
algorithms

Article

Locally Scaled and Stochastic Volatility Metropolis–
Hastings Algorithms

Wilson Tsakane Mongwe 1,∗ , Rendani Mbuvha 2 and Tshilidzi Marwala 1

����������
�������

Citation: Mongwe, W.T.; Mbuvha, R.;

Marwala, T. Locally Scaled

Furthermore, Stochastic Volatility

Metropolis–Hastings Algorithms.

Algorithms 2021, 14, 351.

https://doi.org/10.3390/a14120351

Academic Editor: Mihaly Mezei

Received: 31 October 2021

Accepted: 28 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical Engineering, University of Johannesburg, Auckland Park,
Johannesburg 2000, South Africa; tmarwala@uj.ac.za

2 School of Statistics and Actuarial Science, University of Witwatersrand, Johannesburg 2000, South Africa;
rendani.mbuvha@wits.ac.za

* Correspondence: wilsonmongwe@gmail.com

Abstract: Markov chain Monte Carlo (MCMC) techniques are usually used to infer model parameters
when closed-form inference is not feasible, with one of the simplest MCMC methods being the
random walk Metropolis–Hastings (MH) algorithm. The MH algorithm suffers from random walk
behaviour, which results in inefficient exploration of the target posterior distribution. This method
has been improved upon, with algorithms such as Metropolis Adjusted Langevin Monte Carlo
(MALA) and Hamiltonian Monte Carlo being examples of popular modifications to MH. In this
work, we revisit the MH algorithm to reduce the autocorrelations in the generated samples without
adding significant computational time. We present the: (1) Stochastic Volatility Metropolis–Hastings
(SVMH) algorithm, which is based on using a random scaling matrix in the MH algorithm, and
(2) Locally Scaled Metropolis–Hastings (LSMH) algorithm, in which the scaled matrix depends on
the local geometry of the target distribution. For both these algorithms, the proposal distribution is
still Gaussian centred at the current state. The empirical results show that these minor additions to
the MH algorithm significantly improve the effective sample rates and predictive performance over
the vanilla MH method. The SVMH algorithm produces similar effective sample sizes to the LSMH
method, with SVMH outperforming LSMH on an execution time normalised effective sample size
basis. The performance of the proposed methods is also compared to the MALA and the current state-
of-art method being the No-U-Turn sampler (NUTS). The analysis is performed using a simulation
study based on Neal’s funnel and multivariate Gaussian distributions and using real world data
modeled using jump diffusion processes and Bayesian logistic regression. Although both MALA and
NUTS outperform the proposed algorithms on an effective sample size basis, the SVMH algorithm
has similar or better predictive performance when compared to MALA and NUTS across the various
targets. In addition, the SVMH algorithm outperforms the other MCMC algorithms on a normalised
effective sample size basis on the jump diffusion processes datasets. These results indicate the overall
usefulness of the proposed algorithms.

Keywords: Bayesian methods; Metropolis–Hastings; Markov chain Monte Carlo; machine learning;
algorithms; jump diffusion processes

1. Introduction

Markov chain Monte Carlo (MCMC) algorithms have been successfully utilised in
fields such cosmology, finance, and health [1–9] and are preferable to other approxi-
mate techniques such as variational inference because they guarantee asymptotic con-
vergence to the target distribution [10,11]. Examples of MCMC methods include inter alia
Metropolis–Hastings [12], Metropolis Adjusted Langevin Algorithm [4,13], Hamiltonian
Monte Carlo [14], Shadow Hamiltonian Monte Carlo [15–17] and Magnetic Hamiltonian
Monte Carlo [9,18–20]. The execution times of MCMC algorithms are a significant issue in
practice [21]. Algorithms with low running times are preferable to methods with longer
run times.

Algorithms 2021, 14, 351. https://doi.org/10.3390/a14120351 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-2832-3584
https://orcid.org/0000-0002-7337-9176
https://doi.org/10.3390/a14120351
https://doi.org/10.3390/a14120351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14120351
https://www.mdpi.com/journal/algorithms
http://www.mdpi.com/1999-4893/14/12/351?type=check_update&version=2

Algorithms 2021, 14, 351 2 of 20

The random walk Metropolis–Hastings (MH) method is the most straightforward
MCMC algorithm, with other methods improving on the MH method via the use of
first-order or higher-order gradient information to guide the exploration of the target.
The Metropolis Adjusted Langevin Algorithm (MALA) improves MH using Langevin
dynamics, while Hamiltonian Monte Carlo (HMC) and Shadow Hamiltonian Monte Carlo
use Hamiltonian dynamics. Magnetic Hamiltonian Monte Carlo (MHMC) adds a magnetic
field to Hamiltonian dynamics, leading to faster convergence and samples with lower
autocorrelations compared to HMC [9,18].

The MH algorithm forms the foundation of more complicated algorithms such as
Hamiltonian Monte Carlo, and the Metropolis Adjusted Langevin Algorithm [3,4,12]. The
MH method uses a Gaussian distribution whose mean is the current state to prose the next
state[8,12]. This proposal distribution produces random walk behavior, which generates
highly correlated samples and low sample acceptance rates [3,8]. The MALA, HMC, and
MHMC methods all employ first-order gradient information of the posterior. Although
this leads to a better exploration of the target, it also results in the algorithms having a
higher computational time when compared to the MH algorithm. The MH algorithm is
still heavily used in practice due to its robustness and simplicity [21].

In this work, we strive to address some of the deficiencies of the MH method by
designing algorithms that reduce correlations in the generated samples without a significant
increase in computational cost. These new methods are based on different formulations of
the scale matrix in the MH algorithm, with the proposal Gaussian distribution still having
the mean being the current state. In practice, typically, the scale matrix is treated as being
diagonal, with all the dimensions having the same standard deviation σ [22]. The MH
algorithm can be made arbitrarily poor by making σ either very small or very large [22,23].
Roberts and Rosenthal [22] attempt to find the optimal σ based on assuming a specific form
for the distribution [23], and targeting specific acceptance rates—which are related to the
efficiency of the algorithm. Yang et al. [21] extend this to more general target distributions.

Within MH sampling, the use of gradient and Hessian information has been success-
fully employed to construct intelligent proposal distributions [4,24]. In the MALA [13,24],
a drift term that includes first-order gradient data is used to control the exploration of the
parameter space. In the manifold MALA [4], the local structure of the target distribution
is acknowledged through the use of the Hessian or different metric tensor [4,24]. One
typically has to conduct pilot runs in order to tune the parameters of MH and MALA
respectveklyc [24]. Scaling the proposal distribution with a metric tensor that takes into
account the curvature of the posterior distribution can simplify the tuning of the method
such that expensive pilot runs are no longer needed [24].

Dahlin et al. [24] introduce the particle MH algorithm, which uses gradient and
Hessian information of the approximated target posterior using a Laplace approximation.
In this work, we propose Locally Scaled Metropolis–Hastings (LSMH), which uses the
local geometry of the target to scale MH, and Stochastic Volatility Metropolis–Hastings
(SVMH), which randomly scales MH. These two algorithms deviate from the particle MH
algorithm in that we focus solely on designing the scale matrix, so we do not consider
first-order gradient information. Secondly, for the LSMH algorithm—the Hessian is based
on the exact unnomalised posterior and not on the approximated target posterior. Both the
LSMH and SVMH algorithms are easier to implement, needing only minor adjustments to
MH, when compared to the particle MH algorithm of Dahlin et al. [24]. The particle MH
algorithm is more complex when compared to the vanilla MH algorithm as the method was
specifically developed to perform Bayesian parameter deduction in nonlinear state-space
models, which typically have intractable likelihoods [24]. Thus, the particle MH method
allows for both intractable likelihoods and posteriors, while the MH algorithm and the
proposed methods use tractable likelihoods.

The LSMH algorithm extends the MH method by designing the scale matrix so that it
depends on the local geometry of the target distribution in the same way as in manifold
MALA and Riemannian Manifold Hamiltonian Monte Carlo [4]. The use of the local

Algorithms 2021, 14, 351 3 of 20

curvature of the target reduces the correlations in the samples generated by MH. However,
this comes at a cost of a substantial increase in the computation cost due to the calculation
of the Hessian matrix of the posterior distribution.

The SVMH method sets the scaling matrix in MH to be random with a user-specified
distribution, similarly to setting the mass matrix in Quantum-Inspired Magnetic Hamil-
tonian Monte Carlo [19,25] to be random to mimic the behavior of quantum particles.
This approach has the benefit of improving the exploration of MH without any noticeable
increase in computational cost. This strategy has been shown in the Quantum-Inspired
Hamiltonian Monte [25] Carlo to improve sampling of multi-modal distributions. The
weakness of this approach is that it requires the user to specify the distribution of the scale
matrix and possibly tune the parameters of the chosen distribution.

The investigation in this manuscript is performed using a simulation study based
on Neal’s funnel of varying dimensions, multivariate Gaussian distributions of different
dimensions, and using real world data modeled using jump diffusion processes and
Bayesian logistic regression, respectively. The jump diffusion model examined in this paper
is the one-dimensional jump diffusion model of Merton [26]. The calibration of various
stochastic processes using MCMC is an exciting research avenue. In future work, we plan
on calibrating Levy processes [27] with stochastic volatility [28] features using various
MCMC methods.

We compare the novel LSMH and SVMH methods to MH, the No-U-Turn sampler
(NUTS) method (state-of-art), and MALA. The performance is measured using the effective
sample size, effective sample size normalised by execution time, and predictive perfor-
mance on unseen data using the negative log-likelihood using test data and the area under
the receiver operating curve (AUC). Techniques that produce higher effective sample sizes
and AUC are preferable to those that do not, and methods that produce lower negative
log-likelihood (NLL) on test data are preferable.

The experimental results show that LSMH and SVMH significantly enhance the MH
algorithm’s effective sample sizes and predictive performance in both the simulation study
and real-world applications—that is, across all the target posteriors considered. In addition,
SVMH does this with essentially no increase in the execution time in comparison to MH.
Given that only minor changes are required to create SVMH from MH, there seems to be
relatively little impediment to employing it in practice instead of MH.

The results show that although both MALA and NUTS exceed the proposed algorithms
on an effective sample size basis, the SVMH algorithm has similar or better predictive
performance (AUC and NLL) than MALA and NUTS on most of the targets densities
considered. Furthermore, the SVMH algorithm outperforms MALA and NUTS on the
majority of the jump diffusion datasets on time normalised effective sample size basis.
These results illustrate the overall benefits that can be derived by using a well-chosen
random scaling matrix in MH. The main contributions of this work are that:

• We present two novel MCMC algorithms being the Locally Scaled Metropolis–Hastings
and Stochastic Volatility Metropolis–Hastings methods.

• We present the first application of Bayesian inference of the Merton [26] jump diffusion
model across the share, currency and cryptocurrency financial markets.

• Numerical experiments using various targets are provided, demonstrating significant
improvements of the proposed method over the random walk Metropolis–Hastings
algorithm.

2. Methods

This section outlines the Markov chain Monte Carlo (MCMC) methods used in this
work. We first present the random walk Metropolis–Hastings algorithm followed by the
Metropolis adjusted Langevin algorithm. We proceed to look at Hamiltonian Monte Carlo
and the No-U-Turn sampler. We then present the two proposed methods being the Locally
Scaled Metropolis–Hastings and Stochastic Volatility Metropolis–Hastings algorithms.

Algorithms 2021, 14, 351 4 of 20

2.1. Random Walk Metropolis–Hastings Algorithm

The Metropolis–Hastings (MH) algorithm is an example of a basic and simple MCMC
method and forms the essence of more complex MCMC algorithms, which use more
advanced proposal distributions compared to MH. Suppose were are interested in deter-
mining the posterior distribution of parameters w from some model M. The MH method
produces proposed samples using a proposal distribution Q(w∗|w). A new parameter
state w∗ is accepted or rejected probabilistically given the current state w based on the
posterior likelihood ratio [11,29]:

P
(
accept w∗

)
= α(w∗|w) = min

(
1,

π(w∗)Q(w|w∗)
π(w)Q(w∗|w)

)
(1)

where π(w) is the stationary or target distribution evaluated at w, for some arbitrary w.
Random walk Metropolis is a version of MH that utilises a Gaussian distribution

centred at the current state as the proposal distribution [11]. The transition density in ran-
dom walk Metropolis isN (w, εΣ), where ε is the variance of the proposal distribution [11].
Note that Σ is typically set to be the identity matrix in practice. In this work, we tune ε to
target an acceptance rate of 25% using the primal-dual averaging methodology outlined in
Section 3.2.

When the transition density is symmetric, it implies that Q(w|w∗) = Q(w∗|w) reduc-
ing Equation (1) to a ratio of posterior likelihoods as follows [11]:

P
(
accept w∗

)
= α(w∗|w) = min

(
1,

π(w∗)
π(w)

)
(2)

This proposal normally results in random walk behaviour, which leads to high autocor-
relations between the generated samples as well as slow convergence [11]. Algorithm 1
presents the pseudo-code for the MH algorithm.

Algorithm 1: The Metropolis–Hastings Algorithm

Data: winit, ε, N and unnormalised target π(w)
Result: (w)N

i=0
w0 ← winit
for n← 1 to N do

Σ = I
w∗ ∼ Q with Q = N (w, εΣ)

wn ← w∗ with probability: α(w∗|w) = min
(

1, π(w∗)Q(w|w∗)
π(w)Q(w∗ |w)

)
end

A significant drawback of the MH seminal method is the high autocorrelations be-
tween the generated samples. The high autocorrelations lead to slow convergence in
the Monte Carlo estimates and consequently the necessity to generate large sample sizes.
Approaches that reduce the random walk behavior are those that enhance the classical
MH algorithm and utilise more information about the target posterior distributions [4].
The most popular extension is to incorporate first-order gradient information to guide the
search of the target, as well as second-order gradient information to consider the local
geometry of the posterior [4]. Examples of methods that are able to leverage first-order gra-
dient information are Metropolis Adjusted Langevin Algorithm and Hamiltonian Monte
Carlo [1,4,14,30]. We consider these two methods in more detail in the following sections.
Algorithm 1 provides the pseudo-code for the MH algorithm.

2.2. Metropolis Adjusted Langevin Algorithm

The MALA is a MCMC method that includes first-order gradient information of the
target posterior to enhance the sampling behaviour of the MH algorithm [4,31]. MALA

Algorithms 2021, 14, 351 5 of 20

reduces the random walk behaviour of MH via the use of Langevin dynamics which are as
follows [4,31]:

dwt =
1
2
∇w ln π(w)dt + dZt (3)

where π(w) represents the unnormalised target distribution (which is the negative log-
likelihood), w is the position vector and Zt is a Brownian motion process at time t. As the
Langevin dynamics are in the form of a stochastic differential equation, we typically wont
be able to solve it analytically and we need to use a numerical integration scheme. The
first-order Euler–Maruyama integration scheme is the commonly used integration scheme
and the update equation is given as: [4,31]:

wt+1 = wt +
ε2

2
∇w ln π(w) + εzt (4)

where ε is the integration step size and zt ∼ N (0, I).
The Euler–Maruyama integration scheme does not provide an exact solution to the

Langevin dynamics and produces numerical integration errors. These errors result in
detailed balance being broken, and one ends up not sampling from the correct distribution.
In order to ensure detailed balance, a MH acceptance step is required. The transition
probability of the MALA method can be written as [31]:

P(w′|w) = N (µ(w), ε2I),

µ(w′) = w +
ε2

2
∇w ln π(w),

(5)

where P(w′|w) and P(w|w′) are transition probability distributions, w is the current state
and w′ is the new proposed state. The acceptance rate of the MALA takes the form:

min
[

1,
π(w′)P(w′|w)

π(w)P(w|w′)

]
(6)

Unlike the MH algorithm, the MALA takes advantage of the first-order gradient
information of the target distribution, which makes the sampler converge to the target
distribution more rapidly [4,31]. However, the generated samples are still highly correlated.
Girolami and Caldehad [4] extended MALA from being on a Euclidean manifold to a
Riemannian Manifold, and hence incorporating second-order gradient information of the
target. This approach showed considerable improvements on MALA, with an associated
increase in compute time.

In the following section, we present Hamiltonian Monte Carlo that can explore the
posterior distribution more efficiently than MALA.

2.3. Hamiltonian Monte Carlo and the No-U-Turn Sampler

The Hamiltonian Monte Carlo (HMC) algorithm employs first-order gradient data
of the posterior distribution, similarly to MALA, to navigate the parameter space [2,14].
However, unlike MALA, the HMC adds an extra momentum variable p to the parameter
space w and uses Hamiltonian dynamics to evolve the system over time. Note that p and
w have the same number of dimensions. This dynamic system results in a Hamiltonian
H(w, p) which is given as [1]:

H(w, p) = U(w) + K(p) (7)

where U(w) is the potential energy (which is given by the negative log-likelihood of the
target) and K(p) is the kinetic energy which is a Gaussian kernel with covariance matrix
M [3]:

K(p) =
1
2

log
(
(2π)D|M|

)
+

pTM−1p
2

. (8)

Algorithms 2021, 14, 351 6 of 20

Hamilton’s equations are used to generate the path of the Markov chain at time t as
follows [1]:

dw
∂t

=
∂H(w, p)

∂p
;

dp
∂t

= −∂H(w, p)
∂w

. (9)

These Hamiltonian dynamics ensure that the Hamiltonian system conserves energy, is
reversible, and preserves phase space volume. These dynamics typically have to be solved
numerically, with the leapfrog integrator being the most common numerical scheme. The
leapfrog integration scheme has the following update equations [3,14]:

pt+ ε
2
= pt +

ε

2
∂H(wt, pt)

∂w
wt+ε = wt + εM−1pt+ ε

2

pt+ε = pt+ ε
2
+

ε

2

∂H
(

wt+ε, pt+ ε
2

)
∂w

.

(10)

The leapfrog integration scheme does not give an exact solution to Hamiltonian
dynamics and produces numerical integration errors. This results in the total energy
not being conserved, resulting in the detailed balance condition no longer holding. To
ensure that detailed balance hods, a Metropolis–Hastings acceptance step is utilsed. The
overall process for generating a single sample from HMC is a Gibbs sampling scheme.
In this scheme, we first generate the momentum variable from the Gaussian distribution,
after which we sample new parameters based on the newly drawn momentum using
the leapfrog integration scheme. This procedure is repeated until the desired number of
samples has been generated.

We have yet to address how one selects the step size ε and trajectory length L parame-
ters of HMC. These parameters significantly influence the sampling performance of the
algorithms [32]. The NUTS algorithm of Hoffman and Gelman [32] automates the tuning
of the HMC step size and trajectory length parameters. A large step size typically results
in most of the generated samples being rejected, while a small step size results in slow
mixing [32]. When L is too tiny, then HMC depicts random walk behaviour, and when the
L is large, the method consumes computational resources [32]. In the NUTS methodology,
the step size parameter is tuned through primal-dual averaging during an initial burn-in
phase. On the other hand, the trajectory length parameter is automatically tuned by itera-
tively doubling the trajectory length until the Hamiltonian becomes infinite or the chain
starts to trace back [8,33]. That is when the last proposed position state w∗ starts becoming
closer to the initial position w. More information about the NUTS algorithm can be found
in [32]. In this manuscript, we tune ε in NUTS to target an acceptance rate of 70% using
primal-dual averaging as discussed in Section 3.2.

2.4. Locally Scaled and Stochastic Volatility Metropolis–Hastings Algorithms

As highlighted previously, the MH algorithm experiences random walk behaviour,
which causes the generated samples to have high autocorrelations. We attempt to address
this by designing the scaling matrix in two distinct ways.

Firstly, we set Σ so that it depends on the neighborhood curvature of the distribution,
similarly to manifold MALA and Riemannian Manifold Monte Carlo [4,7]. We call this
algorithm the Locally Scaled Metropolis–Hastings (LSMH) algorithm. In this algorithm,
we set the Σ to be equal to the Hessian of the target posterior evaluated at the current state.
In this work, for the instances where the negative log-density is highly non-convex such
as Neal’s funnel, the employe the SoftAbs metric to approximate the Hessian [34]. The
SoftAbs metric needs an eigen decomposition and all second-order derivatives of the target
distribution, which leads to higher execution times [34,35]. However, the SoftAbs metric is
more generally suitable as it eliminates the boundaries of the Riemannian metric, which
limits the use to models that are analytically available [35].

Algorithms 2021, 14, 351 7 of 20

Secondly, we consider Σ to be random and assume that it has distribution Σ ∼ PΣ(Σ),
with PΣ(Σ) being a user-specified distribution in a related fashion to Quantum-Inspired
Hamiltonian Monte Carlo [7,25]. We call this proposed algorithm the Stochastic Volatility
Metropolis–Hastings (SVMH) algorithm. In this paper, we set the covariance matrix to
be diagonal, with the diagonal components sampled from a log-normal distribution with
mean zero and variance 1.

The pseudo-code for the LSMH and SVMH algorithms is the same as that of the MH
algorithm in Algorithm 1, with the only exception being how Σ is treated. In particular:

• For LSMH: Σ(w) = −d2 ln π(w)
dw2 and α(w∗|w) = min

(
1, π(w∗)N (w∗ ,εΣ(w))

π(w)N (w,εΣ(w))

)
• For SVHM: Σ ∼ PΣ(Σ) and α(w∗|w) = min

(
1, π(w∗)N (w∗ ,εΣ)

π(w)N (w,εΣ)

)
We tune ε via primal-dual averaging [32] targeting a sample approval rate of 70%.

Our pilot runs indicated that targeting various acceptance rates (e.g., 25% as with MH) did
not materially change the overall results.

It becomes apparent that LSMH will require the most computational resources out of
all the algorithms due to the requirement to calculate the Hessian of the target at each state.
SVMH should have a similar execution time to MH because only one extra step is added
to the MH algorithm. If the assumed distribution for the scale matrix is not too difficult
to sample from, MH and SVMH should have almost indistinguishable computational
requirements.

3. Experiments

This section describes the performance metrics, the primal-dual averaging methodol-
ogy used to tune the parameters of the MCMC methods, the simulation study undertaken,
and the tests performed on real world datasets. The investigation in this work is performed
using a simulation study based on Neal’s funnel of varying dimensions, multivariate
Gaussian distributions of different dimensions, and using real world data modeled using
jump diffusion processes and Bayesian logistic regression, respectively.

3.1. Performance Metrics

The performance metrics used in this article are the multivariate Effective Sample Size
(mESS) and the mESS normalised by the execution time [6,7,9,16,36]. For the real world
datasets, we also assess the predictive performance of each algorithm. The execution time is
defined as the time needed to generate the samples after the burn-in period. The predictive
performance metric used for the real world datasets is the negative log-likelihood (NLL)
using test data and the Area Under the Curve (AUC) for classification datasets. Methods
that produce high effective sample size and AUC are better than those that do not, and
algorithms with low execution time and NLL are preferable to those that do not.

We use the multivariate ESS calculation of Vats et al. [6,36] as a measure of the number
of uncorrelated samples generated. This ESS calculation is superior to the minimum
univariate ESS, commonly used in the literature, as it can consider the correlations between
all the parameter dimensions. The multivariate ESS used in their work is calculated as:

mESS = N ×
(
|Λ|
|M|

) 1
D

where N is the number of generated samples, D is the number of parameters, Λ is the
sample covariance matrix and M is the estimate of the Markov chain standard error.
When D = 1, mESS is equivalent to the univariate ESS [36]. Note that when there are no
correlations in the chain, we have that |Λ| = |Σ| and mESS = n.

Algorithms 2021, 14, 351 8 of 20

3.2. Scale Matrix and Step Size Tuning

This section sketches how we tune the scale matrix in the MH algorithm and the step
size in the other MCMC algorithms. We utilise the primal-dual averaging methodology
outlined in [37,38] through the burn-in phase. In primal-dual averaging, a user-specified
MH acceptance rate δ is targeted via the following updates:

εt+1 ← µ−
√

t
γ

1
t + t0

t

∑
i=1

Hi

ε̄t+1 ← ηtεt+1 + (1− ηt)ε̄t

(11)

where µ is a free parameter that εt tends to, the convergence rate towards µ is controlled
by γ with the rate of adaptation decaying according to ηt [38], and Ht is the difference
between the target and actual acceptance rates. The updates are such that the expected
difference between the target and actual acceptance rates is zero, which then updates the
step size towards the target acceptance rate. Hoffman and Gelman [32] found that setting
µ = log(10ε0), ε̄0 = 1, H̄0 = 0, γ = 0.05, t0 = 10, κ = 0.75 with ε0 being the initial step size
results in good performance across various target distributions. These are the settings that
we utilise in this paper with ε0 = 0.0001.

3.3. Simulation Study

In the simulation study, we aim to retrieve the posterior samples from multivariate
Gaussian distributions and Neal’s [39] funnel. That is, we sample from Gaussian distri-
butions N (0, Σ) with mean zero and covariance matrix Σ. The covariance matrix Σ is
diagonal, with the standard deviations being log-normal distribution with mean zero and
unit standard deviation.

Neal [39] introduced the funnel density as an illustration of a density that reveals the
problems that arise in Bayesian hierarchical and hidden variable models [40,41]. The model
handles the variance of the parameters as a latent log-normal stochastic variable v [40,41].
The density for Neal’s [39] funnel is given as:

P(v, x) = N (v|µ, σ2)
D

∏
i=1
N (xi|0, exp(v)). (12)

with µ = 0 and σ = 3. For the sampling from each of these two targets, we examined
D ∈ {10, 20}. A total of 10,000 samples were generated after dropping 5000 samples as
burn-in. Thirty independent paths were run for both these targets and each value of D.

3.4. Real World Application

We used jump diffusion processes to model asset returns and Bayesian logistic regres-
sion to model binary classification tasks for the real world application.

3.4.1. Merton Jump Diffusion Model

It is well documented that financial asset returns do not follow a normal distribution
but instead have fat tails [42,43]. Stochastic volatility models, Levy models, and combi-
nations these models have been utilised to capture the leptokurtic nature of asset return
distributions [26,44–46]. Jump diffusion processes were introduced into the financial mar-
kets literature by Merton and Press in the 1970s [26,43,47]. In this paper, we study the jump
diffusion model of Merton [26], which is a one-dimensional Markov process {St, t ≥ 0}
with the following dynamics [43]:

d ln St =

(
µ− 1

2
σ2
)

dt + σdBt + d

(
Nt

∑
i=1

Yi

)
(13)

Algorithms 2021, 14, 351 9 of 20

where µ is the drift coefficient, σ is the diffusion coefficient, Bt and Nt are the standard
Brownian motion process and Poisson process with intensity λ, respectively, and Yi ∼
N (µjump, σ2

jump) is the size of the ith jump. As shown in Mongwe [43], the transition density
of the returns of the jump diffusion in Equation (13) is given as:

P(ln S(t + τ) = w| ln S(t) = x) =
∞

∑
n=0

e−λτ(λτ)n

n!

φ

(
w−x−(µτ+nµjump)√

σ2τ+nσ2
jump

)
√

σ2τ + nσ2
jump

(14)

where w and x are realisations of S(t) at times t + τ and t, respectively, and φ is the
probability density function of a standard normal random variable. The likelihood function
is the given as:

L(µ, σ, λ, µjump, σjump) =
N

∏
k=1

P(ln S(t + τ) = wk| ln S(t) = xk) (15)

where N is the sample size. The likelihood is multi-modal as it is an infinite mixture of
normally distributed stochastic variables with the mixing weights being probabilities being
from a Poisson distribution [43]. In this article, we truncate the infinite summation in
Equation (14) to the first ten terms as done in [43]. Furthermore, the jump diffusion model
is calibrated to historical financial market returns data as outlined in Table 1.

In this work, we use MCMC methods to calibrate the jump diffusion process with the
likelihood function in Equation (15) to data across different financial markets. A total of
1000 samples were generated after dropping 500 samples as burn-in. Thirty independent
paths were run for both these targets and each value of D.

Table 1. This table shows the financial and benchmark datasets used. BJDP is Bayesian jump diffusion
process. N is the number of observations. BLR stands for Bayesian Logistic Regression. D is the
number of model parameters.

Dataset Features N Model D

MTN 1 1 000 BJDP 5
S&P 500 Index 1 1 007 BJDP 5

Bitcoin 1 1 461 BJDP 5
USDZAR 1 1 425 BJDP 5

Heart 13 270 BLR 14
Australian credit 14 690 BLR 15

Fraud 14 1 560 BLR 15
German credit 24 1 000 BLR 25

3.4.2. Bayesian Logistic Regression

The real world binary classification datasets in Table 1 are modelled using Bayesian
logistic regression. The negative log-likelihood l(D|w) function for logistic regression is
given as:

l(D|w) =
N

∑
i

yilog(wTxi) + (1− yi)log(1−wTxi) (16)

with N and D being the number of realisations and dimensions, respectively. The unnor-
malised log posterior distribution is given as:

ln p(w|D) = l(D|w) + ln p(w|α) (17)

where ln p(w|α) is the log of the prior distribution on the parameters given the hyperpa-
rameters α. The parameters w have a Gaussian prior distribution with a mean of zero and

Algorithms 2021, 14, 351 10 of 20

variance hundred. A total of 10,000 samples were generated after dropping 5000 samples
as burn-in. Thirty independent paths were run for both these targets and each value of D.

3.4.3. Datasets

The datasets that we use in this paper are outlined in Table 1. The dataset consists
of financial market data that we use to calibrate the jump diffusion process model and
real-world classification datasets that we model using Bayesian logistic regression.

We calibrate the jump diffusion process to four datasets. These are single stock, crypto-
currency, stock index, and currency datasets. These datasets are daily closing prices from 1
January 2017 to 31 December 2020 retrieved from Google Finance [48], which we converted
into log returns. The datasets were: MTN dataset which is a JSE listed stock, Bitcoin dataset
which is a crypto-currency (in USD), S&P 500 dataset which is a stock index and USDZAR
dataset which is a currency. Note that the formula used to calculate the log-returns is
given as:

ri = log(Si/Si−1) (18)

where ri is the log return on day i and Si is the stock or currency level on day i. The
descriptive statistics of the dataset are shown in Table 2. This table shows that the USDZAR
dataset has a very low kurtosis, suggesting that it has very few (if any) jumps when
compared to the other three datasets.

Table 2. Descriptive statistics for the jump diffusion process datasets.

Dataset Mean Standard Deviation Skew Kurtosis

MTN −0.00088 0.03013 −1.620 20.147
S&P 500 Index 0.00043 0.01317 −1.159 21.839

Bitcoin 0.00187 0.04447 −0.925 13.586
USDZAR 0.00019 0.00854 0.117 1.673

There are four datasets that we modeled using Bayesian logistic regression. All the
datasets have two classes and thus present a binary classification problem. The specifics of
the datasets are:

• Heart dataset—This dataset has 13 features and 270 data points. The purpose of the
dataset is to predict the presence of heart disease based on medical tests performed
on a patient [49].

• Australian credit dataset—This dataset has 14 features and 690 data points. This dataset
aims to assess applications for credit cards [49].

• South African fraud dataset—This dataset is of audit findings of South African mu-
nicipalities [50]. The dataset has 14 features, which are financial ratios, and 1560
data points. For this dataset, the aim is to classify the local government entities with
fraudulent financial statements [51].

• German credit dataset—This dataset has 25 features and 1000 data points. This dataset
aimed to classify a customer as either good or bad credit [49].

The jump diffusion process datasets used a time series of log returns as the input.
The features for the Bayesian logistic datasets were normalised. We used 90% of the data
to train the models and 10% to test the models. The train-test split on the time series
datasets is based on a cutoff date that confines 90% of the data into a training set. The prior
distribution over the parameters for all the jump diffusion process datasets was a standard
normal, while for the logistic regression datasets the prior was a Gaussian with standard
deviation equal to 10 as in Girolami and Calderhead [4].

4. Results and Discussion

We implemented all the models and algorithms in PyTorch. All the experiments
were run on a machine with a 64 bit CPU. The sampling performance of the algorithms
for the simulation study and real world benchmark datasets is shown in Figure 1. The

Algorithms 2021, 14, 351 11 of 20

detailed results for the financial market data and real world classification datasets across
different metrics is shown in Tables 3 and 4, respectively. Note that the execution time t in
Tables 3 and 4 is in seconds.

0

2000

4000

ES
S

Gaussian: D = 10

0

2000

4000

6000

Gaussian: D = 20

0

2000

4000

6000
Neals Funnel: D = 10

0

50

100

ES
S

/ T
im

e

0

100

200

0

20

40

60

0

200

400

ES
S

MTN Dataset

0

200

400
S&P 500 Dataset

0

100

200

300
Bitcoin Dataset

0.0

2.5

5.0

7.5

ES
S

/ T
im

e

0.0

2.5

5.0

7.5

0

2

4

6

0

2000

4000

6000

ES
S

Heart Dataset

0

2000

4000

Australia Dataset

0

2000

4000

Fraud Dataset

0

100

200

ES
S

/ T
im

e

0

50

100

150

0

5

10

0

5000

10000

15000
Neals Funnel: D = 20

0

2000

4000

6000
USDZAR Dataset

0

2500

5000

7500
German Dataset

M
AL

A

NU
TS M
H

LS
M

H

SV
M

H

0

50

100

150

M
AL

A

NU
TS M
H

LS
M

H

SV
M

H

0

100

200

MALA NUTS MH LSMH SVMH
0

100

200

Figure 1. Inference results across each dataset over thirty iterations of each algorithm. The first row is the effective sample
size while the second row is the time-normalised effective sample size for each dataset.

Figure 2 shows the diagnostic negative log-likelihood trace plots for each sampler
across various targets. Figure 3 shows the autocorrelations produced by each MCMC
method for the first dimension across various targets. Figure 4 shows the predictive
performance of each of the sampling methods on the real world classification datasets
modeled using BLR.

The first two rows in Figure 1 show the mESS and mESS normalised by execution time
for the multivariate Gaussian distributions and Neal’s funnel used in the simulation study

Algorithms 2021, 14, 351 12 of 20

with increasing dimensionality D. The third and fourth row in Figure 1 show the mESS and
mESS normalised by execution time for the financial market datasets modeled using jump
diffusion processes, while rows five and six show the results for real world classification
datasets modeled using Bayesian logistic regression. The results in Tables 3 and 4 are the
mean results over the thirty iterations for each algorithm.

0 1000 2000 3000 4000 5000
Sample size

920

940

960

980

1000
Ne

ga
tiv

e
Lo

g
Lik

el
ih

oo
d

Negative Log Likelihood: Fraud

MH
 LSMH
 SVMH
 MALA
 NUTS

(a) Diagnostics trace plot for Fraud dataset.

0 1000 2000 3000 4000 5000
Sample size

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ne
ga

tiv
e

Lo
g

Lik
el

ih
oo

d

Negative Log Likelihood: Gaussian_10
MH
 LSMH
 SVMH
 MALA
 NUTS

(b) Diagnostics trace plot for multivariate Gaussian with D = 10.

Figure 2. Negative log-likelihood diagnostic trace plots for various targets. These are traces plots
from a single run of the MCMC chain. (a) Diagnostic negative log-likelihood trace plots for the Fraud
dataset and (b) Diagnostic negative log-likelihood trace plots for the multivariate Gaussian with
D = 10. The other targets produce similar convergence behavior.

Algorithms 2021, 14, 351 13 of 20

0 50 100 150 200 250 300 350 400

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation Plot :Neal_20

MH
 LSMH
 SVMH
 MALA
 NUTS

(a)

0 50 100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0
Autocorrelation Plot :Gaussian_20

MH
 LSMH
 SVMH
 MALA
 NUTS

(b)

Figure 3. Autocorrelation plots for the first dimension across the various targets. These are autocor-
relations from a single run of the MCMC chain. (a) Autocorrelation plot for the first dimension on
the Neal funnel for D = 20 and (b) Autocorrelation plot for the first dimension on the multivariate
Gaussian with D = 20.

Algorithms 2021, 14, 351 14 of 20

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves : Heart

No skill
MH : (area = 0.9286)
LSMH : (area = 0.8956)
SVMH : (area = 0.9176)
NUTS : (area = 0.9176)
MALA : (area = 0.9176)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves : Australian

No skill
MH : (area = 0.8829)
LSMH : (area = 0.9601)
SVMH : (area = 0.9643)
NUTS : (area = 0.9643)
MALA : (area = 0.9643)

(b)

Figure 4. Predictive performance for all the sampling methods on the real world classification
datasets. The results were averaged over thirty runs of each algorithm. (a) ROC curves for the Heart
dataset and (b) ROC curves for Australian credit dataset.

The first couple rows of Figure 1 show that in all the values of D on both targets, SVMH
and LSMH outperform MH in terms of effective sample sizes with SVMH and LSMH
having similar effective sample sizes. When execution time is taken into consideration,
SVMH outperforms LSMH and MH. The results also show that the NUTS algorithm

Algorithms 2021, 14, 351 15 of 20

outperforms all the MCMC methods on an effective sample size basis, while the MALA
outperforms all the other MCMC methods on a normalised effective sample size basis.

Rows three to six in Figure 1 show that across all the real world datasets, SVMH
and LSMH have similar effective sample sizes, with MH producing the smallest effective
sample size. NUTS outperforms all the algorithms on an effective sample size basis. On a
normalised effective sample size basis, SVMH outperforms all the algorithms on the jump
diffusion datasets except for the USDZAR dataset. NUTS outperforms on the USDZAR
dataset due to the lower kurtosis on this dataset as seen in Table 1. NUTS appears to
perform poorly on the datasets that have a high kurtosis.

Figure 2 shows that the SVMH algorithm converges to the same level as NUTS on the
majority of the datasets. On the other hand, the MH and LSMH algorithms converge to
higher (i.e., less optimal) negative log-likelihoods. Figure 3 shows that NUTS produces
the lowest autocorrelations on all the targets except on the jump-diffusion datasets. MH
produces the highest autocorrelations on the majority of the targets. The autocorrelations
on the SVMH algorithm are higher than NUTS and MALA but approach zero quicker than
for MH across the targets considered. Note that these are auto correlations after the burn-in
period.

Table 3 and 4 show that, as expected, MH produces the lowest execution time with
SVMH being a close second. LSMH is slower than SVMH due to the computation of the
Hessian matrix at each state. The NUTS algorithm has the highest execution time on the
jump diffusion datasets.

Table 3. Results averaged over thirty runs of each method for the jump diffusion process datasets.
Each row corresponds to the results for a specific method for each performance metric. NLL is the
negative log-likelihood.

MTN dataset

mESS t (in sec) mESS/t NLL (Train) NLL (Test)

NUTS 314 65 4.77 −2153 −174
MALA 45 11 4.14 −2153 −174

MH 0 5 0.00 −1981 −173
LSMH 36 45 0.82 −2056 −180
SVMH 37 5 7.56 −2144 −174

S&P 500 dataset

NUTS 326 209 1.56 −2942 −278
MALA 30 11 2.64 −2910 −286

MH 0 5 0.73 −2544 −283
LSMH 37 51 0.00 −2782 −300
SVMH 35 6 6.27 −2911 −286

Bitcoin dataset

NUTS 247 426 0.58 −2387 −286
MALA 47 11 4.11 −2315 −291

MH 0 5 0.00 −2282 −286
LSMH 39 50 0.78 −2286 −289
SVMH 34 6 5.94 −2325 −291

USDZAR dataset

NUTS 1302 118 52.76 −4457 −489
MALA 54 11 4.61 −4272 −475

MH 0 5 0.00 −3 978 −446
LSMH 37 52 0.72 −4272 −475
SVMH 36 6 6.48 −4272 −474

Algorithms 2021, 14, 351 16 of 20

Table 4. Results averaged over thirty runs of each method for the logistic regression datasets. Each
row corresponds to the results for a specific method for each performance metric. NLL is the negative
log-likelihood.

Heart dataset

mESS t (in sec) mESS/t NLL (train) NLL (test)

NUTS 5656 25 223.34 132 56
MALA 848 18 47.14 132 56

MH 0.29 9 0.04 298 67
LSMH 97 41 2.38 352 82
SVMH 114 9 12.01 132 56

Australian credit dataset

NUTS 5272 33 159.40 248 70
MALA 787 15 51.43 248 70

MH 0 7 0.00 750 112
LSMH 109 37 2.89 407 88
SVMH 115 9 12.35 247 70

Fraud dataset

NUTS 4449 921 4.84 919 144
MALA 110 16 6.69 921 143

MH 0 8 0.00 993 150
LSMH 98 38 2.54 983 146
SVMH 96 10 9.88 919 143

German credit dataset

NUTS 7493 31 239.57 510 134
MALA 654 16 38.65 510 134

MH 0.0 8 0.00 1 662 267
LSMH 110 62 1.76 745 174
SVMH 107 10 10.58 510 134

Tables 3 and 4 as well as Figures 4 and 5 show that, in terms of predictive performance
using the negative log-likelihood on test data and AUC, the SVMH algorithm outperforms
all the algorithms on the bulk of the real world datasets. Note that the SVMH method
outperforms all the methods or has similar performance on a test negative log-likelihood
basis on the logistic regression datasets. The results also show that the MH algorithm
progressively becomes worse as the dimensions increase. The predictive performance of
the LSMH algorithm is not stable as dimensions increase, with its performance at times
being close to the MH algorithm.

It is worth noting that although LSMH and SVMH outperform the MH on several
metrics, the LSMH and SVMH methods still produce low effective sample sizes compared
with the required number of samples. This can potentially be improved by centering the
proposal distribution at the current point plus first-order gradient—which should assist in
guiding the exploration (and decrease the autocorrelations in the generated samples) as in
Metropolis Adjusted Langevin Algorithm [4], and Hamiltonian Monte Carlo [3,14].

Algorithms 2021, 14, 351 17 of 20

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves : Fraud
No skill
MH : (area = 0.7383)
LSMH : (area = 0.7204)
SVMH : (area = 0.7212)
NUTS : (area = 0.7248)
MALA : (area = 0.7228)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves : German
No skill
MH : (area = 0.5871)
LSMH : (area = 0.7524)
SVMH : (area = 0.7686)
NUTS : (area = 0.7724)
MALA : (area = 0.7719)

(b)

Figure 5. Predictive performance for all the sampling methods on the real world classification
datasets. The results were averaged over thirty runs of each algorithm. (a) ROC curves for the Fraud
dataset and (b) ROC curves for German dataset.

5. Conclusions

We introduce the stochastic volatility Metropolis–Hastings and locally scaled Metropolis–
Hastings Markov chain Monte Carlo (MCMC) algorithms. We compare these methods
with the vanilla Metropolis–Hastings algrouthm using a simulation study on multivariate
Gaussian distributions and Neal’s funnel and real-world datasets modeled using jump
diffusion processes and Bayesian logistic regression. The proposed methods are compared
against the Metropolis–Hastings method, the Metropolis adjusted Langevin algorithm
(MALA), and the No-U-Turn sampler.

Overall, the No-U-Turn sampler outperforms all the MCMC methods on an effective
sample size basis. Stochastic Volatility Metropolis–Hastings (SVMH) and Locally Scaled

Algorithms 2021, 14, 351 18 of 20

Metropolis–Hastings produce higher effective sample sizes than Metropolis–Hastings, even
after accounting for the execution time. In addition, SVMH outperforms all the methods in
terms of predictive performance on the majority of the real world datasets. Furthermore,
the SVMH method outperforms NUTS and MALA on the majority of the jump diffusion
datasets on time normalised effective sample size basis. Given that SVMH does not add
notable computational complexity to the Metropolis–Hastings algorithm, there seem to be
trivial impediments to its use in place of Metropolis–Hastings in practice.

This work can be improved by examining the case where the scaling matrix in stochas-
tic volatility Metropolis–Hastings is sampled from a Wishart distribution so that correla-
tions between the different parameter dimensions are taken into account. An analysis to
determine the optimal distribution for the scaling matrix could improve this paper. Con-
structing the stochastic volatility version of the Metropolis adjusted Langevin algorithm
could also be of interest, significantly since Metropolis adjusted Langevin algorithm can
use first-order gradient information to improve exploration of the target. Furthermore, we
plan on including the calibration of jump diffusion with stochastic volatility characteristics
using MCMC techniques in future work.

Author Contributions: Conceptualization, W.T.M., R.M. and T.M.; methodology, W.T.M. and R.M.;
software, W.T.M.; validation, W.T.M., R.M. and T.M.; formal analysis, W.T.M.; investigation, W.T.M.;
resources, W.T.M.; data curation, W.T.M.; writing—original draft preparation, W.T.M.; writing—
review and editing, W.T.M., R.M. and T.M.; visualization, W.T.M. and R.M.; supervision, R.M. and
T.M.; project administration, R.M. and T.M.; funding acquisition, R.M. and T.M. All authors have
read and agreed to the published version of the manuscript.

Funding: The work of Wilson Tsakane Mongwe and Rendani Mbuvha was supported by the Google
Ph.D. Fellowships in Machine Learning. The work of Tshilidzi Marwala was supported by the
National Research Foundation of South Africa.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: UCI Machine Learning Repository, https://archive.ics.uci.edu/ml/
index.php (accessed on 27 November 2021). Google Finance, https://www.google.com/finance/
(accessed on 27 November 2021).

Acknowledgments: The computations in this work were performed on resources provided by the
Center for High Performance Computing (CHPC) at the Council of Scientific and Industrial Research
(CSIR) South Africa.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Neal, R.M. Bayesian learning via stochastic dynamics. In Advances in Neural Information Processing Systems; MIT Press:

Cambridge, MA, USA, 1993; pp. 475–482.
2. Neal, R.M. MCMC Using Hamiltonian Dynamics. Available online: https://arxiv.org/pdf/1206.1901.pdf%20http://arxiv.org/

abs/1206.1901 (accessed on 27 November 2021).
3. Neal, R.M. Bayesian Learning for Neural Networks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012;

Volume 118.
4. Girolami, M.; Calderhead, B. Riemann manifold langevin and hamiltonian monte carlo methods. J. R. Stat. Soc. Ser. B 2011,

73, 123–214. [CrossRef]
5. Radivojević, T.; Akhmatskaya, E. Mix & Match Hamiltonian Monte Carlo. arXiv 2017, arXiv:1706.04032.
6. Mongwe, W.T.; Mbuvha, R.; Marwala, T. Antithetic Magnetic and Shadow Hamiltonian Monte Carlo. IEEE Access 2021,

9, 49857–49867. [CrossRef]
7. Mongwe, W.T.; Mbuvha, R.; Marwala, T. Antithetic Riemannian Manifold And Quantum-Inspired Hamiltonian Monte Carlo.

arXiv 2021, arXiv:2107.02070.
8. Mbuvha, R.; Marwala, T. Bayesian inference of COVID-19 spreading rates in South Africa. PLoS ONE 2020, 15, e0237126.

https://archive.ics.uci.edu/ ml/index.php
https://archive.ics.uci.edu/ ml/index.php
https://www.google.com/finance
https://arxiv.org/pdf/1206.1901.pdf%20http://arxiv.org/abs/1206.1901
https://arxiv.org/pdf/1206.1901.pdf%20http://arxiv.org/abs/1206.1901
http://doi.org/10.1111/j.1467-9868.2010.00765.x
http://dx.doi.org/10.1109/ACCESS.2021.3069196

Algorithms 2021, 14, 351 19 of 20

9. Mongwe, W.T.; Mbuvha, R.; Marwala, T. Magnetic Hamiltonian Monte Carlo With Partial Momentum Refreshment. IEEE Access
2021, 9, 108009–108016. [CrossRef]

10. Mbuvha, R. Parameter Inference Using Probabilistic Techniques. Ph.D. Thesis, University Of Johannesburg, Johannesburg,
South Africa, 2021.

11. Mbuvha, R.; Mongwe, W.T.; Marwala, T. Separable Shadow Hamiltonian Hybrid Monte Carlo for Bayesian Neural Network
Inference in wind speed forecasting. Energy AI 2021, 6, 100108. [CrossRef]

12. Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109.
[CrossRef]

13. Roberts, G.O.; Stramer, O. Langevin diffusions and Metropolis-Hastings algorithms. Methodol. Comput. Appl. Probab. 2002,
4, 337–357. [CrossRef]

14. Duane, S.; Kennedy, A.D.; Pendleton, B.J.; Roweth, D. Hybrid monte carlo. Phys. Lett. B 1987, 195, 216–222. [CrossRef]
15. Sweet, C.R.; Hampton, S.S.; Skeel, R.D.; Izaguirre, J.A. A separable shadow Hamiltonian hybrid Monte Carlo method. T J. Chem.

Phys. 2009, 131, 174106. [CrossRef]
16. Mongwe, W.T.; Mbuvha, R.; Marwala, T. Adaptively Setting the Path Length for Separable Shadow Hamiltonian Hybrid Monte

Carlo. IEEE Access 2021, 9, 138598–138607. [CrossRef]
17. Mongwe, W.T.; Mbuvha, R.; Marwala, T. Utilising Partial Momentum Refreshment in Separable Shadow Hamiltonian Hybrid

Monte Carlo. IEEE Access 2021, 9, 151235–151244. [CrossRef]
18. Tripuraneni, N.; Rowland, M.; Ghahramani, Z.; Turner, R. Magnetic hamiltonian monte carlo. In Proceedings of the International

Conference on Machine Learning (PMLR), Sydney, Australia, 6–11 August 2017; pp. 3453–3461.
19. Mongwe, W.T.; Mbuvha, R.; Marwala, T. Quantum-Inspired Magnetic Hamiltonian Monte Carlo. PLoS ONE 2021, 16, e0258277.

[CrossRef] [PubMed]
20. Mongwe, W.T.; Mbuvha, R.; Marwala, T. Adaptive Magnetic Hamiltonian Monte Carlo. IEEE Access 2021, 9, 152993–153003.

[CrossRef]
21. Yang, J.; Roberts, G.O.; Rosenthal, J.S. Optimal scaling of random-walk metropolis algorithms on general target distributions.

Stoch. Process. Their Appl. 2020, 130, 6094–6132. [CrossRef]
22. Roberts, G.O.; Rosenthal, J.S.; others. Optimal scaling for various Metropolis-Hastings algorithms. Stat. Sci. 2001, 16, 351–367.

[CrossRef]
23. Vogrinc, J.; Kendall, W.S. Counterexamples for optimal scaling of Metropolis–Hastings chains with rough target densities. Ann.

Appl. Probab. 2021, 31, 972–1019. [CrossRef]
24. Dahlin, J.; Lindsten, F.; Schön, T.B. Particle Metropolis–Hastings using gradient and Hessian information. Stat. Comput. 2015,

25, 81–92. [CrossRef]
25. Liu, Z.; Zhang, Z. Quantum-Inspired Hamiltonian Monte Carlo for Bayesian Sampling. arXiv 2019, arXiv:1912.01937.
26. Merton, R.C. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 1976, 3, 125 – 144. [CrossRef]
27. Levy, D.; Hoffman, M.D.; Sohl-Dickstein, J. Generalizing hamiltonian monte carlo with neural networks. arXiv 2017,

arXiv:1711.09268.
28. Yan, G.; Hanson, F.B. Option pricing for a stochastic-volatility jump-diffusion model with log-uniform jump-amplitudes. In

Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; IEEE: Piscataway, NJ, USA,
2006; p. 6.

29. Brooks, S.; Gelman, A.; Jones, G.; Meng, X.L. Handbook of Markov Chain Monte Carlo; CRC Press: Boca Raton, FL, USA, 2011.
30. Betancourt, M. A conceptual introduction to Hamiltonian Monte Carlo. arXiv 2017, arXiv:1701.02434.
31. Gu, M.; Sun, S. Neural Langevin Dynamical Sampling. IEEE Access 2020, 8, 31595–31605. [CrossRef]
32. Hoffman, M.D.; Gelman, A. The No-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach.

Learn. Res. 2014, 15, 1593–1623.
33. Afshar, H.M.; Oliveira, R.; Cripps, S. Non-Volume Preserving Hamiltonian Monte Carlo and No-U-TurnSamplers. In Pro-

ceedings of the International Conference on Artificial Intelligence and Statistics (PMLR), Virtual Conference, 13–15 April 2021;
pp. 1675–1683.

34. Betancourt, M.J. Generalizing the no-U-turn sampler to Riemannian manifolds. arXiv 2013, arXiv:1304.1920.
35. Betancourt, M. A general metric for Riemannian manifold Hamiltonian Monte Carlo. In Proceedings of the International

Conference on Geometric Science of Information, Paris, France, 28–30 August 2013; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 327–334.

36. Vats, D.; Flegal, J.M.; Jones, G.L. Multivariate output analysis for Markov chain Monte Carlo. Biometrika 2019, 106, 321–337.
Available online: http://xxx.lanl.gov/abs/https://academic.oup.com/biomet/article-pdf/106/2/321/28575440/asz002.pdf
(accessed on 27 November 2021). [CrossRef]

37. Hoffman, M.D.; Gelman, A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. arXiv 2011,
arXiv:1111.4246.

38. Andrieu, C.; Thoms, J. A tutorial on adaptive MCMC. Stat. Comput. 2008, 18, 343–373. [CrossRef]
39. Neal, R.M. Slice sampling. Ann. Stat. 2003, 31, 705–741. [CrossRef]
40. Betancourt, M.; Girolami, M. Hamiltonian Monte Carlo for hierarchical models. In Current Trends in Bayesian Methodology with

Applications; CRC Press: Boca Raton, FL, USA, 2015; Volume 79, pp. 2–4.

http://dx.doi.org/10.1109/ACCESS.2021.3101810
http://dx.doi.org/10.1016/j.egyai.2021.100108
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1023/A:1023562417138
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1063/1.3253687
http://dx.doi.org/10.1109/ACCESS.2021.3118728
http://dx.doi.org/10.1109/ACCESS.2021.3126812
http://dx.doi.org/10.1371/journal.pone.0258277
http://www.ncbi.nlm.nih.gov/pubmed/34610053
http://dx.doi.org/10.1109/ACCESS.2021.3127931
http://dx.doi.org/10.1016/j.spa.2020.05.004
http://dx.doi.org/10.1214/ss/1015346320
http://dx.doi.org/10.1214/20-AAP1612
http://dx.doi.org/10.1007/s11222-014-9510-0
http://dx.doi.org/10.1016/0304-405X(76)90022-2
http://dx.doi.org/10.1109/ACCESS.2020.2972611
http://xxx.lanl.gov/abs/https://academic.oup.com/biomet/article-pdf/106/2/321/28575440/asz002.pdf
http://dx.doi.org/10.1093/biomet/asz002
http://dx.doi.org/10.1007/s11222-008-9110-y
http://dx.doi.org/10.1214/aos/1056562461

Algorithms 2021, 14, 351 20 of 20

41. Heide, C.; Roosta, F.; Hodgkinson, L.; Kroese, D. Shadow Manifold Hamiltonian Monte Carlo. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (PMLR), Virtual Conference, 13–15 April 2021; pp. 1477–1485.

42. Cont, R. Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Financ. 2001, 1, 223 – 236. [CrossRef]
43. Mongwe, W.T. Analysis of Equity and Interest Rate Returns in South Africa under the Context of Jump Diffusion Processes.

Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2015.
44. Aït-Sahalia, Y.; Li, C.; Li, C.X. Closed-form implied volatility surfaces for stochastic volatility models with jumps. J. Econom. 2021,

222, 364–392. [CrossRef]
45. Alghalith, M. Pricing options under simultaneous stochastic volatility and jumps: A simple closed-form formula without

numerical/computational methods. Phys. A Stat. Mech. Its Appl. 2020, 540, 123100. [CrossRef]
46. Van der Stoep, A.W.; Grzelak, L.A.; Oosterlee, C.W. The Heston stochastic-local volatility model: efficient Monte Carlo simulation.

Int. J. Theor. Appl. Financ. 2014, 17, 1450045. [CrossRef]
47. Press, S.J. A compound events model for security prices. J. Bus. 1967, 40, 317–335. [CrossRef]
48. Google-Finance. Google Finance.Available online: https://www.google.com/finance/ (accessed on 15 August 2021).
49. Michie, D.; Spiegelhalter, D.J.; Taylor, C.C.; Campbell, J. (Eds.). Machine Learning, Neural and Statistical Classification; Ellis Horwood:

New York, NY, USA, 1995.
50. Mongwe, W.T.; Malan, K.M. A Survey of Automated Financial Statement Fraud Detection with Relevance to the South African

Context. South Afr. Comput. J. 2020, 32, 74–112. [CrossRef]
51. Mongwe, W.T.; Malan, K.M. The Efficacy of Financial Ratios for Fraud Detection Using Self Organising Maps. In Proceedings of

the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; IEEE: Piscataway,
NJ, USA, 2020; pp. 1100–1106.

http://dx.doi.org/10.1080/713665670
http://dx.doi.org/10.1016/j.jeconom.2020.07.006
http://dx.doi.org/10.1016/j.physa.2019.123100
http://dx.doi.org/10.1142/S0219024914500459
http://dx.doi.org/10.1086/294980
https://www.google.com/finance/
http://dx.doi.org/10.18489/sacj.v32i1.777

	Introduction
	Methods
	Random Walk Metropolis–Hastings Algorithm
	Metropolis Adjusted Langevin Algorithm
	Hamiltonian Monte Carlo and the No-U-Turn Sampler
	Locally Scaled and Stochastic Volatility Metropolis–Hastings Algorithms

	Experiments
	Performance Metrics
	Scale Matrix and Step Size Tuning
	Simulation Study
	Real World Application
	Merton Jump Diffusion Model
	Bayesian Logistic Regression
	Datasets

	Results and Discussion
	Conclusions
	References

