Hexadecimal Aggregate Approximation Representation and Classification of Time Series Data
Abstract
:1. Introduction
2. Related Work
3. Hexadecimal Aggregate Approximation Representation
3.1. Basic Principle of HAX
3.2. HAX Distance Measures
4. Experimental Evaluation
4.1. Experimental Data
4.2. Experimental Parameter Setting
4.3. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Z.; Kraak, M.-J.; Huisman, O.; Ma, X.; Xiao, J. Parallel indexing technique for spatio-temporal data. ISPRS J. Photogramm. Remote. Sens. 2013, 78, 116–128. [Google Scholar] [CrossRef]
- He, Z.; Wu, C.; Liu, G.; Zheng, Z.; Tian, Y. Decomposition tree: A spatio-temporal indexing method for movement big data. Clust. Comput. 2015, 18, 1481–1492. [Google Scholar] [CrossRef]
- He, Z.; Ma, X. A distributed indexing method for timeline similarity query. Algorithms 2018, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 2020. [Google Scholar]
- Chatfield, C.; Xing, H. The Analysis of Time Series: An Introduction with R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019. [Google Scholar]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Dau, H.A.; Bagnall, A.; Kamgar, K.; Yeh, C.-C.M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C.A.; Keogh, E. The UCR time series archive. IEEE/CAA J. Autom. Sin. 2019, 6, 1293–1305. [Google Scholar] [CrossRef]
- Kondylakis, H.; Dayan, N.; Zoumpatianos, K.; Palpanas, T. Coconut: A scalable bottom-up approach for building data series indexes. arXiv Prepr. 2020, arXiv:2006.13713. [Google Scholar]
- Oregi, I.; Pérez, A.; Del Ser, J.; Lozano, J.A. On-line elastic similarity measures for time series. Pattern Recognit. 2019, 88, 506–517. [Google Scholar] [CrossRef]
- Aghabozorgi, S.; Seyed Shirkhorshidi, A.; Ying Wah, T. Time-series clustering–A decade review. Inf. Syst. 2015, 53, 16–38. [Google Scholar] [CrossRef]
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.-A. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.-P.; Fu, A.W.-C. Efficient time series matching by wavelets. In Proceedings of the 15th International Conference on Data Engineering (Cat. No. 99CB36337), Sydney, Australia, 23–26 March 1999; pp. 126–133. [Google Scholar]
- Faloutsos, C.; Ranganathan, M.; Manolopoulos, Y.J.A.S.R. Fast subsequence matching in time-series databases. ACM Sigmod Rec. 1994, 23, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-W.; Yu, P.S. Adaptive query processing for time-series data. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 15–18 August 1999; pp. 282–286. [Google Scholar]
- Geurts, P. Pattern extraction for time series classification. In Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, Freiburg, Germany, 3–5 September 2001; pp. 115–127. [Google Scholar]
- Chakrabarti, K.; Keogh, E.; Mehrotra, S.; Pazzani, M. Locally adaptive dimensionality reduction for indexing large time series databases. ACM Trans. Database Syst. 2002, 27, 188–228. [Google Scholar] [CrossRef]
- Keogh, E.J.; Pazzani, M.J. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In Proceedings of the Knowledge Discovery in Databases, New York, NY, USA, 27–31 August 1998; pp. 239–243. [Google Scholar]
- Keogh, E.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Dimensionality reduction for fast similarity search in large time series databases. Inf. Syst. 2001, 3, 263–286. [Google Scholar] [CrossRef]
- Lin, J.; Keogh, E.; Lonardi, S.; Chiu, B. A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, San Diego, CA, USA, 13 June 2003; pp. 2–11. [Google Scholar]
- Chen, L.; Ng, R. On the marriage of lp-norms and edit distance. In Proceedings of the Thirtieth International Conference on Very Large Data Bases-Volume 30, Toronto, ON, Canada, 31 August–3 September 2004; pp. 792–803. [Google Scholar]
- Chairunnanda, P.; Gopalkrishnan, V.; Chen, L. Enhancing edit distance on real sequences filters using histogram distance on fixed reference ordering. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; pp. 582–585. [Google Scholar]
- Lin, J.; Keogh, E.; Wei, L.; Lonardi, S. Experiencing SAX: A novel symbolic representation of time series. Data Min. Knowl. Discov. 2007, 15, 107–144. [Google Scholar] [CrossRef] [Green Version]
- Shieh, J.; Keogh, E. iSAX: Disk-aware mining and indexing of massive time series datasets. Data Min. Knowl. Discov. 2009, 19, 24–57. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Keogh, E. Time series shapelets: A new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 947–956. [Google Scholar]
- Camerra, A.; Palpanas, T.; Shieh, J.; Keogh, E. iSAX 2.0: Indexing and mining one billion time series. In Proceedings of the 2010 IEEE International Conference on Data Mining, Washington, DC, USA, 13–17 December 2010; pp. 58–67. [Google Scholar]
- He, X.; Shao, C.; Xiong, Y. A new similarity measure based on shape information for invariant with multiple distortions. Neurocomputing 2014, 129, 556–569. [Google Scholar] [CrossRef]
- Bai, S.; Qi, H.-D.; Xiu, N. Constrained best Euclidean distance embedding on a sphere: A matrix optimization approach. SIAM J. Optim. 2015, 25, 439–467. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-J.; Huang, K.-S.; Yang, C.-B.; Guo, Y.-P. Flexible dynamic time warping for time series classification. Procedia Comput. Sci. 2015, 51, 2838–2842. [Google Scholar] [CrossRef] [Green Version]
- Roggen, D.; Cuspinera, L.P.; Pombo, G.; Ali, F.; Nguyen-Dinh, L.-V. Limited-memory warping LCSS for real-time low-power pattern recognition in wireless nodes. In Proceedings of the European Conference on Wireless Sensor Networks, Porto, Portugal, 9–11 February 2015; pp. 151–167. [Google Scholar]
- Ares, J.; Lara, J.A.; Lizcano, D.; Suárez, S. A soft computing framework for classifying time series based on fuzzy sets of events. Inf. Sci. 2016, 330, 125–144. [Google Scholar] [CrossRef]
- Zoumpatianos, K.; Idreos, S.; Palpanas, T. ADS: The adaptive data series index. Very Large Data Bases J. 2016, 25, 843–866. [Google Scholar] [CrossRef]
- Yagoubi, D.E.; Akbarinia, R.; Masseglia, F.; Palpanas, T. Dpisax: Massively distributed partitioned isax. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 1135–1140. [Google Scholar]
- Yagoubi, D.E.; Akbarinia, R.; Masseglia, F.; Shasha, D. RadiusSketch: Massively distributed indexing of time series. In Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan, 19–21 October 2017; pp. 262–271. [Google Scholar]
- Baldán, F.J.; Benítez, J.M. Distributed FastShapelet Transform: A Big Data time series classification algorithm. Inf. Sci. 2019, 496, 451–463. [Google Scholar] [CrossRef]
- Yagoubi, D.; Akbarinia, R.; Masseglia, F.; Palpanas, T. Massively distributed time series indexing and querying. IEEE Trans. Knowl. Data Eng. 2020, 32, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Serra, J.; Kantz, H.; Serra, X.; Andrzejak, R.G. Predictability of music descriptor time series and its application to cover song detection. IEEE Trans. Audio Speech Lang. Process. 2011, 20, 514–525. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Agrawal, R.; Faloutsos, C.; Swami, A. Efficient similarity search in sequence databases. In Proceedings of the Foundations of Data Organization and Algorithms, Berlin/Heidelberg, Germany, 21–23 June 1993; pp. 69–84. [Google Scholar]
- Kawagoe, K.; Ueda, T. A similarity search method of time series data with combination of Fourier and wavelet transforms. In Proceedings of the Ninth International Symposium on Temporal Representation and Reasoning, Manchester, UK, 7–9 July 2002; pp. 86–92. [Google Scholar]
- Korn, F.; Jagadish, H.V.; Faloutsos, C. Efficiently supporting ad hoc queries in large datasets of time sequences. ACM Sigmod Rec. 1997, 26, 289–300. [Google Scholar] [CrossRef]
- Azzouzi, M.; Nabney, I.T. Analysing time series structure with hidden Markov models. In Proceedings of the Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No. 98TH8378), Cambridge, UK, 2 September 1998; pp. 402–408. [Google Scholar]
- Yi, B.-K.; Faloutsos, C. Fast time sequence indexing for arbitrary Lp norms. In Proceedings of the Very Large Data Bases, Cairo, Egypt, 10–14 September 2000. [Google Scholar]
- Keogh, E.J.; Pazzani, M.J. A simple dimensionality reduction technique for fast similarity search in large time series databases. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Kyoto, Japan, 18–20 April 2000; pp. 122–133. [Google Scholar]
- Chung, F.L.K.; Fu, T.-C.; Luk, W.P.R.; Ng, V.T.Y. Flexible time series pattern matching based on perceptually important points. In Proceedings of the Workshop on Learning from Temporal and Spatial Data in International Joint Conference on Artificial Intelligence, Washington, DC, USA, 4–10 August 2001. [Google Scholar]
- Cai, Y.; Ng, R. Indexing spatio-temporal trajectories with Chebyshev polynomials. In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, Paris France, 13–18 June 2004; pp. 599–610. [Google Scholar]
- Keogh, E.; Lin, J.; Fu, A. Hot SAX: Efficiently finding the most unusual time series subsequence. In Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05), Washington, DC, USA, 27–30 November 2005; p. 8. [Google Scholar]
- Ratanamahatana, C.; Keogh, E.; Bagnall, A.J.; Lonardi, S. A novel bit level time series representation with implication of similarity search and clustering. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Hanoi Vietnam, 18–20 May 2005; pp. 771–777. [Google Scholar]
- Lin, J.; Keogh, E. Group SAX: Extending the notion of contrast sets to time series and multimedia data. In Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, Berlin, Germany, 18–22 September 2006; pp. 284–296. [Google Scholar]
- Lkhagva, B.; Suzuki, Y.; Kawagoe, K. Extended SAX: Extension of symbolic aggregate approximation for financial time series data representation. DEWS2006 4A-i8 2006, 7. Available online: https://www.ieice.org/~de/DEWS/DEWS2006/doc/4A-i8.pdf (accessed on 29 September 2021).
- Hung, N.Q.V.; Anh, D.T. Combining SAX and piecewise linear approximation to improve similarity search on financial time series. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC’2007), Washington, DC, USA, 23–24 November 2007; pp. 58–62. [Google Scholar]
- Chen, Q.; Chen, L.; Lian, X.; Liu, Y.; Yu, J.X. Indexable PLA for efficient similarity search. In Proceedings of the 33rd International Conference on Very Large Data Bases, Vienna Austria, 23–27 September 2007; pp. 435–446. [Google Scholar]
- Malinowski, S.; Guyet, T.; Quiniou, R.; Tavenard, R. 1d-SAX: A novel symbolic representation for time series. In Proceedings of the International Symposium on Intelligent Data Analysis, London UK, 17–19 October 2013; pp. 273–284. [Google Scholar]
- Stefan, A.; Athitsos, V.; Das, G. The move-split-merge metric for time series. IEEE Trans. Knowl. Data Eng. 2013, 25, 1425–1438. [Google Scholar] [CrossRef] [Green Version]
- Senin, P.; Malinchik, S. SAX-VSM: Interpretable time series classification using SAX and vector space model. In Proceedings of the 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 1175–1180. [Google Scholar]
- Kamath, U.; Lin, J.; Jong, K.D. SAX-EFG: An evolutionary feature generation framework for time series classification. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 July 2014; pp. 533–540. [Google Scholar]
- Baydogan, M.G.; Runger, G. Learning a symbolic representation for multivariate time series classification. Data Min. Knowl. Discov. 2014, 29, 400–422. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, P.; Duan, R. Dynamic time warping under pointwise shape context. Inf. Sci. 2015, 315, 88–101. [Google Scholar] [CrossRef]
- Baydogan, M.G.; Runger, G. Time series representation and similarity based on local autopatterns. Data Min. Knowl. Discov. 2015, 30, 476–509. [Google Scholar] [CrossRef]
- Ye, Y.; Jiang, J.; Ge, B.; Dou, Y.; Yang, K. Similarity measures for time series data classification using grid representation and matrix distance. Knowl. Inf. Syst. 2018, 60, 1105–1134. [Google Scholar] [CrossRef]
- Ruta, N.; Sawada, N.; McKeough, K.; Behrisch, M.; Beyer, J. SAX navigator: Time series exploration through hierarchical clustering. In Proceedings of the 2019 IEEE Visualization Conference (VIS), Vancouver, BC, Canada, 20–25 October 2019; pp. 236–240. [Google Scholar]
- Park, H.; Jung, J.-Y. SAX-ARM: Deviant event pattern discovery from multivariate time series using symbolic aggregate approximation and association rule mining. Expert Syst. Appl. 2020, 141, 112950. [Google Scholar] [CrossRef]
- He, Z.; Long, S.; Ma, X.; Zhao, H. A boundary distance-based symbolic aggregate approximation method for time series data. Algorithms 2020, 13, 284. [Google Scholar] [CrossRef]
- Bountrogiannis, K.; Tzagkarakis, G.; Tsakalides, P. Data-driven kernel-based probabilistic SAX for time series dimensionality reduction. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 24–28 August 2021; pp. 2343–2347. [Google Scholar]
- Sant’Anna, A.; Wickstrom, N. Symbolization of time-series: An evaluation of SAX, Persist, and ACA. In Proceedings of the 4th International Congress on Image and Signal Processing, CISP 2011, October 15, Shanghai, China, 15–17 October 2011; pp. 2223–2228. [Google Scholar]
- Camerra, A.; Shieh, J.; Palpanas, T.; Rakthanmanon, T.; Keogh, E. Beyond one billion time series: Indexing and mining very large time series collections with iSAX2+. Knowl. Inf. Syst. 2013, 39, 123–151. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Liu, J.; Sun, B.; Chow, C. An improvement of symbolic aggregate approximation distance measure for time series. Neurocomputing 2014, 138, 189–198. [Google Scholar] [CrossRef]
- Lkhagva, B.; Yu, S.; Kawagoe, K. New time series data representation ESAX for financial applications. In Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW’06), Atlanta, GA, USA, 3–7 April 2006; p. x115. [Google Scholar]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Abanda, A.; Mori, U.; Lozano, J.A. A review on distance based time series classification. Data Min. Knowl. Discov. 2019, 33, 378–412. [Google Scholar] [CrossRef] [Green Version]
Representation Method | Year | Type | Complexity | References |
---|---|---|---|---|
Auto-regressive (AR) model | 1971 | T4 | [36,37] | |
Discrete Fourier Transform(DFT) | 1993 | T1 | O(n(log(n))) | [13,38] |
Discrete Wavelet Transform (DWT) | 1999 | T1 | O(n) | [12,39] |
Singular Value Decomposition (SVD) | 1997 | T2 | [40] | |
Discrete Cosine Transformation (DCT) | 1997 | T1 | — | [40] |
Piecewise Linear Approximation (PLA) | 1998 | T2 | O(n(log(n))) | [17] |
Hidden Markov models (HMMs) | 1998 | T4 | — | [41] |
Piecewise Aggregate Approximation (PAA) or Segmented Means | 2000 | T1 | O(n) | [42] |
Piecewise Constant Approximation (PCA) | 2000 | T2 | — | [43] |
Adaptive Piecewise Constant Approximation (APCA) | 2002 | T2 | O(n) | [16] |
Perceptually important point (PIP) | 2001 | T1 | — | [44] |
Chebyshev Polynomials (CHEB) | 2004 | T1 | — | [45] |
Symbolic Aggregate Approximation (SAX) | 2003 | T2 | O(n) | [19,22] |
HOT SAX | 2005 | T2 | [46] | |
Clipped Data | 2005 | T3 | — | [47] |
Group SAX | 2006 | T2 | [48] | |
Extended SAX | 2006 | T2 | [49] | |
Combining SAX and Piecewise Linear Approximation | 2007 | T2 | [50] | |
Indexable Piecewise Linear Approximation (IPLA) | 2007 | T1 | — | [51] |
1d-SAX | 2013 | T2 | [52] | |
Move-Split-Merge (MSM) | 2013 | [53] | ||
SAX-VSM | 2013 | T2 | [54] | |
SAX-EFG | 2014 | T2 | [55] | |
Tree-based Representations | 2015 | [56] | ||
SC-DTW | 2015 | T1 | [57] | |
Representation based on Local Autopatterns | 2016 | [58] | ||
Grid Representation | 2019 | [59] | ||
SAX Navigator | 2019 | T2 | [60] | |
SAX-ARM | 2020 | T2 | [61] | |
SAX-BD | 2020 | T2 | [62] | |
Data-driven Kernel-based Probabilistic SAX | 2021 | T2 | [63] |
T | A time series T = v1, v2, …, vn |
S | A piecewise aggregate approximation of a time series S = s1, s2, …, sw |
P | A point set aggregate approximation of a time series P = p1, p2, …, pw |
H | A hexadecimal digit representation of a time series H = h1, h2, …, hw |
w | The number of PAA segments representing time series T |
n | The arbitrary length of time series T |
t(i) | ith time point |
Window(i) | A time window between (i − 1)th and ith time points |
Subseries(i) | A subseries within Window(i) |
Segment(i) | A fitting segment for Subseries(i) |
TIO(i) or TIOAB | A transformable interval object for Segment(i); point A is the starting point and B is the endpoint for Segment(i). |
ID | Type | Name | Train | Test | Class | Length |
---|---|---|---|---|---|---|
1 | Device | ACSF1 | 100 | 100 | 10 | 1460 |
2 | Image | Adiac | 390 | 391 | 37 | 176 |
3 | Image | ArrowHead | 36 | 175 | 3 | 251 |
4 | Spectro | Beef | 30 | 30 | 5 | 470 |
5 | Image | BeetleFly | 20 | 20 | 2 | 512 |
6 | Image | BirdChicken | 20 | 20 | 2 | 512 |
7 | Simulated | BME | 30 | 150 | 3 | 128 |
8 | Sensor | Car | 60 | 60 | 4 | 577 |
9 | Simulated | CBF | 30 | 900 | 3 | 128 |
10 | Traffic | Chinatown | 20 | 343 | 2 | 24 |
11 | Sensor | ChlorineConcentration | 467 | 3840 | 3 | 166 |
12 | Sensor | CinCECGTorso | 40 | 1380 | 4 | 1639 |
13 | Spectro | Coffee | 28 | 28 | 2 | 286 |
14 | Device | Computers | 250 | 250 | 2 | 720 |
15 | Motion | CricketX | 390 | 390 | 12 | 300 |
16 | Motion | CricketY | 390 | 390 | 12 | 300 |
17 | Motion | CricketZ | 390 | 390 | 12 | 300 |
18 | Image | Crop | 7200 | 16,800 | 24 | 46 |
19 | Image | DiatomSizeReduction | 16 | 306 | 4 | 345 |
20 | Image | DistalPhalanxOutlineAgeGroup | 400 | 139 | 3 | 80 |
21 | Image | DistalPhalanxOutlineCorrect | 600 | 276 | 2 | 80 |
22 | Image | DistalPhalanxTW | 400 | 139 | 6 | 80 |
23 | Sensor | Earthquakes | 322 | 139 | 2 | 512 |
24 | ECG | ECG200 | 100 | 100 | 2 | 96 |
25 | ECG | ECG5000 | 500 | 4500 | 5 | 140 |
26 | ECG | ECGFiveDays | 23 | 861 | 2 | 136 |
27 | Device | ElectricDevices | 8926 | 7711 | 7 | 96 |
28 | EOG | EOGHorizontalSignal | 362 | 362 | 12 | 1250 |
29 | EOG | EOGVerticalSignal | 362 | 362 | 12 | 1250 |
30 | Spectro | EthanolLevel | 504 | 500 | 4 | 1751 |
31 | Image | FaceAll | 560 | 1690 | 14 | 131 |
32 | Image | FaceFour | 24 | 88 | 4 | 350 |
33 | Image | FacesUCR | 200 | 2050 | 14 | 131 |
34 | Image | FiftyWords | 450 | 455 | 50 | 270 |
35 | Image | Fish | 175 | 175 | 7 | 463 |
36 | Sensor | FordA | 3601 | 1320 | 2 | 500 |
37 | Sensor | FordB | 3636 | 810 | 2 | 500 |
38 | Sensor | FreezerRegularTrain | 150 | 2850 | 2 | 301 |
39 | Sensor | FreezerSmallTrain | 28 | 2850 | 2 | 301 |
40 | HRM | Fungi | 18 | 186 | 18 | 201 |
41 | Motion | GunPoint | 50 | 150 | 2 | 150 |
42 | Motion | GunPointAgeSpan | 135 | 316 | 2 | 150 |
43 | Motion | GunPointMaleVersusFemale | 135 | 316 | 2 | 150 |
44 | Motion | GunPointOldVersusYoung | 136 | 315 | 2 | 150 |
45 | Spectro | Ham | 109 | 105 | 2 | 431 |
46 | Image | HandOutlines | 1000 | 370 | 2 | 2709 |
47 | Motion | Haptics | 155 | 308 | 5 | 1092 |
48 | Image | Herring | 64 | 64 | 2 | 512 |
49 | Device | HouseTwenty | 40 | 119 | 2 | 2000 |
50 | Motion | InlineSkate | 100 | 550 | 7 | 1882 |
51 | EPG | InsectEPGRegularTrain | 62 | 249 | 3 | 601 |
52 | EPG | InsectEPGSmallTrain | 17 | 249 | 3 | 601 |
53 | Sensor | InsectWingbeatSound | 220 | 1980 | 11 | 256 |
54 | Sensor | ItalyPowerDemand | 67 | 1029 | 2 | 24 |
55 | Device | LargeKitchenAppliances | 375 | 375 | 3 | 720 |
56 | Sensor | Lightning2 | 60 | 61 | 2 | 637 |
57 | Sensor | Lightning7 | 70 | 73 | 7 | 319 |
58 | Simulated | Mallat | 55 | 2345 | 8 | 1024 |
59 | Spectro | Meat | 60 | 60 | 3 | 448 |
60 | Image | MedicalImages | 381 | 760 | 10 | 99 |
61 | Traffic | MelbournePedestrian | 1194 | 2439 | 10 | 24 |
62 | Image | MiddlePhalanxOutlineAgeGroup | 400 | 154 | 3 | 80 |
63 | Image | MiddlePhalanxOutlineCorrect | 600 | 291 | 2 | 80 |
64 | Image | MiddlePhalanxTW | 399 | 154 | 6 | 80 |
65 | Image | MixedShapesRegularTrain | 500 | 2425 | 5 | 1024 |
66 | Image | MixedShapesSmallTrain | 100 | 2425 | 5 | 1024 |
67 | Sensor | MoteStrain | 20 | 1252 | 2 | 84 |
68 | ECG | NonInvasiveFetalECGThorax1 | 1800 | 1965 | 42 | 750 |
69 | ECG | NonInvasiveFetalECGThorax2 | 1800 | 1965 | 42 | 750 |
70 | Spectro | OliveOil | 30 | 30 | 4 | 570 |
71 | Image | OSULeaf | 200 | 242 | 6 | 427 |
72 | Image | PhalangesOutlinesCorrect | 1800 | 858 | 2 | 80 |
73 | Sensor | Phoneme | 214 | 1896 | 39 | 1024 |
74 | Hemodynamics | PigAirwayPressure | 104 | 208 | 52 | 2000 |
75 | Hemodynamics | PigArtPressure | 104 | 208 | 52 | 2000 |
76 | Hemodynamics | PigCVP | 104 | 208 | 52 | 2000 |
77 | Sensor | Plane | 105 | 105 | 7 | 144 |
78 | Power | PowerCons | 180 | 180 | 2 | 144 |
79 | Image | ProximalPhalanxOutlineAgeGroup | 400 | 205 | 3 | 80 |
80 | Image | ProximalPhalanxOutlineCorrect | 600 | 291 | 2 | 80 |
81 | Image | ProximalPhalanxTW | 400 | 205 | 6 | 80 |
82 | Device | RefrigerationDevices | 375 | 375 | 3 | 720 |
83 | Spectrum | Rock | 20 | 50 | 4 | 2844 |
84 | Device | ScreenType | 375 | 375 | 3 | 720 |
85 | Spectrum | SemgHandGenderCh2 | 300 | 600 | 2 | 1500 |
86 | Spectrum | SemgHandMovementCh2 | 450 | 450 | 6 | 1500 |
87 | Spectrum | SemgHandSubjectCh2 | 450 | 450 | 5 | 1500 |
88 | Simulated | ShapeletSim | 20 | 180 | 2 | 500 |
89 | Image | ShapesAll | 600 | 600 | 60 | 512 |
90 | Device | SmallKitchenAppliances | 375 | 375 | 3 | 720 |
91 | Simulated | SmoothSubspace | 150 | 150 | 3 | 15 |
92 | Sensor | SonyAIBORobotSurface1 | 20 | 601 | 2 | 70 |
93 | Sensor | SonyAIBORobotSurface2 | 27 | 953 | 2 | 65 |
94 | Sensor | StarLightCurves | 1000 | 8236 | 3 | 1024 |
95 | Spectro | Strawberry | 613 | 370 | 2 | 235 |
96 | Image | SwedishLeaf | 500 | 625 | 15 | 128 |
97 | Image | Symbols | 25 | 995 | 6 | 398 |
98 | Simulated | SyntheticControl | 300 | 300 | 6 | 60 |
99 | Motion | ToeSegmentation1 | 40 | 228 | 2 | 277 |
100 | Motion | ToeSegmentation2 | 36 | 130 | 2 | 343 |
101 | Sensor | Trace | 100 | 100 | 4 | 275 |
102 | ECG | TwoLeadECG | 23 | 1139 | 2 | 82 |
103 | Simulated | TwoPatterns | 1000 | 4000 | 4 | 128 |
104 | Simulated | UMD | 36 | 144 | 3 | 150 |
105 | Motion | UWaveGestureLibraryAll | 896 | 3582 | 8 | 945 |
106 | Motion | UWaveGestureLibraryX | 896 | 3582 | 8 | 315 |
107 | Motion | UWaveGestureLibraryY | 896 | 3582 | 8 | 315 |
108 | Motion | UWaveGestureLibraryZ | 896 | 3582 | 8 | 315 |
109 | Sensor | Wafer | 1000 | 6164 | 2 | 152 |
110 | Spectro | Wine | 57 | 54 | 2 | 234 |
111 | Image | WordSynonyms | 267 | 638 | 25 | 270 |
112 | Motion | Worms | 181 | 77 | 5 | 900 |
113 | Motion | WormsTwoClass | 181 | 77 | 2 | 900 |
114 | Image | Yoga | 300 | 3000 | 2 | 426 |
ID | ED | SAX | SAX-TD | SAX-BD | PAX | HAX |
---|---|---|---|---|---|---|
1 | 0.54 | 0.13 | 0.63 | 0.60 | 0.38 | 0.23 |
2 | 0.61 | 0.08 | 0.59 | 0.74 | 0.47 | 0.15 |
3 | 0.80 | 0.52 | 0.75 | 0.84 | 0.73 | 0.56 |
4 | 0.83 | 0.70 | 0.81 | 0.80 | 0.84 | 0.88 |
5 | 0.67 | 0.40 | 0.58 | 0.90 | 0.60 | 0.51 |
6 | 0.75 | 0.72 | 0.75 | 0.80 | 0.74 | 0.75 |
7 | 0.55 | 0.57 | 0.59 | 0.94 | 0.63 | 0.58 |
8 | 0.85 | 0.84 | 0.88 | 0.88 | 0.96 | 0.71 |
9 | 0.73 | 0.49 | 0.70 | 0.97 | 0.67 | 0.53 |
10 | 0.95 | 0.76 | 0.93 | 0.96 | 0.81 | 0.70 |
11 | 0.65 | 0.42 | 0.54 | 0.94 | 0.58 | 0.46 |
12 | 0.90 | 0.66 | 0.75 | 1.00 | 0.79 | 0.71 |
13 | 1.00 | 0.51 | 0.95 | 0.62 | 0.90 | 0.62 |
14 | 0.58 | 0.51 | 0.53 | 0.67 | 0.52 | 0.57 |
15 | 0.58 | 0.43 | 0.55 | 0.63 | 0.59 | 0.27 |
16 | 0.57 | 0.43 | 0.52 | 0.68 | 0.61 | 0.26 |
17 | 0.59 | 0.44 | 0.56 | 0.97 | 0.62 | 0.33 |
18 | 0.71 | 0.28 | 0.68 | 0.73 | 0.70 | 0.34 |
19 | 0.93 | 0.24 | 0.95 | 0.75 | 0.91 | 0.67 |
20 | 0.63 | 0.53 | 0.66 | 0.63 | 0.68 | 0.62 |
21 | 0.72 | 0.57 | 0.71 | 0.71 | 0.71 | 0.63 |
22 | 0.63 | 0.42 | 0.58 | 0.91 | 0.60 | 0.54 |
23 | 0.88 | 0.80 | 0.88 | 0.88 | 0.87 | 0.80 |
24 | 0.92 | 0.87 | 0.92 | 0.40 | 0.92 | 0.89 |
25 | 0.80 | 0.68 | 0.82 | 0.40 | 0.80 | 0.68 |
26 | 0.42 | 0.29 | 0.36 | 0.30 | 0.41 | 0.21 |
27 | 0.44 | 0.30 | 0.40 | 0.79 | 0.34 | 0.23 |
28 | 0.71 | 0.66 | 0.68 | 0.88 | 0.65 | 0.66 |
29 | 0.55 | 0.43 | 0.57 | 0.83 | 0.58 | 0.48 |
30 | 0.27 | 0.25 | 0.28 | 0.68 | 0.28 | 0.27 |
31 | 0.71 | 0.35 | 0.72 | 0.83 | 0.69 | 0.35 |
32 | 0.78 | 0.53 | 0.72 | 0.69 | 0.80 | 0.69 |
33 | 0.77 | 0.40 | 0.65 | 0.61 | 0.74 | 0.39 |
34 | 0.63 | 0.54 | 0.63 | 0.86 | 0.66 | 0.49 |
35 | 0.78 | 0.25 | 0.70 | 0.96 | 0.68 | 0.24 |
36 | 0.67 | 0.51 | 0.57 | 0.94 | 0.57 | 0.53 |
37 | 0.61 | 0.51 | 0.52 | 0.99 | 0.52 | 0.51 |
38 | 0.80 | 0.66 | 0.88 | 1.00 | 0.91 | 0.63 |
39 | 0.68 | 0.67 | 0.69 | 0.68 | 0.70 | 0.67 |
40 | 0.82 | 0.54 | 0.80 | 0.88 | 0.88 | 0.46 |
41 | 0.91 | 0.72 | 0.87 | 0.43 | 0.92 | 0.75 |
42 | 0.90 | 0.65 | 0.91 | 0.63 | 0.98 | 0.83 |
43 | 0.97 | 0.65 | 0.99 | 0.80 | 0.99 | 0.87 |
44 | 0.95 | 0.64 | 1.00 | 0.35 | 1.00 | 1.00 |
45 | 0.60 | 0.54 | 0.59 | 0.78 | 0.58 | 0.58 |
46 | 0.86 | 0.62 | 0.85 | 0.68 | 0.82 | 0.75 |
47 | 0.37 | 0.29 | 0.35 | 0.58 | 0.35 | 0.31 |
48 | 0.52 | 0.52 | 0.53 | 0.95 | 0.54 | 0.53 |
49 | 0.66 | 0.67 | 0.69 | 0.58 | 0.64 | 0.61 |
50 | 0.34 | 0.25 | 0.29 | 0.85 | 0.33 | 0.25 |
51 | 0.68 | 0.41 | 0.67 | 0.73 | 1.00 | 1.00 |
52 | 0.66 | 0.20 | 0.59 | 0.93 | 1.00 | 1.00 |
53 | 0.56 | 0.43 | 0.53 | 0.68 | 0.54 | 0.45 |
54 | 0.96 | 0.82 | 0.95 | 0.91 | 0.95 | 0.89 |
55 | 0.49 | 0.42 | 0.49 | 0.53 | 0.53 | 0.38 |
56 | 0.75 | 0.69 | 0.74 | 0.74 | 0.78 | 0.60 |
57 | 0.58 | 0.50 | 0.56 | 0.52 | 0.66 | 0.37 |
58 | 0.91 | 0.39 | 0.83 | 0.88 | 0.90 | 0.54 |
59 | 0.93 | 0.33 | 0.91 | 0.82 | 0.91 | 0.46 |
60 | 0.68 | 0.51 | 0.67 | 0.88 | 0.69 | 0.48 |
61 | 0.85 | 0.43 | 0.92 | 0.90 | 0.82 | 0.41 |
62 | 0.52 | 0.36 | 0.49 | 0.56 | 0.50 | 0.42 |
63 | 0.77 | 0.53 | 0.72 | 0.77 | 0.73 | 0.61 |
64 | 0.51 | 0.29 | 0.51 | 0.12 | 0.53 | 0.41 |
65 | 0.90 | 0.79 | 0.86 | 0.18 | 0.87 | 0.76 |
66 | 0.84 | 0.74 | 0.80 | 0.35 | 0.81 | 0.71 |
67 | 0.88 | 0.75 | 0.82 | 0.14 | 0.84 | 0.75 |
68 | 0.83 | 0.13 | 0.72 | 1.00 | 0.73 | 0.17 |
69 | 0.88 | 0.15 | 0.80 | 0.97 | 0.77 | 0.20 |
70 | 0.52 | 0.45 | 0.50 | 0.82 | 0.50 | 0.40 |
71 | 0.87 | 0.30 | 0.85 | 0.87 | 0.81 | 0.31 |
72 | 0.76 | 0.56 | 0.72 | 0.76 | 0.72 | 0.62 |
73 | 0.11 | 0.06 | 0.07 | 0.48 | 0.09 | 0.06 |
74 | 0.06 | 0.05 | 0.08 | 0.86 | 0.12 | 0.06 |
75 | 0.13 | 0.02 | 0.11 | 0.45 | 0.22 | 0.11 |
76 | 0.08 | 0.04 | 0.05 | 0.95 | 0.14 | 0.06 |
77 | 0.96 | 0.73 | 0.96 | 0.79 | 0.96 | 0.87 |
78 | 0.93 | 0.81 | 0.91 | 0.88 | 0.97 | 0.87 |
79 | 0.79 | 0.48 | 0.78 | 0.64 | 0.77 | 0.64 |
80 | 0.81 | 0.57 | 0.76 | 0.77 | 0.74 | 0.64 |
81 | 0.71 | 0.36 | 0.70 | 0.64 | 0.70 | 0.58 |
82 | 0.39 | 0.36 | 0.38 | 0.94 | 0.39 | 0.35 |
83 | 0.84 | 0.46 | 0.72 | 0.76 | 0.54 | 0.68 |
84 | 0.36 | 0.38 | 0.37 | 0.86 | 0.39 | 0.37 |
85 | 0.76 | 0.55 | 0.63 | 0.96 | 0.80 | 0.56 |
86 | 0.37 | 0.25 | 0.33 | 0.88 | 0.60 | 0.22 |
87 | 0.40 | 0.33 | 0.37 | 0.91 | 0.70 | 0.31 |
88 | 0.54 | 0.50 | 0.50 | 0.95 | 0.49 | 0.50 |
89 | 0.75 | 0.53 | 0.71 | 0.75 | 0.72 | 0.53 |
90 | 0.34 | 0.44 | 0.58 | 0.88 | 0.58 | 0.53 |
91 | 0.91 | 0.52 | 0.84 | 1.00 | 0.97 | 0.85 |
92 | 0.70 | 0.64 | 0.66 | 0.94 | 0.74 | 0.64 |
93 | 0.86 | 0.78 | 0.84 | 0.95 | 0.84 | 0.79 |
94 | 0.85 | 0.80 | 0.87 | 0.99 | 0.88 | 0.84 |
95 | 0.95 | 0.57 | 0.93 | 1.00 | 0.92 | 0.76 |
96 | 0.79 | 0.38 | 0.74 | 0.57 | 0.76 | 0.37 |
97 | 0.90 | 0.76 | 0.88 | 0.62 | 0.89 | 0.81 |
98 | 0.88 | 0.87 | 0.89 | 0.56 | 0.98 | 0.66 |
99 | 0.68 | 0.63 | 0.64 | 0.69 | 0.68 | 0.60 |
100 | 0.81 | 0.81 | 0.83 | 0.83 | 0.85 | 0.74 |
101 | 0.76 | 0.49 | 0.66 | 0.86 | 0.76 | 0.59 |
102 | 0.75 | 0.59 | 0.77 | 0.73 | 0.70 | 0.65 |
103 | 0.91 | 0.78 | 0.88 | 0.83 | 0.91 | 0.51 |
104 | 0.76 | 0.64 | 0.77 | 0.79 | 0.78 | 0.68 |
105 | 0.95 | 0.81 | 0.92 | 0.88 | 0.92 | 0.72 |
106 | 0.74 | 0.66 | 0.72 | 0.71 | 0.73 | 0.61 |
107 | 0.66 | 0.58 | 0.65 | 0.65 | 0.67 | 0.51 |
108 | 0.65 | 0.59 | 0.64 | 0.65 | 0.65 | 0.55 |
109 | 1.00 | 0.98 | 0.99 | 0.99 | 0.99 | 0.98 |
110 | 0.61 | 0.50 | 0.55 | 0.55 | 0.61 | 0.51 |
111 | 0.62 | 0.51 | 0.59 | 0.61 | 0.63 | 0.47 |
112 | 0.45 | 0.47 | 0.50 | 0.5 | 0.52 | 0.40 |
113 | 0.61 | 0.59 | 0.60 | 0.61 | 0.62 | 0.54 |
114 | 0.83 | 0.67 | 0.80 | 0.78 | 0.81 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Zhang, C.; Ma, X.; Liu, G. Hexadecimal Aggregate Approximation Representation and Classification of Time Series Data. Algorithms 2021, 14, 353. https://doi.org/10.3390/a14120353
He Z, Zhang C, Ma X, Liu G. Hexadecimal Aggregate Approximation Representation and Classification of Time Series Data. Algorithms. 2021; 14(12):353. https://doi.org/10.3390/a14120353
Chicago/Turabian StyleHe, Zhenwen, Chunfeng Zhang, Xiaogang Ma, and Gang Liu. 2021. "Hexadecimal Aggregate Approximation Representation and Classification of Time Series Data" Algorithms 14, no. 12: 353. https://doi.org/10.3390/a14120353
APA StyleHe, Z., Zhang, C., Ma, X., & Liu, G. (2021). Hexadecimal Aggregate Approximation Representation and Classification of Time Series Data. Algorithms, 14(12), 353. https://doi.org/10.3390/a14120353