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Abstract: There are generally many redundant and irrelevant features in high-dimensional datasets,
which leads to the decline of classification performance and the extension of execution time. To
tackle this problem, feature selection techniques are used to screen out redundant and irrelevant
features. The artificial bee colony (ABC) algorithm is a popular meta-heuristic algorithm with high
exploration and low exploitation capacities. To balance between both capacities of the ABC algorithm,
a novel ABC framework is proposed in this paper. Specifically, the solutions are first updated by the
process of employing bees to retain the original exploration ability, so that the algorithm can explore
the solution space extensively. Then, the solutions are modified by the updating mechanism of an
algorithm with strong exploitation ability in the onlooker bee phase. Finally, we remove the scout
bee phase from the framework, which can not only reduce the exploration ability but also speed
up the algorithm. In order to verify our idea, the operators of the grey wolf optimization (GWO)
algorithm and whale optimization algorithm (WOA) are introduced into the framework to enhance
the exploitation capability of onlooker bees, named BABCGWO and BABCWOA, respectively. It has
been found that these two algorithms are superior to four state-of-the-art feature selection algorithms
using 12 high-dimensional datasets, in terms of the classification error rate, size of feature subset and
execution speed.

Keywords: artificial bee colony algorithm; high dimensionality; feature selection; exploration–
exploitation balance

1. Introduction

Due to the rapid development of data acquisition technology, a great deal of digital
information is becoming more easily collected and included in datasets. However, not
all features in datasets are useful for a target problem. In other words, there are many
redundant and irrelevant features in high-dimensional datasets, so feature selection (FS) is
used as a vital data preprocessing step in data mining and machine learning [1]. However,
FS is an NP-hard problem. For an n-dimensional dataset, there are 2n feature subsets,
which is difficult to solve with an exhaustive method. With a good FS method, we can not
only get higher classification accuracy, but also reduce the complexity of calculation. In
order to improve the search efficiency of FS algorithms, many scholars propose algorithms,
which can be roughly divided into three types: filter method, wrapper method and em-
bedded method [2]. Among them, the wrapper method is widely used because of its good
classification ability. Therefore, this paper studies the wrapper FS method.

The wrapper approach mainly consists of three parts: classifiers, feature subset eval-
uation criteria and search techniques [3]. Among them, an effective search technique is
crucial for the performance of FS algorithms. It is worth mentioning that meta-heuristic
methods, such as the artificial bee colony (ABC) algorithm [4], the particle swarm opti-
mization (PSO) algorithm [5], the differential evolution (DE) algorithm [6], the grey wolf
optimization (GWO) algorithm [7], the whale optimization algorithm (WOA) [8], and many
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other algorithms [9] have provided good search strategies for the FS task. Unlike the exact
search mechanisms, meta-heuristic methods exhibit superior performance, as they do not
generate all possible solutions for a given task. Meta-heuristic algorithms have exploration
and exploitation abilities, and the trade-off between both abilities is very important for the
performance of these algorithms. The exploration acts to discover various unknown regions
for more potential solutions, while the exploitation attempts to generate better solutions
on the basis of the information provided by existing solutions. In some meta-heuristic
search techniques, the ability of exploration is stronger, while in others, the exploitation
performs better [10,11]. Exploring the search region and exploiting the best solution are
two contradictory criteria that must be considered simultaneously when designing a good
meta-heuristic algorithm. The key to improving an algorithm is to achieve a good balance
between exploration and exploitation [3,12].

The ABC algorithm is an optimization algorithm that is inspired by the foraging
behavior of a honey bee swarm. ABC has been successfully applied to various optimization
problems due to its good properties, such as few parameters to control, its high flexibility,
and its strong global search ability [11]. However, ABC converges slowly because of the
absence of a strong local exploitation ability [10,13]. From the above considerations, we
propose a new framework to enhance the exploitation performance of the ABC algorithm,
so as to realize a trade-off between the exploration and exploitation capabilities of the FS
method, and raise the optimization efficiency and effectiveness. The contributions of this
paper are as follows:

(1) In order to trade off the exploitation and exploration abilities of ABC, we use operators
with strong exploitation abilities to enhance the exploitation ability in the phase of
onlooker bee;

(2) This paper analyzes the functional behavior of the scout bee phase and finds that this
phase may be redundant while dealing with high-dimensional FS problems, and so
eliminating this phase can reduce the computational time of the algorithm;

(3) The proposed framework is designed as a general framework that can be used to
adapt many ABC variants for the FS problems.

The remainder of this paper is illustrated as follows: Section 2 briefly describes the
related works of the ABC algorithm. In Section 3, the original ABC algorithm is introduced
and analyzed. Section 4 presents the details of our proposed approach. In Section 5,
comparisons of the experimental results are presented and discussed. The proposed
algorithms are further analyzed in Section 6. At last, the conclusions and future work are
outlined in Section 7.

2. Related Works

Recently, meta-heuristic algorithms have attracted the attention of many scholars.
These algorithms can be used to solve many real engineering tasks, such as path plan-
ning [14–16], feature selection [17–19], function optimization [20–22], and the traveling
salesman problem [23–25]. Although various meta-heuristics have been developed to
deal with FS over the years, the significant increase in data dimensionality brings great
challenges; therefore, it is worth continuing looking for effective strategies to make meta-
heuristic algorithms perform better for high-dimensional FS problems [26].

ABC was proposed in 2005 by Karaboga group to optimize algebraic problems [27].
Single-objective ABC was first used to address the FS problem in 2012 [18,28]. Almost
all meta-heuristic algorithms have the problem of an imbalance between exploration
and exploitation [29], and the ABC algorithm is no exception. There are a lot of studies
on the ABC algorithm, seeking to improve its exploitation capability. To accelerate the
convergence speed of the ABC algorithm, Chao et al. [30] proposed the KnABC algorithm,
which introduced Knee Points into the employed bee phase and onlooker bee phase.
The results show that this algorithm has a significant effect on reducing the number of
features and increasing the classification accuracy. Shunmugapriya et al. [31] utilized
the ACO algorithm for colony initialization, and took the initialization results as the
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food sources of the ABC algorithm for further optimization so as to integrate the ACO
and ABC algorithms; the resulting algorithm’s performance was better than that of ABC
or ACO alone. Djellali et al. [10] proposed two hybrid ABC algorithms, i.e., ABC-PSO
and ABC-GA, which integrate the PSO algorithm and GA algorithm into the framework
of the original ABC algorithm in different bee phases, respectively. The experimental
results showed that ABC-GA obtained better results than some other existing methods.
Shunmugapriya et al. [32] proposed the EABC-FS algorithm, in which the employed bees
and onlooker bees made full use of the best solutions in the current swarm to enhance
the exploitation ability of the ABC algorithm. The experimental results showed that the
performance of the algorithm achieved by introducing such fusion strategies was greatly
improved. Moreover, many other studies have shown that the ABC algorithm faces the
problem of an insufficient exploitation ability, which results in it becoming trapped in a
local optimum and having a low convergence speed [28,33].

Although the above-mentioned hybrid variants of the ABC algorithm have achieved
promising performance, they do not deeply analyze the exploitation and exploration
abilities in different bee phases of the overall framework. Moreover, few of these algorithms
have been developed for high-dimensional FS. Therefore, this paper proposes a novel
exploration and exploitation trade-off ABC algorithm by modifying the original overall
framework, and applies it to high-dimensional datasets. This new framework strengthens
the exploitation ability in the onlooker bee phase by using operators with high exploitation
capacities. Additionally, the function of scout bees is discussed in detail, and verified by
experiments.

3. Introduction and Analysis of ABC Algorithm

The ABC algorithm is a kind of swarm intelligence (SI) algorithm that simulates the
honey-gathering behavior of a bee swarm. This algorithm includes three types of bees:
employed bees, onlooker bees and scout bees. Each food source corresponds to a solution
to the given task, and the fitness of the solution indicates the quality of the food source.
The overall process of the ABC algorithm is as follows [34].

First of all, it initializes a population of size SN randomly. This is calculated by
Equation (1):

xid = xmin
d + r ∗

(
xmax

d − xmin
d

)
(1)

where i = 1, 2, . . . , SN, d = 1, 2, . . . , D. SN is the number of food sources. D is the dimension-
ality of the search space. Additionally, the number of employed bees or onlooker bees is
equal to the number of food sources. r is a random number in [0, 1], distributed uniformly.
xmin

d and xmax
d represent the maximum and minimum values of the dth dimension feature,

respectively. After initialization, the bees begin to search.

(1) Employed bee phase: According to Equation (2), a new food source is produced
around the current food source, as follows:

x′id = xid + ϕid ∗ (xid − xkd) (2)

where ϕid is a random number within [−1,1]. xid and xkd represent the dth dimension
feature of xi and xk, respectively. x′id is compared with xid, and if the fitness of x′id
is superior to xid, xid is replaced by x′id for entry into the next step, and its counter
is reset to 0. Otherwise, xid is retained for entry into the next step, and its counter
increases by 1.

(2) Onlooker bee phase: Every onlooker bee selects a food source depending on the
probability value pi via the roulette-wheel scheme. pi is associated with the food
resource information given by the employed bee. The value of pi is generated by
Equation (3).

pi =
f iti

∑SN
i=1 f iti

(3)
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where f iti is the fitness value of solution xi. Each selected food source is updated
using Equation (2).

(3) Scout bee phase: If the counter of a food source is greater than or equal to the preset
number of trials, then this food source is discarded. The value of the preset number
of trials is usually called the limit for abandonment. If a food source is abandoned,
then the scout bee translated from the employed bee will regenerate a food source via
Equation (1) to replace the food source that is abandoned.

In the ABC algorithm, the employed bees are in charge of finding viable solutions
throughout the search area, and providing the onlooker bees with food information. Based
on the food information, the onlooker bees search new food sources near to the existing
found food sources. In the updating process of the onlooker bee phase, the same updating
formula (Equation (2)) is used to update the population as in the employed bee phase.
As we can see from the above, the ABC algorithm does not take advantage of the elitism
principle. Both the employed bees and onlooker bees use Equation (2) to obtain new food
resources, as it has a powerful global search ability, but its search efficiency is low and
its exploitation ability is not optimal. The roulette-wheel scheme can make food sources
with higher fitness values easier to select, and the use of the roulette-wheel scheme in the
onlooker bee phase can strengthen the exploitation ability, but this exploitation ability is
far less strong than its powerful exploration ability. Therefore, as Hong and Ahn [35] have
pointed out, the exploitation level of the onlooker bee phase should increase. In addition,
the scout bee phase not only reduces the probability of falling into the local optimum, but
it also reduces the rate of convergence. Under the action of the scout bees, the optimal
solution may also be discarded [34]. Therefore, the ABC algorithm has an outstanding
exploration capacity but inefficient exploitation. This imbalance renders the ABC algorithm
unable to reach a better solution, because the convergence is too slow.

4. Proposed Algorithm for Feature Selection
4.1. The Proposed Framework

A meta-heuristic algorithm having a balance between exploration and exploitation
ability has a great impact on its performance. For an algorithm with good exploration ability,
we can enhance its exploitation ability by introducing operators with strong exploitation
ability so as to regain the balance between exploration and exploitation abilities. Based
on the analysis in Section 3, this paper presents a novel ABC framework. There are three
points in the description of the framework:

(1) The employed bee phase of the ABC algorithm is retained so that it can explore the
search space widely and avoid reaching the local optimum;

(2) The updating mode of the ABC algorithm’s onlooker bee phase is changed to the new
updating strategy, as inspired by other algorithms with more powerful exploitation
capacities. The searching scheme of these algorithms with powerful exploitation
abilities is introduced as an operator. According to our observation, higher diversity
in the bee swarm can help the algorithm to find more potential search space, but
after a certain period, the solutions should converge and approach optimal solutions
with reductions in colony diversity. We believe that applying operators with strong
exploitation abilities to the optimization process can reduce the diversity of the
algorithm in the late stage, and bring about a higher convergence speed. Therefore,
the introduction of operators with powerful exploitation abilities can help our novel
ABC framework find better solutions;

(3) The scout bee phase is removed, because the exploration ability of the scout bee phase
will increase the diversity of the algorithm during the later period. Moreover, the
scout bee phase will waste the execution time, and consume computational resources
and memory during the calculation process.
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Figure 1 illustrates our proposed framework and its differences from the processes of
the original ABC algorithm. Overall, the two methods utilize the same updating mechanism
in the employed bee phase. However, without the scout bee phase, our method does not
need to compute the value of the counter throughout the algorithm. Since the onlooker bee
phase in our method is updated by the operators of an algorithm with strong exploitation
abilities, we do not use roulette-wheel selection, so we do not need to calculate the selection
probability of each individual.
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FS is, in essence, an optimization problem in a binary searching space. The value
of each element of the solutions is limited to 0 or 1 [36]. However, the ABC algorithm
originally proposed is used in continuous space. To adapt our proposed ABC framework
to FS, we need to transform the continuous values to binary values. This transformation is
fulfilled by Equation (4).

xbid =

{
1 i f r < sigmoid(xid)

0 otherwise
(4)

where r is a random value in [0, 1]. The function of sigmoid(x) is formulated as in
Equation (5):

sigmoid(x) =
1

1 + exp(−10 ∗ (x− 0.5))
(5)

4.2. Abandonment of Scout Bee Phase to Reduce the Exploration Capacity

As the last phase of the ABC algorithm, the scout bee abandons any individual that has
not changed for a long time, and then creates a new individual to replace the abandoned
individual. This phase has certain exploration advantages for the algorithm. However, it
has been proven [34] that the scout bee phase is not active in processing high-dimensional
tasks, and runs the risk of missing local optimal solutions due to its exploration ability; as
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such, we have removed this phase. In the following experiments, we analyze the influence
of removing the scout bee phase on the diversity and convergence ability of the algorithm.

4.3. Enhancement of Exploitation—Illustrative Example with GWO and WOA

The original ABC algorithm has a low exploitation capacity, especially in the onlooker
bee phase. The enhancement of the exploitation capacity in this phase is the most vital factor
to regaining the trade-off between exploitation and exploration in the whole procedure of
the ABC algorithm. There are many algorithms that have powerful exploitation capacities,
such as the GWO algorithm and WOA algorithm. Compared with other algorithms, the
GWO algorithm and WOA algorithm make full use of the information related to excellent
individuals in the updating process, which gives them powerful exploitation abilities. As
such, we take these two algorithms as examples. In our research, we fuse each algorithm as
an operator into the onlooker bee phase, and replace the updating mode of the original ABC
algorithm in the same phase to enhance the exploitation capacity of our whole framework.

In the GWO algorithm, the grey wolves are divided into four hierarchies, namely,
alpha (α), beta (β), delta (δ) and omega (ω). In solving optimization problems, the α wolf is
the best solution, the β and δ wolves are the second- and third-best solutions, respectively,
while the ω wolves are the remaining candidates. The α, β, and δ wolves lead the wolf
pack to search for prey. The position of each wolf is given as follows:

Dα =|C1 ∗ Xα − X|,
Dβ =

∣∣C2 ∗ Xβ − X
∣∣,

Dδ =|C3 ∗ Xδ − X|,
(6)

X1 = Xα − A1 ∗ Dα,
X2 = Xβ − A2 ∗ Dβ,
X3 = Xδ − A3 ∗ Dδ,

(7)

X(t + 1) =
X1 + X2 + X3

3
(8)

where Xα, Xβ and Xδ refer to the position vectors of α, β and δ, respectively. Dα, Dβ and Dδ

denote the distance between the prey (α, β, δ) and the current wolf, respectively. t indicates
the current iteration. A = 2a ∗ r1 − a, C = 2 ∗ r2, r1 and r2 are random numbers in [0, 1]
that are distributed uniformly. The value of a decreases linearly from 2 to 0 as the number
of cycles increases. The three best solutions are used to be learnt from during the updating
process of the GWO algorithm, which gives it a strong exploitation ability [7,37,38].

The WOA algorithm is also an SI algorithm, which employs the current optimal
solution as the prey. The search agents update their positions based on the best solution.
The mathematical model is described by the equations:

X(t + 1) =

{
Xp(t)− A ∗ D p < 0.5, |A| < 1
D′ ∗ ebl ∗ cos(2πl) + Xp(t) p ≥ 0.5

(9)

X(t + 1) = Xrand(t)− A ∗ D′′ p < 0.5, |A| ≥ 1 (10)

where Xp(t) is the best search agent, Xrand(t) is a random position vector, b is a manually
determined constant, and l is a random number in [–1,1]. The equations for calculating D,
D′ and D′′ are as follows:

D =
∣∣C ∗ Xp(t)− X(t)

∣∣,
D′ =

∣∣Xp(t)− X(t)
∣∣,

D′′ = |C ∗ Xrand(t)− X(t)|
(11)

where A and C are calculated in the same way as above. The process of updating the WOA
algorithm selects the best solution for learning, which makes the exploitation ability of the
algorithm more powerful [8,12].
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This paper introduces the operators of the GWO algorithm and WOA algorithm
into our proposed framework to verify its validity. The names of the two methods are
BABCGWO and BABCWOA, respectively. The pseudocode is outlined in Algorithm 1.

Algorithm 1. Pseudocode of BABCGWO/BABCWOA

Input: Population size SN, Maximum number of iterations NMAX.
Output: The optimal individual xbest, the best fitness value f(xbest).
Initialize the population by using Equation (1).
Evaluate the fitness value of each individual.
For it = 1 to NMAX do

For i = 1 to SN do
Select a different food source xk at random.
Produce a new food source according to Equation (2) and map it to discrete
values by Equation (4).
Evaluate the fitness value of each food source.
Update xi according to greedy selection.

End
For i = 1 to SN do

Update the position using operators of GWO algorithm or WOA algorithm and
map it to discrete values by Equation (4).
Evaluate the fitness value of each individual.

End
End
Output xbest and f(xbest).

4.4. Computational Complexity Analysis

The computational complexity of an algorithm is an important measure to evaluate
its running time, which is usually expressed by the big O notation. The computational
complexity of the algorithm depends on the number of individuals (SN), the dimension of
the problem (D) and the number of iterations (NMAX). The time complexity of the basic
ABC, BABCGWO and BABCWOA is discussed here.

For basic ABC:

(1) In the initialization stage of the algorithm, the time complexity is O(SN ∗ D);
(2) The time complexity of each iteration in the updating phase of the employed bee, the

onlooker bee and the scout bee is O(SN ∗D)+O(SN ∗D)+O(SN ∗D) ∼= O(SN ∗D);
(3) The time complexity in the process of calculating individual fitness is O(SN).

For BABCGWO:

(1) During initialization, the time complexity is O(SN ∗ D);
(2) O(SN ∗ D) + O(SN ∗ D) ∼= O(SN ∗ D) is required for each iteration in the evolution

of the employed bee phase and grey wolf phase;
(3) The time complexity of calculating the fitness is O(SN).

For BABCWOA:

(1) The time complexity of the initialization step is O(SN ∗ D);
(2) The time complexity of each iteration in the updating process of employed bees and

whales is O(SN ∗ D) + O(SN ∗ D) ∼= O(SN ∗ D);
(3) O(SN) is consumed by evaluating the fitness of each individual.

According to the above analysis, it can be concluded that the basic ABC algorithm,
BABCGWO algorithm and BABCWOA algorithm have the same computational complexity,
and the total computational complexity is O(SN ∗ D ∗ NMAX) after many cycles. In
Section 5.2, we will conduct an experimental analysis on the specific execution time of each
algorithm.
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5. Experimental Studies
5.1. Experimental Design

To verify the effectiveness of the proposed FS algorithms, a series of experiments
are carried out on 12 standard datasets, including two-category and multi-classification
datasets. These were obtained from http://featureselection.asu.edu/datasets.php (ac-
cessed on 18 January 2020) and http://archive.ics.uci.edu/mL/datasets.php (accessed on
18 January 2020). They include microarray gene expression data, image detection data,
email text data and so on. In addition, they are not only from different application fields,
but also the number of features varies from 310 to 22,283, and the instances vary from
62 to 165, and this provides comprehensive experiments of the proposed and employed
algorithms. Table 1 shows the details of the datasets.

Table 1. Description for datasets.

Datasets Features Samples Classes

LSVT 310 126 2
Yale 1024 165 15

colon 2000 62 2
SRBCT 2308 83 4

DBWorld 4702 64 2
Leukemia1 5327 72 3

DLBCL 5469 77 2
ALLAML 7129 72 2
Pixraw10P 10,000 100 10

Prostate 10,509 102 2
Leukemia2 11,225 72 3

GLI_85 22,283 85 2

We verify the effectiveness of the BABCGWO and BABCWOA algorithms by compar-
ing them with the ABC algorithm and their variants applied to high-dimensional datasets.
The ABC algorithm without the scout bee phase is named the none-scout ABC algorithm
(NSABC). The variants of the BABCGWO algorithm and BABCWOA algorithm with the
added scout bee phase are named the BABCGWO with scout bees algorithm (BABCG-
WOWS) and the BABCWOA with scout bees algorithm (BABCWOAWS), respectively. To
avoid contingency, all algorithms are run 10 times independently. The population size
is set to 50; the number of iterations is 100. Each algorithm is implemented in MATLAB
language.

A suitable classifier is important when assessing the feature subsets. K-nearest neigh-
bor (KNN) [39] is a common classification method that determines which category the
classifier should be assigned to according to its K neighbors. In this research, the value
of K is set to 5. In order to reduce the influence of over-fitting, the average classification
error rate of 10-fold cross validation is taken as the fitness value. The fitness function is
computed as follows:

error =
Number o f misclassi f ied samples

Total number o f samples
(12)

fitness =
∑10

i=1 error
10

(13)

5.2. Experimental Results and Analysis

To test the performance of our proposed framework, the diversity, convergence curves,
classification error rate, size of feature subset and computing time of algorithms are investi-
gated in this subsection. The best results are shown in bold in the tables.

http://featureselection.asu.edu/datasets.php
http://archive.ics.uci.edu/mL/datasets.php
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Figure 2 shows the diversity curves of six algorithms on 12 datasets. We can see that
the diversity of ABC is obviously higher than that of other algorithms on all datasets,
except DBWorld and Pixraw10P. According to the search process of the ABC algorithm, the
exploration performance of the ABC algorithm is stronger, so its diversity is higher. In the
early stage, high diversity can avoid trapping in the local optimization, but after a limited
number of cycles, we need to find the optimal solution. The diversity of NSABC decreases
a lot, which weakens the exploration ability of the ABC algorithm. After introducing the
GWO and WOA operators into the framework, the diversity of these algorithms decreases
faster than that of the NSABC algorithm in most datasets. The lower the diversity, the
weaker the exploration ability of the algorithm and the stronger the exploitation ability
of the algorithm. This shows that the introduction of the GWO and WOA operators
strengthens the exploitation ability of the algorithm effectively. In addition, Figure 2 shows
that the diversity curves of the BABCGWOWS algorithm and BABCGWO algorithm are
similar, and the diversity curves of the BABCWOAWS algorithm and BABCWOA algorithm
are not very different. It can be seen that scout bees have little effect on the diversity of the
algorithms in this framework.
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The convergence curves of the algorithms are plotted in Figure 3. This shows the decline
of the error rate. Each curve is plotted by averaging the error rate obtained at each generation
of the 10 runs. The convergence results of NSABC and ABC are similar on LSVT, Yale,
colon, DBWorld, DLBCL, Pixraw10P and GLI_85 datasets, and the convergence results of
the NSABC algorithm are slightly higher than that of the ABC algorithm on other datasets.
Obviously, compared with the ABC algorithm, the BABCGWO and BABCWOA algorithms
converge faster with a good-quality solution. On most datasets, the error rates of BABCGWO
and BABCWOA are similar to or lower than those of BABCGWOWS and BABCWOAWS,
respectively. It can be concluded that the BABCGWO and BABCWOA algorithms perform
better than ABC in terms of both convergence speed and solution quality.

Table 2 shows the worst, the best, the mean and the standard deviation of the error rate
results of each algorithm. The ultimate goal of FS is to improve generalization performance,
which means achieving a lower error rate when used on unforeseeable data. A lower
error rate indicates that the algorithm can find a better feature subset. Since almost all the
SI-based algorithms are stochastic in nature, they may produce different results in each
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run. Therefore, standard deviation is conducted to measure the variations in the results.
The smaller the standard deviation is, the more stable the algorithm is.
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From Table 2, we can see that the error rate of the NSABC algorithm is slightly higher
than that of the ABC algorithm used on most datasets, but the increase is not more than
0.01. The error rate was improved on all datasets except Pixraw10P after the introduction
of the operator with strong exploitation ability in the onlooker bee phase. Specifically,
BABCWOA’s average error rate is at least 0.005 lower than the average error rate of the
ABC algorithm, applied on the Prostate dataset. When used on the Yale dataset, the average
error rate decreased the most, by nearly 0.06, and on the SRBCT and DBWorld datasets,
the average error rate decreased by about 0.05. On other datasets, the average error rate
also decreased by about 0.01 to 0.03. Moreover, the average error rate of BABCGWO was
reduced more, especially on the Yale dataset, and BABCGWO decreased by 0.125 compared
with the ABC algorithm. The average error rate of BABCGWO is at least 0.017 lower than
that of the ABC algorithm when used on the GLI_85 dataset. There are seven datasets on
which the average error rate decreased by more than 0.04. As you can see, the error rate of
BABCGWOWS did not change much on most datasets compared to BABCGWO, and the
results of comparison between BABCWOAWS and BABCWOA are similar.

In terms of the worst error rate, the BABCWOA algorithm was reduced on half of
the datasets, while the BABCGWO algorithm improved on all datasets except Pixraw10P,
and the maximum error rate decreased the most on the Yale dataset (by 0.119). Both
BABCWOA and BABCGWO decreased in terms of the error rate. It can be seen from
the standard deviation of the algorithm that although the error rate of the BABCWOA
algorithm improved on the whole, its error rate was not as stable as the ABC algorithm’s
on a few datasets, such as Yale and ALLAML. The stability of the BABCGWO algorithm is
similar to that of the ABC algorithm. It can be concluded that the introduction of operators
with strong exploitation ability into the proposed framework can indeed improve the ABC
algorithm to a certain extent, and the scout bee phase is not active and has little effect on
reducing the error rate of the algorithm.
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Table 2. Comparisons of error rate between different ABC-based methods.

Datasets Index
Algorithms

ABC NSABC BABCWOA BABCWOAWS BABCGWO BABCGWOWS

LSVT
worst 0.112 0.121 0.103 0.104 0.056 0.064

mean ± std 0.102 ± 0.01 0.106 ± 0.01 0.075 ± 0.02 0.074 ± 0.02 0.044 ± 0.01 0.046 ± 0.01
best 0.087 0.089 0.047 0.047 0.031 0.031

Yale
worst 0.357 0.370 0.326 0.345 0.238 0.240

mean ± std 0.345 ± 0.01 0.351 ± 0.01 0.288 ± 0.03 0.299 ± 0.04 0.220 ± 0.01 0.220 ± 0.01
best 0.327 0.327 0.241 0.243 0.210 0.207

colon
worst 0.112 0.1 0.112 0.083 0.064 0.064

mean ± std 0.089 ± 0.02 0.094 ± 0.01 0.066 ± 0.02 0.064 ± 0.02 0.037 ± 0.02 0.038 ± 0.02
best 0.0643 0.081 0.05 0.048 0.014 0.014

SRBCT
worst 0.063 0.071 0.024 0.046 0.000 0.000

mean ± std 0.052 ± 0.01 0.061 ± 0.01 0.007 ± 0.01 0.018 ± 0.02 0.000 0.000
best 0.022 0.047 0.000 0.000 0.000 0.000

DBWorld
worst 0.121 0.110 0.093 0.074 0.033 0.048

mean ± std 0.103 ± 0.01 0.092 ± 0.01 0.048 ± 0.02 0.046 ± 0.02 0.025 ± 0.01 0.031 ± 0.01
best 0.088 0.079 0.017 0.029 0.014 0.014

Leukemia1
worst 0.068 0.086 0.043 0.071 0.014 0.029

mean ± std 0.047 ± 0.02 0.065 ± 0.01 0.023 ± 0.02 0.043 ± 0.02 0.001 ± 0.01 0.004 ± 0.01
best 0.027 0.039 0.000 0.014 0.000 0.000

DLBCL
worst 0.039 0.0518 0.041 0.041 0.025 0.038

mean ± std 0.029 ± 0.01 0.027 ± 0.02 0.016 ± 0.01 0.025 ± 0.01 0.010 ± 0.01 0.012 ± 0.01
best 0.025 0.000 0.000 0.000 0.000 0.000

ALLAML
worst 0.057 0.071 0.070 0.068 0.014 0.014

mean ± std 0.045 ± 0.01 0.053 ± 0.01 0.022 ± 0.03 0.030 ± 0.03 0.001 ± 0.01 0.004 ± 0.01
best 0.029 0.029 0.000 0.000 0.000 0.000

Pixraw10P
worst 0.000 0.010 0.010 0.010 0.010 0.010

mean ± std 0.000 0.001 ± 0.00 0.002 ± 0 0.003 ± 0 0.003 ± 0.01 0.005 ± 0.01
best 0.000 0.000 0.000 0.000 0.000 0.000

Prostate
worst 0.089 0.089 0.089 0.078 0.060 0.060

mean ± std 0.074 ± 0.01 0.084 ± 0.00 0.069 ± 0.02 0.062 ± 0.01 0.044 ± 0.01 0.039 ± 0.01
best 0.049 0.078 0.040 0.049 0.029 0.020

Leukemia2
worst 0.043 0.070 0.043 0.039 0.027 0.000

mean ± std 0.032 ± 0.01 0.040 ± 0.01 0.014 ± 0.01 0.013 ± 0.01 0.004 ± 0.01 0.000
best 0.014 0.013 0.000 0.000 0.000 0.000

GLI_85
worst 0.081 0.079 0.074 0.082 0.061 0.061

mean ± std 0.062 ± 0.01 0.064 ± 0.01 0.050 ± 0.01 0.058 ± 0.02 0.045 ± 0.01 0.040 ± 0.01
best 0.046 0.047 0.033 0.025 0.035 0.035

As per the results in Table 3, the number of features of the improved algorithm is more
than that of the ABC algorithm. Although dimensionality reduction is one of the targets
of FS, it is more important to achieve a lower error rate in many practical applications.
Although the ABC algorithm has a small feature subset, it can be observed from the error
rate in Table 2 that such a low number of selected features cannot achieve a low error rate.

According to Figure 4, it is obvious that the calculation time will be reduced when the
scout bee phase is removed. After the introduction of the GWO operator, the BABCGWO
algorithm displayed little difference in time compared with the ABC or NSABC algorithms
used on some datasets. In addition, BABCGWO was much faster than the ABC algorithm
on colon, SRBCT, Leukemia1, DLBCL, ALLAML, Pixraw10P, Prostate, and Leukemia2
datasets. After the introduction of the WOA operator, the running time of the BABCWOA
algorithm increased more or less on all datasets, except SRBCT and ALLAML, which may
be because the running speed is also proportional to the feature number. It can be observed
from Table 3 that the BABCWOA algorithm selects more features than other algorithms.
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Table 3. Comparisons of the number of selected features between different ABC-based methods.

Datasets Index
Algorithms

ABC NSABC BABCWOA BABCWOAWS BABCGWO BABCGWOWS

LSVT
worst 20 15 167 157 65 64

mean ± std 8.9 ± 4.58 6.8 ± 3.88 83.7 ± 50.61 104.5 ± 34.07 30.0 ± 16.83 33.4 ± 15.07
best 4 3 27 61 15 16

Yale
worst 147 284 421 477 126 124

mean ± std 96.9 ± 46.24 122.6 ± 88.40 245.6 ± 97.77 347.9 ± 103.06 102.4 ± 14.55 97.9 ± 21.37
best 30 37 127 210 86 55

colon
worst 30 40 266 532 112 169

mean ± std 18.5 ± 6.69 20.3 ± 8.53 142.8 ± 68.85 155.1 ± 138.18 80.4 ± 17.39 105.9 ± 28.05
best 12 12 46 61 58 76

SRBCT
worst 584 104 497 829 233 353

mean ± std 121.2 ± 166.69 64.8 ± 27.37 109.4 ± 254.02 394.5 ± 191.01 164.6 ± 45.35 204.0 ± 86.09
best 25 21 112 151 107 116

DBWorld
worst 44 40 484 423 297 263

mean ± std 32.3 ± 5.25 31.7 ± 5.08 249.4 ± 112.93 317.7 ± 99.99 216.2 ± 59.40 205.6 ± 52.63
best 23 22 92 154 109 119

Leukemia1
worst 147 676 1694 1247 692 410

mean ± std 71.6 ± 30.28 149 ± 210.69 648.2 ± 504.44 741.6 ± 324.58 277.4 ± 156.79 300.5 ± 73.80
best 42 30 237 305 160 182

DLBCL
worst 128 695 1029 1484 1427 1413

mean ± std 59.4 ± 30.28 126.1 ± 202.79 545.3 ± 314.94 811.6 ± 532.06 458.4 ± 358.90 684.7 ± 464.70
best 32 28 230 143 228 190

ALLAML
worst 97 82 646 1168 370 444

mean ± std 66.5 ± 19.17 50.9 ± 11.54 386.4 ± 144.24 500.4 ± 286.34 276.4 ± 54.91 305.7 ± 87.46
best 45 42 168 217 198 156

Pixraw10P
worst 115 88 294 370 405 349

mean ± std 73.7 ± 17.81 66.8 ± 8.34 196.1 ± 56.32 200.4 ± 74.22 218.5 ± 76.059 253.5 ± 63.50
best 52 58 137 121 157 159

Prostate
worst 146 103 1454 1505 624 897

mean ± std 91.3 ± 32.66 76.9 ± 15.57 1055.4 ± 362.08 797.8 ± 314.48 444.5 ± 129.06 569.6 ± 227.40
best 56 55 442 445 199 250

Leukemia2
worst 295 124 1300 1246 1036 844

mean ± std 115.8 ± 66.71 88.9 ± 18.75 876.4 ± 303.41 661.4 ± 273.88 582.6 ± 234.36 425.7 ± 153.55
best 68 70 318 329 357 311

GLI_85
worst 248 173 5716 6691 2920 1453

mean ± std 161.8 ± 32.20 150.1 ± 12.05 1576.3 ±
1508.28

1553.6 ±
1840.90 1204.4 ± 674.09 1099.2 ± 272.00

best 138 131 437 520 697 681

To sum up, the proposed framework can effectively make the convergence speed
faster, reduce the diversity, and find a better optimal solution. Although the number
of features increases, the classification error rate of the algorithm decreases significantly
after introducing an operator with strong exploitation ability into the framework. The
scout bee phase has very little effect on improving the fitness value of the solution and
consumes computational resources and memory, so the scout bee phase is omitted in this
framework. From the above analysis, we can conclude that using the proposed framework
can effectively improve the performance of the ABC algorithm.
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6. Further Analysis

The comparisons in Section 5 show that the proposed BABCGWO algorithm and
BABCWOA algorithm are more efficient than the ABC algorithm. To make a complete
evaluation, we further verify the effectiveness of BABCGWO algorithm and BABCWOA
algorithm by comparing them with four state-of-the-art FS algorithms on high-dimensional
datasets, including the popular PSO variants named CSO [40] and VSCCPSO [41], the novel
GWO variant ALO_GWO [42], and an ABC variant named ACABC [31]. In particular, CSO,
VSCCPSO and ALO_GWO achieved excellent results in dealing with high-dimensional
datasets. The parameters applied in CSO, VSCCPSO, ALO_GWO and ACABC here are the
same as their own parameter settings.

In this section, the classification error rate, the size of the feature subset, the compu-
tational time and the convergence curve of the six algorithms are investigated. The best
results are shown in bold in the table. To further verify the improved effect of the two al-
gorithms proposed in this paper, the Wilcoxon’s rank sum test [43,44] with a significance
level of 0.05 is applied to test the statistical significance between two different algorithms.
The error rate, number of features and execution time of the two algorithms are tested by
Wilcoxon rank sum test with another four FS algorithms. In the table of Wilcoxon rank sum
test, the symbol “+” indicates that the proposed algorithms are significantly better than the
compared algorithm, the symbol “=” means that the performance of the two algorithms is
similar, and the symbol “−” is opposite to “+”, indicating that the proposed algorithms are
significantly worse than other algorithms.

Table 4 shows the worst, best, average, and standard deviation of the error rate
for each algorithm. In terms of the maximum error rate and average error rate, the
BABCGWO algorithm performed worse than any other algorithms in all datasets except
Yale and Pixraw10P, and it was reduced by several percentage points on most datasets.
The BABCWOA algorithm outperformed the four compared algorithms on half of the
datasets, and achieved the best average error rate of all algorithms on the Pixraw10P
dataset. In terms of minimum error rate, the BABCGWO algorithm’s was lower than the
other algorithms when applied all datasets except LVST, Yale and GLI_85. The BABCWOA
algorithm also outperformed the four algorithms on more than half of the datasets. The
standard deviation of the BABCGWO algorithm was ≤0.01 on most datasets and 0.02 on
the colon dataset only, which is significantly superior to most other algorithms, indicating
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that the BABCGWO algorithm has better stability compared with the other algorithms.
However, the standard deviation of the BABCWOA algorithm is mostly about 0.02, which
is not much different from the four compared algorithms.

Table 4. Comparison of error rates of algorithms.

Datasets Index
Algorithms

CSO VSCCPSO ALO_GWO ACABC BABCWOA BABCGWO

LSVT
worst 0.081 0.064 0.078 0.080 0.075 0.056

mean ± std 0.063 ± 0.01 0.046 ± 0.01 0.065 ± 0.04 0.065 ± 0.01 0.075 ± 0.02 0.044 ± 0.01
best 0.055 0.024 0.054 0.056 0.047 0.031

Yale
worst 0.320 0.230 0.309 0.315 0.326 0.238

mean ± std 0.295 ± 0.02 0.216 ± 0.01 0.273 ± 0.02 0.288 ± 0.02 0.288 ± 0.03 0.220 ± 0.01
best 0.268 0.200 0.254 0.266 0.241 0.210

colon
worst 0.176 0.081 0.088 0.157 0.112 0.064

mean ± std 0.113 ± 0.03 0.065 ± 0.01 0.069 ± 0.01 0.119 ± 0.02 0.066 ± 0.02 0.037 ± 0.02
best 0.081 0.048 0.064 0.095 0.050 0.014

SRBCT
worst 0.049 0.024 0.025 0.063 0.024 0.000

mean ± std 0.033 ± 0.02 0.011 ± 0.01 0.005 ± 0.01 0.035 ± 0.01 0.007 ± 0.01 0.000
best 0.000 0.000 0.000 0.022 0.000 0.000

DBWorld
worst 0.255 0.091 0.062 0.198 0.093 0.033

mean ± std 0.126 ± 0.05 0.048 ± 0.01 0.034 ± 0.01 0.139 ± 0.03 0.048 ± 0.02 0.025 ± 0.01
best 0.062 0.026 0.017 0.093 0.017 0.014

Leukemia1
worst 0.084 0.056 0.057 0.07 0.043 0.014

mean ± std 0.062 ± 0.01 0.031 ± 0.01 0.034 ± 0.02 0.058 ± 0.01 0.023 ± 0.02 0.001 ± 0.01
best 0.039 0.028 0.000 0.041 0.000 0.000

DLBCL
worst 0.075 0.091 0.038 0.064 0.041 0.025

mean ± std 0.051 ± 0.01 0.038 ± 0.02 0.021 ± 0.01 0.038 ± 0.02 0.016 ± 0.01 0.010 ± 0.01
best 0.038 0.026 0.000 0.013 0.000 0.000

ALLAML
worst 0.113 0.056 0.082 0.121 0.070 0.014

mean ± std 0.102 ± 0.01 0.031 ± 0.01 0.044 ± 0.03 0.103 ± 0.01 0.022 ± 0.03 0.001 ± 0.01
best 0.093 0.014 0.000 0.082 0.000 0.000

Pixraw10P
worst 0.050 0.010 0.040 0.040 0.010 0.010

mean ± std 0.041 ± 0.00 0.010 0.012 ± 0.01 0.040 0.002 ± 0 0.003 ± 0.01
best 0.040 0.010 0.000 0.040 0.000 0.000

Prostate
worst 0.126 0.078 0.079 0.117 0.089 0.060

mean ± std 0.112 ± 0.01 0.063 ± 0.01 0.066 ± 0.01 0.106 ± 0.01 0.069 ± 0.02 0.044 ± 0.01
best 0.089 0.049 0.049 0.087 0.040 0.029

Leukemia2
worst 0.082 0.097 0.029 0.095 0.043 0.027

mean ± std 0.061 ± 0.01 0.063 ± 0.02 0.015 ± 0.01 0.054 ± 0.02 0.014 ± 0.01 0.004 ± 0.01
best 0.041 0.028 0.000 0.027 0.000 0.000

GLI_85
worst 0.129 0.106 0.071 0.150 0.074 0.061

mean ± std 0.094 ± 0.02 0.074 ± 0.02 0.058 ± 0.01 0.109 ± 0.02 0.050 ± 0.01 0.045 ± 0.01
best 0.081 0.047 0.047 0.082 0.033 0.035

To further illustrate whether the error rates of the algorithms proposed in this paper
are significantly different from those of other algorithms, we use the Wilcoxon rank sum
test. As can be seen from the Wilcoxon rank sum test results of the error rate in Table 5,
compared with the ACABC and CSO algorithms, the error rates of the algorithms proposed
in this paper were almost significantly lower than those of the other four algorithms when
used on 12 datasets. Compared with the VSCCPSO algorithm, the BABCGWO algorithm
was superior to the VSCCPSO algorithm when used on all datasets except LSVT, Yale
and Pixraw10P. The BABCWOA algorithm was also significantly improved compared
with the VSCCPSO algorithm when used on some datasets, and there was little difference
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in the error rate between BABCWOA and VSCCPSO for most datasets. Compared with
the ALO_GWO algorithm, the error rate of the BABCGWO algorithm was significantly
lower than that of the ALO_GWO algorithm for all datasets except SRBCT and DBWorld,
and there was almost no notable difference between the BABCWOA and ALO_GWO
algorithms.

Table 5. Wilcoxon rank sum test on error rates of algorithms.

Datasets
CSO VSCCPSO ALO_GWO ACABC

BABCGWO BABCWOA BABCGWO BABCWOA BABCGWO BABCWOA BABCGWO BABCWOA

LSVT 0(+) 0.04(−) 0.68(=) 0(−) 0(+) 0.08(=) 0(+) 0.10(=)
Yale 0(+) 0.57(=) 0.52(=) 0(−) 0(+) 0.20(=) 0(+) 0.97(=)

colon 0(+) 0(+) 0(+) 0.47(=) 0(+) 0.09(=) 0(+) 0(+)
SRBCT 0(+) 0(+) 0(+) 0.55(=) 0.08(=) 0.62(=) 0(+) 0(+)

DBWorld 0(+) 0(+) 0(+) 0.84(=) 0.06(=) 0.11(=) 0(+) 0(+)
Leukemia1 0(+) 0(+) 0(+) 0.72(=) 0(+) 0.17(=) 0(+) 0(+)

DLBCL 0(+) 0(+) 0(+) 0.01(+) 0(+) 0.44(=) 0(+) 0.01(+)
ALLAML 0(+) 0(+) 0(+) 0.16(=) 0(+) 0.05(=) 0(+) 0(+)
Pixraw10P 0(+) 0(+) 0.10(=) 0.01(+) 0.01(+) 0(+) 0(+) 0(+)

Prostate 0(+) 0(+) 0(+) 0.38(=) 0(+) 0.73(=) 0(+) 0(+)
Leukemia2 0(+) 0(+) 0(+) 0(+) 0.02(+) 0.82(=) 0(+) 0(+)

GLI_85 0(+) 0(+) 0(+) 0(+) 0(+) 0.10(=) 0(+) 0(+)

The experimental results in Table 6 show the average number of selected features
and average execution time of the six algorithms across 10 runs on 12 datasets. One of
the purposes of FS is to remove redundant and irrelevant features so as to strengthen
the classification performance of the algorithm. In the case of the same error rate, the
smaller number of selected features indicates that the algorithm can find a better feature
subset. The experimental results show that the average number of features selected by the
BABCGWO algorithm is less than that of other algorithms for 12 datasets, its running time
is shorter than that of other algorithms in all datasets except Yale, and its running speed is
only slower than that of the CSO algorithm for the Yale dataset. The BABCWOA algorithm
selects fewer features than the four compared algorithms on all datasets except LSVT and
Yale, and the BABCWOA algorithm runs faster than the compared algorithms on 8 of the
12 datasets, and is second only to the CSO algorithm on the remaining 4 datasets. Therefore,
although the error rate of the BABCWOA algorithm is not significantly improved on some
datasets, it does improve the size of feature subsets and running time. This indicates that,
compared with other algorithms, the algorithms proposed in this paper can find a feature
subset with smaller size in a shorter time, and achieve a lower error rate.

The Wilcoxon rank sum test results in Table 7 show that the feature subsets selected by
the algorithms proposed in this paper are significantly smaller than those of the ACABC
and CSO algorithms applied on the 12 datasets. Compared with ALO_GWO and VSCCPSO,
the feature numbers of the proposed algorithms are not significantly lower than those of
the two algorithms, but for only a few datasets.

As can be seen from the results in Table 8, the proposed algorithms are not much
different from, or are slower than, the other algorithms for only a few datasets. On most
datasets, the two algorithms are significantly faster than other algorithms.

The convergence curves of the algorithms for 12 datasets are shown in Figure 5.
These curves confirm that the BABCGWO algorithm converges more rapidly, with a good
quality of solution, than other algorithms in the first 20 iterations, which indicates that the
optimization precision and optimization speed of BABCGWO algorithm are better than
those of other algorithms. The BABCWOA algorithm also has a faster convergence curve
on most datasets, and can obtain a lower error rate.
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Table 6. Comparison of the average numbers of selected features and average execution times of algorithms.

Datasets Index
Algorithms

CSO VSCCPSO ALO_GWO ACABC BABCWOA BABCGWO

LSVT
Subsets 151.5 37.5 102.5 150.9 83.7 30.0

Time 55.5 83.4 89.6 172.1 71.7 41.9

Yale
Subsets 504.1 150.1 240.6 506.3 245.6 102.4

Time 147.2 482.0 291.2 464.6 245.6 156.0

colon
Subsets 983.0 194.0 261.2 995.6 142.8 80.4

Time 55.8 153.4 287.6 271.7 63.8 53.4

SRBCT
Subsets 1127.1 205.8 408.3 1136.2 109.4 164.6

Time 101.5 275.0 311.0 381.8 116.9 93.2

DBWorld
Subsets 2316.2 601.4 446.5 2338.0 249.4 216.2

Time 268.7 419.9 841.0 901.8 144.1 115.5

Leukemia1
Subsets 2664.6 721.2 867.4 2645.6 648.2 277.4

Time 417.7 549.0 774.6 1257.0 238.1 153.9

DLBCL
Subsets 2737.6 625.6 1097.8 2733.1 545.3 458.4

Time 436.2 631.8 1259.8 2409.6 330.4 182.1

ALLAML
Subsets 3563.3 1248.9 846.5 3537.0 386.4 276.4

Time 646.2 828.0 780.6 2954.4 252.0 180.3

Pixraw10P
Subsets 5015.6 2366.7 882.1 5006.7 196.1 218.5

Time 1647.9 3417.9 1428.1 4187.3 367.0 253.3

Prostate
Subsets 5246.2 1558.7 1440.3 5194.9 1055.4 444.5

Time 1418.7 2261.7 2435.9 8370.3 829.8 391.0

Leukemia2
Subsets 5627.1 2091.2 1336.5 5608.7 876.4 582.6

Time 852.6 1820.4 2342.9 2722.6 693.8 282.9

GLI_85
Subsets 11,157.5 5167.9 2971.2 11,682.5 1576.3 1204.4

Time 3996.3 3872.9 3013.8 9230.0 2023.4 836.3

Table 7. Wilcoxon rank sum test on the numbers of features selected by algorithms.

Datasets
CSO VSCCPSO ALO_GWO ACABC

BABCGWO BABCWOA BABCGWO BABCWOA BABCGWO BABCWOA BABCGWO BABCWOA

LSVT 0(+) 0(+) 0.10(=) 0.03(−) 0(+) 0.33(=) 0(+) 0(+)
Yale 0(+) 0(+) 0(+) 0.57(=) 0(+) 0.05(=) 0(+) 0(+)

colon 0(+) 0(+) 0(+) 0.03(+) 0(+) 0.02(+) 0(+) 0(+)
SRBCT 0(+) 0(+) 0.04(+) 0.16(=) 0(+) 0.01(+) 0(+) 0(+)

DBWorld 0(+) 0(+) 0(+) 0(+) 0(+) 0.01(+) 0(+) 0(+)
Leukemia1 0(+) 0(+) 0(+) 0.05(=) 0(+) 0.04(+) 0(+) 0(+)

DLBCL 0(+) 0(+) 0.01(+) 0.34 0(+) 0.01(+) 0(+) 0(+)
ALLAML 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)
Pixraw10P 0(+) 0(+) 0(+) 0(+) 0.03(+) 0.02(+) 0(+) 0(+)

Prostate 0(+) 0(+) 0(+) 0(+) 0(+) 0.19(=) 0(+) 0(+)
Leukemia2 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)

GLI_85 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)



Algorithms 2021, 14, 324 17 of 19

Table 8. Wilcoxon rank sum test on the execution times of algorithms.

Datasets
CSO VSCCPSO ALO_GWO ACABC

BABCGWO BABCWOA BABCGWO BABCWOA BABCGWO BABCWOA BABCGWO BABCWOA

LSVT 0(+) 0.91(=) 0(+) 0.43(=) 0(+) 0.24(=) 0(+) 0(+)
Yale 0.19(=) 0(−) 0(+) 0(+) 0(+) 0.03(+) 0(+) 0(+)

colon 0(+) 0.06(=) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)
SRBCT 0.12(=) 0.03(−) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)

DBWorld 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)
Leukemia1 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)

DLBCL 0(+) 0.03(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)
ALLAML 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)
Pixraw10P 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)

Prostate 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)
Leukemia2 0(+) 0.14(=) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)

GLI_85 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+) 0(+)
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In conclusion, the proposed framework is effective. The exploration ability of the ABC
algorithm is successfully combined with the updating mode of the algorithm with a strong
exploitation ability, such that the BABCGWO algorithm and BABCWOA algorithm can
find optimal solutions with lower error rates and fewer feature numbers in a shorter period
of time.

7. Conclusions

There are often redundant and irrelevant features in high-dimensional datasets, so the
FS method is used for data preprocessing. Aiming at the strong exploration ability of the
ABC algorithm, this study proposes a framework that integrates the updating operators
of the algorithm with strong exploitation abilities into the ABC algorithm to make the
exploration and exploitation abilities balanced. Moreover, since the removal of the scout
bee phase can weaken the exploration ability and save computational resources when
processing high-dimensional datasets, the scout bee phase in the ABC algorithm is left out
in our framework, and thus the BABCGWO algorithm and BABCWOA algorithm are pro-
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posed to deal with the FS problem in high-dimensional datasets. The experimental results
show that on 12 high-dimensional datasets, the BABCGWO algorithm and BABCWOA al-
gorithm are significantly superior to other algorithms as regards dimensionality reduction,
classification error rate and execution time. This shows that the proposed framework can
balance the capabilities of exploration and exploitation, and effectively improve the overall
performance in FS.

However, the proposed method mainly focuses on the single-objective feature selection
problem, where the main aim is to reduce the algorithm’s classification error rate. In the
future, we will investigate a multi-objective FS algorithm that simultaneously maximizes
the classification performance and minimizes the number of selected features. Moreover,
we would like to employ algorithms in different domains to verify their universality.
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