Risk Assessment Algorithm for Power Transformer Fleets Based on Condition and Strategic Importance
Abstract
:1. Introduction
- An up-to-date approach to determine the degree of polymerization (DP) of the insulating paper and the HI.
- A standardized procedure to assess the strategic importance of the PT.
- A new method to categorize the risk in PT fleets employing a clustering technique
2. Materials and Methods: Risk Assessment Algorithm
2.1. Health Index Calculation
2.2. Importance Index Estimation
2.3. Risk Assessment
3. Case Study, Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rønneberg, T. Cost-Benefit Analysis of Maintenance Measures for Power Transformers. Master’s Thesis, Norwegian University of Science and Technology’s, Trondheim, Norway, 2017. [Google Scholar]
- Guy, P.; Sparling, B. Transformer asset life extension—When, why and how to apply continuous condition monitoring systems. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 20–23 March 2019; pp. 779–784. [Google Scholar] [CrossRef]
- IEC 60422, I.E.C. IEC 60422: Mineral Insulating Oils in Electrical Equipment—Supervision and Maintenance Guidance, 4th ed.; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2013; ISBN 2831886376. [Google Scholar]
- IEEE Std C57.104TM-2019. IEEE Guide for the Interpretation; IEEE SA Standards Board, Ed.; IEEE Power and Energy Society: Piscataway, NJ, USA, 2019; Volume 2019, ISBN 9781504459730. [Google Scholar]
- IEEE Std C57.152-2013, I.P. and E. IEEE Guide for Diagnostic Field Testing of Fluid-Filled Power Transformers, Regulators and Reactors; IEEE: Manhattan, NY, USA, 2013; Volume 2013, ISBN 9780738183695. [Google Scholar]
- Jian, W.; Wenbing, Z.; Chao, G.; Demeng, B.; Kuihua, W. The new developed health index for power transformer condition assessment. In Proceedings of the 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu, China, 4–7 June 2020; pp. 1880–1884. [Google Scholar] [CrossRef]
- Li, E.W.; Song, B. Transformer Health status evaluation model based on multi-feature factors. In Proceedings of the 2014 International Conference on Power System Technology, Chengdu, China, 2–22 October 2014. [Google Scholar]
- Tamma, W.R.; Prasojo, R.A.; Suwarno, S. Assessment of High voltage power transformer aging condition based on health index value considering its apparent and actual age. In Proceedings of the 2020 12th International Conference on Information Technology and Electrical Engineering, Yogyakarta, Indonesia, 6–8 October 2020; pp. 292–296. [Google Scholar] [CrossRef]
- Cerón, A.F.; Echeverry, D.F.; Aponte, G.; Romero, A.A. Índice de salud para transformadores de potencia inmersos en aceite mineral con voltajes entre 69kV y 230kV usando lógica difusa. Inf. Tecnol. 2015, 26, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.; Gaul, A.; Neumann, C.; Hogräfer, J.; Wellßow, W.; Schwan, M.; Schnettler, A. Asset management techniques. Int. J. Electr. Power Energy Syst. 2006, 28, 643–654. [Google Scholar] [CrossRef] [Green Version]
- Eyuboglu, O.H.; Dindar, B.; Gul, O. Risk assessment by using failure modes and effects analysis (fmea) based on power transformer aging for maintenance and replacement decision. In Proceedings of the 2020 2nd Global Power, Energy and Communication Conference, Izmar, Turkey, 20–23 October 2020; pp. 251–255. [Google Scholar] [CrossRef]
- Schulmerich, M.; Leporcher, Y.-M.; Eu, C.-H. Applied asset and risk management. In Management for Professionals; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Sun, Y.Y.; Wang, X.; Zheng, Y.H.; Li, L.X.; Xu, Q.S. Application of FTA and improved FAHP in power transformer risk assessment. Adv. Mater. Res. 2014, 860–863, 2157–2160. [Google Scholar] [CrossRef]
- Vasquez, W.A.; Jayaweera, D. Risk-based approach for power transformer replacement considering temperature, apparent age and expected capacity. IET Gener. Transm. Distrib. 2020, 14, 4898–4907. [Google Scholar] [CrossRef]
- Bustamante, K.C.; Borja, W.P.; Miranda, B.B.; Zhunio, L.A.; Medina, R.D. Power Transformers risk index assessment in the ecuadorian context. In Proceedings of the 2016 IEEE International Conference on Automatica, Curico, Chile, 19–21 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Lin, D.; Xu, Y.Y.; Liang, Y.; Li, Y.; Liu, N.; Zhang, G.J. A risk assessment method of transformer considering the economy and reliability of power network. In Proceedings of the 2017 1st International Conference on Electrical Materials and Power Equipment, Xi’an, China, 14–17 May 2017; pp. 594–597. [Google Scholar] [CrossRef]
- Schmitz, W.I.; Feil, D.L.P.; Canha, L.N.; Abaide, A.R.; Marchesan, T.B.; Carraro, R. Operational vulnerability indicator for prioritization and replacement of power transformers in substation. Int. J. Electr. Power Energy Syst. 2018, 102, 60–70. [Google Scholar] [CrossRef]
- Suwanasri, T.Y.; Suwanasri, C.; Phadungthin, R. Risk assessment based on condition and importance criteria for power transformer in thailand transmission network. IEEJ Trans. Electr. Electron. Eng. 2015, 10, 18–27. [Google Scholar] [CrossRef]
- Jürgensen, J.H.; Godin, A.S.; Hilber, P. Health index as condition estimator for power system equipment: A critical discussion and case study. CIRED—Open Access Proc. J. 2017, 2017, 202–205. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.T. The use of health indices to determine end of life and estimate remnant life for distribution assets. In Proceedings of the 17th International Conference on Electricity Distribution, Barcelona, Spain, 12–15 May 2003; pp. 12–15. [Google Scholar]
- Jahromi, A.; Piercy, R.; Cress, S.; Service, J.; Fan, W. An approach to power transformer asset management using health index. IEEE Electr. Insul. Mag. 2009, 25, 20–34. [Google Scholar] [CrossRef]
- Naderian, A.; Cress, S.; Piercy, R.; Wang, F.; Service, J. An approach to determine the health index of power transformers. In Proceedings of the Conference Record of the 2008 IEEE International Symposium on Electrical Insulation, Vancouver, BC, Canada, 9–12 June 2008; pp. 192–196. [Google Scholar] [CrossRef]
- Yahaya, M.S.; Azis, N.; Abidin Ab Kadir, M.Z.; Jasni, J.; Hairi, M.H.; Talib, M.A. Estimation of transformers health index based on the markov chain. Energies 2017, 10, 1824. [Google Scholar] [CrossRef] [Green Version]
- Mharakurwa, E.T.; Goboza, R. Multiparameter-based fuzzy logic health index assessment for oil-immersed power transformers. Adv. Fuzzy Syst. 2019, 2019, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Lee, G.; Hettiwatte, S.N. Application of a general regression neural network for health index calculation of power transformers. Int. J. Electr. Power Energy Syst. 2017, 93, 308–315. [Google Scholar] [CrossRef]
- Idrees, M.; Riaz, M.T.; Waleed, A.; Paracha, Z.J.; Raza, H.A.; Khan, M.A.; Hashmi, W.S. Fuzzy logic based calculation and analysis of health index for power transformer installed in grid stations. In Proceedings of the 2019 international symposium on recent advances in electrical engineering, Islamabad, Pakistan, 28–29 August 2019; Volume 4, pp. 1–6. [Google Scholar] [CrossRef]
- Patil, A.J.; Singh, A.; Jarial, R.K. A novel fuzzy based technique for transformer health index computation. In Proceedings of the 2019 International Conference on Advances in Computing, Communication and Control, Cochin, India, 6–8 November 2019. [Google Scholar] [CrossRef]
- Ranga, C.; Chandel, A.K.; Chandel, R. Expert system for condition monitoring of power transformer using fuzzy logic. J. Renew. Sustain. Energy 2017, 9, 044901. [Google Scholar] [CrossRef]
- Abu-Elanien, A.E.B.; Salama, M.M.A.; Ibrahim, M. Calculation of a health index for oil-immersed transformers rated under 69 kv using fuzzy logic. IEEE Trans. Power Deliv. 2012, 27, 2029–2036. [Google Scholar] [CrossRef]
- Nezami, M.M.; Wani, S.A.; Khan, S.A.; Khera, N.; Khan, M.A. Fuzzy approach for residual life assessment of paper insulation. In Proceedings of the 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems, Rupnagar, India, 16–18 November 2017; pp. 26–30. [Google Scholar] [CrossRef]
- Sutan Chairul, I.; Ab Ghani, S.; Ahmad Khiar, M.S.; Md Thayoob, Y.H.; Yang Ghazali, Y.Z. Kraft paper insulation’s life assessment and effects of oxygen and moisture to paper insulation’s deterioration rate. In Proceedings of the 2012 IEEE International Conference on Power and Energy, Kota Kinabalu, Malaysia, 2–5 December 2012; pp. 728–731. [Google Scholar] [CrossRef]
- Tang, X.; Su, Z.; Chen, P.; He, C. Study on the influence of oil replacement on furfural content in transformer oil and insulation aging assessment. Available online: https://iopscience.iop.org/article/10.1088/1757-899X/782/2/022087/meta. (accessed on 30 September 2021).
- Banovic, M.; Ramachandran, P.; Rego, N.; Justiz, P. Significance of CO2/CO ratio in dissolved gas analysis. Transform. Mag. 2015, 2, 2–6. [Google Scholar]
- Cox, R. The history and significance of the carbon oxide ratio. In Proceedings of the 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL), Rome, Italy, 23–27 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Teymouri, A.; Vahidi, B. CO2/CO concentration ratio: A complementary method for determining the degree of polymerization of power transformer paper insulation. IEEE Electr. Insul. Mag. 2017, 33, 24–30. [Google Scholar] [CrossRef]
- Smith, J. Data Clustering Algorithms—k-Means Clustering Algorithm. Available online: https://sites.google.com/site/dataclusteringalgorithms/k-means-clustering-algorithm (accessed on 9 August 2021).
- Medina, R.D. Desarrollo de indicadores para el análisis de riesgo en parques de transformadores de potencia dentro de un contexto de gestión de activos físicos. Fac. Ing. 2017, 2017, 247. [Google Scholar]
Criteria | Score | Weight | ||
---|---|---|---|---|
Low (1) | Medium (2) | High (3) | ||
Manufacturer | Well Known | Known | Unknown | 1 |
Type/Application | Mobile | Standby | In-service | 3 |
Load Factor | <0.6 | 0.6–1.0 | >1.0 | 4 |
Voltage (kV) | 132/33 or 132/13,2 | 220/132 | 500/220 | 4 |
N-1 Criterion | Yes | N/A | No | 5 |
Location | Rural | Urban | Industrial | 3 |
Critical Loads | None | A Few | Several | 3 |
Rated Power (MW) | <30 | 30–50 | >50 | 3 |
Mean Load (MW) | <10 | 10–30 | >30 | 4 |
Security Level 1. Alarm system 2. Oil Pitch 3. Distance between transformers more than 11 m or no transformers nearby 4. Fire extinguisher available 5 = None | 1&2&3&4 | 1, 2, 3, 4, 1&2, 1&3, 1&4, 2&3, 2&4, 3&4, 1&2&3, 1&2&4, 1&3&4, 2&3&4 | 5 | 3 |
Unavailability penalty | 20 to 30 times | 50 times | 60 times | 4 |
Health Index Criteria | ||||||||
---|---|---|---|---|---|---|---|---|
PT | Moisture (ppm) | Acidity (ppm) | Breakdown Voltage (kV) | Power Factor | DGA (ppm) | CO2 (ppm) | CO (ppm) | Furan (ppm) |
1 | 22 | 0.07 | 52 | 0.14 | 671 | 700 | 5495 | 0.25 |
2 | 23 | 0.13 | 44 | 0.264 | 1053 | 189 | 2011 | 1.37 |
3 | 16.5 | 0.058 | 61 | 0.174 | 142.15 | 697 | 3685 | 0.49 |
4 | 28 | 0.18 | 40 | 0.266 | 822 | 8197 | 22789 | 4.5 |
5 | 19 | 0.15 | 38 | 0.185 | 360 | 582 | 4567 | 1.1 |
6 | 26 | 0.09 | 48 | 0.249 | 359 | 892 | 7038 | 0.1 |
7 | 23.2 | 0.251 | 51.7 | 0.458 | 1690 | 1843 | 2492 | 5.76 |
8 | 33 | 0.19 | 35 | 0.593 | 2637 | 1582 | 12371 | 3.9 |
9 | 9 | 0.08 | 49 | 0.1 | 2608 | 669 | 6764 | 0.83 |
10 | 42 | 0.22 | 46 | 0.221 | 2093 | 299 | 2348 | 4.48 |
11 | 6 | 0.13 | 64 | 0.566 | 328 | 297 | 2323 | 0.22 |
12 | 11 | 0.05 | 70 | 0.113 | 1409 | 162 | 1139 | 0.16 |
13 | 9 | 0.04 | 71 | 0.068 | 1642 | 242 | 1883 | 0.03 |
14 | 6 | 0.03 | 66 | 0.207 | 1083 | 356 | 3347 | 0.09 |
15 | 10 | 0.03 | 55 | 0.15 | 37 | 902 | 7135 | 0.1 |
16 | 32 | 0.25 | 55 | 0.328 | 1309 | 1695 | 13345 | 5.1 |
17 | 19.46 | 0.139 | 33 | 0.9 | 103 | 964 | 4002 | 0.033 |
18 | 12.4 | 0.025 | 44.4 | 0 | 49 | 102 | 1274 | 0.036 |
19 | 13.6 | 0.085 | 30 | 0.2 | 66 | 542 | 2346 | 0.066 |
Importance Index Criteria | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Manufacturer | Type/ Application | Load Factor | Voltage | N-1 Criterion | Location | Critical Loads | Rated Power (MVA) | Mean Load (MVA) | Security Level | Unavailability Penalty |
Known | In-service | 0.922 | 132/33 | Yes | Urban | Several | 85 | 59 | 1&4 | 20 to 30 times |
Well-Known | In-service | 0.283 | 132/33 | Yes | Urban | Several | 85 | 73 | 2&3 | 20 to 30 times |
Well-Known | In-service | 0.828 | 132/13.2 | Yes | Rural | Several | 20 | 16 | 1&2 | 20 to 30 times |
Well-Known | In-service | 0.539 | 500/220 | No | Rural | Several | 50 | 25 | 2&3 | 60 times |
Unknown | In-service | 1.183 | 132/13.2 | Yes | Urban | A few | 70 | 63 | 2 | 20 to 30 times |
Well-Known | In-service | 0.371 | 132/33 | Yes | Industrial | Several | 45 | 18 | 1&4 | 20 to 30 times |
Unknown | Standby | 0.000 | 500/220 | Yes | Urban | None | 55 | 39 | 1 | 60 times |
Known | In-service | 0.585 | 220/132 | Yes | Rural | A few | 85 | 24 | 5 | 50 times |
Known | In-service | 0.784 | 132/33 | No | Industrial | Several | 65 | 24 | 1&2&3&4 | 20 to 30 times |
Well-Known | In-service | 0.361 | 132/33 | Yes | Rural | A few | 75 | 43 | 1&2&3 | 20 to 30 times |
Known | Mobile | 0.269 | 132/13.2 | Yes | Urban | A few | 75 | 74 | 5 | 20 to 30 times |
Known | In-service | 0.306 | 220/132 | N/A | Urban | None | 25 | 24 | 4 | 50 times |
Well-Known | In-service | 0.657 | 500/220 | Yes | Industrial | A few | 100 | 87 | 4 | 60 times |
Known | In-service | 0.268 | 132/13.2 | Yes | Industrial | Several | 85 | 32 | 3&4 | 20 to 30 times |
Known | In-service | 0.236 | 132/33 | Yes | Urban | None | 65 | 31 | 3 | 20 to 30 times |
Known | In-service | 0.844 | 220/132 | Yes | Urban | Several | 75 | 19 | 3 | 50 times |
Well-Known | In-service | 0.648 | 132/13.2 | N/A | Urban | Several | 100 | 84 | 3 | 20 to 30 times |
Well-Known | In-service | 0.294 | 220/132 | Yes | Industrial | A few | 75 | 36 | 1&2&3 | 50 times |
Known | In-service | 0.350 | 220/132 | Yes | Rural | Several | 50 | 22 | 1&2&3 | 50 times |
PT | DP | Chendong’s DP | HI | II | Cluster | RI = HI*II |
---|---|---|---|---|---|---|
1 | 705.077 | 603.446 | 0.4269 | 0.5000 | 2 | 0.21346 |
2 | 466.627 | 392.366 | 0.5288 | 0.4324 | 2 | 0.22867 |
3 | 1015.149 | 519.944 | 0.2830 | 0.3108 | 1 | 0.09324 |
4 | 228.619 | 244.796 | 0.8021 | 0.6486 | 3 | 0.52025 |
5 | 502.092 | 419.602 | 0.3389 | 0.5270 | 1 | 0.17863 |
6 | 725.149 | 717.143 | 0.3383 | 0.3784 | 1 | 0.12800 |
7 | 109.921 | 214.165 | 0.9392 | 0.5541 | 3 | 0.52038 |
8 | 262.539 | 262.553 | 0.9392 | 0.4595 | 3 | 0.43152 |
9 | 514.341 | 454.549 | 0.5250 | 0.5811 | 2 | 0.30507 |
10 | 234.680 | 245.349 | 0.9392 | 0.3514 | 3 | 0.32999 |
11 | 725.197 | 619.308 | 0.3360 | 0.3649 | 1 | 0.12260 |
12 | 725.077 | 658.823 | 0.5250 | 0.4054 | 2 | 0.21284 |
13 | 992.940 | 866.537 | 0.5250 | 0.7027 | 2 | 0.36892 |
14 | 725.077 | 730.216 | 0.5154 | 0.4865 | 2 | 0.25075 |
15 | 725.151 | 717.143 | 0.3200 | 0.3649 | 1 | 0.10946 |
16 | 217.397 | 229.266 | 0.9372 | 0.5541 | 3 | 0.51924 |
17 | 1015.149 | 854.710 | 0.2500 | 0.5541 | 1 | 0.16622 |
18 | 525.065 | 843.914 | 0.1979 | 0.5405 | 1 | 0.10699 |
19 | 1015.149 | 768.702 | 0.3000 | 0.4189 | 1 | 0.12568 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaldivar, D.A.; Romero, A.A.; Rivera, S.R. Risk Assessment Algorithm for Power Transformer Fleets Based on Condition and Strategic Importance. Algorithms 2021, 14, 319. https://doi.org/10.3390/a14110319
Zaldivar DA, Romero AA, Rivera SR. Risk Assessment Algorithm for Power Transformer Fleets Based on Condition and Strategic Importance. Algorithms. 2021; 14(11):319. https://doi.org/10.3390/a14110319
Chicago/Turabian StyleZaldivar, Diego A., Andres A. Romero, and Sergio R. Rivera. 2021. "Risk Assessment Algorithm for Power Transformer Fleets Based on Condition and Strategic Importance" Algorithms 14, no. 11: 319. https://doi.org/10.3390/a14110319
APA StyleZaldivar, D. A., Romero, A. A., & Rivera, S. R. (2021). Risk Assessment Algorithm for Power Transformer Fleets Based on Condition and Strategic Importance. Algorithms, 14(11), 319. https://doi.org/10.3390/a14110319