
by Charles Dickens. In this dataset, each node represents an adjective or noun, and each
edge represents a pair of words that adjacent with each other. In addition, each word has
one of adjective or noun class.

Email-Eu-core network consist of 1005 members’ email of European research insti-
tution [96]. In this network, dataset nodes represent institution members’ email and the
edges determined which members sent at least one email to each other. Each member of
this network belongs to one department of the institution, and this research institution has
42 departments. This network consists of 1005 nodes and 25,571 edges, and its real com-
munities are 42.

DBLP network dataset is a co-authorship network of researchers in computer science
[97]. This dataset includes of 10,824 authors that they connected to each other when they
published at least one paper together. The authors who published in same journal or con-
ference form a community. This network dataset has 10,824 nodes, 38,732 edges and 100
communities.

(a) (b)

Algorithms 2021, 14, x FOR PEER REVIEW 15 of 28

(c) (d)

Figure 9. The community structure of datasets network: (a) the Zachary’s karate club network; (b)
the Bottlenose dolphins network; (c) the American college football network; (d) the Political books
network.

5.2. Evaluation Metrics
The performance of DMFO-CD is evaluated using metrics: several statistical values

of modularity such as average (Qavg), standard deviation (Qstd) and optimal (Qmax) modu-
larities, normalized mutual information (NMI), and the number of detected communities.
The modularity measures the quality of detected communities and NMI measures the ac-
curacy of the resulted partitioning. If R is the real partitioning of a network, then the NMI
can be used to measure the similarity between R and the resulted partitioning M gained
by the algorithm. The NMI of M and R is calculated by using Equation (11).

𝑁𝑀𝐼(𝑀, 𝑅) =
−2 ∑ ∑ 𝐶௜௝ 𝑙𝑜𝑔 (

𝐶௜௝𝑛
𝐶௜𝐶௝

൘)
஼ೃ
௝ୀଵ

஼ಾ
௜ୀଵ

∑ 𝐶௜ 𝑙𝑜𝑔 (
𝐶௜

𝑛ൗ)
஼ಾ
௜ୀଵ + ∑ 𝐶௝ 𝑙𝑜𝑔 (

𝐶௝
𝑛ൗ)

஼ೃ
௝ୀଵ

 (11)

where 𝐶 = (𝐶௜௝)஼ಾ × ஼ೃ
 is confusion matrix, CM and CR are the number of communities in

partitioning M and R. Cij represents the number of common nodes between community i
in partitioning M and community j in partitioning R. Ci and Cj are the number of elements
in i and j rows in matrix C.

5.3. Performance Evaluation
In this subsection, the performance of the proposed DMFO-CD algorithm was exper-

imentally evaluated, and the experimental results were compared with comparative algo-
rithms. As shown in Table 1, the parameter settings of all comparative algorithms were
considered the same as suggested values in their original works. All algorithms were eval-
uated to detect the communities of network dataset using 30 independent runs, except
email-Eu and dblp network that were evaluated by using 10 runs; in each run, the maxi-
mum number of iterations (MaxIter) was set by 100. Similar to previous works [61] the
population number (N) for karate, email-Eu, dblp, dolphins, all webkbs, adjnoun, football,
and polbooks datasets were set by 100, 100, 100, 200, 200, 200, 400, and 400, respectively.
The average modularity (Qavg), the standard deviation of modularity (Qstd), the optimal
modularity (Qmax), the average NMI (NMIavg), and the number of detected communities
(Cnumber) are used to report. The reported results are shown in Tables 2 and 3, in which the
best-obtained values are remarked in boldface.

Figure 9. The community structure of datasets network: (a) the Zachary’s karate club network;
(b) the Bottlenose dolphins network; (c) the American college football network; (d) the Political
books network.

Email-Eu-core network consist of 1005 members’ email of European research insti-
tution [96]. In this network, dataset nodes represent institution members’ email and the
edges determined which members sent at least one email to each other. Each member of
this network belongs to one department of the institution, and this research institution
has 42 departments. This network consists of 1005 nodes and 25,571 edges, and its real
communities are 42.

DBLP network dataset is a co-authorship network of researchers in computer sci-
ence [97]. This dataset includes of 10,824 authors that they connected to each other when
they published at least one paper together. The authors who published in same journal or
conference form a community. This network dataset has 10,824 nodes, 38,732 edges and
100 communities.

5.2. Evaluation Metrics

The performance of DMFO-CD is evaluated using metrics: several statistical values of
modularity such as average (Qavg), standard deviation (Qstd) and optimal (Qmax) modulari-
ties, normalized mutual information (NMI), and the number of detected communities. The
modularity measures the quality of detected communities and NMI measures the accuracy
of the resulted partitioning. If R is the real partitioning of a network, then the NMI can be

Algorithms 2021, 14, 314 15 of 27

used to measure the similarity between R and the resulted partitioning M gained by the
algorithm. The NMI of M and R is calculated by using Equation (11).

NMI(M, R) =
−2 ∑CM

i=1 ∑CR
j=1 Cij log(Cijn/CiCj)

∑CM
i=1 Ci log(Ci/n) + ∑CR

j=1 Cj log(Cj/n)
(11)

where C = (Cij)CM×CR
is confusion matrix, CM and CR are the number of communities in

partitioning M and R. Cij represents the number of common nodes between community i
in partitioning M and community j in partitioning R. Ci and Cj are the number of elements
in i and j rows in matrix C.

5.3. Performance Evaluation

In this subsection, the performance of the proposed DMFO-CD algorithm was ex-
perimentally evaluated, and the experimental results were compared with comparative
algorithms. As shown in Table 1, the parameter settings of all comparative algorithms
were considered the same as suggested values in their original works. All algorithms
were evaluated to detect the communities of network dataset using 30 independent runs,
except email-Eu and dblp network that were evaluated by using 10 runs; in each run, the
maximum number of iterations (MaxIter) was set by 100. Similar to previous works [61] the
population number (N) for karate, email-Eu, dblp, dolphins, all webkbs, adjnoun, football,
and polbooks datasets were set by 100, 100, 100, 200, 200, 200, 400, and 400, respectively.
The average modularity (Qavg), the standard deviation of modularity (Qstd), the optimal
modularity (Qmax), the average NMI (NMIavg), and the number of detected communities
(Cnumber) are used to report. The reported results are shown in Tables 2 and 3, in which the
best-obtained values are remarked in boldface.

Table 1. Parameter settings.

Algorithms Parameter Settings

DPSO-PDM r = [0,1], c1, c2 = 2,ωmax = 0.8,ωmin = 0.6, pm = 0.2
GA-Net pm = 0.2, pc = 0.8, r = 1.5
GACD pm = 0.2, pc = 0.8
EGACD pm = 0.2, pc = 0.8
DECS pm = 0.2, pmi = 0.5, pmu-mi = 0.5, iterm = 5
DMFO-CD Prob = 0.5

Table 2. The modularity results on eleven datasets.

Network Index DPSO-PDM GA-Net GACD EGACD DECS DMFO-CD

Karate

Qavg 4.05 × 10−1 3.98 × 10−1 4.20 × 10−1 4.20 × 10−1 3.96 × 10−1 4.20 × 10−1

Qstd 4.83 × 10−3 1.94 × 10−2 1.69 × 10−116 1.69 × 10−16 1.24 × 10−2 1.69 × 10−16

Qmax 4.17 × 10−1 4.17 × 10−1 4.20 × 10−1 4.20 × 10−1 4.02 × 10−1 4.20 × 10−1

Dolphins

Qavg 5.26 × 10−1 4.31 × 10−1 3.95 × 10−1 4.09 × 10−1 5.21 × 10−1 5.28 × 10−1

Qstd 7.35 × 10−4 1.96 × 10−2 1.77 × 10−2 2.51 × 10−2 7.29 × 10−3 7.30 × 10−4

Qmax 5.27 × 10−1 4.78 × 10−1 4.39 × 10−1 4.39 × 10−1 5.26 × 10−1 5.29 × 10−1

Football

Qavg 6.05 × 10−1 5.83 × 10−1 4.64 × 10−1 4.57 × 10−1 6.04 × 10−1 6.05 × 10−1

Qstd 0.00 × 100 1.71 × 10−2 1.84 × 10−2 2.25 × 10−2 5.62 × 10−4 4.75 × 10−5

Qmax 6.05 × 10−1 6.01 × 10−1 5.03 × 10−1 4.95 × 10−1 6.05 × 10−1 6.05 × 10−1

Algorithms 2021, 14, 314 16 of 27

Table 2. Cont.

Network Index DPSO-PDM GA-Net GACD EGACD DECS DMFO-CD

Polbooks

Qavg 5.26 × 10−1 4.63 × 10−1 5.15 × 10−1 5.22 × 10−1 5.20 × 10−1 5.27 × 10−1

Qstd 1.22 × 10−4 2.05 × 10−2 9.94 × 10−3 5.08 × 10−3 4.52 × 10−3 1.08 × 10−4

Qmax 5.27 × 10−1 4.93 × 10−1 5.26 × 10−1 5.26 × 10−1 5.26 × 10−1 5.27 × 10−1

WebKB-Cornell

Qavg 6.24 × 10−1 5.32 × 10−1 6.45 × 10−1 6.41 × 10−1 5.97 × 10−1 6.46 × 10−1

Qstd 7.10 × 10−3 8.16 × 10−3 2.20 × 10−3 3.12 × 10−3 7.88 × 10−3 1.03 × 10−3

Qmax 6.37 × 10−1 5.47 × 10−1 6.48 × 10−1 6.44 × 10−1 6.11 × 10−1 6.48 × 10−1

WebKB-Texas

Qavg 3.57 × 10−1 4.54 × 10−1 5.57 × 10−1 5.52 × 10−1 4.25 × 10−1 5.47 × 10−1

Qstd 1.38 × 10−2 8.88 × 10−3 2.29 × 10−3 2.96 × 10−3 2.29 × 10−2 7.82 × 10−3

Qmax 3.92 × 10−1 4.73 × 10−1 5.60 × 10−1 5.57 × 10−1 4.53 × 10−1 5.60 × 10−1

WebKB-Washington

Qavg 3.63 × 10−1 4.42 × 10−1 5.69 × 10−1 5.59 × 10−1 4.11 × 10−1 5.69 × 10−1

Qstd 1.88 × 10−2 8.39 × 10−3 3.73 × 10−3 5.20 × 10−3 2.90 × 10−2 4.12 × 10−3

Qmax 3.97 × 10−1 4.57 × 10−1 5.75 × 10−1 5.69 × 10−1 4.71 × 10−1 5.74 × 10−1

WebKB-Wisconsin

Qavg 5.31 × 10−1 5.04 × 10−1 6.35 × 10−1 6.26 × 10−1 5.52 × 10−1 6.39 × 10−1

Qstd 1.59 × 10−2 9.81 × 10−1 2.75 × 10−3 5.03 × 10−3 2.30 × 10−2 1.96 × 10−3

Qmax 5.56 × 10−1 5.31 × 10−1 6.39 × 10−1 6.38 × 10−1 5.87 × 10−1 6.42 × 10−1

AdjNoun

Qavg 2.32 × 10−1 2.10 × 10−1 2.85 × 10−1 2.74 × 10−1 8.63 × 10−2 2.95 × 10−1

Qstd 1.39 × 10−1 1.42 × 10−2 8.03 × 10−3 8.98 × 10−3 6.67 × 10−2 5.40 × 10−3

Qmax 2.62 × 10−1 2.30 × 10−1 2.99 × 10−1 2.92 × 10−1 2.53 × 10−1 3.03 × 10−1

Email-Eu

Qavg 3.81 × 10−1 1.14 × 10−1 1.63 × 10−1 1.85 × 10−1 1.52 × 10−1 1.63 × 10−1

Qstd 8.55 × 10−3 2.26 × 10−2 5.38 × 10−3 1.11 × 10−2 1.20 × 10−2 5.38 × 10−3

Qmax 3.97 × 10−1 1.59 × 10−1 1.76 × 10−1 2.05 × 10−1 1.62 × 10−1 1.76 × 10−1

Dblp

Qavg 8.07 × 10−1 6.22 × 10−1 7.28 × 10−1 6.79 × 10−1 6.46 × 10−1 7.66 × 10−1

Qstd 1.58 × 10−3 9.49 × 10−3 1.44 × 10−2 4.76 × 10−3 1.03 × 10−2 3.88 × 10−3

Qmax 8.11 × 10−1 6.31 × 10−1 7.46 × 10−1 6.86 × 10−1 6.64 × 10−1 7.74 × 10−1

Table 3. The NMI and community number.

Network Index DPSO-PDM GA-Net GACD EGACD DECS DMFO-CD

Karate
NMIavg 0.667 0.638 0.687 0.687 0.695 0.687

Cnumber 4 4 4 4 3 4

Dolphins
NMIavg 0.831 0.647 0.510 0.538 0.585 0.584

Cnumber 4 11 3 3 4 5

Football
NMIavg 0.890 0.909 0.587 0.603 0.885 0.888

Cnumber 10 12 6 7 10 10

Polbooks
NMIavg 0.560 0.412 0.514 0.499 0.552 0.560

Cnumber 5 12 5 6 4 5

WebKB-Texas
NMIavg 0.398 0.778 0.619 0.639 0.529 0.091

Cnumber 12 39 14 17 21 18

WebKB-Washington
NMIavg 0.446 0.816 0.636 0.668 0.227 0.126

Cnumber 22 65 25 29 34 31

WebKB-Wisconsin
NMIavg 0.526 0.795 0.586 0.630 0.569 0.104

Cnumber 17 51 16 21 24 20

Algorithms 2021, 14, 314 17 of 27

Table 3. Cont.

Network Index DPSO-PDM GA-Net GACD EGACD DECS DMFO-CD

AdjNoun
NMIavg 0.425 0.741 0.503 0.558 0.656 0.008

Cnumber 5 20 5 8 4 6

Email-Eu
NMIavg 0.522 0.357 0.278 0.334 0.252 0.570

Cnumber 28 92 6 64 73 493

Dblp
NMIavg 0.453 0.428 0.502 0.438 0.437 0.454

Cnumber 1054 1367 639 1196 1103 1103

Table 2 and Figure 10 show the obtained modularity by DMFO-CD and comparative
algorithms on eleven datasets. As per the results in Table 2 and Figure 10, DMFO-CD,
GACD, and EGACD have the highest value of modularity and lowest distribution of
modularity on karate network. In Figure 10, EGACD has the largest distribution of
modularity than others, and GACD has the lowest average modularity that shows that they
have the poorest performance on the dolphins network. The average modularity gained by
GA-Net is better than EGACD and GACD; however, its distribution is near to GACD. The
modularity of DMFO-CD is evident in that it is superior to other comparative algorithms
for detecting communities of the dolphins network. As shown in Figure 10, GACD and
EGACD have the lowest performance in the football dataset among other algorithms, while
DMFO-CD and DPSO-PDM have better results than other algorithms. Figure 10 shows the
results on polbooks network in which the GA-NET algorithm has the largest distribution
and weak modularity, while in comparison to other algorithms, DMFO-CD has the best
average modularity. Table 2 shows that DMFO-CD has mostly gained the best result of
modularity among other comparative algorithms on webkb datasets. GACD and EGACD
have the results near to DMFO-CD, and DPSO-PDM could not gain proper results in term
of modularity. For adjnoun dataset, as shown in Figure 10, the proposed DMFO-CD has the
best average of modularity than other comparative algorithms. GACD and EGACD after
DMFO-CD have better results than DPSO-PDM, GA-Net, and DECS. In Table 2 the row of
email-Eu represents the results of modularity on email-Eu dataset that DMFO-CD has the
best results on it. DMFO-CD in compare with GA-Net and DECS has better performance
and is near to EGACD. As shown in Figure 10, the performance of DMFO-CD in terms of
modularity for dblp dataset is better than others, except for DPSO-PDM.

Algorithms 2021, 14, x FOR PEER REVIEW 17 of 28

Qmax 6.05 × 10−1 6.01 × 10−1 5.03 × 10−1 4.95 × 10−1 6.05 × 10−1 6.05 × 10−1

Polbooks
Qavg 5.26 × 10−1 4.63 × 10−1 5.15 × 10−1 5.22 × 10−1 5.20 × 10−1 5.27 × 10−1
Qstd 1.22 × 10−4 2.05 × 10−2 9.94 × 10−3 5.08 × 10−3 4.52 × 10−3 1.08 × 10−4
Qmax 5.27 × 10−1 4.93 × 10−1 5.26 × 10−1 5.26 × 10−1 5.26 × 10−1 5.27 × 10−1

WebKB-Cornell
Qavg 6.24 × 10−1 5.32 × 10−1 6.45 × 10−1 6.41 × 10−1 5.97 × 10−1 6.46 × 10−1
Qstd 7.10 × 10−3 8.16 × 10−3 2.20 × 10−3 3.12 × 10−3 7.88 × 10−3 1.03 × 10−3
Qmax 6.37 × 10−1 5.47 × 10−1 6.48 × 10−1 6.44 × 10−1 6.11 × 10−1 6.48 × 10−1

WebKB-Texas
Qavg 3.57 × 10−1 4.54 × 10−1 5.57 × 10−1 5.52 × 10−1 4.25 × 10−1 5.47 × 10−1
Qstd 1.38 × 10−2 8.88 × 10−3 2.29 × 10−3 2.96 × 10−3 2.29 × 10−2 7.82 × 10−3
Qmax 3.92 × 10−1 4.73 × 10−1 5.60 × 10−1 5.57 × 10−1 4.53 × 10−1 5.60 × 10−1

WebKB-Wash-
ington

Qavg 3.63 × 10−1 4.42 × 10−1 5.69 × 10−1 5.59 × 10−1 4.11 × 10−1 5.69 × 10−1
Qstd 1.88 × 10−2 8.39 × 10−3 3.73 × 10−3 5.20 × 10−3 2.90 × 10−2 4.12 × 10−3
Qmax 3.97 × 10−1 4.57 × 10−1 5.75 × 10−1 5.69 × 10−1 4.71 × 10−1 5.74 × 10−1

WebKB-Wiscon-
sin

Qavg 5.31 × 10−1 5.04 × 10−1 6.35 × 10−1 6.26 × 10−1 5.52 × 10−1 6.39 × 10−1
Qstd 1.59 × 10−2 9.81 × 10−1 2.75 × 10−3 5.03 × 10−3 2.30 × 10−2 1.96 × 10−3
Qmax 5.56 × 10−1 5.31 × 10−1 6.39 × 10−1 6.38 × 10−1 5.87 × 10−1 6.42 × 10−1

AdjNoun
Qavg 2.32 × 10−1 2.10 × 10−1 2.85 × 10−1 2.74 × 10−1 8.63 × 10−2 2.95 × 10−1
Qstd 1.39 × 10−1 1.42 × 10−2 8.03 × 10−3 8.98 × 10−3 6.67 × 10−2 5.40 × 10−3
Qmax 2.62 × 10−1 2.30 × 10−1 2.99 × 10−1 2.92 × 10−1 2.53 × 10−1 3.03 × 10−1

Email-Eu
Qavg 3.81 × 10−1 1.14 × 10−1 1.63 × 10−1 1.85 × 10−1 1.52 × 10−1 1.63 × 10−1
Qstd 8.55 × 10−3 2.26 × 10−2 5.38 × 10−3 1.11 × 10−2 1.20 × 10−2 5.38 × 10−3
Qmax 3.97 × 10−1 1.59 × 10−1 1.76 × 10−1 2.05 × 10−1 1.62 × 10−1 1.76 × 10−1

Dblp
Qavg 8.07 × 10−1 6.22 × 10−1 7.28 × 10−1 6.79 × 10−1 6.46 × 10−1 7.66 × 10−1
Qstd 1.58 × 10−3 9.49 × 10−3 1.44 × 10−2 4.76 × 10−3 1.03 × 10−2 3.88 × 10−3
Qmax 8.11 × 10−1 6.31 × 10−1 7.46 × 10−1 6.86 × 10−1 6.64 × 10−1 7.74 × 10−1

Figure 10. Cont.

Algorithms 2021, 14, 314 18 of 27
Algorithms 2021, 14, x FOR PEER REVIEW 18 of 28

Figure 10. The boxplot of modularity (Q).

Table 3 shows the average NMI of values gained by GA-Net, GACD, EGACD, DPSO-
PDM, DECS, and DMFO-CD in karate, dolphins, football, polbooks, webkb, and adjnoun
datasets from 30 runs and email-Eu and dblp datasets from 10 independent runs. In Figure
11, the bar plot of gained NMI of all algorithms is shown on each dataset. In the karate
dataset, although DMFO-CD in terms of NMI obtains better results than GA-Net and
DPSO-PDM, all comparative algorithms detect four communities, except for DECS, which
has better NMI than others and detects the more correct community number. In the dol-
phins dataset, DPSO-PDM gained the most value of average NMI. In the football dataset,
DPSO-PDM and GA-Net have better performance than DMFO-CD, while DMFO-CD after
GA-Net detects the correct number of communities. As shown in the fourth row of Table
3, in polbooks dataset, DMFO-CD and DPSO-PDM detect a more accurate and correct

Figure 10. The boxplot of modularity (Q).

The reported results show that the proposed DMFO-CD has the best performance
in terms of modularity in the dolphins and polbooks datasets. In addition, DMFO-CD is
competitive with GACD and EGACD on the karate dataset, and with DPSO-PDM and
DECS on the football dataset. DMFO-CD in email-Eu dataset has a weak performance in
terms of modularity; however, it is better than GA-Net and DECS. In dblp dataset, although
DMFO-CD is not better than DPSO-PDM, it is better than other algorithms. Thus, DMFO-
CD is able to provide superior and competitive results in comparison to the comparative
algorithms in terms of modularity.

Table 3 shows the average NMI of values gained by GA-Net, GACD, EGACD, DPSO-
PDM, DECS, and DMFO-CD in karate, dolphins, football, polbooks, webkb, and adjnoun
datasets from 30 runs and email-Eu and dblp datasets from 10 independent runs. In
Figure 11, the bar plot of gained NMI of all algorithms is shown on each dataset. In the
karate dataset, although DMFO-CD in terms of NMI obtains better results than GA-Net
and DPSO-PDM, all comparative algorithms detect four communities, except for DECS,
which has better NMI than others and detects the more correct community number. In
the dolphins dataset, DPSO-PDM gained the most value of average NMI. In the football

Algorithms 2021, 14, 314 19 of 27

dataset, DPSO-PDM and GA-Net have better performance than DMFO-CD, while DMFO-
CD after GA-Net detects the correct number of communities. As shown in the fourth row
of Table 3, in polbooks dataset, DMFO-CD and DPSO-PDM detect a more accurate and
correct number of communities than the rest of the comparative algorithms. In webkb,
network datasets GA-Net gained the best results of average NMI, while DMFO-CD could
not gain proper results. In adjnoun dataset, GA-Net has the best result, but DMFO-CD
has less good performance than other algorithms. In email-Eu dataset, DMFO-CD has
the greatest value of NMI. The last row of Table 3 shows the results in dblp dataset in
which DMFO-CD after GACD has the best average of NMI. Although in this experiment,
DMFO-CD does not have the expected performance in terms of NMI, it practically detects
the correct number of communities.

Algorithms 2021, 14, x FOR PEER REVIEW 19 of 28

number of communities than the rest of the comparative algorithms. In webkb, network
datasets GA-Net gained the best results of average NMI, while DMFO-CD could not gain
proper results. In adjnoun dataset, GA-Net has the best result, but DMFO-CD has less
good performance than other algorithms. In email-Eu dataset, DMFO-CD has the greatest
value of NMI. The last row of Table 3 shows the results in dblp dataset in which DMFO-
CD after GACD has the best average of NMI. Although in this experiment, DMFO-CD
does not have the expected performance in terms of NMI, it practically detects the correct
number of communities.

Table 3. The NMI and community number.

Network Index DPSO-PDM GA-Net GACD EGACD DECS DMFO-CD

Karate
NMIavg 0.667 0.638 0.687 0.687 0.695 0.687
Cnumber 4 4 4 4 3 4

Dolphins
NMIavg 0.831 0.647 0.510 0.538 0.585 0.584
Cnumber 4 11 3 3 4 5

Football
NMIavg 0.890 0.909 0.587 0.603 0.885 0.888
Cnumber 10 12 6 7 10 10

Polbooks
NMIavg 0.560 0.412 0.514 0.499 0.552 0.560
Cnumber 5 12 5 6 4 5

WebKB-Texas
NMIavg 0.398 0.778 0.619 0.639 0.529 0.091
Cnumber 12 39 14 17 21 18

WebKB-Washing-
ton

NMIavg 0.446 0.816 0.636 0.668 0.227 0.126
Cnumber 22 65 25 29 34 31

WebKB-Wisconsin
NMIavg 0.526 0.795 0.586 0.630 0.569 0.104
Cnumber 17 51 16 21 24 20

AdjNoun
NMIavg 0.425 0.741 0.503 0.558 0.656 0.008
Cnumber 5 20 5 8 4 6

Email-Eu
NMIavg 0.522 0.357 0.278 0.334 0.252 0.570
Cnumber 28 92 6 64 73 493

Dblp
NMIavg 0.453 0.428 0.502 0.438 0.437 0.454
Cnumber 1054 1367 639 1196 1103 1103

Figure 11. The average NMI of real-world network datasets.

N
M

I

DPSO-PDM GA-Net GACD EGACD DMFO-CD DECS

Figure 11. The average NMI of real-world network datasets.

5.4. Convergence Evaluation

In this subsection, the DMFO-CD convergence behavior and speed are assessed and
compared to the comparative algorithms except GA-net because it uses community score
to calculate the fitness. Figure 12 shows the convergence curves of all algorithms on eleven
datasets. These curves show the best modularity in every iteration for each algorithm over
30 runs on karate, dolphins, football, polbooks, four webkb datasets, and adjnoun networks
and 10 runs on email-Eu and dblp networks. The convergence curves show that DMFO-CD
on karate, dolphins, football, and polbooks datasets is better than GACD and EGACD,
and is competitive with DPSO-PDM and DECS. In webkb datasets, the convergence curve
of DMFO-CD follows closely GACD and EGACD, and in adjnoun dataset, DMFO-CD
has the best convergence curve versus other comparative algorithms. In email-Eu dataset,
DMFO-CD does not have a good convergence, but in dblp, it has the best performance
after DPSO-PDM. The better convergence of DMFO-CD originates from the usage of the
best neighbor in the initialization step. The convergence of the DMFO-CD is sped up when
the best neighbor is used in the initialization step versus when the best neighbor is not
used. Figure 13 shows this difference on four selected datasets.

5.5. Statistical Analysis

In this subsection, the performance of the proposed DMFO-CD algorithm and compar-
ative algorithms were statistically analyzed by two statistical tests, i.e., Friedman test [77]
and Wilcoxon signed-rank test [78].

Algorithms 2021, 14, 314 20 of 27

Algorithms 2021, 14, x FOR PEER REVIEW 20 of 28

5.4. Convergence Evaluation
In this subsection, the DMFO-CD convergence behavior and speed are assessed and

compared to the comparative algorithms except GA-net because it uses community score
to calculate the fitness. Figure 12 shows the convergence curves of all algorithms on eleven
datasets. These curves show the best modularity in every iteration for each algorithm over
30 runs on karate, dolphins, football, polbooks, four webkb datasets, and adjnoun net-
works and 10 runs on email-Eu and dblp networks. The convergence curves show that
DMFO-CD on karate, dolphins, football, and polbooks datasets is better than GACD and
EGACD, and is competitive with DPSO-PDM and DECS. In webkb datasets, the conver-
gence curve of DMFO-CD follows closely GACD and EGACD, and in adjnoun dataset,
DMFO-CD has the best convergence curve versus other comparative algorithms. In email-
Eu dataset, DMFO-CD does not have a good convergence, but in dblp, it has the best per-
formance after DPSO-PDM. The better convergence of DMFO-CD originates from the us-
age of the best neighbor in the initialization step. The convergence of the DMFO-CD is
sped up when the best neighbor is used in the initialization step versus when the best
neighbor is not used. Figure 13 shows this difference on four selected datasets.

Algorithms 2021, 14, x FOR PEER REVIEW 21 of 28

Figure 12. Convergence curves of the proposed DMFO-CD and comparative algorithms.

Figure 12. Cont.

Algorithms 2021, 14, 314 21 of 27

Algorithms 2021, 14, x FOR PEER REVIEW 21 of 28

Figure 12. Convergence curves of the proposed DMFO-CD and comparative algorithms.

Figure 12. Convergence curves of the proposed DMFO-CD and comparative algorithms.

Algorithms 2021, 14, x FOR PEER REVIEW 21 of 28

Figure 12. Convergence curves of the proposed DMFO-CD and comparative algorithms.

Algorithms 2021, 14, x FOR PEER REVIEW 22 of 28

Figure 13. Impact of using the best neighbor on convergence speed of DMFO-CD.

5.5. Statistical Analysis
In this subsection, the performance of the proposed DMFO-CD algorithm and com-

parative algorithms were statistically analyzed by two statistical tests, i.e., Friedman test
[77] and Wilcoxon signed-rank test [78].

5.5.1. Friedman Test
The non-parametric Friedman test was conducted to prove the superiority of the pro-

posed DMFO-CD algorithm statistically. The Friedman test (Ff) [77] is a non-parametric
test using for multiple comparisons of different algorithms for all functions. This test is
used to rank the DMFO-CD and comparative algorithms based on the achieved fitness by
using Equation (12),

𝐹௙ =
12 × 𝑛

𝑘 × (𝑘 + 1)
቎෍ 𝑅௝

ଶ −
𝑘 × (𝑘 + 1)ଶ

4
௝

቏ (12)

where k, n, and Rj are the number of algorithms, case tests, and the mean rank of the jth
algorithm, respectively. For each pair of algorithms, it ranks from 1 (best result) to k (worst
result) and then calculates the average ranks obtained in all problems to find the algo-
rithms’ final rank. The Friedman test on modularity and NMI were calculate for all algo-
rithms over 30 runs on karate, dolphins, football, polbooks, four webkb datasets, and
adjnoun networks and over 10 runs on email-Eu and dblp networks. The gained results
on modularity and NMI are tabulated in Tables 4 and 5. Based on the overall ranking
results, the DMFO-CD algorithm has better overall ranked on modularity and competitive
rank compared with other stat × 10of-th × 10art algorithms.

Table 4. The Friedman test on modularity.

Network DPSO-PDM GA-Net GACD EGACD DECS DMFO-CD
Karate 2.60 1.97 5.00 5.00 1.43 5.00

Dolphins 4.78 2.70 1.42 1.88 4.22 6.00
Football 5.15 3.00 1.57 1.43 4.83 5.02
Polbooks 5.00 1.00 2.60 3.40 3.00 6.00

WebKB-Cornell 3.03 1.00 5.07 4.13 2.00 5.77
WebKB-Texas 1.03 2.97 5.80 4.70 2.00 4.50

WebKB-Washington 1.10 2.87 5.57 4.10 2.03 5.33
WebKB-Wisconsin 2.10 1.13 5.07 4.07 2.77 5.87

AdjNoun 2.83 2.00 4.97 4.23 1.17 5.80

Figure 13. Impact of using the best neighbor on convergence speed of DMFO-CD.

Algorithms 2021, 14, 314 22 of 27

5.5.1. Friedman Test

The non-parametric Friedman test was conducted to prove the superiority of the
proposed DMFO-CD algorithm statistically. The Friedman test (Ff) [77] is a non-parametric
test using for multiple comparisons of different algorithms for all functions. This test is
used to rank the DMFO-CD and comparative algorithms based on the achieved fitness by
using Equation (12),

Ff =
12× n

k× (k + 1)

[
∑

j
R2

j −
k× (k + 1)2

4

]
(12)

where k, n, and Rj are the number of algorithms, case tests, and the mean rank of the
jth algorithm, respectively. For each pair of algorithms, it ranks from 1 (best result) to k
(worst result) and then calculates the average ranks obtained in all problems to find the
algorithms’ final rank. The Friedman test on modularity and NMI were calculate for all
algorithms over 30 runs on karate, dolphins, football, polbooks, four webkb datasets, and
adjnoun networks and over 10 runs on email-Eu and dblp networks. The gained results on
modularity and NMI are tabulated in Tables 4 and 5. Based on the overall ranking results,
the DMFO-CD algorithm has better overall ranked on modularity and competitive rank
compared with other stat × 10of-th × 10art algorithms.

Table 4. The Friedman test on modularity.

Network DPSO-PDM GA-Net GACD EGACD DECS DMFO-CD

Karate 2.60 1.97 5.00 5.00 1.43 5.00

Dolphins 4.78 2.70 1.42 1.88 4.22 6.00

Football 5.15 3.00 1.57 1.43 4.83 5.02

Polbooks 5.00 1.00 2.60 3.40 3.00 6.00

WebKB-Cornell 3.03 1.00 5.07 4.13 2.00 5.77

WebKB-Texas 1.03 2.97 5.80 4.70 2.00 4.50

WebKB-Washington 1.10 2.87 5.57 4.10 2.03 5.33

WebKB-Wisconsin 2.10 1.13 5.07 4.07 2.77 5.87

AdjNoun 2.83 2.00 4.97 4.23 1.17 5.80

Avg. Rank 3.07 2.07 4.12 3.66 2.61 5.48

Overall Rank 4 6 2 3 5 1

Email-Eu 6.00 1.10 5.00 4.00 2.30 2.60

Dblp 6.00 1.00 4.00 3.00 2.00 5.00

Avg. Rank 6 1.05 4.5 3.5 2.15 3.8

Overall Rank 1 6 2 4 5 3

5.5.2. Wilcoxon Signed-Rank Test

In order to verify the significant difference between DMFO-CD and other comparative
algorithms, the Wilcoxon signed-rank test was employed [78]. This test is a non-parametric
statistical test that requires two sets of random observations and two hypotheses. In this
paper, the two sets of observations represent the obtained modularity values from each
algorithm, i.e., the DMFO-CD algorithm and the compared one, over 30 runs on karate,
dolphins, football, polbooks, all four webkb, adjnoun and 10 runs on email-Eu and dblp
datasets. The null hypothesis (H0) was assumed that there is no significant difference
between the mean values of the two observation sets (modularity values). While the
alternative hypothesis (H1) is that there is a significant difference in the average values
of the two sets. Table 6 presents the results of this test at significance level α = 0.05. The

Algorithms 2021, 14, 314 23 of 27

p value refers to the significant difference between each pair of algorithms (DMFO-CD and
one other algorithm). The considerable difference exists only if p value < α. Therefore, the
results prove that the null hypothesis is rejected on most of the networks.

Table 5. The Friedman test on NMI.

Network DPSO-PDM GA-Net GACD EGACD DECS DMFO-CD

Karate 4.23 2.73 3.13 3.13 4.63 3.13

Dolphins 6.00 4.87 1.75 2.32 2.77 3.30

Football 4.28 5.60 1.37 1.63 3.90 4.22

Polbooks 5.57 1.00 3.20 2.40 3.47 5.37

WebKB-Cornell 3.03 1.00 5.07 4.13 2.00 5.77

WebKB-Texas 1.03 2.97 5.80 4.70 2.00 4.50

WebKB-Washington 1.10 2.87 5.57 4.10 2.03 5.33

WebKB-Wisconsin 2.10 1.13 5.07 4.07 2.77 5.87

AdjNoun 2.83 2.00 4.97 4.23 1.17 5.80

Avg. Rank 3.35 2.69 3.99 3.41 2.75 4.81

Overall Rank 4 6 2 3 5 1

Email-Eu 5.20 3.80 1.40 2.80 2.00 5.80

Dblp 4.40 2.00 6.00 3.30 4.30 1.00

Avg. Rank 4.8 2.9 3.7 3.05 3.15 3.4

Overall Rank 1 6 2 5 4 3

Table 6. The p values of Wilcoxon signed-rank test.

DMFO-CD vs.

Network DPSO-PDM GA-Net GACD EGACD DECS

Karate 6.02 × 10−7 1.62 × 10−6 1.00 × 100 1.00 × 100 8.01 × 10−7

Dolphins 3.47 × 10−6 1.73 × 10−6 1.70 × 10−6 1.71 × 10−6 1.44 × 10−6

Football 1.90 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.00 × 100

Polbooks 1.42 × 10−6 1.73 × 10−6 1.73 × 10−6 1.72 × 10−6 1.50 × 10−6

WebKB-Cornell 1.73 × 10−6 1.73 × 10−6 2.58 × 10−3 1.73 × 10−6 1.73 × 10−6

WebKB-Texas 1.73 × 10−6 1.73 × 10−6 1.36 × 10−5 1.96 × 10−3 1.73 × 10−6

WebKB-Washington 1.73 × 10−6 1.73 × 10−6 3.71 × 10−1 1.80 × 10−5 1.73 × 10−6

WebKB-Wisconsin 1.73 × 10−6 1.73 × 10−6 2.16 × 10−5 2.16 × 10−5 1.73 × 10−6

AdjNoun 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.18 × 10−6 1.73 × 10−6

Email-Eu 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.93 × 10−1

Dblp 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3 1.95 × 10−3

6. Conclusions and Future Works

In this study, a discrete moth–flame optimization algorithm for community detection
(DMFO-CD) was proposed for complex networks. The solution vectors representation, the
distance calculation, and the spiral flight movement of the MFO algorithm were adapted
for community detection. This adaptation was performed by introducing a singl× 10 point
crossover to imitate the distance calculation, a two-point crossover to alter the movement
strategy, and a singl × 10 point neighbor-based mutation to increase the exploration ability.
The performance of the DMFO-CD was experimentally evaluated on eleven real-world

Algorithms 2021, 14, 314 24 of 27

networks and compared with five well-known algorithms in community detection in terms
of modularity, NMI, and the number of detected communities. The experimental results
show that the proposed DMFO-CD can detect the correct number of communities with
better modularity in comparison to other stat × 10of-th × 10art algorithms. The overall
effectiveness of the proposed algorithm was also statistically analyzed using the Friedman
and Wilcoxon signed-rank tests. To be more specific, the gained rank and p values by
statistical tests show DMFO-CD has better overall rank on modularity and that the null
hypothesis is rejected on most of the networks. The NMI gained by DMFO-CD shows that it
can be focused on combining the local search strategy to detect more accurate communities
in further studies. Furthermore, the single objective DMFO-CD algorithm can be extended
such that it solves the multi-objective community detection.

Author Contributions: Conceptualization, M.H.N.-S.; Methodology, M.H.N.-S., E.M., S.T.; Software,
M.H.N.-S., E.M., S.T.; Validation, M.H.N.-S., E.M., S.T., S.M.; Formal analysis, M.H.N.-S., E.M., S.T.;
Investigation, M.H.N.-S., E.M., S.T.; Resources, M.H.N.-S., S.T., S.M.; Data curation, M.H.N.-S., E.M.,
S.T.; Writing, M.H.N.-S., E.M., S.T.; Original draft preparation, M.H.N.-S., E.M, S.T.; Writing—review
and editing, M.H.N.-S., S.T., S.M.; Visualization, M.H.N.-S., E.M., S.T.; Supervision, M.H.N.-S.;
Project administration, M.H.N.-S., S.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Atay, Y.; Koc, I.; Babaoglu, I.; Kodaz, H. Community detection from biological and social networks: A comparative analysis of

metaheuristic algorithms. Appl. Soft Comput. 2017, 50, 194–211. [CrossRef]
2. Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99,

7821–7826. [CrossRef] [PubMed]
3. Cheng, F.; Cui, T.; Su, Y.; Niu, Y.; Zhang, X. A local information based multi-objective evolutionary algorithm for community

detection in complex networks. Appl. Soft Comput. 2018, 69, 357–367. [CrossRef]
4. El Mouden, Z.A.; Taj, R.M.; Jakimi, A.; Hajar, M. Towards Using Graph Analytics for Tracking Covid-19. Procedia Comput. Sci.

2020, 177, 204–211. [CrossRef]
5. Sánchez-Oro, J.; Duarte, A. Iterated Greedy algorithm for performing community detection in social networks. Future Gener.

Comput. Syst. 2018, 88, 785–791. [CrossRef]
6. Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113.

[CrossRef] [PubMed]
7. Li, Y.; Liu, G.; Lao, S.-y. A genetic algorithm for community detection in complex networks. J. Cent. South Univ. 2013, 20,

1269–1276. [CrossRef]
8. Shi, C.; Yan, Z.; Cai, Y.; Wu, B. Multi-objective community detection in complex networks. Appl. Soft Comput. 2012, 12,

850–859. [CrossRef]
9. Žalik, K.R.; Žalik, B. Memetic algorithm using node entropy and partition entropy for community detection in networks. Inf. Sci.

2018, 445–446, 38–49. [CrossRef]
10. Raghavan, U.N.; Albert, R.; Kumara, S. Near linear time algorithm to detect community structures in larg × 10scale networks.

Phys. Rev. E 2007, 76, 036106. [CrossRef]
11. Newman, M.E.J. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133. [CrossRef]
12. Newman, M.E.J. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 2006, 74, 036104. [CrossRef]
13. Li, X.; Wu, X.; Xu, S.; Qing, S.; Chang, P.-C. A novel complex network community detection approach using discrete particle

swarm optimization with particle diversity and mutation. Appl. Soft Comput. 2019, 81, 105476. [CrossRef]
14. Shi, C.; Yan, Z.; Wang, Y.; Cai, Y.; Wu, B. A Genetic Algorithm for Detecting Communities in Larg × 10scale Complex Networks.

Advs. Complex Syst. 2010, 13, 3–17. [CrossRef]
15. Newman, M.E.J. Detecting community structure in networks. Eur. Phys. J. B Condens. Matter 2004, 38, 321–330. [CrossRef]
16. Talbi, E.-G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 74.

http://doi.org/10.1016/j.asoc.2016.11.025
http://doi.org/10.1073/pnas.122653799
http://www.ncbi.nlm.nih.gov/pubmed/12060727
http://doi.org/10.1016/j.asoc.2018.04.037
http://doi.org/10.1016/j.procs.2020.10.029
http://doi.org/10.1016/j.future.2018.06.010
http://doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526
http://doi.org/10.1007/s11771-013-1611-y
http://doi.org/10.1016/j.asoc.2011.10.005
http://doi.org/10.1016/j.ins.2018.02.063
http://doi.org/10.1103/PhysRevE.76.036106
http://doi.org/10.1103/PhysRevE.69.066133
http://doi.org/10.1103/PhysRevE.74.036104
http://doi.org/10.1016/j.asoc.2019.05.003
http://doi.org/10.1142/S0219525910002463
http://doi.org/10.1140/epjb/e2004-00124-y

Algorithms 2021, 14, 314 25 of 27

17. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces.
J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

18. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995.

19. Yang, X.-S.; Deb, S. Cuckoo Search via Levy Flights. arXiv 2010, arXiv:1003.1594.
20. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
21. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
22. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
23. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-Verse Optimizer: A natur × 10inspired algorithm for global optimization.

Neural Comput. Appl. 2016, 27, 495–513. [CrossRef]
24. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. CCSA: Conscious Neighborhood-based Crow Search Algorithm for Solving

Global Optimization Problems. Appl. Soft Comput. 2019, 85, 105583. [CrossRef]
25. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods

Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]
26. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Faris, H. MTDE: An effective multi-trial vector-based differential evolution

algorithm and its applications for engineering design problems. Appl. Soft Comput. 2020, 97, 106761. [CrossRef]
27. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-

heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
28. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems.

Expert Syst. Appl. 2021, 166, 113917. [CrossRef]
29. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new natur × 10 inspired

metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]
30. Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl.

Artif. Intell. 2021, 104, 104314. [CrossRef]
31. Banai × 10Dezfouli, M.; Nadimi-Shahraki, M.H.; Beheshti, Z. R-GWO: Representativ × 10based grey wolf optimizer for solving

engineering problems. Appl. Soft Comput. 2021, 106, 107328. [CrossRef]
32. Ghasemi, M.R.; Varaee, H. A fast multi-objective optimization using an efficient ideal gas molecular movement algorithm.

Eng. Comput. 2017, 33, 477–496. [CrossRef]
33. Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning; Addison-Wesle: Boston, MA, USA, 1988.
34. Dorigo, M.; Caro, G.D. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 1472, pp. 1470–1477.
35. Taghian, S.; Nadimi-Shahraki, M.H.; Zamani, H. Comparative Analysis of Transfer Function-Based Binary Metaheuristic

Algorithms for Feature Selection. In Proceedings of the 2018 International Conference on Artificial Intelligence and Data
Processing (IDAP), Malatya, Turkey, 28–30 September 2018.

36. Oliva, D.; Cuevas, E.; Pajares, G. Parameter identification of solar cells using artificial bee colony optimization. Energy 2014, 72,
93–102. [CrossRef]

37. Zamani, H.; Nadimi-Shahraki, M.H. Feature selection based on whale optimization algorithm for diseases diagnosis. Int. J.
Comput. Sci. Inf. Secur. 2016, 14, 1243–1247.

38. Taghian, S.; Nadimi-Shahraki, M.H. A Binary Metaheuristic Algorithm for Wrapper Feature Selection. Int. J. Comput. Sci.
Eng. (IJCSE) 2019, 8, 168–172.

39. Mohmmadzadeh, H.; Gharehchopogh, F.S. An efficient binary chaotic symbiotic organisms search algorithm approaches for
feature selection problems. J. Supercomput. 2021, 77, 9102–9144. [CrossRef]

40. Wu, D.; Zhang, W.; Jia, H.; Leng, X. Simultaneous Feature Selection and Support Vector Machine Optimization Using an Enhanced
Chimp Optimization Algorithm. Algorithms 2021, 14, 282. [CrossRef]

41. Ewees, A.A.; Al-qaness, M.A.; Abualigah, L.; Oliva, D.; Algamal, Z.Y.; Anter, A.M.; Ali Ibrahim, R.; Ghoniem, R.M.; Abd Elaziz,
M. Boosting Arithmetic Optimization Algorithm with Genetic Algorithm Operators for Feature Selection: Case Study on Cox
Proportional Hazards Model. Mathematics 2021, 9, 2321. [CrossRef]

42. Dezfouli, M.B.; Shahraki, M.H.N.; Zamani, H. A Novel Tour Planning Model using Big Data. In Proceedings of the 2018
International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 28–30 September 2018; pp. 1–6.

43. Abualigah, L.M.; Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud
computing environments. Clust. Comput. 2021, 24, 205–223. [CrossRef]

44. Sa’ad, S.; Muhammed, A.; Abdullahi, M.; Abdullah, A.; Hakim Ayob, F. An Enhanced Discrete Symbiotic Organism Search
Algorithm for Optimal Task Scheduling in the Cloud. Algorithms 2021, 14, 200. [CrossRef]

45. Arjenaki, H.G.; Nadimi-Shahraki, M.H.; Nourafza, N. A low cost model for diagnosing coronary artery disease based on effective
features. Int. J. Electron. Commun. Comput. Eng. 2015, 6, 93–97.

46. Zamani, H.; Nadimi-Shahraki, M.-H. Swarm Intelligence Approach for Breast Cancer Diagnosis. Int. J. Comput. Appl. 2016, 151,
40–44. [CrossRef]

http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1007/s00521-015-1870-7
http://doi.org/10.1016/j.asoc.2019.105583
http://doi.org/10.1016/j.cma.2020.113609
http://doi.org/10.1016/j.asoc.2020.106761
http://doi.org/10.1016/j.cie.2021.107250
http://doi.org/10.1016/j.eswa.2020.113917
http://doi.org/10.1016/j.cie.2021.107408
http://doi.org/10.1016/j.engappai.2021.104314
http://doi.org/10.1016/j.asoc.2021.107328
http://doi.org/10.1007/s00366-016-0485-7
http://doi.org/10.1016/j.energy.2014.05.011
http://doi.org/10.1007/s11227-021-03626-6
http://doi.org/10.3390/a14100282
http://doi.org/10.3390/math9182321
http://doi.org/10.1007/s10586-020-03075-5
http://doi.org/10.3390/a14070200
http://doi.org/10.5120/ijca2016911667

Algorithms 2021, 14, 314 26 of 27

47. Rahnema, N.; Gharehchopogh, F.S. An improved artificial bee colony algorithm based on whale optimization algorithm for data
clustering. Multimed. Tools Appl. 2020, 79, 32169–32194. [CrossRef]

48. Taghian, S.; Nadimi-Shahraki, M.H. Binary Sine Cosine Algorithms for Feature Selection from Medical Data. arXiv 2019,
arXiv:1911.07805. [CrossRef]

49. Fasihi, M.; Nadimi-Shahraki, M.H. Multi-class cardiovascular diseases diagnosis from electrocardiogram signals using 1-D
convolution neural network. In Proceedings of the 2020 IEEE 21st International Conference on Information Reuse and Integration
for Data Science (IRI), Las Vegas, NV, USA, 11–13 August 2020; pp. 372–378.

50. Abualigah, L.; Diabat, A.; Sumari, P.; Gandomi, A.H. A Novel Evolutionary Arithmetic Optimization Algorithm for Multilevel
Thresholding Segmentation of COVID-19 CT Images. Processes 2021, 9, 1155. [CrossRef]

51. Zahrani, H.K.; Nadimi-Shahraki, M.H.; Sayarshad, H.R. An intelligent social-based method for rail-car fleet sizing problem.
J. Rail Transp. Plan. Manag. 2021, 17, 100231.

52. Fard, E.S.; Monfaredi, K.; Nadimi-Shahraki, M.H. An Area-Optimized Chip of Ant Colony Algorithm Design in Hardware
Platform Using the Address-Based Method. Int. J. Electr. Comput. Eng. 2014, 4, 989–998. [CrossRef]

53. Sayarshad, H.R. Using bees algorithm for material handling equipment planning in manufacturing systems. Int. J. Adv.
Manuf. Technol. 2010, 48, 1009–1018. [CrossRef]

54. Oliva, D.; Abd El Aziz, M.; Hassanien, A.E. Parameter estimation of photovoltaic cells using an improved chaotic whale
optimization algorithm. Appl. Energy 2017, 200, 141–154. [CrossRef]

55. Shaban, H.; Houssein, E.H.; Pérez-Cisneros, M.; Oliva, D.; Hassan, A.Y.; Ismaeel, A.A.; AbdElminaam, D.S.; Deb, S.; Said, M.
Identification of Parameters in Photovoltaic Models through a Runge Kutta Optimizer. Mathematics 2021, 9, 2313. [CrossRef]

56. Ghasemi, M.R.; Varaee, H. Enhanced IGMM optimization algorithm based on vibration for numerical and engineering problems.
Eng. Comput. 2018, 34, 91–116. [CrossRef]

57. Zamani, H.; Nadimi-Shahraki, M.H.; Taghian, S.; Dezfouli, M. Enhancement of Bernstain-Search Differential Evolution Algorithm
to Solve Constrained Engineering Problems. Int. J. Comput. Sci. Eng. 2020, 386–396. [CrossRef]

58. Pizzuti, C. GA-Net: A Genetic Algorithm for Community Detection in Social Networks. In Parallel Problem Solving from Nature—
PPSN X; Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5199,
pp. 1081–1090.

59. Li, Z.; Zhang, S.; Wang, R.-S.; Zhang, X.-S.; Chen, L. Quantitative function for community detection. Phys. Rev. E 2008, 77, 036109.
[CrossRef] [PubMed]

60. Moradi, M.; Parsa, S. An evolutionary method for community detection using a novel local search strategy. Phys. A Stat. Mech.
Its Appl. 2019, 523, 457–475. [CrossRef]

61. Rahimi, S.; Abdollahpouri, A.; Moradi, P. A multi-objective particle swarm optimization algorithm for community detection in
complex networks. Swarm Evol. Comput. 2018, 39, 297–309. [CrossRef]

62. Zarei, B.; Meybodi, M.R. Detecting community structure in complex networks using genetic algorithm based on object migrating
automata. Comput. Intell. 2020, 36, 824–860. [CrossRef]

63. Mirjalili, S. Moth-flame optimization algorithm: A novel natur × 10inspired heuristic paradigm. Knowl. Based Syst. 2015, 89,
228–249. [CrossRef]

64. Elaziz, M.A.; Ewees, A.A.; Ibrahim, R.A.; Lu, S. Opposition-based moth-flame optimization improved by differential evolution
for feature selection. Math. Comput. Simul. 2020, 168, 48–75. [CrossRef]

65. Khurma, R.A.; Alsawalqah, H.; Aljarah, I.; Elaziz, M.A.; Damaševičius, R. An Enhanced Evolutionary Software Defect Prediction
Method Using Island Moth Flame Optimization. Mathematics 2021, 9, 1722. [CrossRef]

66. Elsakaan, A.A.; El-Sehiemy, R.A.; Kaddah, S.S.; Elsaid, M.I. An enhanced moth-flame optimizer for solving non-smooth economic
dispatch problems with emissions. Energy 2018, 157, 1063–1078. [CrossRef]

67. Taher, M.A.; Kamel, S.; Jurado, F.; Ebeed, M. An improved moth-flame optimization algorithm for solving optimal power flow
problem. Int. Trans. Electr. Energy Syst. 2019, 29, e2743. [CrossRef]

68. Dabba, A.; Tari, A.; Meftali, S.; Mokhtari, R. Gene selection and classification of microarray data method based on mutual
information and moth flame algorithm. Expert Syst. Appl. 2021, 166, 114012. [CrossRef]

69. Khan, M.A.; Sharif, M.; Akram, T.; Damaševičius, R.; Maskeliūnas, R. Skin Lesion Segmentation and Multiclass Classification
Using Deep Learning Features and Improved Moth Flame Optimization. Diagnostics 2021, 11, 811. [CrossRef]

70. Jia, H.; Lang, C.; Oliva, D.; Song, W.; Peng, X. Dynamic harris hawks optimization with mutation mechanism for satellite image
segmentation. Remote Sens. 2019, 11, 1421. [CrossRef]

71. Lin, G.-Q.; Li, L.-L.; Tseng, M.-L.; Liu, H.-M.; Yuan, D.-D.; Tan, R.R. An improved moth-flame optimization algorithm for support
vector machine prediction of photovoltaic power generation. J. Clean. Prod. 2020, 253, 119966. [CrossRef]

72. Li, Y.; Zhu, X.; Liu, J. An Improved Moth-Flame Optimization Algorithm for Engineering Problems. Symmetry 2020,
12, 1234. [CrossRef]

73. Pelusi, D.; Mascella, R.; Tallini, L.; Nayak, J.; Naik, B.; Deng, Y. An Improved Moth-Flame Optimization algorithm with hybrid
search phase. Knowl. Based Syst. 2020, 191, 105277. [CrossRef]

74. Xu, Y.; Chen, H.; Luo, J.; Zhang, Q.; Jiao, S.; Zhang, X. Enhanced Moth-flame optimizer with mutation strategy for global
optimization. Inf. Sci. 2019, 492, 181–203. [CrossRef]

http://doi.org/10.1007/s11042-020-09639-2
http://doi.org/10.5121/acij.2019.10501
http://doi.org/10.3390/pr9071155
http://doi.org/10.11591/ijece.v4i6.6923
http://doi.org/10.1007/s00170-009-2363-6
http://doi.org/10.1016/j.apenergy.2017.05.029
http://doi.org/10.3390/math9182313
http://doi.org/10.1007/s00366-017-0523-0
http://doi.org/10.13140/RG.2.2.16902.40004
http://doi.org/10.1103/PhysRevE.77.036109
http://www.ncbi.nlm.nih.gov/pubmed/18517463
http://doi.org/10.1016/j.physa.2019.01.133
http://doi.org/10.1016/j.swevo.2017.10.009
http://doi.org/10.1111/coin.12273
http://doi.org/10.1016/j.knosys.2015.07.006
http://doi.org/10.1016/j.matcom.2019.06.017
http://doi.org/10.3390/math9151722
http://doi.org/10.1016/j.energy.2018.06.088
http://doi.org/10.1002/etep.2743
http://doi.org/10.1016/j.eswa.2020.114012
http://doi.org/10.3390/diagnostics11050811
http://doi.org/10.3390/rs11121421
http://doi.org/10.1016/j.jclepro.2020.119966
http://doi.org/10.3390/sym12081234
http://doi.org/10.1016/j.knosys.2019.105277
http://doi.org/10.1016/j.ins.2019.04.022

Algorithms 2021, 14, 314 27 of 27

75. Hassanien, A.E.; Gaber, T.; Mokhtar, U.; Hefny, H. An improved moth flame optimization algorithm based on rough sets for
tomato diseases detection. Comput. Electron. Agric. 2017, 136, 86–96. [CrossRef]

76. Liu, F.; Wu, J.; Xue, S.; Zhou, C.; Yang, J.; Sheng, Q. Detecting the evolving community structure in dynamic social networks.
World Wide Web 2020, 23, 715–733. [CrossRef]

77. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]

78. Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany,
1992; pp. 196–202.

79. Tasgin, M.; Herdagdelen, A.; Bingol, H. Community Detection in Complex Networks Using Genetic Algorithms. arXiv 2007,
arXiv:0711.0491.

80. Li, Y.-H.; Wang, J.-Q.; Wang, X.-J.; Zhao, Y.-L.; Lu, X.-H.; Liu, D.-L. Community Detection Based on Differential Evolution Using
Social Spider Optimization. Symmetry 2017, 9, 183. [CrossRef]

81. Cuevas, E.; Cienfuegos, M.; Zaldívar, D.; Pérez-Cisneros, M. A swarm optimization algorithm inspired in the behavior of the
social-spider. Expert Syst. Appl. 2013, 40, 6374–6384. [CrossRef]

82. Liu, X.; Zhang, F.; Li, X.; Gao, C.; Liu, J. Multi-objective Discrete Moth-Flame Optimization for Complex Network Clustering.
In Foundations of Intelligent Systems; Helic, D., Leitner, G., Stettinger, M., Felfernig, A., Raś, Z.W., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; Volume 12117, pp. 372–382.

83. Zhao, J.; Lei, X.; Wu, F.-X. Predicting Protein Complexes in Weighted Dynamic PPI Networks Based on ICSC. Complexity 2017,
2017, 4120506. [CrossRef]

84. Zhang, Y.; Liu, Y.; Li, J.; Zhu, J.; Yang, C.; Yang, W.; Wen, C. WOCDA: A whale optimization based community detection algorithm.
Phys. A Stat. Mech. Its Appl. 2020, 539, 122937. [CrossRef]

85. Hamou, R.M. Handbook of Research on Biomimicry in Information Retrieval and Knowledge Management; Hamou, R.M., Ed.; IGI Global:
Hershey, PA, USA, 2018.

86. Liu, C.; Fan, L.; Liu, Z.; Dai, X.; Xu, J.; Chang, B. Community detection in complex networks by using membrane algorithm. Int. J.
Mod. Phys. C 2018, 29, 1850003. [CrossRef]

87. Kumar, S.; Panda, B.S.; Aggarwal, D. Community detection in complex networks using network embedding and gravitational
search algorithm. J. Intell. Inf. Syst. 2020, 57, 51–72. [CrossRef]

88. Pizzuti, C.; Socievole, A. A genetic algorithm for community detection in attributed graphs. In Proceedings of the International
Conference on the Applications of Evolutionary Computation, Parma, Italy, 4–6 April 2018; pp. 159–170.

89. Pizzuti. GA-NET is Genetic Algorithm to Find Communities in Complex Networks. Available online: http://staff.icar.cnr.it/
pizzuti/codes.html (accessed on 20 September 2021).

90. Wu, J. Detecting the Evolving Community Structure in Dynamic Social Networks. Available online: https://github.com/JiaWu-
Repository/DECS (accessed on 20 September 2021).

91. Danon, L.; Díaz-Guilera, A.; Duch, J.; Arenas, A. Comparing community structure identification. J. Stat. Mech. 2005,
2005, P09008. [CrossRef]

92. Zachary, W.W. An Information Flow Model for Conflict and Fission in Small Groups. J. Anthropol. Res. 1977, 33, 452–473. [CrossRef]
93. Lusseau, D.; Schneider, K.; Boisseau, O.J.; Haase, P.; Slooten, E.; Dawson, S.M. The bottlenose dolphin community of Doubtful

Sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 2003, 54, 396–405. [CrossRef]
94. Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [CrossRef]
95. Craven, M.; McCallum, A.; PiPasquo, D.; Mitchell, T.; Freitag, D. Learning to Extract Symbolic Knowledge from the World Wide Web;

Carnegi × 10Mellon Univ Pittsburgh pa School of Computer Science: Pittsburgh, PA, USA, 1998.
96. Yin, H.; Benson, A.R.; Leskovec, J.; Gleich, D.F. Local higher-order graph clustering. In Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 555–564.
97. Jia, Y.; Zhang, Q.; Zhang, W.; Wang, X. Communitygan: Community detection with generative adversarial nets. In Proceedings of

the The World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 784–794.

http://doi.org/10.1016/j.compag.2017.02.026
http://doi.org/10.1007/s11280-019-00710-z
http://doi.org/10.1016/j.swevo.2011.02.002
http://doi.org/10.3390/sym9090183
http://doi.org/10.1016/j.eswa.2013.05.041
http://doi.org/10.1155/2017/4120506
http://doi.org/10.1016/j.physa.2019.122937
http://doi.org/10.1142/S0129183118500031
http://doi.org/10.1007/s10844-020-00625-6
http://staff.icar.cnr.it/pizzuti/codes.html
http://staff.icar.cnr.it/pizzuti/codes.html
https://github.com/JiaWu-Repository/DECS
https://github.com/JiaWu-Repository/DECS
http://doi.org/10.1088/1742-5468/2005/09/P09008
http://doi.org/10.1086/jar.33.4.3629752
http://doi.org/10.1007/s00265-003-0651-y
http://doi.org/10.1073/pnas.0601602103

	Introduction
	Related Work
	The MFO Algorithm
	DMFO-CD: Discrete Moth–Flame Optimization Algorithm for Community Detection
	Initialization
	Representation
	Initialization

	Movement Strategy
	Distance Imitating Using Single-Point Crossover
	The Movement Strategy Using Two-Point Crossover
	Single-Point Neighbor-Based Mutation

	Fitness Function

	Experimental Evaluation
	Datasets Description
	Evaluation Metrics
	Performance Evaluation
	Convergence Evaluation
	Statistical Analysis
	Friedman Test
	Wilcoxon Signed-Rank Test

	Conclusions and Future Works
	References

