Robust Bilinear Probabilistic Principal Component Analysis
Abstract
:1. Introduction
2. Preliminaries
3. Robust BPPCA
3.1. The Model
3.2. Estimation of the Parameters
- (1)
- In Algorithm 1, it is not necessarily to explicitly compute and . The reason is that the calculation of and can be more efficiently performed by usingIn its per-iteration of Algorithm 1, the most expensive computational cost is appearing on the formation of with . Owing to introducing the new latent variable , RBPPCA is a little more time complex than BPPCA having a calculation cost of . However, it will be shown in our numerical example that the RBPPCA algorithm presents less sensitivity to outliers.
- (2)
- Compared with the AECM algorithm of BPPCA in [12] which uses the centered data and estimates and based on the model and , respectively, two more parameters and W are needed to be computed in the AECM iteration of RBPPCA. Notice that both the models (14) and (18) contain the parameters and W. Thus, we split the parameter set into and which naturally leads to the parameters and W being calculated twice in each loop of Algorithm 1. Though other partitions of the set , such as and , are also available for the estimation of parameters, we prefer and , because updating and W one more time in each iteration can be obtained by adding a little more computational cost.
- (3)
- As stated in Section 3.3 of [24], any AECM sequence increases at each iteration, and converges to a stationary point of . Notice that the convergence results of the AECM algorithm proved in Section 3.3 of [24] do not depend on the distributions of the data sets. Therefore, up to set a limit on the maximum number of steps , we use the following relative change of log-likelihood as the stopping criterion, i.e.,
- (4)
Algorithm 1 Robust bilinear probabilistic PCA algorithm (RBPPCA). |
Input: Initialization , and sample matrices . Compute . Output: the converged {}
|
4. Numerical Examples
- (1)
- initialization 1: and ;
- (2)
- initialization 2: and ;
- (3)
- initialization 3:
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Burges, C.J.C. Dimension Reduction: A Guided Tour; Now Publishers Inc.: Noord-Brabant, The Netherlands, 2010. [Google Scholar]
- Ma, Y.; Zhu, L. A review on dimension reduction. Int. Stat. Rev. 2013, 81, 134–150. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Yang, J.; Zhang, D.; Frangi, A.F.; Yang, J. Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 131–137. [Google Scholar]
- Ye, J. Generalized low rank approximations of matrices. Mach. Learn. 2005, 61, 167–191. [Google Scholar]
- Zhang, D.; Zhou, Z.H. (2D) 2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 2005, 69, 224–231. [Google Scholar]
- Tipping, M.E.; Bishop, C.M. Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B Stat. Methodol. 1999, 61, 611–622. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Yu, S.; Bi, J.; Ye, J. Matrix-variate and higher-order probabilistic projections. Data Min. Knowl. Discov. 2011, 22, 372–392. [Google Scholar]
- Gupta, A.K.; Nagar, D.K. Matrix Variate Distributions; CRC Press: Boca Raton, FL, USA, 2018; Volume 104. [Google Scholar]
- Zhao, J.; Philip, L.H.; Kwok, J.T. Bilinear probabilistic principal component analysis. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 492–503. [Google Scholar]
- Zhao, J.; Jiang, Q. Probabilistic PCA for t distributions. Neurocomputing 2006, 69, 2217–2226. [Google Scholar]
- Chen, T.; Martin, E.; Montague, G. Robust probabilistic PCA with missing data and contribution analysis for outlier detection. Comput. Stat. Data Anal. 2009, 53, 3706–3716. [Google Scholar]
- Gao, J. Robust L1 principal component analysis and its Bayesian variational inference. Neural Comput. 2008, 20, 555–572. [Google Scholar] [CrossRef] [PubMed]
- Ju, F.; Sun, Y.; Gao, J.; Hu, Y.; Yin, B. Image outlier detection and feature extraction via L1-norm-based 2D probabilistic PCA. IEEE Trans. Image Process. 2015, 24, 4834–4846. [Google Scholar] [CrossRef] [PubMed]
- Galimberti, G.; Soffritti, G. A multivariate linear regression analysis using finite mixtures of t distributions. Comput. Stat. Data Anal. 2014, 71, 138–150. [Google Scholar] [CrossRef]
- Morris, K.; McNicholas, P.D.; Scrucca, L. Dimension reduction for model-based clustering via mixtures of multivariate t-distributions. Adv. Data Anal. Classif. 2013, 7, 321–338. [Google Scholar] [CrossRef]
- Pesevski, A.; Franczak, B.C.; McNicholas, P.D. Subspace clustering with the multivariate-t distribution. Pattern Recognit. Lett. 2018, 112, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Teklehaymanot, F.K.; Muma, M.; Zoubir, A.M. Robust Bayesian cluster enumeration based on the t distribution. Signal Process. 2021, 182, 107870. [Google Scholar] [CrossRef]
- Wei, X.; Yang, Z. The infinite Student’s t-factor mixture analyzer for robust clustering and classification. Pattern Recognit. 2012, 45, 4346–4357. [Google Scholar] [CrossRef]
- Zhou, X.; Tan, C. Maximum likelihood estimation of Tobit factor analysis for multivariate t-distribution. Commun. Stat. Simul. Comput. 2009, 39, 1–16. [Google Scholar] [CrossRef]
- Lange, K.L.; Little, R.J.A.; Taylor, J.M.G. Robust statistical modeling using the t distribution. J. Am. Stat. Assoc. 1989, 84, 881–896. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.L.; Van Dyk, D. The EM algorithm—An old folk-song sung to a fast new tune. J. R. Stat. Soc. Ser. B Stat. Methodol. 1997, 59, 511–567. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, H.; Cheung, Y. Bilinear probabilistic canonical correlation analysis via hybrid concatenations. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 5–9 October 2017; Volume 31. [Google Scholar]
- Coleman, T.; Branch, M.A.; Grace, A. Optimization toolbox. In For Use with MATLAB. User’s Guide for MATLAB 5, Version 2, Relaese II; 1999; Available online: https://www.dpipe.tsukuba.ac.jp/~naito/optim_tb.pdf (accessed on 20 September 2021).
- Schrage, L. LINGO User’s Guide; LINDO System Inc.: Chicago, IL, USA, 2006. [Google Scholar]
- Stewart, G.W. Matrix Algorithms: Volume II: Eigensystems; SIAM: Philadelphia, PA, USA, 2001. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Teng, Z. Robust Bilinear Probabilistic Principal Component Analysis. Algorithms 2021, 14, 322. https://doi.org/10.3390/a14110322
Lu Y, Teng Z. Robust Bilinear Probabilistic Principal Component Analysis. Algorithms. 2021; 14(11):322. https://doi.org/10.3390/a14110322
Chicago/Turabian StyleLu, Yaohang, and Zhongming Teng. 2021. "Robust Bilinear Probabilistic Principal Component Analysis" Algorithms 14, no. 11: 322. https://doi.org/10.3390/a14110322
APA StyleLu, Y., & Teng, Z. (2021). Robust Bilinear Probabilistic Principal Component Analysis. Algorithms, 14(11), 322. https://doi.org/10.3390/a14110322