
algorithms

Article

A Model-Driven Approach for Solving the Software
Component Allocation Problem

Issam Al-Azzoni 1,* , Julian Blank 2 and Nenad Petrović 3

����������
�������

Citation: Al-Azzoni, I.; Blank, J.;

Petrović, N. A Model-Driven

Approach for Solving the Software

Component Allocation Problem.

Algorithms 2021, 14, 354. https://

doi.org/10.3390/a14120354

Academic Editor: Frank Werner

Received: 17 November 2021

Accepted: 3 December 2021

Published: 6 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Engineering, Al Ain University, Al Ain 64141, United Arab Emirates
2 Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA;

blankjul@egr.msu.edu
3 Faculty of Electronic Engineering, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia;

nenad.petrovic@elfak.ni.ac.rs
* Correspondence: issam.alazzoni@aau.ac.ae

Abstract: The underlying infrastructure paradigms behind the novel usage scenarios and services
are becoming increasingly complex—from everyday life in smart cities to industrial environments.
Both the number of devices involved and their heterogeneity make the allocation of software com-
ponents quite challenging. Despite the enormous flexibility enabled by component-based software
engineering, finding the optimal allocation of software artifacts to the pool of available devices and
computation units could bring many benefits, such as improved quality of service (QoS), reduced
energy consumption, reduction of costs, and many others. Therefore, in this paper, we introduce a
model-based framework that aims to solve the software component allocation problem (CAP). We
formulate it as an optimization problem with either single or multiple objective functions and cover
both cases in the proposed framework. Additionally, our framework also provides visualization
and comparison of the optimal solutions in the case of multi-objective component allocation. The
main contributions introduced in this paper are: (1) a novel methodology for tackling CAP-alike
problems based on the usage of model-driven engineering (MDE) for both problem definition and
solution representation; (2) a set of Python tools that enable the workflow starting from the CAP
model interpretation, after that the generation of optimal allocations and, finally, result visualization.
The proposed framework is compared to other similar works using either linear optimization, genetic
algorithm (GA), and ant colony optimization (ACO) algorithm within the experiments based on
notable papers on this topic, covering various usage scenarios—from Cloud and Fog computing
infrastructure management to embedded systems, robotics, and telecommunications. According to
the achieved results, our framework performs much faster than GA and ACO-based solutions. Apart
from various benefits of adopting a multi-objective approach in many cases, it also shows significant
speedup compared to frameworks leveraging single-objective linear optimization, especially in the
case of larger problem models.

Keywords: component allocation; model-driven engineering; heterogeneous systems; multi-objective
optimization

1. Introduction

Model-driven engineering (MDE) advocates the use of models for the quick and
efficient development of systems. Models are the central artifacts in MDE, and these
models must conform to meta-models. By means of model transformation, a model
conforming to a meta-model can be automatically transformed into another target model
conforming to a new meta-model. Advances in MDE have been applied in a wide variety
of domains [1–4].

In this paper, we present an MDE-based framework for solving the software compo-
nent allocation problem (CAP). In a CAP, a number of software components need to be
allocated (or mapped) to a number of heterogeneous computational units. These units

Algorithms 2021, 14, 354. https://doi.org/10.3390/a14120354 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-2758-8145
https://orcid.org/0000-0003-2264-7369
https://doi.org/10.3390/a14120354
https://doi.org/10.3390/a14120354
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14120354
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14120354?type=check_update&version=2


Algorithms 2021, 14, 354 2 of 19

provide a number of resources that are consumed by the software components. In a
component-based software system, designers and architects need tools to find optimal
allocations which minimize resource consumption. Solving CAPs has become very im-
portant considering the heterogeneity of computer systems today and the advances in
component-based software engineering, which has enabled the freedom and ease to make
different allocations of software components on the available computation units [5–7].

Allocating the components to the units is formulated as an optimization problem with
a single objective function in the case of single-objective CAPs or multiple objective func-
tions in the case of multi-objective CAPs. The presented framework provides a solver that
solves CAP in both cases. In addition, the framework provides different ways to visualize
and compare the optimal solutions to CAP problems in the case of multi-objective CAPs.

The paper also presents a toolset for reading and validating CAP models. In addition,
the toolset implements a solver for solving CAPs and generating allocation models. Fur-
thermore, the optimal allocations can be visualized using a number of different plots to
better help the designers when making component allocation decisions.

The main contributions of this paper are as follows:

1. A new MDE-based methodology for solving CAPs. The methodology is centered
around the use of newly introduced meta-models and models for defining CAPs and
representing their solutions.

2. A toolset comprising several Python scripts for reading the CAP models and gen-
erating optimal allocations. CAPs can be solved using the toolset assuming single-
objective or multi-objective cost functions.

The organization of the paper is as follows. First, we provide the necessary background
in Section 2. The related literature is discussed in Section 3. Section 4 gives a formal
definition of the component allocation problem. Our proposed method for solving the
component allocation problem is presented in Section 5. Section 6 presents our empirical
study and discusses the results of our experiments. The conclusion and future work are
discussed in Section 7.

2. Background on Model Transformation

Models play a key role in MDE. As a means to deal with the complexity of systems,
a model is a reduced presentation that helps to analyze certain properties of the system
while ignoring irrelevant details.

MDE approaches are based on the use of meta-models. A model needs to conform to a
meta-model. This means that the model must respect the structure and constraints defined
by the meta-model. The meta-model specifies the concepts of a domain, the relationships
between these concepts, and the rules that restrict the possible elements and relationships
in the valid models. In addition, the meta-model itself is specified using a metamodeling
language. For example, the meta-models in the eclipse modeling framework [8] are
specified in Ecore [9]. In this paper, Ecore is used to define the meta-models. However,
there are other meta modeling languages, including the meta object facility (MOF) [10],
which is the core meta modeling language in the model driven architecture (MDA) based
approaches proposed by the object management group (OMG) [11].

MDE approaches consider models as the main development artifacts. Models can
be automatically transferred into other representations. For example, model-to-text trans-
formations transform models into text (or code). In a model-to-model transformation (or
model transformation for short), a model is transformed into another model that can be
at a different level of abstraction or in a different formalism. In such transformations, a
source model conforming to a source meta-model is transformed into a target model which
conforms to a target meta-model.

A model-to-model transformation language is used to specify the transformation rules.
ATLas transformation language (ATL) [12,13] is a model transformation language widely
known by the MDE community. This is due to many features of ATL, including its support
of several meta-modeling languages and the availability of ATL development tools that



Algorithms 2021, 14, 354 3 of 19

are integrated with the Eclipse platform. Programs written in ATL can be executed to
automatically generate the target models. ATL language and toolkit are part of the eclipse
modeling project [14]. There are other model transformation languages such as the QVT
(query/view/transformations) [15] for specifying transformations on models conforming
to MOF.

In ATL, the model transformations are specified using transformation rules. A trans-
formation rule specifies one or more elements to be created in the target model for each
matching element in the source model. ATL supports three kinds of transformation rules:
matched, lazy, and called rules [12]. Matched and lazy rules use a declarative fashion to
specify the transformations, while on the other hand, the called rules use an imperative
style. Matched rules are applied once for each matching element, but lazy rules are applied
as many times for each match as it is referred to from other rules. Called rules, on the
other hand, have to be explicitly invoked by other rules and can accept parameters. They
can only be called from within an imperative code section, either from a matched rule or
another called rule. All of the transformation rules presented in the Appendix, which is to
be discussed later, are matched rules.

3. Related Work

Several research work have considered optimizing component allocations in software
systems. However, the majority of the work either considers a particular setup of the CAP
(such as a fixed set of resources) or requires a set of domain-specific languages and tools.

Švogor et al. [16] apply analytic hierarchy process (AHP) [17] and a GA to find
feasible, locally optimal solutions for allocating software components to computational
units on heterogeneous systems. AHP is used to assign weights to the consumption costs
of the different resources: CPU, memory, and power. The allocation problem considered
by Švogor et al. is formulated as a single-objective optimization problem. A tool that
implements their approach is SCALL (software component allocator). SCALL is an Eclipse
plug-in based on eclipse modeling framework (EMF) [8] which can be used to solve the
component allocation problem (Švogor and Carlson [18]). It enables a user to graphically
create component allocation problem models which can be solved using GA. SCALL can
only solve the allocation problems as defined in [16]. On the other hand, our framework
supports more general allocation problem models with varying resources. In addition, our
framework can be used to solve multi-objective allocation optimization problems.

In [19], the authors implement two meta-heuristics for solving the CAPs. The two meta-
heuristics are genetic algorithm (GA) and ant colony optimization (ACO). An extensible
framework for defining and solving component allocation problems is presented. It is based
on a meta-model defining the allocation problem. Compared to our work, our meta-model
is more general and can be used to define a wider variety of CAPs. In addition, our work
considers the multi-objective formalism of CAPs in addition to the single-objective one.

Malek et al. [20] present and evaluate a framework, called deployment improvement
framework (DIF), for optimizing deployment architectures in distributed software systems.
The framework includes a formal model of the deployment problem and a set of algorithms
for optimizing the deployment. Furthermore, the framework supports multiple quality of
service (QoS) dimensions when optimizing the deployment. The authors also present a
tool that enables the user to visually specify a deployment problem and optimize it.

Koziolek et al. [21] present an approach called PerOpteryx for the improvement
of software architecture models. The approach uses a metaheuristic search guided by
architectural tactics. The metaheuristic search is based on the multi-objective evolutionary
algorithm NSGA-II [22]. The approach assumes that the architectural model is specified
as a palladio component model (PCM) [23]. The PCM is transformed into a layered
queueing network (LQN) [24] for performance analysis. The approach finds Pareto-optimal
architectural candidates with respect to two objectives: response time and server costs. The
approach is extended in [25] to support optimizing three objectives: response time, server
costs, and availability.



Algorithms 2021, 14, 354 4 of 19

Aleti et al. [26] present a tool, called ArcheOpterix, for the optimization of architectures
of embedded systems. ArcheOpterix is an Eclipse plug-in that works with the Open Source
AADL Tool Environment (OSATE) [27]. It only supports AADL (architecture analysis and
description language) [28] as the description language for the underlying architectures. A
user of ArcheOpterix can extend it with the implementation of different evaluation and
optimization algorithms. In Aleti et al. [29], the authors use ArcheOpterix to compare the
performance of two multi-objective optimization algorithms: Pareto ant colony algorithm
(O-ACO) and multi-objective algorithm (MOGA). There are two objectives to be optimized:
the communication overhead and the data transmission reliability. The authors observe
that while P-ACO performs similar to MOGA in many cases, in other cases, its optimization
progress stagnates in the long run.

Li et al. [30] introduce AQOSA (automated quality-driven optimization of software
architecture) toolkit for optimizing component-based architecture designs. In AQOSA,
the system architectures are modeled in a supported software architecture description
language such as AADL. AQOSA uses a simulation engine to evaluate architecture alterna-
tives. Three objectives are considered: processor utilization, cost, and data flow latency.
AQOSA implements several evolutionary multi-objective optimization algorithms to find
approximations to the Pareto optimal sets. The optimization process starts with some
initial input architectures. Then the tool enters into a metaheuristic loop in which it keeps
generating alternative architecture models by applying genetic operations such as crossover
and mutation.

In [31], the authors describe a model-driven approach to specify domain-specific
languages and tools for optimizing architecture variants. The specifications are based
on the use of the profile mechanism for extending UML. The authors demonstrate the
applicability of their approach on an example from the communication system domain. The
approach utilizes a model-to-text generator to transform specified models into executable
code, which an optimization framework can execute. Since the approach uses UML’s
profile extension mechanism, it can optimize the architecture of systems modeled in UML.

A model-driven approach for specifying allocation problems and finding feasible
allocations is proposed and validated by Pohlmann and Hüwe [32]. To specify feasibility
constraints, the authors define a domain-specific language (DSL), named allocation specifi-
cation language (ASL), and an Eclipse-based tool that can be used for specifying allocation
constraints. The allocation problem is formulated as a 0-1 Integer Linear Program (ILP)
and solved by an ILP solver. A model specified in ASL is transformed into a form that the
ILP-solver can solve. The approach does not find optimal allocations; instead, it is limited
to defining allocation constraints and finding feasible ones. Different types of constraints
can be specified, such as timing, priority, and deadlines.

4. Component Allocation Problem

The component allocation problem (CAP) addresses the assignment of components to
units. Each component must be assigned to exactly one unit. Such an allocation of a com-
ponent consumes resources of the corresponding unit. Each unit, in turn, has a maximum
capacity for each resource which shall not be violated for any feasible component allocation.
The goal is to find an optimal component allocation that minimizes the consumption of
each resource and does not violate any maximum resource capacity. Let us assume a sys-
tem consisting of U units and C components to be allocated. Each unit offers M resources
that are consumed by an allocation. The m-th resource consumption (1 ≤ m ≤ M) of an
assignment of the i-th component (1 ≤ i ≤ C), to the j-th unit (1 ≤ j ≤ U) is given by
Tijm and the maximum capacity by Rjm. A component allocation is given by the binary
matrix x of shape C ·U where xij = 1 expresses an assignment of the i-th component to the
j-th unit. Since a component must be assigned to exactly one unit, ∑U

j=1 xij = 1 for each
component i must hold. Since the overall resource consumptions are conflicting with each
other, all possible Pareto-optimal solutions shall be found. We refer to this constrained



Algorithms 2021, 14, 354 5 of 19

multi-objective optimization problem as multi-objective component allocation problem
(MOCAP), which is stated as follows:

Minimize fm(x) =
C

∑
i=1

U

∑
j=1

xij · Tijm ∀j ∈ (1, . . . , M) (1)

subject to
C

∑
i=1

xij · Tijm ≤ Rjm ∀m ∈ (1, . . . , M), j ∈ (1, . . . , U) (1a)

U

∑
j=1

xij = 1 ∀i ∈ (1, . . . , C) (1b)

xij ∈ {0, 1}, ∀i ∈ (1, . . . , C), j ∈ (1, . . . , U). (1c)

The goal of MOCAP is to find the Pareto-optimal set of component allocations. A
solution is called Pareto-optimal if there is no other solution that dominates it. An allocation
x dominates another allocation y, if fm(x) ≤ fm(y) for all 1 ≤ j ≤ M, and there exists at
least one resource m where fm(x) < fm(y). Their corresponding resource consumption
values are mapped to the objective space and referred to as Pareto-front.

Instead of solving the multi-objective problem directly, the objectives can be aggre-
gated to a single cost function to minimize. The objective function is defined as follows:

f (w)(x) =
M

∑
m=1

wm ·
(

C

∑
i=1

U

∑
j=1

xij · Tijm

)
(2)

where wm is the trade-off weight assigned to the m-th resource. Note that the trade-off
weights w need to satisfy the following condition:

M

∑
m=1

wm = 1 (3)

for an allocation to be feasible.
Figure 1 demonstrates an example of a component allocation problem. There are three

components (C = 3), two units (U = 2), and two resources (M = 2). The problem can be
converted to a bipartite graph with different vectors or resources as weights on each edge.
The resource capacity and consumptions are annotated by a vector notation for brevity.
For instance, T11 = (T111, T112) = (7, 15). A concrete allocation is represented by red solid
lines. The allocation sets x12, x22, x31 to one, and all other entries in x to zero. The resource
capacity of Unit 1 is not violated since 4 < R11 = 13 and 8 < R12 = 25 as well as the
capacities of Unit 2 14 < R21 = 20 and 22 < R22 = 30. Thus, this is a feasible component
allocation with f (x) = (4 + 14, 8 + 22) = (18, 30). For the single-objective scalarization
with w = (0.75, 0.25) this results in f (w)(x) = 21.

Table 1 shows the set of all possible allocations in the component allocation problem
example. For each allocation, the table shows whether it is feasible. In addition, it shows
the values for f (w)(x) and f (x). The Pareto-optimal solutions are in bold (Allocations 5
and 6). Note that Allocation 5 is the optimal solution in the case of single-objective CAP
optimization. Figure 2 presents an overview of the possible allocations as depicted in the
objective space.



Algorithms 2021, 14, 354 6 of 19

R� = (20, 30)

Units U

��

Components C

��

��

��

��

R� = (13, 25)

(6 + 8, 5 + 17) =
(14, 22) < R�

(4, 8) < R�

Figure 1. An example of a component allocation problem.

Table 1. The set of all allocations for the component allocation problem example.

Allocation Assignment of Component Feasible? Non-Dominated? f (w)(x) f (x)
x(i) 1 2 3

1 1 1 1 No No 19.75 (18, 25)

2 1 1 2 No No 21 (21, 21)

3 1 2 1 Yes No 24.25 (19, 40)

4 1 2 2 Yes No 25.5 (22, 36)

5 2 1 1 Yes Yes 16.5 (17, 15)

6 2 1 2 Yes Yes 17.75 (20, 11)

7 2 2 1 Yes No 21 (18, 30)

8 2 2 2 No No 22.25 (21, 26)

16 17 18 19 20 21 22 23

f1

5

10

15

20

25

30

35

40

45

f 2

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

Feasible

Infeasible

Non-Dominated

Figure 2. Overview of the objective space showing all eight solutions of the example.

5. Methodology

This study proposes a procedure to analyze the multi-objective component allocation
problem systematically. It starts by defining a use case when such a problem is faced in
practice and provides a best-practice approach to the optimization procedure. The best-
practice approach is based on a meta-model definition that can be validated, transformed,
and ultimately solved by an optimizer. Moreover, a visualization-guide post-processing
step for the analysis of Pareto-optimal solutions is explained.

Most of the steps outlined in the proposed methodology are supported by a toolset.
The toolset consists of Python scripts for reading CAP models, solving the optimization
problem in both single-objective and multiple-objective cases, and generating optimal



Algorithms 2021, 14, 354 7 of 19

allocation models. PyEcore framework [33] is used to read the CAP models and generate the
output models. Other scripts are used for visualizing the optimal allocations. The Python
scripts are available on GitHub at https://github.com/julesy89/pyallocation (accessed on
15 November 2021). In addition, CAP models can be validated by running the Java program
(also available on the same GitHub repository mentioned above) using a command line.

5.1. Framework

The framework is shown in Figure 3. A user starts with a model for an allocation
problem that conforms to a meta-model. The user needs to develop a model transformation
program that is used to transform the allocation problem model into a CAP model which
conforms to the CAP meta-model defined in Section 5.2. The CAP model can be validated
by checking it against a set of OCL constraints (see Section 5.3). Then, the CAP can be
solved using a single-objective or multi-objective optimization method. The output of
the solver is a model defining an optimal solution set. The optimal solutions can then be
visualized in the objective space using different types of plots. In addition, the framework
provides several approaches for decision-making to help the user choose a single solution
from the Pareto front in the case of multi-objective optimization.

Figure 3. Overview of the proposed framework for solving CAPs.

5.2. Meta-Models

The meta-model defining a component allocation problem is depicted in Figure 4. An
AllocationProblem has a number of Components and Units. Each of the Components and Units
has a name. In addition, an AllocationProblem has a number of Resources, and each Resource
has a name.

Each Unit has a certain capacity for every Resource it provides. This is represented by
the ResourceAvailability elements in the AllocationProblem. Each ResourceAvailability defines
the amount of the capacity of a Unit for a given Resource. In addition, an AllocationProblem
is composed of a number of ResourceConsumption elements. Each ResourceConsumption
defines the amount of Resource consumed by a given Component on a given Unit.

https://github.com/julesy89/pyallocation


Algorithms 2021, 14, 354 8 of 19

Figure 4. The CAP meta-model.

Furthermore, an AllocationProblem is composed of a number of TradeOffWeight elements
which define the trade-off weights assigned to the different resources. These trade-off
weights are important in the case of a single-objective optimization of CAP. An Alloca-
tionProblem can also have a number of AllocationConstraints and AntiAllocationConstraints
which define the architectural constraints in a CAP. An AllocationConstraint element linking
a Component to a Unit represents the constraint that this component must be allocated on
that unit. Conversely, an AntiAllocationConstraint element linking a Component to a Unit
represents the constraint that this component must not be allocated on that unit.

The solution set meta-model is shown in Figure 5. A SolutionSet is composed of a
number of Solutions. Each Solution has an id and is composed of Mappings. Each Mapping
maps a component to a unit. The optimal solutions to a CAP are represented using a
SolutionSet. If there is no solution, the SolutionSet is empty.

Figure 5. The solution set meta-model.

5.3. Model Validation

The CAP model can be validated before using the solver. Figure 6 shows several
assertions in object constraint language (OCL), which can be automatically checked against
a CAP model. The assertions are not designed to capture syntactic or type-related issues in
the CAP model; instead, they are used to find logical errors such as non-unique names and
negative values for resource availabilities. In order to check for syntactic and type-related
errors, several available tools can be used.

The OCL assertions are described in the comments. The assertion OCL7 is used to
check that the sum of the weights equals one in the case of single-objective optimization.
For multi-objective optimization, the weights are unnecessary and hence are allowed to be
missing from the CAP model.



Algorithms 2021, 14, 354 9 of 19

–– OCL1. It checks that all resource consumptions are positive.
ResourceConsumption.allInstances() −> forAll(b | b.amount > 0)

–– OCL2. It checks that all resource availabilities are positive.
ResourceAvailability.allInstances() −> forAll(b | b.amount > 0)

–– OCL3. It checks that all component names are unique.
Component.allInstances() −> isUnique(compName)

–– OCL4. It checks that all unit names are unique.
Unit.allInstances() −> isUnique(unitName)

–– OCL5. It checks that all resource names are unique.
Resource.allInstances() −> isUnique(resName)

–– OCL6. It checks that all weights are positive.
TradeOffWeight.allInstances() −> forAll(b | b.weight > 0)

–– OCL7. It checks that there are no weights or the sum of the weights must be one.
TradeOffWeight.allInstances() −> isEmpty() or
TradeOffWeight.allInstances() −> collect(weight) −> sum()=1.0

Figure 6. OCL assertions for the CAP meta-model.

5.4. Model Transformation

Model transformation plays a central role in our framework. The Appendix shows a
model transformation program that can be used to transform models conforming to the
meta-model defined in [19] to models conforming to the CAP meta-model. This program
is used in this paper as an example to demonstrate the role of model transformation in
our framework.

The source meta-model in [19] accommodates the definition of software component
allocation problems in embedded, heterogeneous systems. The meta-model assumes that
there exist three resources provided by the computational units: CPU, memory, and power.
In the meta-model, there is a TradeOffVector element that is used to define the trade-off
weights assigned to the three resources. These weights are used to define the single-
objective function used by the component allocation problems considered in [19]. The
meta-model is defined in Ecore [9].

The model transformation program shown in the Appendix is written in ATL. The
model transformation program consists of seven rules. Table 2 shows the mapping im-
plemented by the program. All of the rules are matched rules which means that they are
applied once for each match. Matched rules are a form of a declarative style for defining
the transformation rules, which is preferred over an imperative style [34]. The first rule,
called Main, transforms the root element of the source model into a root element for the
target model. The remaining rules transform the other source model elements into the
corresponding ones in the target model. Note that the resolveTemp operation provided
by the ATL Module data type is used in the program to reference target model elements
generated from a given source model element by a matched rule [34]. The ATL Module
data type has a single instance that can be referenced using the variable thisModule which
is used throughout the transformation program.



Algorithms 2021, 14, 354 10 of 19

Table 2. Mapping Implemented by the ATL Program in Appendix A.

Rule Source Model Element Target Model Element(s)

Main AllocationProblem AllocationProblem, Resources
Component Component Component

Unit CompUnit Unit, ResourceAvailabilities
TradeOffWeight TradeOffVector TradeOffWeights

ResourceConsumption ResConsumption ResourceConsumptions
AllocationConstraint AllocationConstraint AllocationConstraint

AntiAllocationConstraint AntiAllocationConstraint AntiAllocationConstraint

5.5. Optimization

After defining the model and optimization problem, (optimal) component allocations
shall be found. Since the problem is multi-objective in nature, not only a single optimal
solution but a set of Pareto-optimal solutions is desired. In Algorithm 1 the pseudo-code for
solving the MOCAP is shown. The solver starts by initialization an empty archive A. Then,
uniform weight vectors W are created using the Das and Dennis sampling method [35].
The uniformity of weight vectors is important to ensure a diverse set of solutions. In our
experiments, we have used a partition number p = 12 for creating the weight vectors. For
each of the weights w ∈ W, a single-objective optimization problem is solved. An efficient
mixed-integer linear programming (MILP) solver can be applied to obtain an optimal
solution s because the optimization problem consists of only linear functions. The solution
for the scalarized problem fm(x) is known to be a non-dominated solution. However, runs
with different weight vectors w might find the identical solution s. Thus, s is only added
to the archive if it is not present yet. It is worth noting that the weighted sum approach
cannot find any solutions on the concave part of the front.

Algorithm 1: Solver for MOCAP.
Input : Number of Units U, Number of Components C, Number of Resources M,

Resource Consumptions T, Resource Capacities R
/* Archive of Pareto-optimal solutions */
A← {}
/* Uniformly distributed weight vectors */
W ← uniform_weights()

foreach w ∈W do
/* Solve a linear single-objective optimization problem */
s← solve_milp(U, C, M, T, R)
/* if a new solution has been discovered, add to non-dominated

archive A */
if s 6∈ A then

A← A ∪ {s}
end

end
return A

5.6. Visualization

Our framework supports different kinds of visualizations for the multi-objective
optimization of component allocation problems with two or three objectives. The supported
visualizations include scatter plots. A scatter plot provides a general overview of the
solution set. Section 6 includes two examples of scatter plots. Petal diagrams are another
kind of visualization that are useful to present single optimal solutions. A petal diagram is
a pie diagram where the value of an objective is represented by its corresponding piece’s
diameter. Figure 7 includes three example petal diagrams that can be created by our
framework.



Algorithms 2021, 14, 354 11 of 19

f1

f2

Solution 5

f1

f2

Solution 6

f1

f2

Solution 7

Figure 7. Visualization of three solutions using petal diagrams.

6. Results and Discussion

This section presents the results of mainly three sets of experiments. The first one
compares our framework against approaches which use meta-heuristics for solving the
CAP. In the second set of experiments, we compare our framework against SCALL. In
the final set of experiments, we apply our framework in optimizing container allocations
to heterogeneous devices in the contexts of Fog Computing and next generation wireless
network planning.

In the first set of experiments, we apply our framework to solve the component
allocation problems presented in [19]. These problems were collectively referred to as
Systems 0 through 9. The models corresponding to the systems were obtained from the
GitHub project on [36]. All of the models conform to the component allocation problem
meta-model in [19]. The definition of these allocation problems was based on a realistic
deployment problem of a vision-based software system on an autonomous underwater
vehicle [16].

The allocation problems presented in [19] are of different sizes. For the allocation
problems corresponding to Systems 0 to 4, the number of components is C = 11 and the
number of units is U = 4. For Systems 5 and 6, the number of units is U = 8 and the number
of components is the same as that of Systems 0 to 4. For Systems 7 and 8, U = 16 and C = 22.
System 9 represents the largest allocation problem and is composed of U = 32 units and
C = 30 components. There are M = 3 resources in all of the systems. The corresponding
meta-model is the source meta-model for the model transformation example considered in
Section 5.4.

Table 3 compares the optimal cost results found by using our framework against
those found by using implementations of two meta-heuristics for solving the component
allocation problem: the first one is a genetic algorithm (GA), and the second is an ant colony
optimization (ACO) algorithm. These implementations were presented in [19]. For the GA,
the number of generations was set to 10,000, and for the ACO the number of iterations was
200. More details on the setup and parameters used for both meta-heuristics can be found
in [19]. It is clear from the results that our framework returns optimal allocations that are
the same or better (i.e., have less allocation cost) than those found by the GA and ACO
meta-heuristics. This is especially true for large component allocation problems, such as
those in Systems 7–9.



Algorithms 2021, 14, 354 12 of 19

Table 3. Optimal cost results for our framework, GA, and ACO.

Our Framework GA ACO

System 0 141.01 141.01 141.01
System 1 176.62 176.62 176.62
System 2 159.78 159.78 159.78
System 3 186.16 186.16 186.16
System 4 196.31 196.31 196.31
System 5 108.10 122.09 108.27
System 6 143.84 160.31 147.25
System 7 202.28 285.57 273.38
System 8 245.24 325.29 342.62
System 9 263.38 452.82 452.66

Table 4 shows the execution times comparing GA, ACO, and our framework. The
reported statistical measures are based on samples of 10 runs for each system. The execution
times are the elapsed times for executing the solvers, and they exclude the times for reading
the input models and generating the output models. The experiments were carried out
on a desktop computer with a 3.70GHz dual-core processor and 8GB RAM. The results
indicate that the execution times for the GA and ACO are several orders of magnitude
larger than the execution times incurred by our framework. At the same time, the optimal
allocations returned by our framework are better, as demonstrated in Table 3.

Table 4. The execution time results for our Framework, GA, and ACO (the unit is in seconds). SD
stands for standard deviation.

Our Framework GA ACO

Mean SD Mean SD Mean SD

System 0 20.94 3.51 158.71 5.79 6949.38 190.36
System 1 33.72 2.57 1092.26 88.62 7196.58 196.00
System 2 35.25 4.10 1278.01 164.76 6820.97 201.67
System 3 23.95 2.67 2962.68 307.75 6832.64 366.73
System 4 21.72 2.33 7999.42 874.65 7137.78 364.83
System 5 27.49 4.20 216.13 10.28 13,539.28 162.85
System 6 27.93 2.70 213.58 16.48 13,740.06 279.69
System 7 66.45 3.81 937.94 76.35 80,872.42 1598.87
System 8 73.39 17.29 2133.85 240.11 84,292.41 2502.88
System 9 165.63 14.09 1883.04 186.61 401,164.30 2986.01

Figure 8 shows the Pareto fronts obtained by the multi-objective optimization of
Systems 1 and 9. Without loss of generality and due to space constraints, we only include
the results for these two systems. The scatter plots in the figure present visualizations of
the objective space showing the non-dominated solutions in the Pareto fronts. For System
1, we implemented an exhaustive search algorithm to determine the Pareto front. The
non-dominated solutions found by the exhaustive search method are colored in orange. On
the other hand, the non-dominated solutions found by using our framework are marked
with the character x. The Pareto fronts for System 1 are shown in Figure 8a. The figure
shows that the set of non-dominated solutions found by our framework is a subset of the
set of non-dominated solutions found by the exhaustive search method. Although our
framework may not find all non-dominated solutions, it finds a good mix of non-dominated
solutions that are distributed across the objective space of feasible solutions.



Algorithms 2021, 14, 354 13 of 19

(a) (b)
Figure 8. Multi-objective optimization results for Systems 1 and 9. (a) Pareto fronts for System 1;
(b) Pareto fronts for System 9.

For System 9, the exhaustive search method becomes infeasible. Instead, we used
Pymoo [37] to solve the multi-objective optimization problem. In particular, we applied
the NSGA-II [38]. The algorithm follows the general outline of a genetic algorithm with a
modified mating and survival selection. The non-dominated solutions found by Pymoo
are colored in orange. The Pareto fronts for System 9 are shown in Figure 8b. The figure
shows that some of the non-dominated solutions found by applying our framework are
also found by using Pymoo. However, several of the non-dominated solutions found by
applying our framework differ from those found by using Pymoo.

Considering the execution times for System 9, the 95% confidence interval (based on a
sample of 10 runs) for the execution times was 3.4076 ± 0.052464 (the unit is in seconds) in
the case of using Pymoo and 17.47997 ± 0.16062 in the case of using our framework. Note
that for the NSGA-II, the population size was set to 100, and the number of generations
was set to 100. The crossover rate was set to 0.90, and the mutation rate was set to 0.05.

In the second set of experiments, we apply our framework in solving allocation
problems represented as models conforming to the meta-model of the SCALL tool [18].
This tool consists of two main parts: an editor that is used to create the models and a Python
script, called PyAllocator, which is used to solve the allocation problem by employing a
multi-objective heuristic allocation method. SCALL is implemented as an Eclipse plug-in
and has been used in solving allocation problems in the research literature (for example,
see the work of Švogor et al. [39]). Figure 9 shows the SCALL meta-model, which was
adapted from [18]. The details of the meta-model can be found in [18]. We note that the
meta-model does neither include elements for defining the weights nor the architectural
constraints in a CAP.

To compare our framework against the SCALL tool, we instantiated two models
conforming to the SCALL meta-model with the same parameters as Systems 0 and 9. Then,
we used PyAllocator to solve the single-objective optimization problem. In the script, we
defined the weights of the three resources by setting the elements of the trade-off vector wj.
There are no architectural constraints in the allocation problems. To apply our framework,
we created a model transformation program to transform SCALL models into models
conforming to the CAP meta-model. We used this transformation program to transform
the models, which correspond to Systems 0 and 9.



Algorithms 2021, 14, 354 14 of 19

Figure 9. The SCALL meta-model.

Figure 10 shows optimal cost results obtained in 10 different runs. In the figure, the
ranges for the approximated optimal costs (as found by SCALL) are represented as gray
rectangles delimited by the minimum and maximum values in the different runs for each
system. In addition, the figure shows the optimal cost for each system obtained using our
framework as a solid black line. With regards to the execution times, for System 9, the 95%
confidence interval for the execution times was 0.19447 ± 0.0022941 (the unit is in seconds)
in the case of using the PyAllocator script and 0.16861 ± 0.0041780 in the case of using
our framework.

190

240

290

340

390

440

490

System 0 System 9

Ranges for Optimal Costs Found

Figure 10. Optimal cost results for Systems 0 and 9.

Furthermore, we apply our proposed approach in order to extend and improve the
previous works relying only on single-objective optimization in cases of conflicting goals.
However, in such cases, conflicting aspects are present, such as infrastructure cost and
energy consumption which should be kept as small as possible, while the performance has
to be maximized, on the other side. Therefore, the adoption of multi-objective approach
has the potential for improvement of the allocation outcome in these scenarios when there



Algorithms 2021, 14, 354 15 of 19

are several equivalent solutions with respect to cost minimization, but exhibit different
performance or vice versa.

First, we considered the SMADA-Fog framework [40] which aims to find optimal
container allocations to heterogeneous devices in the context of Fog Computing scenarios.
In the original paper, the allocation problem is treated as a single-objective optimization
problem aiming to minimize energy consumption or maximize execution speed under the
constraints related to memory capacity, computing architecture (ARM/x86), and execution
environment (Fog or Cloud). After the execution of the same experiments from [40], it was
noticed that our approach was at least an order of magnitude faster regarding the execution
time when it comes to the single-objective optimization case. Moreover, it was noticed that
the speedup was more significant for larger models, reaching up to 2 orders of magnitude.
On the other side, additional benefits were achieved using the proposed approach, as
it enables multi-objective optimization of both energy consumption (minimization) and
execution speed (maximization) at the same time. This way, it was possible to select more
energy-efficient deployments for the same execution speed, while minimizing overall
infrastructure maintenance costs. However, in the case of multi-objective optimization,
the execution times were two orders of magnitude larger, reaching up to around 2.8 s in
our experiments.

On the other side, similar findings are observed when it comes to the usage of our
framework in the telecommunications domain for the optimal base station allocation
at given smart city locations in the context of next-generation software-defined mobile
networks [41]. The goal of the objective function is to minimize the deployment costs, while
taking into account constraints related to fading-affected network performance and service
demand. Apart from much faster execution in single-objective optimization mode in the
case of large models (up to three orders of magnitude in case of more than 10 locations),
the adoption of multi-objective optimization increased the QoS of the planned network
deployment while reducing costs and energy consumption.

7. Conclusions and Future Work

In this paper, we have introduced a novel model-driven framework tackling the
component allocation problem for both single- and multi-objective cases. The proposed
solution was evaluated in the experiments based on several significant works in the area of
software resource and computing infrastructure management. The results were compared
to other solutions based on linear optimization tackling the CAP problem and other
methods, such as GA and ACO, on the other side. Based on our experimental results,
it can be concluded that our approach shows a faster execution time than GA (up to
3 orders of magnitude) and ACO (up to 5 orders of magnitude). Moreover, according
to our results, it is also faster than several frameworks based on single-objective linear
optimization, especially for larger models, up to two orders of magnitude. Furthermore,
we extended several of the existing works with a multi-objective approach, achieving
additional benefits, such as improved performance, while maintaining the infrastructure
management costs and energy consumption as small as possible. Finally, we also include
the optimal solution visualization workflow, which can help in decision-making in the case
of multi-objective allocation.

To apply the proposed framework in solving a component allocation problem, the
problem must be formulated as MOCAP (see Equations (1) and (2)). This requires the
resource consumptions to have linear relationships with the possible allocations. Then, the
modeler needs to create a model transformation into a model which conforms to the CAP
meta-model. Although our framework may not be applicable to all allocation problems,
we believe that the meta-model itself can be extended to accommodate a wider-variety of
such problems. This would require extending the solver as well.

In future work, we would like to further exploit the results obtained as outcome of the
optimization process for the purpose of code generation relying on domain-specific meta-
models, such as the construction of virtual machine and container management commands



Algorithms 2021, 14, 354 16 of 19

in the case of software resource allocation or software-defined radio commands for a
telecommunications case study. Additionally, the extension and adoption of the proposed
approach in other domains is also planned, such as optimal resource planning during the
COVID-19 pandemic. Finally, leveraging the synergy of optimization-based component
allocation with predictions performed against the data collected during the system usage
relevant to several allocation constraints can be considered in order to develop a new
methodology for proactive resource planning.

Author Contributions: Conceptualization, I.A.-A. and J.B.; Methodology, I.A.-A. and J.B.; Software,
I.A.-A. and J.B.; Validation, I.A.-A. and N.P.; Formal Analysis, I.A.-A. and J.B.; Data Curation, I.A.-A.;
Writing—Original Draft Ppreparation, I.A.-A., J.B. and N.P.; Writing—Review and Eediting, I.A.-A.,
J.B., and N.P.; Visualization, I.A.-A. and J.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

module module CAP1ToCAP2;
create create OUT: CAP2 from from IN: CAP1;

rule Main {
from ap1: CAP1!AllocationProblem
to ap2: CAP2!AllocationProblem (
ID <- ap1.ID,
components <- ap1.components,
units <- ap1.compUnits,
allocationConstraints <- ap1.allocationConstraints,
antiAllocationConstraints <- ap1.antiAllocationConstraints,
resources <- thisModule.resolveTemp(ap1, 'res1'),
resources <- thisModule.resolveTemp(ap1, 'res2'),
resources <- thisModule.resolveTemp(ap1, 'res3'),
tradeOffvector <- thisModule.resolveTemp(ap1.tradeOffvector,'tow_cpu'),
tradeOffvector <- thisModule.resolveTemp(ap1.tradeOffvector,'tow_memory'),
tradeOffvector <- thisModule.resolveTemp(ap1.tradeOffvector,'tow_power'),
resourceconsumption <- ap1.resConsumptions->collect(e|thisModule.resolveTemp(e,'rc2_cpu')),
resourceconsumption <- ap1.resConsumptions->collect(e|thisModule.resolveTemp(e,'rc2_memory')),
resourceconsumption <- ap1.resConsumptions->collect(e|thisModule.resolveTemp(e,'rc2_power')),
resourceavailability <- ap1.compUnits->collect(e|thisModule.resolveTemp(e,'ra_cpu')),
resourceavailability <- ap1.compUnits->collect(e|thisModule.resolveTemp(e,'ra_memory')),
resourceavailability <- ap1.compUnits->collect(e|thisModule.resolveTemp(e,'ra_power'))

),
res1: CAP2!Resource (
resName <- 'cpu'

),
res2: CAP2!Resource (
resName <- 'memory'

),
res3: CAP2!Resource (
resName <- 'power'

)
}

rule Component {
from com1: CAP1!Component
to com2: CAP2!Component (

compName <- com1.compName
)

}

rule Unit {
from unit1: CAP1!CompUnit
to unit2: CAP2!Unit (

unitName <- unit1.compUnitName
),
ra_cpu: CAP2!ResourceAvailability (

amount <- unit1.cpuAvail,
unit <- unit1,



Algorithms 2021, 14, 354 17 of 19

resource <- thisModule.resolveTemp(CAP1!AllocationProblem.allInstances().first(), 'res1')
),
ra_memory: CAP2!ResourceAvailability (

amount <- unit1.memAvailable,
unit <- unit1,
resource <- thisModule.resolveTemp(CAP1!AllocationProblem.allInstances().first(), 'res2')

),
ra_power: CAP2!ResourceAvailability (

amount <- unit1.powerAvail,
unit <- unit1,
resource <- thisModule.resolveTemp(CAP1!AllocationProblem.allInstances().first(), 'res3')

)
}

rule TradeOffWeight {
from tov1: CAP1!TradeOffVector
to tow_cpu: CAP2!TradeOffWeight (

weight <- tov1.cpuFactor,
resource <- thisModule.resolveTemp(CAP1!AllocationProblem.allInstances().first(), 'res1')

),
tow_memory: CAP2!TradeOffWeight (

weight <- tov1.memoryFactor,
resource <- thisModule.resolveTemp(CAP1!AllocationProblem.allInstances().first(), 'res2')

),
tow_power: CAP2!TradeOffWeight (

weight <- tov1.powerFactor,
resource <- thisModule.resolveTemp(CAP1!AllocationProblem.allInstances().first(), 'res3')

)
}

rule ResourceConsumption {
from rc1:CAP1!ResConsumption
to rc2_cpu:CAP2!ResourceConsumption (

amount <- rc1.cpuCons,
component <- rc1.component,
unit <- rc1.compUnit,
resource <- thisModule.resolveTemp(CAP1!AllocationProblem.allInstances().first(), 'res1')

),
rc2_memory:CAP2!ResourceConsumption (

amount <- rc1.memoryCons,
component <- rc1.component,
unit <- rc1.compUnit,
resource <- thisModule.resolveTemp(CAP1!AllocationProblem.allInstances().first(), 'res2')

),
rc2_power:CAP2!ResourceConsumption (

amount <- rc1.powerCons,
component <- rc1.component,
unit <- rc1.compUnit,
resource <- thisModule.resolveTemp(CAP1!AllocationProblem.allInstances().first(), 'res3')

)
}

rule AllocationConstraint {
from alloc1: CAP1!AllocationConstraint
to allo2: CAP2!AllocationConstraint (

component <- alloc1.component,
unit <- alloc1.compUnit

)
}

rule AntiAllocationConstraint {
from antiAlloc1: CAP1!AntiAllocationConstraint
to antiAllo2: CAP2!AntiAllocationConstraint (

component <- antiAlloc1.component,
unit <- antiAlloc1.compUnit

)
}

References
1. Akdur, D.; Garousi, V.; Demirörs, O. A survey on modeling and model-driven engineering practices in the embedded software

industry. J. Syst. Archit. 2018, 91, 62–82. [CrossRef]
2. Boussaïd, I.; Siarry, P.; Ahmed-Nacer, M. A survey on search-based model-driven engineering. Autom. Softw. Eng. 2017,

24, 233–294. [CrossRef]
3. Rodrigues da Silva, A. Model-driven engineering: A survey supported by the unified conceptual model. Comput. Lang. Syst.

Struct. 2015, 43, 139–155. [CrossRef]

http://doi.org/10.1016/j.sysarc.2018.09.007
http://dx.doi.org/10.1007/s10515-017-0215-4
http://dx.doi.org/10.1016/j.cl.2015.06.001


Algorithms 2021, 14, 354 18 of 19

4. de Araújo Silva, E.; Valentin, E.; Carvalho, J.R.H.; da Silva Barreto, R. A survey of Model Driven Engineering in robotics. J.
Comput. Lang. 2021, 62, 101021. [CrossRef]

5. Li, S.; Zhang, H.; Jia, Z.; Zhong, C.; Zhang, C.; Shan, Z.; Shen, J.; Babar, M.A. Understanding and addressing quality attributes of
microservices architecture: A Systematic literature review. Inf. Softw. Technol. 2021, 131, 106449. [CrossRef]

6. Niknejad, N.; Ismail, W.; Ghani, I.; Nazari, B.; Bahari, M.; Hussin, A.R.B.C. Understanding Service-Oriented Architecture (SOA):
A systematic literature review and directions for further investigation. Inf. Syst. 2020, 91, 101491. [CrossRef]

7. Tseng, F.H.; Jheng, Y.M.; Chou, L.D.; Chao, H.C.; Leung, V.C. Link-Aware Virtual Machine Placement for Cloud Services based on
Service-Oriented Architecture. IEEE Trans. Cloud Comput. 2020, 8, 989–1002. [CrossRef]

8. Eclipse Modeling Framework (EMF). Available online: https://www.eclipse.org/modeling/emf/ (accessed on 15 November
2021 ).

9. Steinberg, D.; Budinsky, F.; Paternostro, M.; Merks, E. EMF: Eclipse Modeling Framework; Addison-Wesley Professional: Boston,
MA, USA, 2008; Chapter 5.

10. OMG’s MetaObject Facility. Available online: http://www.omg.org/mof/ (accessed on 15 November 2021).
11. MDA. Available online: http://www.omg.org/mda/ (accessed on 15 November 2021).
12. ATL. Available online: https://www.eclipse.org/atl/ (accessed on 15 November 2021).
13. Jouault, F.; Allilaire, F.; Bézivin, J.; Kurtev, I. ATL: A model transformation tool. Sci. Comput. Program. 2008, 72, 31–39. [CrossRef]
14. Eclipse Modeling Project. Available online: https://eclipse.org/modeling/ (accessed on 15 November 2021).
15. QVT. Available online: http://www.omg.org/spec/QVT/ (accessed on 15 November 2021).
16. Švogor, I.; Crnković, I.; Vrček, N. An Extended Model for Multi-Criteria Software Component Allocation on a Heterogeneous

Embedded Platform. J. Comput. Inf. Technol. 2013, 21, 211–222. [CrossRef]
17. Saaty, R.W. The Analytic Hierarchy Process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [CrossRef]
18. Švogor, I.; Carlson, J. SCALL: Software Component Allocator for Heterogeneous Embedded Systems. In Proceedings of the

European Conference on Software Architecture Workshops, New York, NY, USA, 7 September 2015; Association for Computing
Machinery: New York, NY, USA, 2015, pp. 66:1–66:5.

19. Al-Azzoni, I.; Iqbal, S. Meta-Heuristics for Solving the Software Component Allocation Problem. IEEE Access 2020, 8, 153067–
153076. [CrossRef]

20. Malek, S.; Medvidović, N.; Mikic-Rakic, M. An Extensible Framework for Improving a Distributed Software System’s Deployment
Architecture. IEEE Trans. Softw. Eng. 2012, 38, 73–100. [CrossRef]

21. Koziolek, A.; Koziolek, H.; Reussner, R.H. PerOpteryx: Automated application of tactics in multi-objective software architecture
optimization. In Proceedings of the International Conference on the Quality of Software Architectures and the International
Symposium on Architecting Critical Systems, New York, NY, USA, 20–24 June 2011; pp. 33–42.

22. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective
Optimisation: NSGA-II. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Leiden, The
Netherlands, 5–9 September 2020; Springer: Berlin/Heidelberg, Germany, 2000; pp. 849–858. [CrossRef]

23. Becker, S.; Koziolek, H.; Reussner, R. The Palladio Component Model for Model-Driven Performance Prediction. J. Syst. Softw.
2009, 82, 3–22. [CrossRef]

24. Franks, G.; Omari, T.; Woodside, C.M.; Das, O.; Derisavi, S. Enhanced Modeling and Solution of Layered Queueing Networks.
IEEE Trans. Softw. Eng. 2009, 35, 148–161. [CrossRef]

25. Koziolek, A.; Ardagna, D.; Mirandola, R. Hybrid multi-attribute QoS optimization in component based software systems. J. Syst.
Softw. 2013, 86, 2542–2558. [CrossRef]

26. Aleti, A.; Björnander, S.; Grunske, L.; Meedeniya, I. ArcheOpterix: An extendable tool for architecture optimization of AADL
models. In Proceedings of the Workshop on Model-Based Methodologies for Pervasive and Embedded Software, Vancouver, BC,
Canada, 16 May 2009; IEEE Computer Society: Piscataway, NJ, USA, 2009; pp. 61–71. [CrossRef]

27. OSATE (Open Source AADL Tool Environment). Available online: https://osate.org (accessed on 15 November 2021).
28. Feiler, P.; Gluch, D.; Hudak, J. The Architecture Analysis and Design Language (AADL): An Introduction; Technical Report

CMU/SEI-2006-TN-011; Software Engineering Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 2006.
29. Aleti, A.; Grunske, L.; Meedeniya, I.; Moser, I. Let the Ants Deploy Your Software—An ACO Based Deployment Optimisation

Strategy. In Proceedings of the International Conference on Automated Software Engineering, Auckland, New Zealand, 16–20
November 2009; IEEE Computer Society: Piscataway, NJ, USA, 2009; pp. 505–509. [CrossRef]

30. Li, R.; Etemaadi, R.; Emmerich, M.T.M.; Chaudron, M.R.V. An evolutionary multiobjective optimization approach to component-
based software architecture design. In Proceedings of the Congress of Evolutionary Computation, IEEE: Piscataway, NJ, USA,
2011; pp. 432–439.

31. Wichmann, A.; Maschotta, R.; Bedini, F.; Zimmermann, A. Model-Driven Development of UML-Based Domain-Specific
Languages for System Architecture Variants. In Proceedings of the International Systems Conference (SysCon), Orlando, FL,
USA, 8–11 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8. [CrossRef]

32. Pohlmann, U.; Hüwe, M. Model-driven allocation engineering: Specifying and solving constraints based on the example of
automotive systems. Autom. Softw. Eng. 2019, 26, 315–378. [CrossRef]

33. PyEcore. Available online: https://pyecore.readthedocs.io/en/latest/ (accessed on 15 November 2021).

http://dx.doi.org/10.1016/j.cola.2020.101021
http://dx.doi.org/10.1016/j.infsof.2020.106449
http://dx.doi.org/10.1016/j.is.2020.101491
http://dx.doi.org/10.1109/TCC.2017.2662226
https://www.eclipse.org/modeling/emf/
http://www.omg.org/mof/
http://www.omg.org/mda/
https://www.eclipse.org/atl/
http://dx.doi.org/10.1016/j.scico.2007.08.002
https://eclipse.org/modeling/
http://www.omg.org/spec/QVT/
http://dx.doi.org/10.2498/cit.1002284
http://dx.doi.org/10.1016/0270-0255(87)90473-8
http://dx.doi.org/10.1109/ACCESS.2020.3015864
http://dx.doi.org/10.1109/TSE.2011.3
http://dx.doi.org/10.1007/3-540-45356-3_83
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1109/TSE.2008.74
http://dx.doi.org/10.1016/j.jss.2013.03.081
http://dx.doi.org/10.1109/MOMPES.2009.5069138
https://osate.org
http://dx.doi.org/10.1109/ASE.2009.59
http://dx.doi.org/10.1109/SYSCON.2019.8836895
http://dx.doi.org/10.1007/s10515-018-0248-3
https://pyecore.readthedocs.io/en/latest/


Algorithms 2021, 14, 354 19 of 19

34. ATL/User Guide. Available online: https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL\protect\discretionary{\char\
hyphenchar\font}{}{}_Language#Helpers (accessed on 15 November 2021).

35. Das, I.; Dennis, J.E. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria
Optimization Problems. SIAM J. Optim. 1998, 8, 631–657. [CrossRef]

36. Component Allocation Problem GitHub Project. Available online: https://github.com/ialazzon/\protect\discretionary{\char\
hyphenchar\font}{}{}ComponentAllocationProblem (accessed on 15 November 2021).

37. Blank, J.; Deb, K. Pymoo: Multi-Objective Optimization in Python. IEEE Access 2020, 8, 89497–89509. doi:10.1109/ACCESS.2020.299
0567. [CrossRef]

38. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

39. Švogor, I.; Crnković, I.; Vrček, N. An extensible framework for software configuration optimization on heterogeneous computing
systems: Time and energy case study. Inf. Softw. Technol. 2019, 105, 30–42. [CrossRef]

40. Petrović, N.; Tosic, M. SMADA-Fog: Semantic model driven approach to deployment and adaptivity in fog computing. Simul.
Model. Pract. Theory 2020, 101, 102033. [CrossRef]

41. Petrović, N.; Koničanin, S.; Milić, D.; Suljović, S.; Panić, S. GPU-enabled Framework for Modelling, Simulation and Planning of
Mobile Networks in Smart Cities. In Proceedings of the Zooming Innovation in Consumer Technologies Conference, Novi Sad,
Serbia, 26–27 May 2020; pp. 280–285. [CrossRef]

https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL\protect \discretionary {\char \hyphenchar \font }{}{}_Language#Helpers
https://wiki.eclipse.org/ATL/User_Guide_-_The_ATL\protect \discretionary {\char \hyphenchar \font }{}{}_Language#Helpers
http://dx.doi.org/10.1137/S1052623496307510
https://github.com/ialazzon/\protect \discretionary {\char \hyphenchar \font }{}{}ComponentAllocationProblem
https://github.com/ialazzon/\protect \discretionary {\char \hyphenchar \font }{}{}ComponentAllocationProblem
doi: 10.1109/ACCESS.2020.299 0567
doi: 10.1109/ACCESS.2020.299 0567
http://dx.doi.org/10.1109/ACCESS.2020.2990567
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.infsof.2018.08.003
http://dx.doi.org/10.1016/j.simpat.2019.102033
http://dx.doi.org/10.1109/ZINC50678.2020.9161773

	Introduction
	Background on Model Transformation
	Related Work
	Component Allocation Problem
	Methodology
	Framework
	Meta-Models
	Model Validation
	Model Transformation
	Optimization
	Visualization

	Results and Discussion
	Conclusions and Future Work
	
	References

