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Abstract: A classic and fundamental result, known as the Lovász Local Lemma, is a gem in the prob-
abilistic method of combinatorics. At a high level, its core message can be described by the claim that
weakly dependent events behave similarly to independent ones. A fascinating feature of this result is
that even though it is a purely probabilistic statement, it provides a valuable and versatile tool for
proving completely deterministic theorems. The Lovász Local Lemma has found many applications;
despite being originally published in 1973, it still attracts active novel research. In this survey paper,
we review various forms of the Lemma, as well as some related results and applications.

Keywords: Lovász Local Lemma; probabilistic method in combinatorics; probabilistic polynomial
time algorithm

“One of the most remarkable developments in Com-
puter Science over the past 50 years has been the rea-
lization that allowing computers to toss coins can
lead to algorithms that are more efficient, conceptu-
ally simpler and more elegant than their best known
deterministic counterparts.”

Alistair Sinclair, University of California, Berkeley

1. Introduction

The probabilistic method in combinatorics is a very useful and powerful family of proof
techniques; for a standard reference book, see Alon and Spencer [1]. As an important tool
in this area, the result known as Lovász Local Lemma (LLL), which was first published in
1973 by Erdős and Lovász [2], plays a fundamental role and is often referred to as a “gem”
in this field.

A key (and quite fascinating) feature of the probabilistic method is that using proba-
bilistic arguments, it allows proving completely deterministic claims. This is also the case
for the Lovász Local Lemma. Specifically, it allows us to prove that a certain structure or
property exists with positive probability in a random setting, which implies that the struc-
ture must indeed exist or the property must hold deterministically. In a sense, randomness
and probability play here a catalyst role: they make possible the progress toward the goal,
but eventually disappear in the end result. In a number of cases, however, no other way is
known to achieve the same result, which is quite surprising.

In the next section, we describe a specific motivating problem and solve it with the
Lovász Local Lemma, illustrating its strength.

2. A Motivating Problem and the Original LLL

Hypergraph 2-coloring. Let H be a hypergraph, in which every hyperedge has at least
k ≥ 3 vertices, and each hyperedge intersects at most d others. We ask that for what
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values of k and d can it be guaranteed that such a hypergraph is 2-colorable—that is, we can
color each vertex with one of two colors, such as red and blue, such that no hyperedge
becomes monochromatic.

To describe a solution attempt, let E1, . . . , En be the hyperedges in H. Consider a
random coloring—that is, for each vertex, flip a coin independently and, depending on the
outcome, color the vertex red or blue. Let Ai denote the event that Ei is monochromatic.
What we aim to achieve is that no hyperedge is monochromatic, which is expressed by the
event C = A1 . . . An. If we can show Pr(C) > 0, a 2-coloring of H must exist.

To find the probability of C, let us first estimate the probability of Ai. If Ei has `i
vertices, then out of its 2`i possible colorings, only two are monochromatic (the all-red and
all-blue colorings). Therefore,

Pr(Ai) = Pr(Ei is monochromatic) = 2/2`i ≤ 2/2k = 21−k, (1)

where the inequality follows from `i ≥ k. Then, (1) implies Pr(Ai) ≥ 1− 21−k. Now, if the
events Ai were independent, we could argue that

Pr(C) = Pr(A1 . . . An) = Pr(A1) · . . . · Pr(An) ≥ (1− 21−k)n > 0 (2)

holds. It would mean that with positive probability no edge is monochromatic, so a
2-coloring of H must indeed exist. The problem with this argument is that the events
A1, . . . , An are not independent whenever the hyperedges overlap. Consequently, the
equality Pr(A1 . . . An) = Pr(A1) · . . . · Pr(An) that we used in (2) generally does not hold.

This is the critical point where the LLL provides invaluable help. Before going into
formal details, let us informally display the core message of the lemma:

Key message of LLL. For any system A1, . . . , An of events, in order for the conclusion
Pr(A1 . . . An) > 0 to hold, it is enough if the events are “almost” independent, in the
sense that each one of them depends only on a limited number of others, provided that
Pr(Ai) is small enough.

Specifically, the historically first version of the lemma, proved in the paper [2] pub-
lished by Erdős and Lovász in 1973, is the following claim:

Lemma 1 (LLL—symmetric version, original form). Let A1, . . . , An be events such that each
event is mutually independent of all the others, except at most d ≥ 1 of them. If

Pr(Ai) ≤
1

4d
(∀i) (3)

holds, then Pr(A1 . . . An) > 0.

Let us apply it to the above-described problem of hypergraph 2-coloring. Each event
Ai in the example depends only on those events Aj for which Ei ∩ Ej 6= ∅, since we pick
the color of each vertex independently. As each hyperedge intersects at most d others, Ai
may depend on at most d other events. We know from (1) that Pr(Ai) ≤ 21−k. Therefore, if

21−k ≤ 1
4d

(4)

holds, then Pr(Ai) ≤ 21−k ≤ 1
4d follows, so the inequality (3) is satisfied. As a result,

Lemma 1 implies Pr(A1 . . . An) > 0, which means that the desired 2-coloring must exist.
Rearranging (4), we obtain the condition 4d ≤ 2k−1, or equivalently, d ≤ 2k−3. Thus, by
means of the LLL, we have proved the following:

Theorem 1. Let H be a hypergraph in which each hyperedge has at least k ≥ 3 vertices, and any
hyperedge intersects at most d others. Then, the condition d ≤ 2k−3 implies that H is 2-colorable.
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For example, if each hyperedge of H has at least 11 vertices, and intersects with at
most 256 other hyperedges, then H is always 2-colorable, regardless of its structure. The
reason is that with d = 256 and k = 11 the inequality d ≤ 2k−3 becomes 256 ≤ 28, which
indeed holds.

Remark 1. The factor 4 in the condition 4d ≤ 2k−1 can be reduced to e = 2.718 . . . (the base of
the natural logarithm), using stronger versions of the LLL (see Section 4), yielding the somewhat
less demanding condition d ≤ 2k−1/e, instead of d ≤ 2k−3. This, however, does not change the
principle of the proof.

It is fascinating to note that applying the probabilistic claim of the LLL, we have ob-
tained the completely deterministic result of Theorem 1. Furthermore, to the author’s best
knowledge, no proof is known of Theorem 1 without the use of the Lovász Local Lemma.

3. Naming Conventions

Before looking at stronger versions of the LLL, as well as related results, let us summarize
some naming conventions that have become commonplace over the years.

• Why “local?” The “local” adjective in the name refers to the situation that each event
is typically dependent only on a small number of others. This can be visualized by
a dependency graph, in which each event is represented by a vertex, and the event is
mutually independent of all events to which its vertex is not connected. In this graph
representation, each event is dependent only on its neighborhood—that is, subject to
local dependencies only. This explains the “local” in the name.

Remark 2. The dependency graph is not the same as the graph that we could obtain by
connecting two nodes whenever they are dependent. For example, if all the events are pairwise
independent, but not mutually independent, then the latter graph would have no edge,
wrongly suggesting that all the events are mutually independent.

• Naming the lemma after Lovász. The first version of the LLL was published in the
paper [2], jointly authored by Paul Erdős and László Lovász. Then, why is the lemma
not called “Erdős–Lovász Local Lemma?” The reason is that Erdős insisted in every
lecture he gave about the subject that this result was created by Lovász alone, even
though they applied it together in their joint paper. This is mentioned in an interview
with Lovász, see [3] (in Hungarian).

• Symmetric vs. asymmetric versions. The original version of the LLL (Lemma 1) is
symmetric in the sense that each event is treated equally: they all have to satisfy the
same probability bound (3). In the asymmetric variant (see Section 4.2), the events may
satisfy different probability bounds.

4. Stronger Versions of LLL
4.1. Strengthening the Symmetric Version

A natural question in connection with the original symmetric LLL (Lemma 1) is this:
how large can Pr(Ai) be, such that the conclusion Pr(A1 . . . An) > 0 is still guaranteed
to hold? Note that a larger value of Pr(Ai) makes Pr(Ai) = 1− Pr(Ai) smaller, so the
nonemptiness of A1 . . . An becomes less likely. To formalize it, let us introduce a parameter
p > 0 and replace the condition (3) with

Pr(Ai) ≤ p (∀i). (5)

Then, the largest value of p for which the conclusion Pr(A1 . . . An) > 0 still remains
valid provides us with the strongest from of the symmetric LLL. Note that the value of d is
kept fixed.
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Shearer [4] investigated the above question and computed a specific function f (d),
which is the supremum of p values in (5) for which the conclusion Pr(A1 . . . An) > 0
remains valid, for a fixed d:

Lemma 2 (Shearer’s lemma). For any fixed integer d ≥ 1, let f (d) be the supremum of p values,
for which the the conclusion Pr(A1 . . . An) > 0 remains valid if p is used in place of 1/(4d) in (3).
Then,

f (d) =


1
2 if d = 1

(d−1)d−1

dd if d ≥ 2
(6)

Since f (d) is the supremum (not necessarily the maximum) of p values in (5) for which
the conclusion Pr(A1 . . . An) > 0 holds, therefore, we can formulate the strongest version
of the symmetric LLL this way:

Lemma 3 (Strongest symmetric LLL). Let A1, . . . , An be events, such that each event is mu-
tually independent of all the others, except at most d ≥ 1 of them. Let f (d) be given by (6).
Then, if

Pr(Ai) < f (d) (∀i)

holds, then Pr(A1 . . . An) > 0.

For example, if d = 3, then 1/(4d) ≈ 0.0833, but f (3) = 4/27 ≈ 0.148, so in this
case the latter allows an about 77.7% larger value for Pr(Ai), than (3). Since, however, the
formula (6) for f (d) is relatively complicated, one may look for a simpler bound. Spencer [5]
proved that p = 1

e(d+1) suffices in place of 1
4d in (3), where e = 2.718 . . . is the base of the

natural logarithm. Harvey and Vondrák [6] further improved it to 1
ed .

4.2. Asymmetric LLL

This is the more general version of the LLL, published by Spencer [5], in which it is
allowed that different events can have different probability bounds. We again consider arbi-
trary events A1, . . . , An, and express their dependencies by a dependency graph G = (V, E).
In this graph, V = {1, . . . , n}, and each event Ai is assumed mutually independent of the
set of events {Aj | (i, j) /∈ E}. In other words, each event is mutually independent of all its
non-neighbors in the dependency graph.

Lemma 4 (Asymmetric LLL). Let A1, . . . , An be a system of events with dependency graph
G = (V, E). Suppose there are real numbers x1, . . . , xn ∈ [0, 1), such that

Pr(Ai) ≤ xi ∏
(i,j)∈E

(1− xj) (∀i).

Then,

Pr(A1 . . . An) ≥
n

∏
i=1

(1− xi).

In particular, Pr(A1 . . . An) > 0 holds.

5. Further Application Examples

We have already presented an application (hypergraph 2-coloring) in Section 2. In this
section, we present further interesting applications.
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5.1. Disjoint Paths

Let G be a graph with two distinguished vertices u 6= v. Further, let Q1, . . . ,Qn be
given sets of u− v paths, such that each set contains m different paths. We would like to
select a path Pi ∈ Qi for each i, such that the selected paths are edge-disjoint. Under what
conditions can this be done?

Assume the family of path systems is diffuse in the following sense: any P ∈ Qi is
edge-disjoint from all but at most k paths in Qj for every j 6= i. Let us now pick a path
Pi ∈ Qi uniformly at random from each Qi. Let Eij denote the event that Pi and Pj are not
edge-disjoint. Then, we have

Pr(Eij) ≤
k
m

since, for any Pi ∈ Qi, the other path Pj ∈ Qj can be chosen m different ways, and among
these at most k can share an edge with Pi, by assumption. Further, any event Ei,j is mutually
independent of all events Es,t for which {i, j} ∩ {s, t} = ∅ holds. The reason is that Ei,j
involves paths selected from Qi and Qj, and these are selected independently from the
paths picked from Qs and Qt whenever there is no common index, i.e., {i, j} ∩ {s, t} = ∅.
This implies that d < 2n, where d is the maximum degree in the dependency graph of the
Ei,j events. Therefore, if we satisfy

k
m
≤ 1

8n
,

then the upper bound

Pr(Ei,j) ≤
1

4d
(∀i, j)

holds, due to

Pr(Ei,j) ≤
k
m
≤ 1

8n
=

1
4(2n)

≤ 1
4d

.

It means, the Ei,j events satisfy the conditions of the LLL (Lemma 1), yielding

Pr (∩i,jEi,j ) > 0.

Consequently, there must exist a path system Pi ∈ Qi, i = 1, . . . , n, such that all the
paths are edge-disjoint. Thus, by means of the LLL, we have proved the following result:

Theorem 2. Let G be a graph with two distinguished vertices u 6= v, and let Q1, . . . ,Qn be sets
of u− v paths in G, such that each set contains m different paths. Assume that any P ∈ Qi is
edge-disjoint from all but at most k paths in Qj, for every j 6= i. Then, whenever k ≤ m/(8n)
holds, it is possible to select a path from each Qi such that all the selected paths are edge-disjoint.

5.2. k-SAT

Let us recall some well-known concepts about Boolean formulas. Such a formula is a
CNF (Conjunctive Normal Form) formula if it is the conjunction (logical AND) of clauses,
where each clause is the disjunction (logical OR) of literals. A literal is either a Boolean
variable or its negation. A formula is a k-CNF formula if every clause contains k literals. We
assume that the same variable cannot occur multiple times in a clause. The problem called
k-SAT is this: given a k-CNF formula, is it satisfiable? This is a well-known NP-complete
problem, but in some cases, the LLL allows us to quickly show that certain k-CNF formulas
are satisfiable.

Let us say that two clauses in a k-CNF formula overlap, if there is a variable occurring
in both (regardless of whether the variable is negated or not in the clauses). We can show
via the LLL that if any clause overlaps with at most 2k−2 other clauses in a k-CNF formula
Φ, then Φ is satisfiable.

Assign random truth values to the variables independently. Let Ci, i = 1, . . . , n, be the
clauses and let Ai denote the event that Ci is not satisfied by the random truth assignment.
There are 2k possible truth assignments to the k literals in Ci, and only one of them makes
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Ci false – the one in which all literals of Ci are false. Therefore, Pr(Ai) = 2−k. Furthermore,
observe that each event Ai is mutually independent of the set of those Aj’s that correspond
to clauses which do not overlap with Ci. Consequently, the maximum degree d in the
dependency graph of the events A1, ..., An satisfies d ≤ 2k−2. Therefore, we can write

4 Pr(Ai)d ≤ 4 · 2−k2k−2 = 1,

implying

Pr(Ai) ≤
1

4d
(∀i).

Then, we can conclude from the LLL that Pr(A1 . . . An) > 0 holds, which means that
at least one of the random truth assignments satisfies all clauses—that is, Φ is satisfiable. It
is interesting to note that this does not depend on n, the number of clauses, and it is also
independent of the number of variables. Thus, by means of the LLL, we have proved the
following result:

Theorem 3. If in a k-CNF formula Φ any clause overlaps with at most 2k−2 other clauses, then Φ
is satisfiable.

For example, if each clause contains k = 12 literals, and each clause overlaps with
at most 2k−2 = 1024 other clauses, then the formula is satisfiable, no matter how many
clauses and variables it has.

5.3. Independent Sets in Graphs

Consider a graph with vertex set V and maximum degree ∆. Assume V is partitioned
as V = V1 ∪ . . . ∪Vr, where each Vi satisfies |Vi| ≥ `∆, for some positive integer `. We ask:
what value of ` guarantees that one can always select a vertex from each Vi, such that the
selected vertices form an independent set, i.e., a set in which no two vertices are connected.

First, observe that we can assume |Vi| = `∆, since otherwise we can just remove
vertices from Vi to achieve the equality. The reason is that if the claim holds with fewer
vertices in Vi, then it certainly must hold in the original graph. Set k = `∆; this will be the
size of each Vi, after possibly removing some vertices.

Now, pick a random vertex from each Vi. For each edge e, let Ae denote the event
that e connects two of the randomly selected vertices. This can only happen if e connects
vertices in two different sets Vi, Vj. Since |Vi| = |Vj| = k, Pr(Ae) = 1/k2 holds for any e
due to the random vertex selection.

Observe now that if e has its endpoints in the sets Ai, Aj, then for another edge f , the
event A f can only depend on Ae if f has an endpoint in Ai ∪ Aj. How many such edges f
can exist? The size of Ai ∪ Aj is 2k and each vertex is adjacent to at most ∆ edges. Therefore,
the maximum degree in the dependency graph of the Ae events is at most d = 2k∆.

Let us now apply the LLL, in its simplest form, presented in Lemma 1. We need to
satisfy the condition Pr(Ae) ≤ 1/(4d). Due to Pr(Ae) = 1/k2, it is satisfied if

1
k2 ≤

1
4d

=
1

8k∆

holds. From this, and from k = `∆, we obtain

1
`2∆2 ≤

1
8`∆2 .

After simplification, this yields ` ≥ 8. Consequently, the Lovász Local Lemma implies
that if ` ≥ 8, then

Pr(Ae1 . . . Aem) > 0

holds, where e1, . . . , em are the edges of the graph. This means, there is a positive probability
that no edge connects two of the randomly selected vertices, so the special selection we
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are looking for must indeed exist. Thus, by means of the LLL, we have proved the
following result:

Theorem 4. Let G be a graph with vertex set V and maximum degree ∆. Assume V is partitioned
as V = V1 ∪ . . . ∪ Vr, where each Vi satisfies |Vi| ≥ 8∆. Then, it is always possible to select a
vertex from each Vi such that the selected vertices form an independent set.

Remark 3. The constant 8 can be reduced to 2e ≈ 5.43656 via the stronger versions of the
symmetric LLL (see Section 4.1), but this does not change the principle of the proof.

5.4. Graph Coloring with Additional Constraints

The well-known task of graph coloring means that we need to assign a color to each
vertex of the graph such that neighboring vertices have different colors. If a coloring
satisfies this requirement, it is called a proper coloring.

The standard question regarding graph coloring is: how many colors are needed for a
proper coloring? A simple basic fact is that in a graph with maximum degree ∆, it is always
enough to use at most ∆ + 1 colors: index the colors by 1, 2, . . . and color the vertices one
by one, always using the lowest indexed color that has not occurred among the already
colored neighbors of the considered vertex. It is easy to see that this leads to the use of at
most ∆ + 1 colors.

What if, however, we want a coloring that also satisfies some extra requirements?
Such an extra requirement is that the frequency of color occurrences in the neighborhood
of any vertex is limited, as defined below.

Definition 1. Let β ≥ 1 be an integer. A proper coloring is called β-frugal if no color appears more
than β times in the neighborhood of any vertex.

Hind, Molloy, and Reed [7] analyzed the number of colors needed for β-frugal color-
ings. They found a relationship between the maximum degree and the number of colors
that suffice, but this is much more complex than the simple ∆ + 1 bound mentioned above
for conventional coloring. Using the asymmetric Lovász Local Lemma, they proved the
theorem below (we present a simplified version given by Sinclair [8]):

Theorem 5. Let G be a graph. If the maximum degree ∆ of G satisfies ∆ ≥ ββ, then G has a
β-frugal proper coloring using at most 16∆1+1/β colors.

5.5. Packet Scheduling in Networks

Consider a communication network, which is modeled by a directed graph. We have
a given system P1, . . . , Pr of directed paths in the network, and we want to send packets
along these paths. The paths are edge-simple, which means that no path repeats any edge.
Let us consider a synchronous communication model, in which for each time unit, one
packet can traverse an edge. Assume a set of packets is given for each path. We would
like to achieve that each packet is delivered on its respective path in the shortest possible
time. Since the paths and packet sets are given, our only degree of freedom is to decide,
whenever several packets compete for an edge, which one goes first, i.e., in which order
they will traverse the edge (recall that only one can do it in one time unit). In other words,
we are looking for the optimal packet scheduling policy. Furthermore, we would like to
achieve it with a constant buffer size at every node.

Let us define some key parameters for this problem: congestion c is the maximum
number of paths that share a directed edge; dilation d is the maximum path length that
occurs in the path system. Let T be the smallest time in which each packet can be delivered,
no matter how many packets wait for each path. The time for each individual packet is
measured from the instant when it starts traversing the first edge on its path. A lower bound
on T in the worst case is

T ≥ max{c, d}.
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The justification for this lower bound is the following:

• A path can be d edge long, and traversing such a path clearly takes d time units,
implying T ≥ d.

• An edge can be included in c paths. If a packet arrives at the edge on each of these
c paths at the same time, then one of them will suffer c− 1 time units delay, plus its
own traversal time, resulting in T ≥ c in the worst case.

• Then, T ≥ d and T ≥ c together yield the worst case lower bound T ≥ max{c, d}.
A remarkable thing is that this essentially trivial lower bound can be achieved, up to a

constant factor, no matter how many packets wait for each route. Furthermore, a constant
size buffer suffices at every node. Specifically, by a sophisticated use of the Lovász Local
Lemma, Leighton, Maggs, and Richa [9] proved the following theorem:

Theorem 6. In the above model, there is always a packet schedule that achieves O(c + d) delivery
time for each packet, with a constant queue length at every node.

Observe that c + d ≤ 2 max{c, d}; so O(c + d) is indeed optimal up to a constant factor.

6. The Algorithmic Lovász Local Lemma

The original LLL (Lemma 1) and its variants presented in Section 4 are all existence
theorems: they prove that there exists a realization that satisfies each of A1 . . . An, but do
not tell anything about how to find such a realization algorithmically.

In many cases, it is very natural to look for an algorithmic solution. For example, in
the case presented in Example 3 (see Section 5.2), we have shown that in a k-CNF formula
Φ, if every clause overlaps with at most 2k−2 other clauses, then Φ is satisfiable. In most
applications, however, it is not enough just to know that a formula is satisfiable, we also
want to find an actual satisfying truth assignment. The original LLL, as applied to this
problem, does not provide it.

A naive approach would be to try rejection sampling to solve the above problem:
repeatedly pick random truth assignments until one of them eventually satisfies all clauses.
Since the LLL guarantees Pr(A1 . . . An) > 0, we must find a satisfying truth assignment
after a finite number of trials, with probability 1. Unfortunately, this approach can be very
inefficient, because the probability Pr(A1 . . . An), although guaranteed to be positive by
the LLL, is typically exponentially small. This would therefore lead to an exponential time
algorithm, essentially not better than exhaustive search.

The first proof of the possibility of an efficient algorithmic LLL was published by
Beck [10] in 1991. His algorithm, however, was somewhat technical, and required a stronger
condition on neighborhoods than the original LLL. After a sequence of improvements, the
most elegant solution was published by Moser and Tardos [11]. It is worth mentioning that
the authors received the prestigious Gödel Prize in 2020 for this work.

The Moser–Tardos algorithm can be best presented via a formulation called the
variable version of the LLL. Let X1, . . . , Xm be mutually independent random variables.
Denote the “bad” events that we want to avoid by A1, . . . , An and let pi = Pr(Ai) be
the probability of Ai, i = 1, . . . , n. Let vbl(Ai) ⊆ {X1, . . . , Xm} denote the subset of
variables on which Ai depends. In particular, if vbl(Ai) ∩ vbl(Aj) = ∅, then Ai and Aj
are independent. The dependency graph G = (V, E) is defined by V = {1, . . . , n} and
E = {(i, j) | vbl(Ai) ∩ vbl(Aj) 6= ∅}.

With the above framework, the Moser–Tardos algorithm is surprisingly simple and
elegant, see Algorithm 1. We present the most concise version, found in Szegedy [12].

The correctness and complexity of the algorithm is captured by the following theorem,
which implies that this is a probabilistic polynomial time algorithm.
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Algorithm 1: RESAMPLE (Moser and Tardos).
• Assign random values independently to the variables X1, . . . , Xm.

• While there is an i, 1 ≤ i ≤ n, such that Ai is not satisfied by the
current assignment, do:

– Choose the smallest such i and resample all variables in Xj ∈ vbl(Ai).
That is, choose new random values independently for each Xj ∈ vbl(Ai).

• Return the current variable assignment.

Theorem 7. If the conditions of the asymmetric LLL hold, i.e., there are real numbers x1, . . . , xn ∈
[0, 1), such that

pi ≤ xi ∏
(i,j)∈E

(1− xj) (∀i),

then the algorithm resamples each vbl(Ai) at most an expected number of xi
1−xi

times before finding
an assignment that satisfies all the Ai. Therefore, the expected overall number of resamplings is at
most ∑n

i=1
xi

1−xi
.

Furthermore, if the maximum degree of the dependency graph is D, and pi ≤ 1
e(D+1) (∀i)

holds, then vbl(Ai) is resampled at most an expected number of 1/D times, and the total expected
number of resamplings is bounded by n/D.

While the algorithm itself is surprisingly straightforward and elegant, the proof of
the above Theorem is far from simple, see Moser and Tardos [11]. It is interesting to note
that the RESAMPLE algorithm is similar to the WalkSAT heuristic, which is used to solve
general Boolean satisfiability problems, see, e.g., Hoos and Stützle [13].

7. Outlook

Let us briefly list some other recent research directions that are being pursued in
connection with the Lovász Local Lemma and its algorithmic version, without going
into details.

• Derandomization of the Moser–Tardos algorithm is possible, leading to a deterministic
polynomial time algorithm. This was already addressed by Moser and Tardos in [11],
and further developed by Chandrasekaran, Goyal, and Haeupler [14].

• Some recent papers deal with sampling and counting problems related to the LLL, see,
e.g., Jain, Pham, and Vuong [15].

• Approximate counting is also considered in the context, such as approximately counting
the satisfying truth assignments of a CNF formula, see Moitra [16].

• A quantum version of the LLL has also been introduced, referred to as Quantum Lovász
Local Lemma, see Ambainis, Kempe, and Sattath [17] and He, Li, Sun, and Zhang [18].
The key difference between the Quantum Lovász Local Lemma and the classical LLL
is that in the quantum version, the events are substituted with subspaces, and the
event probabilities are substituted with subspace dimensions. This makes it more
suitable for quantum computing applications.

• The LLL is also being used to analyze parallel and distributed algorithms, see, e.g., Chang,
He, Li, Pettie, and Uitto [19].

• There are attempts to extend the LLL to an infinite setting, see Bernshteyn [20].

8. Conclusions

We have surveyed a classic and fundamental result, known as the Lovász Local
Lemma. We reviewed some variants, related results, and applications, as well as the algo-
rithmic version. We were delighted with the intriguing feature that a purely probabilistic
claim can be used to prove completely deterministic statements.
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As a closing conclusion, we can claim that in a high-level, abstract sense, the Lovász
Local Lemma also provides efficiency in a way that is somewhat reminiscent of the fact that
general graph problems often become more tractable in bounded degree graphs. Of course,
the LLL case is more complicated, since it involves not only neighborhood sizes, but also
probabilities, but it still deals with bounded degree style structures. As an example, let
us refer to the k-SAT problem (see Section 5.2) that becomes solvable in polynomial time,
whenever the clause overlaps are limited.
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