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Abstract: Zero-crossing point detection is necessary to establish a consistent performance in vari-
ous power system applications, such as grid synchronization, power conversion and switch-gear
protection. In this paper, zero-crossing points of a sinusoidal signal are detected using deep neural
networks. In order to train and evaluate the deep neural network model, new datasets for sinusoidal
signals having noise levels from 5% to 50% and harmonic distortion from 10% to 50% are developed.
This complete study is implemented in Google Colab using deep learning framework Keras. Results
shows that the proposed deep learning model is able to detect zero-crossing points in a distorted
sinusoidal signal with good accuracy.

Keywords: zero-crossing point; deep neural network; total harmonic distortion; noise; sinusoidal signal

1. Introduction

Zero-crossing point (ZCP) detection is very useful for frequency estimation of a
sinusoidal signal under various disturbances, such as noise and harmonics. Zero-crossing
point detection is an important mechanism that is useful in various power system and
power electronics applications, such as synchronization of a power grid [1], the switching
pulse generation in triggering circuits for power electronics devices, control of switch gear,
equipment for load shedding or protection and signal processing, and it is also used in
other fields such as radar and nuclear magnetics [2]. This technique’s appeal stems largely
from its ease of implementation and resilience in the presence of frequency fluctuation.

The ZCP estimation tools have certain flaws such as the technique’s accuracy in
the presence of transients, harmonics and signal noise, which is still dubious. The most
important requirement for properly determining the ZCP of any signal using digital control
methods is that the signal should be free of any false ZCPs. Harmonics due to nonlinear
loads will have an impact on zero-crossing points of voltage signals and also lead to power
quality issues such as malfunction of protection devices, lower power factor, increasing
losses and decreasing power system efficiency [3]. The existence of transients, harmonics
or noise in the system enhances the probability of a false ZCP occurrence. This issue has
not been effectively addressed since there has been relatively little study on the subject.

Artificial intelligence (AI) is now used in a variety of sectors, especially in electrical
for load forecasting [4] and image processing [5]. In this paper, an AI approach is used to
predict the ZCP class in a distorted sinusoidal signal. AI analyzes the system and predicts
outcomes based on previously known data.

ZCP detection technique is developed to estimate the distorted sinusoidal signal in
a power grid using least square optimization in [6]. However, this method is not suitable
where fast zero-crossing detection is required. A neural network-based approach is devel-
oped in [7] to detect the ZCP for a sinusoidal signal with only frequency variation from
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49Hz to 51Hz but not considered the distortion in the signal with noise. Opto-coupler based
ZCP detection is developed in [8]. This approach results in phase distortion due to the
diode’s non-zero forward voltage.

A novel ZCP tool is developed in [9] using a differentiation circuit and reset flip-
flop that leads to less delay time for ZCP detection. This tool performance is examined
up to 7.27% total harmonic distortion (THD) only. Support vector machine based ZCP
detection tools are developed in [10] by considering the 100 microseconds sample-distorted
sinusoidal signal.

A new zero-crossing detection algorithm based on narrow-band filtering is developed
in [11]. In this algorithm, normalized electrical quantity is passed through a narrow band
filter. A ZCP detection algorithm is developed in [12] based on linear behavior of the
sinusoidal signal at the zero-crossing point. In this methodology, the author has used
multistage filtering and line fitting techniques.

A zero-crossing detection based digital signal processing method is proposed in [13]
for an ultrasonic gas flow meter, and this methodology is used for ultrasonic wave propa-
gation time calculation. If the freewheeling angle exceeds 30, the zero crossing of back EMF
will be undetectable. Detection of ZCP in the back EMF signal for brushless DC motors un-
der sensorless safety operation, i.e., the maximum free-wheeling angle, is proposed in [14].
Multiple ZCP detections in ultrasonic flow meters to determine time of flight are proposed
in [15]. In this paper, time taken to obtain ZCP is used as time of flight. Hardware support
for measuring the periodic components of signals based on the number of ZCP is proposed
in [15]. ZCP detection circuits are complex and require more accurate detection; due to
this complexity few works are carried out by avoiding ZCP, such as soft-switching control
without zero-crossing detection for the cascaded buck-boost converters [16]. Detection of
ZCP using Proteus ISIS software with a microcontroller is proposed in [17] for power factor
correction and a trigger angle on the SCR trigger for DC motor speed control is for the
rocket launch angle adjuster. A simple detection method for the ZCP of converter current
using a saturable transformer for use in high-current and high-frequency pulse-width
modulated power electronic converter applications is proposed in [18].

All the methodologies mentioned above provide valuable contributions to the ZCP
problem. However, to improve the accuracy in predicting the true ZCPs, a new deep neural
network (DNN) based machine learning model is developed in this paper. In order to
make this DNN model more generalized, a variety of distorted signals are generated and
extensive features such as slope, y-intercept, correlation and root mean square are extracted
and used as dataset samples.

The main motivation for this work is to identify the most accurate zero-crossing
points of distorted voltage signals for proper protection of a power system using switch-
gear equipment and efficient power conversion by generating proper triggering pulses in
conversion circuits.

The main contributions of this paper are as follows:

• A properly tuned DNN model is developed for accurate ZCP detection.
• Four new datasets are created with a variety of distorted sinusoidal signals by consid-

ering noise levels from 5% to 15% and THD levels from 10% to 50%.

The remaining part of this paper is structured as follows: Section 2 presents a method-
ology that includes DNN model configuration and dataset preparation, Section 3 demon-
strates results analysis and Section 4 describes conclusions.

2. Methodology

Four new datasets are created using MATLAB software for the ZCP detection problem
and are available in [19]. The first dataset developed using distorted sinusoidal signals with
noise levels from 10% to 50% consists of 4936 samples. The second dataset developed using
distorted sinusoidal signals with THD levels from 10% to 50% consists of 4436 samples. The
third dataset developed using distorted sinusoidal signals with noise levels from 10% to
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40% and with THD level 50% consists of 3949 samples. The fourth dataset developed using
distorted sinusoidal signals with noise levels from 5% to 20% consists of 3949 samples.

2.1. Dataset Formulation

Data samples are collected every 100 microseconds duration over 5 cycles. The
complete dataset preparation mechanism is presented in Figure 1.

Figure 1. Mechanism of data preparation.

Sinusoidal Signals Used for Data Preparation

The data of the various sinusoidal voltage signals with noise (5 to 50%) is extracted by
generating the signals in MATLAB as shown in Figure 2. In this paper, distorted sinusoidal
signals are generated with white gaussian noise. Similarly, the data of the various sinusoidal
voltage signals with total harmonic distortion from 10% to 50% is extracted by generating
the signals in MATLAB as shown in Figure 3. Distorted sinusoidal signals are generated by
adding unity amplitude fundamental signal with 5th order harmonic signals with varying
amplitude from 0.1 to 0.5. THD of these distorted signals is estimated using FFT analysis
based on equation

THD =

√
∑∞

h=2 V2
h

Vf
(1)

where Vh is RMS value of harmonic voltage signal and Vf is RMS value of fundamental
voltage signal.

In the same way, a few more sinusoidal signals were generated in MATLAB with a
combination of both noise and harmonics as shown in Figure 4.

2.2. Windowing of Data Points in Distorted Sinusoidal Signal

Data samples extracted from various signals are formed into data windows of a
specific length. The best window size (i.e., number of data points for each data window)
should be preferred for better accuracy of the classification model. The number of data
points in a particular window for calculating features represents the window size. Different
window sizes of 5, 10, 12 and 15 data points are used to train the model. For a 50 Hz signal
with distinct levels of harmonic distortion and noise, the greatest accuracy is obtained for
the data window with 15 data points in the classification of zero-crossing and non-zero-
crossing points. Therefore, the window with 15 data points is used for all the tests that
are carried out further. Each data window is classified into two classes, as ZCP class or
non-zero-crossing point (NZCP) class based on the availability of ZCP in that window.
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ZCP class is labelled as 1 and NZCP class is labelled as 0. Date sampling based on window
size 15 along with its class is shown in Figure 5.

(a) (b)

(c) (d)

(e) (f)
Figure 2. Noise signals used for dataset preparation. (a) Noise level 5%. (b) Noise level 15%. (c) Noise
level 20%. (d) Noise level 30%. (e) Noise level 40%. (f) Noise level 50%.

2.3. Feature Extraction

Complete distorted sinusoidal signal data points over 5 cycles are split into multiple
sets based on the sliding window approach. Each set consists of 15 data points since the
window size is considered as 15. Four features called slope (m), intercept (c), correlation
coefficient (R) and root mean square error (RMSE) are extracted from each set that consists of
15 data samples by comparing unity amplitude fundamental signal using below equations

m =
n ∗ ∑n

i=1 vktk − ∑n
i=1 tk ∑n

i=1 vk

n ∗ ∑n
i=1(tk)2 − (∑n

i=1(tk)2)
(2)

c = ∑n
i=1 vk(∑

n
i=1(tk)

2)− (∑n
i=1 tk) ∗ (∑n

i=1 tkvk)

n ∗ ∑n
i=1(tk)2 − (∑n

i=1(tk)2)
(3)
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R =
n ∗ ∑n

i=1 vkuk − ∑n
i=1 uk ∑n

i=1 vk

(
√

n ∗ ∑n
i=1(uk)2 − (∑n

i=1(uk)2))− (
√

n ∗ ∑n
i=1(vk)2 − (∑n

i=1(vk)2))
(4)

RootMeanSquareError(RMSE) =

√
∑n

i=1(uk − vk)2

n
(5)

where m is slope, c is intercept, R is correlation coefficient, n is number of samples, tk is
time value of kth data point, vk is voltage magnitude of distorted signal at time tk and Uk is
voltage magnitude of unity fundamental signal at time tk.

These four features are the input features for the selected window. If ZCP exists within
the window then the class label (output variable) is 1, i.e., ZCP class. If ZCP does not exist
within the window then the class label is 0, i.e., NZCP class. Hence, every sample in the
dataset consists of four input features and one output variable that represents the class.

(a) (b)

(c) (d)

(e)
Figure 3. Sinusoidal signals with various THD levels used for dataset preparation. (a) THD level
10%. (b) THD level 20%. (c) THD level 30%. (d) THD level 40%. (e) THD level 50%.
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(a) (b)

(c) (d)
Figure 4. Sinusoidal signals with various combinations of THD and noise levels used for dataset
preparation. (a) Sinusoidal signal with THD level 50% and noise level 10%. (b) Sinusoidal signal
with THD level 50% and noise level 20%. (c) Sinusoidal signal with THD level 50% and noise level
30%. (d) Sinusoidal signal with THD level 50% and noise level 40%.

(a) (b)

Figure 5. Data sampling from sinusoidal signals with window size of 15. (a) Data window corresponds to ZCP class.
(b) Data window corresponds to NZCP class.

2.4. Deep Neural Network

Deep neural networks (DNN) are the most accepted and essential machine learning
model to solve either regression or classification problems [20]. Deep neural networks are
an assembly of layers that can be mathematically described, in the literature, as a “network
function” that associates an input tensor with an output tensor [21]. A DNN is developed
to predict the zero-crossing point using four input features of a distorted sinusoidal signal,
i.e., slope, intercept, correlation and RMSE. The complete architecture of DNN used in this
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paper for accurate prediction of ZCP class is shown in Figure 6 and the model parameters
are presented in Table 1. In the proposed DNN model, the ReLU activation function is
used in hidden layers, whereas the sigmoid activation function is used in the output layer.
Mathematical modeling of ReLU [22] and sigmoid activation functions [23] are

f (x) = max(0, x) (6)

g(x) =
1

1 + e−x (7)

Figure 6. DNN model topology.

Table 1. DNN model parameters.

Layer Weights Bias Parameters

1 256 64 320
2 4096 64 4160
3 4096 64 4160
4 64 1 65

Total Trainable Parameters 8705

Adam optimizer [24,25] is used to train the DNN model by considering minimization
of the binary cross-entropy loss function shown below.

L =
1
n

n

∑
i=1

−(yi ∗ log(pi) + (1 − yi) ∗ log(1 − pi)) (8)

where yi is actual class and pi is predicted class.
Accuracy of the proposed DNN model on various datasets is evaluated using:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where TP is the number of samples correctly identified as ZCP, TN is the number of samples
correctly identified as NZCP, FN is the number of samples incorrectly identified as NZCP
and FP is the number of samples incorrectly identified as ZCP.

Training and Testing Strategy

All the data samples in each dataset are split into two groups to train and test the DNN
model by considering the test data size of 5%. The data split is performed randomly, and no
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duplicate samples are present between training and testing data. DNN models are trained
and tested with four datasets independently. Starting weights of the DNN model while
training with each dataset are different and these are generated randomly at beginning of
the algorithm. DNN models are trained and tested on each dataset 10 times with different
starting weights but with the same training and testing data. The best accuracy model
among all simulations is considered for the prediction of ZCP class. In this paper, the DNN
models are trained with the same training data but different initial weights for 10 times.
The DNN model with the best training and testing accuracy over 10 runs is presented in
the results.

3. Results

The dataset that is created, as per the discussion in Section 3, is for the training and
testing of DNN models. Statistical features of all ZCP datasets, which are Dataset-1: noise
levels 10% to 50%, Dataset-2: THD levels 10% to 50%, Dataset-3: noise levels 10% to 40%
with THD level 50% and Dataset-4: Noise levels 5% to 20%, have been used to train the
DNN model presented in Tables 2–5 respectively. The back-propagation through time
(BPTT) algorithm with the Adam optimizer is used to train the proposed DNN model. The
proposed DNN model is being implemented and tested in Google Colab.

Table 2. Statistical information of ZCP dataset with noise level from 10% to 50%.

Parameters F1: Intercept F2: Slope F3: Correlation F4: RMSE

count 4935 4935 4935 4935
mean 0.906008423 −18.676729 0.494900872 2.54591076

std 84.85917791 1464.64472 0.367675132 3.23948602
min −381.4180671 −4065.341 −0.816551207 0.02172266
25% −16.76426941 −350.0215 0.217181932 0.21942497
50% 0.891192436 −11.922465 0.54121887 0.40202541
75% 18.56990887 341.755478 0.820813532 5.27377613
max 343.7762144 4706.99757 0.999293572 10.5857103

Table 3. Statistical information of ZCP dataset with THD level from 10% to 50%.

Parameters F1: Intercept F2: Slope F3: Correlation F4: RMSE

count 4435 4435 4435 4435
mean −0.280990216 1.57238 × 10−5 0.595490707 0.211104753

std 19.72465139 383.2663092 0.686412231 0.102681968
min −79.60710789 −995.088821 −0.995488795 0.059104012
25% −9.873091003 −261.7826384 0.638777912 0.128286631
50% 0.336220664 0.000110454 0.974343224 0.212132057
75% 9.320462957 261.7824332 0.99412752 0.29862303
max 69.65621941 995.088821 0.999831274 0.403321083

Table 4. Statistical information of ZCP dataset with THD level 50% and noise level from 10% to 40%.

Parameters F1: Intercept F2: Slope F3: Correlation F4: RMSE

count 3948 3948 3948 3948
mean 7.9240602 −155.89604 0.515395084 13.2242

std 375.9320982 6605.02961 0.523116944 4.916469
min −1123.05498 −14989.989 −0.939147665 5.080782
25% −167.2859958 −5086.192 0.238110698 10.42127
50% 9.096503124 −186.74614 0.7423585 11.35477
75% 176.4562648 4785.236 0.924238256 16.65624
max 1308.768218 15297.0099 0.999727701 25.40568



Algorithms 2021, 14, 329 9 of 19

Table 5. Statistical information of ZCP dataset with noise level from 5% to 20%.

Parameters F1 : Intercept F2 : Slope F3 : Correlation F4 : RMSE

count 3948 3948 3948 3948
mean 2.020936461 −41.2389729 0.679765595 5.954001746

std 131.1902732 2264.259533 0.330759425 2.549789009
min −381.4180671 −4065.34103 −0.553774434 1.078380672
25% −77.96528871 −2258.86902 0.482898758 3.754887732
50% 5.359213813 −74.6132731 0.802548757 6.510990681
75% 85.07277222 2183.070173 0.958338268 8.2692806
max 343.7762144 4706.997567 0.999742805 10.58571031

Box plots are used to identify the outliers against each input feature in every dataset
mentioned above. Box plots against each feature for Dataset-1, Dataset-2, Dataset-3 and
Dataset-4 are shown in Figures 7–10, respectively. From all these plots, it has been observed
that features in all datasets, such as intercept, correlation and slope, have outliers as data
exist below the 25% interquartile range and above the 75% interquartile range. These outliers
are due to spikes in distorted signals due to noise and harmonics and cannot be removed
from data to make the model predict zero-crossing points under noise and harmonics.

(a) (b)

(c) (d)

Figure 7. Box plot for each input feature in Dataset-1 (noise level from 10% to 50%). (a) m. (b) c. (c) R.
(d) RMSE.
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(a) (b)

(c) (d)

Figure 8. Box plot for each input feature in Dataset-2 (THD level from 10% to 50%) (a) m. (b) c. (c) R.
(d) RMSE.

(a) (b)

(c) (d)

Figure 9. Box plot for each input feature in Dataset-3 (noise level from 10% to 40% and THD level
50%). (a) m. (b) c. (c) R. (d) RMSE.
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All four datasets that contain four input features and one output label are used to train
the DNN model. The training accuracy of the DNN model against each variety of datasets
for various hidden neurons and hidden layers combinations are shown in Figure 11. From
the figure, it has been observed that the DNN model’s training performance is good with
maximum accuracy with 3 hidden layers and 64 hidden neurons. Similarly, the testing
accuracy of the DNN model against each variety of datasets for various hidden neurons and
hidden layers combinations is shown in Figure 12. From the figure, it has been observed
that the DNN model’s testing performance is good with maximum accuracy using 3 hidden
layers and 64 hidden neurons.

(a) (b)

(c) (d)

Figure 10. Box plot for each input feature in Dataset-4 (noise level from 5% to 20%). (a) m. (b) c. (c) R.
(d) RMSE.

(a)
Figure 11. Cont.
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(b)

(c)

(d)
Figure 11. Training performance of DNN model on variety of data. (a) Noise level: 10 to 50
(Dataset-1). (b) THD level: 10 to 50 (Dataset-2). (c) THD level: 50, noise level: 10 to 40 (Dataset-3). (d)
Noise level: 5 to 20 (Dataset-4).

The proposed DNN model with 3 hidden layers and 64 hidden neurons is trained
with various batch sizes on all the datasets mentioned in this paper, and accuracy levels
for each batch size are presented in Figure 13. From Figure 13, it has been observed that
the DNN model trained with a batch size of 15 provides good training accuracy of 96.26%,
99.73%, 100% and 99.26% and testing accuracy of 96.88%, 99.73%, 100% and 99.32% on
Dataset-1, Dataset-2, Dataset-3 and Dataset-4, respectively.
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(a)

(b)

(c)

(d)
Figure 12. Testing performance of DNN model on variety of data. (a) Noise level: 10 to 50 (Dataset-1).
(b) THD level: 10 to 50 (Dataset-2). (c) THD level: 50, noise level: 10 to 40 (Dataset-3). (d) Noise level:
5 to 20 (Dataset-4).
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(a)

(b)

(c)

(d)
Figure 13. Training and testing performance of DNN model with respect to various batch sizes.
(a) Noise level: 10 to 50 (Dataset-1). (b) THD level: 10 to 50 (Dataset-2). (c) THD level: 50, noise level:
10 to 40 (Dataset-3). (d) Noise level: 5 to 20 (Dataset-4).
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The proposed DNN model with 3 hidden layers and 64 hidden neurons is trained
with various epoch sizes on all the datasets mentioned in this paper, and accuracy levels for
each epoch size are presented in Figure 14. From Figure 14, it has been observed that the
DNN model trained with an epoch size of 250 provides good training accuracy of 96.43%,
99.09%, 100% and 99.47% and testing accuracy of 96.08%, 98.64%, 100% and 99.49% on
Dataset-1, Dataset-2, Dataset-3 and Dataset-4, respectively.

The proposed DNN model with 3 hidden layers, 64 hidden neurons and 250 epochs for
all the datasets mentioned in this paper is trained with various window sizes as presented
in Table 6. From Table 6, it can be observed that the proposed DNN model performs better
for all the datasets with window size 15.

Table 6. Accuracy of DNN model with respect to batch size.

Size
Dataset-1 Dataset-2 Dataset-3 Dataset-4

Training Testing Training Testing Training Testing Training Testing

5 95.37 96.6 98.9 98.56 100 100 98.5 99.5
10 95.96 97.58 98.83 98.38 100 100 90.63 92.46
15 96.19 97.97 99.03 98.87 100 100 99.43 99.5
20 81.23 85.77 94.51 95.93 99.91 100 81.55 79.69

The proposed model with 3 hidden layers, 64 hidden neurons and 250 epochs for all the
datasets mentioned in this paper with a window size of 15 data points is trained and tested
10 times. The accuracies for all the simulations are presented in Table 7. The best accuracy
among all the 10 simulations was chosen as the final accuracy for respective datasets.

Table 7. Training and testing accuracy on various simulation runs.

Dataset-1 Dataset-2 Dataset-3 Dataset-4

Run Training Testing Training Testing Training Testing Training Testing
1 96.15 95.54 98.64 98.19 100 100 99.41 99.49
2 96.16 97.57 98.74 98.19 100 100 99.46 99.49
3 95.96 97.16 98.78 97.29 100 100 99.46 99.49
4 96.13 97.54 99.03 98.87 100 100 99.43 99.49
5 96.03 97.54 99.02 98.64 100 100 99.22 99.5
6 95.98 95.54 98.99 98.54 100 100 99.43 99.5
7 96.19 96.76 99.03 98.54 100 100 99.25 99.5
8 96.16 97.97 98.95 96.84 100 100 99.41 99.5
9 96.14 97.95 98.5 97.29 100 100 99.41 99.5

10 96.13 97.57 99.01 98.86 100 100 99.43 99.5
Best 96.19 97.97 99.03 98.87 100 100 99.43 99.5

(a)

Figure 14. Cont.
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(b)

(c)

(d)
Figure 14. Training and testing performance of DNN model with respect to various number of
epochs. (a) Noise level: 10 to 50 (Dataset-1). (b) THD level: 10 to 50 (Dataset-2). (c) THD level: 50,
noise level: 10 to 40 (Dataset-3). (d) Noise level: 5 to 20 (Dataset-4).

4. Discussion

The proposed DNN model with 3 hidden layers and 64 hidden neurons trained with a
batch size of 15 and epoch size of 250 is used to predict the zero-crossing point class in real
time as an optimal model. The proposed DNN model is validated by comparing it with
some existing models, such as decision tree [26] and support vector machine (SVM) [27], as
shown in Figure 15. From Figure 15, it has been observed that the training accuracy of the
proposed model is a bit low if only either noisy or THD distorted signals are considered,
but if the signal is highly distorted due to both noise and harmonics then the proposed
model learning is good with better training accuracy. However, the proposed model is
more generalized in comparison with decision tree and support vector machine, with better
testing accuracy of 97.97%, 98.87%, 100% and 99.5% on Dataset-1, Dataset-2, Dataset-3 and
Dataset-4, respectively, and that is required for real-time deployment.
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(a)

(b)

Figure 15. Validation of proposed DNN model. (a) Validation of proposed model in terms of training
accuracy. (b) Validation of proposed model in terms of testing accuracy.

5. Conclusions

Zero-crossing point detection is an essential task in various power system applications,
such as grid synchronization, and power electronics applications, such as firing pulse
generation for switching devices. The proposed good accuracy DNN model to predict the
zero-crossing point can be used in the mentioned applications.

In this paper, four datasets with different noise levels and THD values are developed
and used to train the DNN model for the accurate prediction of ZCP. A final DNN model
with good accuracy was developed after tuning the hyper-parameters such as hidden
layers, hidden neurons, batch size, window size and epochs.

In this paper, a new DNN model with 3 hidden layers and 64 hidden neurons in
each hidden layer is developed and ZCP classes were predicted with good accuracy in
comparison with decision tree and SVM. The DNN model with a highly distorted signal,
i.e., the signal that is distorted due to both noise and harmonics, has high accuracy in both
training and testing as the model is well generalized with the high variance data. The
proposed DNN model can predict the ZCP well on highly distorted signals. This work
can be further extended by considering the distorted sinusoidal voltage with voltage sag
and swells.
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