
algorithms

Article

A Novel Reduction Circuit Based on Binary Tree Path Partition
on FPGAs

Linhuai Tang 1,2 , Zhihong Huang 1,2, Gang Cai 1,2,*, Yong Zheng 1,2 and Jiamin Chen 1,2,*

����������
�������

Citation: Tang, L.; Huang, Z.; Cai, G.;

Zheng, Y.; Chen, J. A Novel

Reduction Circuit Based on Binary

Tree Path Partition on FPGAs.

Algorithms 2021, 14, 30. https://

doi.org/10.3390/a14020030

Received: 14 December 2020

Accepted: 18 January 2021

Published: 20 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;
tanglinhuai16@mails.ucas.ac.cn (L.T.); huangzhihong@mail.ie.ac.cn (Z.H.);
zhengyong17@mails.ucas.ac.cn (Y.Z.)

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,
Beijing 100049, China

* Correspondence: caigang@aircas.ac.cn (G.C.); chenjm@aircas.ac.cn (J.C.)

Abstract: Due to high parallelism, field-programmable gate arrays are widely used as accelerators in
engineering and scientific fields, which involve a large number of operations of vector and matrix.
High-performance accumulation circuits are the key to large-scale matrix operations. By selecting
the adder as the reduction operator, the reduction circuit can implement the accumulation function.
However, the pipelined adder will bring challenges to the design of the reduction circuit. To solve
this problem, we propose a novel reduction circuit based on binary tree path partition, which can
simultaneously handle multiple data sets with arbitrary lengths. It divides the input data into
multiple groups and sends them to different iterations for calculation. The elements belonging to the
same data set in each group are added to obtain a partial result, and the partial results of the same
data set are added to achieve the final result. Compared with other reduction methods, it has the
least area-time product.

Keywords: pipeline; vector reduction; accumulator; FPGAs

1. Introduction

In field-programmable gate array (FPGA) applications, reduction circuits can be ap-
plied to reduce vectors to scalars. In recent years, advances in integrated circuit technology
have brought significant improvements to FPGA performance. Coupled with the inherently
high hardware parallelism, FPGAs are used as hardware accelerators in more and more
fields, such as signal processing [1,2], scientific computing [3–5], machine learning [6–8],
and data centers [9–11]. In these applications, some algorithms include a large number
of operations of vector and matrix, which belongs to the category of reduction problem.
Therefore, a high-performance reduction circuit is key to matrix operations.

The combination of a high-performance reduction circuit and a small-sized binary tree
can effectively solve the trade-off between area and performance. The computing task in
Figure 1a contains m data sets Set0 − Setm−1, and the data set Seti contains ni elements. It
can be executed by a variety of hardware solutions. Figure 1b shows the use of a reduction
circuit as a solution. The data are serially input, one data per cycle. Its advantage lies in
its small area, usually only a reduction operator is needed. Figure 1c is the diagram of
the binary tree. Data are input in parallel, and all elements of a data set are input at a
time. Compared with the reduction circuit, the performance of the binary tree is higher.
However, it requires more operators, which consumes a lot of area. A compromise is to
combine the reduction circuit with a small-sized binary tree, as shown in Figure 1d. It
can not only ensure that the area is maintained in a reasonable range, but also has higher
performance. Therefore, a high-performance, small-area reduction circuit is required.
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Figure 1. Reduction of multiple data sets: different solutions. (a) computing tasks; (b) reduction
circuit; (c) binary tree; (d) a compromise solution: reduction circuit + binary tree.

The design of the reduction circuit faces many challenges. The first is the number of
reduction operators. Reduction operators are the primary area source of reduction circuit,
so it is necessary to reduce the number of reduction operators as much as possible. The
second is data hazards. When the reduction operator of the multi-stage pipeline is used,
some partial results cannot be consumed immediately. It needs to be stored in the buffer,
waiting for the arrival of another operand. In order to reduce the size of the buffer, the
partial results of different data sets are stored in the same buffer. For a unit in the buffer,
only data can be written after it is used; otherwise, write after read hazards will occur.
Therefore, the data in the buffer need to be properly managed. Third, the circuit needs to
be capable of processing any number of data sets, and each data set contains any number
of elements. If the reduction circuit can only handle a certain amount of data, it will greatly
limit its application. Finally, there are necessities for the performance and complexity of
the reduction method.

In this paper, a novel reduction circuit based on binary tree path partition (BTPP)
is proposed. It can handle multiple data sets, and each data set can have any number
of elements. The proposed method is implemented on FPGAs, which has the smallest
area-time product compared with other designs.

The remainder of this paper is organized as follows. Section 2 describes the back-
ground of the reduction circuit, and Section 3 gives some previous works. Then, Section 4
details the principle and working mechanism of BTPP. After that, the hardware design of
BTPP is discussed in Section 5, and the evaluation and comparison results are given in
Section 6. Finally, Section 7 summarizes the paper.

2. Background

The function of the reduction circuit is to reduce vector to a scalar by using associa-
tive and commutative reduction operators [12]. For the data set X = {x0, x1, · · · , xn−1},
reduction circuit performs the following operations:

y = x0 ~ x1 ~ · · ·~ xn−1 (1)

where ~ is the reduction operator. The reduction operator is a binary operator, such
as adder, multiplier, max/min function, etc. If the reduction operator is an adder, then
y = ∑n−1

i=0 xi . If the reduction operator is a multiplier, the output of the reduction circuit
is ∏n−1

i=0 xi. The reduction circuit is only related to the number of pipeline stages and bit
width of the reduction operator, and does not care about the hardware structure of the
reduction operator. This means that the reduction circuit can use the existing IP core as the
reduction operator, which greatly reduces the design difficulty and shortens the design
cycle. In addition, it also helps the reduction circuit change its function. For example, the
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reduction operator of a reduction circuit is an adder. By changing the adder to a multiplier,
as long as their pipeline stages and bit widths are equal, the reduction circuit can work
normally without changing the control circuit. In this paper, the reduction operator takes
the adder as an example to analyze the reduction circuit.

The simplest reduction circuit can be realized by feeding back the output of the
reduction operator to the input, as shown in Figure 2a. It only requires a reduction operator
and can handle any amount of data. However, the increase in the frequency of the reduction
operator does not bring about an increase in throughput. The reduction operator used in
Figure 2b is combinational logic, and calculating y[0] = ∑2

j=0 x[0][j] requires cc clock cycles,
while Figure 2c uses a reduction operator of a p-stage pipeline (p = 2), and calculating
y[0] = ∑2

j=0 x[0][j] requires cs clock cycles, where cc, cs satisfy

cs

cc
= p + 1 (2)

There is a feedback loop in Figure 2a, assuming that the reduction operator is com-
binational logic and its critical path delay is D. Since there is a register in the loop, its
frequency fc is

fc =
1
Tc

=
1

D/1
=

1
D

(3)

where Tc is the time of one cycle. For a p-stage pipeline adder, there are p + 1 registers in
the loop, then its frequency fs becomes

fs =
1
Ts

=
1

D/(p + 1)
=

p + 1
D

(4)

where Ts has the same properties as Tc. The frequency of the latter is increased by p + 1
times. Therefore, the calculation time required in Figure 2b is

tc =
cc

fc
= cc × D, (5)

and the calculation time required in Figure 2c is

ts =
cs

fs
=

(p + 1)× cc

fs
= cc × D (6)

This means that, when handling the same amount of data, the time required for these
two solutions is the same. Figure 2d shows an example of performing one operation per
clock cycle. It can only reduce the input data to p + 1 partial results, and the reduction
calculation cannot be completed. Therefore, it is necessary to propose a reduction circuit
to complete the calculation correctly and give full play to the advantages of the pipelined
reduction operator.

There are some differences between the reduction circuit and accumulator [13–16],
which are listed as follows:

• The accumulator has a single function, while the reduction circuit can choose different
types of reduction operators to achieve different functions, such as accumulation and
max function.

• The accumulator needs to implement the addition function in the circuit, and the
circuit structure is complicated. While the reduction circuit uses the existing adder
or multiplier as the reduction operator and then builds the peripheral circuit. The
reduction circuit focuses more on data control and management.

• The accumulator is sensitive to the data type. When changing the data type, the accu-
mulator may need to modify some circuits. For example, if the data type is changed
from 16-bit fixed-point to 32-bit single-precision floating-point, the accumulator needs
to add circuits for processing exponent and fraction according to the data type of the
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floating-point number. As for the reduction circuit, it only needs to replace a reduction
operator that supports single-precision floating point numbers, and then change the
data width of the control circuit and buffer to 32-bit.
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Figure 2. (a) A simple reduction circuit example; (b) use a combinational logic reduction operator
to calculate y[0] = ∑2

j=0 x[0][j]; (c) use a p-stage pipeline reduction operator to calculate y[0] =

∑2
j=0 x[0][j], where p = 2; (d) if an operation is required to be performed once in a clock cycle, the

solution (c) can only reduce the input data to p + 1 partial results, where p = 2.

3. Related Works

The number of adders used in some reduction circuits is affected by other factors. For
example, the number of adders in the partially compacted binary tree (PCBT) [17] is related
to the number of input elements, and the number of adders in modular fully pipelined
architecture (MFPA) [18] is affected by the number of stages of the adder pipeline. They
tend to use more adders than designs with fixed adders. The symmetric method (SM)
and the asymmetric method (AM) proposed in [12] use only one adder, but they can only
handle one data set at the same time. Some reduction methods can handle multiple sets
simultaneously. Zhuo et al. also proposed the fully-compressed binary tree (FCBT), dual
strided adder (DSA), and single strided adder (SSA) in [17], and the number of adders
they used is 2, 2, and 1, respectively. Huang et al. also proposed two reduction methods,
area-efficient modular fully pipelined architecture (AeMFPA) and the alternative design
of AeMFPA (A2eMFPA) in [18], which focus on reuse and portability, and the number of
adders they use is 2. The delayed buffering (DB) proposed by Tai et al. in [19] uses only
one adder, and it has good performance. Reference [20] proposed a reduction circuit based
on a binary tree. However, the use of seven floating-point adders greatly reduces its appeal.
Finally, a tag-based random order vector reduction circuit reported in [21] also uses only
one adder and has the ability to process multiple data sets at the same time. However, the
buffer size becomes an irritating issue since it depends on the number of data set. We have
previously conducted related research on reduction circuit in [22,23], and proposed the
state-based method (SBM). In this paper, we propose a simpler method than SBM.
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4. Binary Tree Path Partition
4.1. An Intuition

For m accumulation tasks ya = ∑n0−1
i=0 ai, yb = ∑n1−1

i=0 bi, · · · , the idea of the BTPP is to
divide the total ∑m−1

i=0 ni elements in units of p (p is the pipeline stage of the adder). As
shown in Figure 3a, the calculation process of ya is divided into k iterations, where each
iteration processes p data (p = 8). When the data processed by an iteration is less than
p, 0 needs to be complemented, such as iteration k− 1. However, if p is large, the way of
complementing 0 will cause performance degradation. To further improve performance,
we use path partition, as shown in Figure 3b. According to the input data, the system
realizes path partition by changing the connections between nodes. This means that, when
the number of elements ni in a single set is not an integer multiple of p, the system can still
provide high performance. For p operations in an iteration, if we arrange their execution
time reasonably, it can be implemented using a p-stage pipeline adder. That is to say, the
binary tree included in the iteration is the way BTPP processes data, but there is no binary
tree in the hardware implementation of BTPP. BTPP only uses one reduction operator,
which can effectively reduce area consumption. In the initial situation, the structure of
different iterations is the same, so we only need to use the circuit to achieve the function of
one iteration, as shown in Figure 3c.
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Figure 3. The design idea of BTPP. (a) structured calculation pattern combining binary tree and adder chain; (b) apply path
partition to improve system performance; (c) BTPP hardware design: use only one reduction operator.

It can be seen from Figure 3 that the reduction circuit designed with this method has
the ability to handle multiple data sets. The latter data sets have no effect on the previous
data sets. For example, as shown in Figure 3b, regardless of the existence of data set B, the
path partition result of data set A does not change. Therefore, it does not matter whether a
single data set or multiple data sets are handled. In addition, it can handle data sets with
any number of elements. When the number of elements is greater than p, these elements
are calculated through multiple iterations. When the number of elements is less than p, the
path partition allows elements of different data sets to exist in the same iteration.

4.2. The Proposed Reduction Method

Algorithms 1 and 2 show the pseudo-code of BTPP. BTPP is divided into two parts.
The first part whose input is the pipeline stages p of the reduction operator is to obtain
the initial path table that contains information such as data flow and initial scheduling.
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Then, the initial path table is partitioned according to the input elements. The pipeline
stages p of the reduction circuit needs to satisfy p ≥ 2. When p = 1, BTPP becomes serial
execution, similar to Figure 2a, and BTPP is not required at this time. When p ≥ 2, the
method of Figure 2a fails to take advantage of the pipeline, which is a problem that BTPP
needs to solve. Our main contribution is embodied in Algorithm 2, which is the core of the
entire BTPP.

Algorithm 1 BTPP Part 1: Binary tree path initialization

Input: pipeline stages p of the reduction operator

Output: initial path table

1. create a binary tree of p input;

2. add a node to add the result of the binary tree to the result of the last iteration;

3. get the data flow graph G = (N, E);

4. limiting the initial interval to p and the number of adders to 1, perform software

pipeline on G to obtain scheduling scheme S;

5. get the initial path table according to G and S;

6. return initial path table.

Algorithm 2 BTPP Part 2: Path partition

Input: initial path table

Output: path table

1. while there is element xi input do

2. if xi is the last element in the data set X then

3. /* for paths belonging to X in iteration n: */

4. if do not need to be added to the results of the previous iteration then

5. delete the node used for addition between iterations;

6. end if

7. delete all nodes in paths belonging to data set X that only use operand 1;

8. /* for paths that do not belong to X in iteration n: */

9. delete the nodes occupied by X;

10. return path table.

11. end if

12. end while

The reduction task in Figure 1a has m data sets, and the i-th data set contains n[i]
elements. For this reduction task, Figure 4 shows the workflow executed on different
hardware. Figure 4a is the workflow executed on the processor. First, the reduction task
is statically compiled by the compiler to obtain instructions. Then, these instructions are
sent to the processor. Figure 4b is the workflow of the reduction task executed on the BTPP
hardware. BTPP part 1 is used to generate the initial path table. The initial path table
is only related to the pipeline stages p of the reduction operator, and it does not contain
any information about the reduction task. In other words, if the circuit directly uses the
initial path table to process the reduction task, it will get the wrong result. The information
obtained after the path partition of the reduction task is included in the path table, which
is generated by BTPP part 2. These path tables are sent to the controller and data-path
for correct calculation. Figure 4a already knows the number of data sets and the number
of elements in each data set at the compilation phase. Unlike Figure 4a, the initial path
table generated during the compilation phase does not contain any information related to
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the reduction task. The reduction task is to input data into the BTPP hardware during the
hardware execution phase, and then BTPP part 2 performs path partition on the hardware
in real time to obtain the path table. In other words, the BTPP hardware neither knows
how many data sets are input nor how many elements each data set contains before the
hardware execution phase. If the reduction circuit is designed according to the process
shown in Figure 4a, the circuit can only be used for the specified number of data sets and
elements. When the number of data sets is changed or the number of elements in each data
set is changed, the scheme in Figure 4a needs to be recompiled to generate new instructions.
However, BTPP does not have this problem because it can handle any number of data sets,
and each data set can have any number of elements. Only when the pipeline stages p of
the reduction operator is changed does BTPP part 1 need to be re-executed to generate a
new initial path table.

execute on 
computer

execute on 
hardware y[i]processor

instructions

for (i=0; i<m; i++)
for (j=0; j<n[i]; j++)

y[i] +=x[i][j];reduction 
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compiler

controller
&

data-path

path table

pipeline stages p

BTPP hardware

execute on 
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execute on 
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y[i]y[i+1]

initial path table of one iteration

BTPP Part 1: 
binary tree path initialization

BTPP Part 2: 
path partition

x[i][0]x[i][n[i]−1]x[i+1][0]

data set x[i]

x[i+1][n[i+1]−1]x[i+2][0]

data set x[i+1]reduction 
task

Figure 4. The workflow of the reduction task in Figure 1a on different hardware. (a) execute on the processor; (b) execute
on BTPP hardware.

Figure 5 is an example of Algorithm 1, where the adder pipeline stage p = 4. First,
we construct a binary tree with p input, and then add an operation to add the results of
the previous iteration, as shown in Figure 5a,b. Then, we execute the software pipeline
based on Figure 5b, and the result is shown in Figure 5c. Its initial interval is p, and only
one addition operation is performed per clock cycle. Due to the use of a software pipeline,
the p addition operations in one iteration can be implemented by an adder with a p-stage
pipeline in a time-division multiplexing manner. We mark the clock cycle of each addition
operation in the data flow graph to get Figure 5d. After using the software pipeline, the
execution time of nodes in different iterations shows a certain regularity, so we only need
to analyze a single iteration. As shown in Figure 5e, the input data of iteration k is xi–xi+3,
and they start to be input at time k× p, and one piece of data are input every clock cycle.
The execution time of each node in iteration k can also be obtained by k and p. Thus, we
get the initial path table of iteration k. For data xi, the nodes it passes are t1 → t3 → t4. The
nodes that the data xi+1 pass through is the same as the data xi, which is also t1 → t3 → t4.
However, the situation of node t1 is different from that of nodes t3 and t4. For node t1, xi is
used as the first operand input, and xi+1 is used as the second operand input. For nodes t3
and t4, xi and xi+1 go through the same operand. To further distinguish the path of each
data, we added the operand information of each node in the initial path table. Since an
addition operation requires two operands, we use “1” to represent the data as the first
operand of the node and use “2” to represent the data as the second operand of the node.
The path of the data xi+2 and xi+3 is similar to that of xi and xi+1. TNI (to next iteration) in
the path table is used to indicate whether the result produced at the end of the data path is
a partial result or the final result. For example, for xi, its path ends at node t4. If TNI is 1, it
means that the result produced by node t4 is a partial result, and it needs to be sent to the
next iteration. Otherwise, the result produced by node t4 is the final result. In the initial
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path table, the default value of TNI is 1. Path partition is carried out on the basis of the
initial path table.

initial path table 
input path operand  TNI 

 
𝒙𝒊 {𝒕𝟏, 𝒕𝟑, 𝒕𝟒}  {1, 1, 2}  1 
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𝒙𝒊൅𝟐 {𝒕𝟐, 𝒕𝟑, 𝒕𝟒}  {1, 2, 2}  1 
𝒙𝒊൅𝟑 {𝒕𝟐, 𝒕𝟑, 𝒕𝟒}  {2, 2, 2}  1 
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Figure 5. An example of the Algorithm 1, where p = 4. (a) binary tree; (b) binary tree with an addition used to add the
previous partial result; (c) software pipeline; (d) data flow graph marked with the clock cycle of each operation; (e) initial
path table of iteration k.

Figure 6 shows an example of path partition, in which the pipeline stage p of the adder
is 4. For data set A = {a0, a1, · · · , a8}, solving ∑8

i=0 ai requires d9/4e = 3 iterations to
complete. For iteration 0, the input data are a0–a3. Since none of the input data of iteration
0 are the last elements of the data set, iteration 0 does not require path partition. Paths of
iteration 0 in the path table are the same as paths of iteration 0 in the initial path table. Since
iteration 0 does not need to be added to the result of the previous iteration, the operand 1
of node 14 is 0. The output of iteration 0 is a partial result, not the final result, so the partial
result needs to be sent to iteration 1. The situation of iteration 1 is similar to iteration 0.
The input data of iteration 1 are not the last elements of the data set, so iteration 1 does
not require path partition. Paths of iteration 1 in the path table are the same as the paths
of iteration 1 in the initial path table. Node 18 adds the partial result of iteration 0 and
the result of the addition of a4–a7, and the generated partial result is sent to iteration 2.
For iteration 2, the input data are a8, b0, b1, and b2. Since a8 is the last element of data
set A, iteration 2 requires path partition. The path passed by a8 in the initial path table is
9→ 16→ 22, and the corresponding operand is 1→ 1→ 2. Since a8 needs to be added to
the partial result generated by iteration 1, node 22 cannot be deleted. In iteration 2, data
set A contains only one element a8, so it is necessary to delete the nodes that only use
operand 1 from the path nodes that a8 passes. Nodes 9, 16 are deleted, and a8 only passes
through node 22. Node 22 is occupied by the data set A, so node 22 in the path of b0, b1,
and b2 needs to be deleted. Since the result produced by node 22 is the final result, the
TNI corresponding to a8 is 0. The path table obtained after path partitioning is shown in
Figure 6.
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iteration 0
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iteration
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operation executing in time t

operand=1 operand=2

t
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path table
input path operand TNI

iteration 0
𝒂𝟎 {1, 8, 14} {1, 1, 2} 1
𝒂𝟏 {1, 8, 14} {2, 1, 2} 1
𝒂𝟐 {3, 8, 14} {1, 2, 2} 1
𝒂𝟑 {3, 8, 14} {2, 2, 2} 1

iteration 1
𝒂𝟒 {5, 12, 18} {1, 1, 2} 1
𝒂𝟓 {5, 12, 18} {2, 1, 2} 1
𝒂𝟔 {7, 12, 18} {1, 2, 2} 1
𝒂𝟕 {7, 12, 18} {2, 2, 2} 1

iteration 2
𝒂𝟖 {22} {2} 0
𝒃𝟎 {9, 16} {2, 1} 1
𝒃𝟏 {11, 16} {1, 2} 1
𝒃𝟐 {11, 16} {2, 2} 1

 

Figure 6. Example of path partition, where p = 4, and ∑8
i=0 ai needs to be solved.
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5. Hardware Design

The hardware structure of BTPP is shown in Figure 7. It is mainly composed of the con-
troller, path table pipeline, and data-path. The controller includes modules system_time_gen,
path_table_gen, bu f f er_management, MUX_sel_gen, and dout_valid_gen. Different signals
are marked with different colored lines. Data are input sequentially through the port din,
and the signal din_valid is used to indicate whether the current input data are valid. If
the signal set_end is valid, it means that the current input data are the last element of the
set. Module system_time_gen is used to generate time information, which indicates that
the i-th operation of the k-th iteration is being executed. Module path_table_gen generates
path table based on input signals din_valid and set_end. In addition, the path table is
input into the path table pipeline. The path table pipeline has a p-stage, the same as the
reduction operator. Module bu f f er_management and MUX_sel_gen respectively generate
buffer read and write signals and MUX control signals. These signals will be sent to the
data-path to control data reading and writing and computations. When all the paths in the
path table have been executed, and it does not need to be added to the result of the next
iteration, the signal dout_valid generated by the module dout_valid_gen becomes valid,
which indicates that the signal dout at the current moment is the final result of the set.

Data-path contains a p-stage pipeline adder. The data input from din will be stored in
buffer 1 first, and it will be delayed by p clock cycles. Therefore, the size of buffer 1 is p.
During these p clock cycles, a path table is generated. If xi,j is the last element of the data
set, and it is not consumed at the current moment, it will be stored in buffer 4. The data in
buffer 4 will be sent to the reduction operator as operand 2. If dout is not the final result of
the set, it will be sent to the reduction operator or stored in the buffer. Buffer 2 and buffer 3
are used to store operand 1 and operand 2, respectively. The two operands are stored in
two different buffers, which can simplify the control logic of the buffer and improve the
speed of reading and writing. The path tables of the data in buffer 2 are stored in buffer 5,
so the two buffers use the same control signals. The path tables of the data in buffer 3 and
buffer 4 are stored in buffer 6 and buffer 7, respectively.
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Figure 7. The hardware structure of BTPP.
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When p = 1, BTPP executes serially, and there is no need to use a buffer. When p ≥ 2,
buffers 2–7 have the same size, and their sizes are all (log2 p + 2)× dp/2e. The maximum
number of iterations executed simultaneously is (log2 p + 2), where p ≥ 2. As shown in
Figure 5c, there are four iterations at the same time (p = 4). After iteration 0 is completed,
iteration 4 is executed. When p ≥ 2, there are dp/2e nodes in an iteration that need to be
allocated storage units. Taking Figure 5e as an example, there are only two possible cases
for node t1 and node t2. For node t1, it will execute xi + xi+1 or 0 + xi+1. In both cases,
there is no need to read operands from the buffer. Only the operands of node t3 and node
t4 are stored in the buffer, so p/2 nodes need to be allocated storage units. If p is an odd
number, it is p/2 + 1. Therefore, the sizes are (log2 p + 2)× dp/2e when p ≥ 2.

BTPP has a simple buffer management mechanism. From the previous description,
when p ≥ 2, there are at most (log2 p + 2) iterations at the same time, and only dp/2e
nodes in each iteration need to be allocated storage units. For these (log2 p + 2)× dp/2e
nodes, their operand 1 is stored in buffer 4, and operand 2 is stored in buffer 2 or buffer 3.
The sizes of buffers are (log2 p + 2)× dp/2e, which means that each node has a dedicated
storage unit. When the execution of the node is completed, the storage unit will be released.
For example, in Figure 5c, after iteration 0 is executed, the storage units it occupied are
released and used to store the data of iteration 4. Therefore, when a node is executed, the
module bu f f er_management generates the address to read the dedicated storage unit of
the node. The most significant bits of the data in buffers 5–7 are valid bits. According to
these valid bits, the circuit can determine whether the data in buffers 2–4 are valid. After
reading the data, the circuit writes “0” to the valid bit in buffer 5–7, which means that the
data are invalid. When writing data, module bu f f er_management generates a write enable
signal and an address to write data to the dedicated storage unit of the node.

Path partition is the core of the BTPP. Complicated hardware circuits will cause a
large delay, leading to performance degradation. If the configuration codes corresponding
to all possible situations of the path partition are stored in the memory, a large amount
of memory resources will be consumed. Therefore, we need to use simple hardware to
achieve path partition. In BTPP hardware, the module path_table_gen is used to achieve
path partition and generate path tables. It is mainly implemented by the initial path table,
path generation matrix (PGM), and path table flag (PTF).

Figure 8 shows an example of obtaining the path generation matrix. We rewrite the
initial path table of iteration k in Figure 5e into the form in Figure 8. For operations, when
the second operand comes, we can confirm its execution. Therefore, we use this feature to
determine the priority of nodes in the iteration. When xi is input, by judging whether it
needs to be added to the result of the previous iteration, it can be determined whether the
node at the time t4 needs to be passed. In the same way, when xi+1, xi+2, xi+3 are input, it
can be determined whether it is necessary to pass the nodes at t1, t3, and t2. This essentially
reorders the nodes in the initial path table. We use the element “1” to indicate that the path
passes through the node corresponding to the element, and the element “0” indicates that
it does not pass, so we get the PGM. The first column in the PGM stores the address of
the initial path table. For example, the data in the second row of the initial path table are
[t4, t4, t4, t4], which is stored in the 0th row of the PGM together with the location address
to get the data [2, t4, t4, t4, t4]. Use “1” to represent the node passing t4, so the 0th row of
PGM is [2, 1, 1, 1, 1]. It can be seen from the PGM that the nodes that the data xi − xi+3 pass
have not changed. Since the execution time of nodes in different iterations is different, this
method can reduce the amount of data storage. The PGM can be reused in each iteration.
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Figure 8. The generation mechanism of the path generation matrix.

Figure 9 gives an example of the path partition of iteration 2 in Figure 6. According to
the information in Figure 5e, when n = 2, the data input time of iteration 2 is 8–11. The
data corresponding to the data xi − xi+3 are respectively a8− b2, so xi belongs to set A, and
xi+1 − xi+3 belongs to set B. Path partition is obtained through multiple OR operations on
elements in PGM and PTF. In an iteration, the elements belonging to the same set in the
PGM and PTF will perform the OR operation. All elements of the PTF are zero in the initial
situation, and mod_cycle is the current cycle modulo p. As shown in Figure 9a, when the
cycle is 8, mod_cycle is 0. At this time, columns corresponding to only xi in the PGM and
initial PTF perform an OR operation to obtain PTF(0). As shown in Figure 9b–d, when the
cycle is 9–11, mod_cycle is 1, 2, and 3, respectively. At this time, columns corresponding to
xi+1 − xi+3 in PGM and PTF perform OR operations to obtain PTF(1), PTF(2), and PTF(3),
respectively. PTF(3) contains the information after path partition.
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Figure 9. The example of path partition of iteration 2 in Figure 6. (a–d) the process of obtaining PTF(3); (e) PTF(3) combined
with the initial path table to get the final path.

PTF combined with the initial path table can get the partitioned path. As shown
in Figure 9e, the execution time t1 − t4 of the nodes in iteration 2 are 9, 11, 16, and 22,
respectively, so we can get the initial path table. The element “0” in PTF(3) means that the
path does not pass through the node corresponding to the element, and the element “1”
means that the path passes through the node corresponding to the element. When n = 2,
the default path of xi in the initial path table is {t1, t3, t4}, which is 9, 16, 22. However, after
path partition, the first column of PTF(3) is {0, 0, 1}, which means that xi does not pass
through nodes 9 and 16, but only passes through node 22. Therefore, the path of a8 is {22}.
The paths corresponding to data b0 − b2 are similar.
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A working example of BTPP hardware is given. To better understand the hardware
working, we first give the overall situation of the calculation, as shown in Figure 10.
Different from Figure 6, buffer 1 delays the input data by p clock cycles, so the execution
time of all nodes is delayed by p. In this example, the reduction operator is an adder with
a 4-stage pipeline (p = 4), and the tasks to be solved are ∑4

i=0 ai and ∑3
i=0 bi. Figure 11

shows the hardware working details. Path table is generated at xi,j and updated at dout.
At cycle 0, data a0 is input from din. The signal din_valid is 1, which means that a0 is valid
data. Then, data a1 − a3 are input in sequence. At cycle 4, the signal set_end becomes valid,
indicating that the data a4 input at the current moment are the last data of the data set A.
After four clock cycles are delayed by buffer 1, data a0 appear at xi,j, and its path table
has been generated. In the path table, the “5” in {5, 12, 18} and the first “1” in {1, 1, 2}
represent that a0 is sent to the reduction operator as the first operand at cycle 5. Other data
represent similar meanings. The value of TNI is 1, which means that the calculation result
of cycle 18 will be sent to the next iteration for calculation. Data a0 are not consumed at
the current moment. Since it will be sent to the reduction operator as the first operand,
there is no need to store it in the buffer. At cycle 5, xi,j is a1. According to its path table, it
is sent to the reduction operator as the second operand at this time. Therefore, op2 is a1.
The signal xi,j−1 is a0, which meets the demand of op1 at the current moment, so op1 is
a0. The situation is similar for cycles 6–7. At cycle 8, xi,j is a4, and it is not consumed at
the current moment. It is the second operand of the node 22, so it is stored in buffer 4. At
cycle 9, xi,j is b0. According to the path table, b0 is sent to op2. The signal xi,j−1 at this time
does not meet the requirements of op1, so op1 is 0. The signal dout outputs partial result
a0 + a1, and its path table is {12, 18} and {1, 2}. From the path table of a0, a1 and a0 + a1,
it is easy to see that a0 + a1 is the calculation result of a0 and a1. Since a0 + a1 needs to be
consumed as the first operand at cycle 12, it is stored in buffer 2. The situation at cycle 11
is similar, and the difference is that a2 + a3 is stored in buffer 3 because it is consumed as
the second operand. At cycle 20, the path table of b0 + b1 + b2 is empty except TNI is 1.
From the information of din and iteration, the data b0 + b1 + b2 are the result of iteration 1.
Therefore, it needs to be sent to the last node of iteration 2, which means that b0 + b1 + b2
will be consumed at cycle 26. The situation is similar for cycle 22. At cycle 26, the path
table of a0 + a1 + a2 + a3 + a4 is empty, which means it is the final result of data set A, so
the signal dout_valid becomes valid.

path table
input path operand TNI
iteration 0
𝒂𝟎 {5, 12, 18} {1, 1, 2} 1
𝒂𝟏 {5, 12, 18} {2, 1, 2} 1
𝒂𝟐 {7, 12, 18} {1, 2, 2} 1
𝒂𝟑 {7, 12, 18} {2, 2, 2} 1

iteration 1
𝒂𝟒 {22} {2} 0
𝒃𝟎 {9, 16} {2, 1} 1
𝒃𝟏 {11, 16} {1, 2} 1
𝒃𝟐 {11, 16} {2, 2} 1

iteration 2
𝒃𝟑 {26} {2} 0
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Figure 10. A calculation example, where p = 4. ∑4
i=0 ai and ∑3

i=0 bi needs to be solved.
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path operand TNI path operand TNI

0 0 1 a 0

1 0 1 a 1

2 0 1 a 2

3 0 1 a 3

4 1 1 a 4 1 a 0 {5,12,18} {1,1,2} 1
5 1 1 b 0 a 1 {5,12,18} {2,1,2} 1 a 0 a 0 a 1

6 1 1 b 1 a 2 {7,12,18} {1,2,2} 1 a 1

7 1 1 b 2 a 3 {7,12,18} {2,2,2} 1 a 2 a 2 a 3

8 2 1 b 3 1 a 4 {22} {2} 0 a 3

9 b 0 {9,16} {2,1} 1 a 4 0 b 0 a 0 +a 1 {12,18} {1,2} 1 a 4

10 b 1 {11,16} {1,2} 1 b 0 a 0 +a 1 a 4

11 b 2 {11,16} {2,2} 1 b 1 b 1 b 2 a 2 +a 3 {12,18} {2,2} 1 a 0 +a 1 a 4

12 b 3 26 {2} 0 b 2 a 0 +a 1 a 2 +a 3 a 0 +a 1 a 2 +a 3 a 4

13 b 3 b 0 {16} {1} 1 a 4 b 3

14 b 0 a 4 b 3

15 b 1 +b 2 {16} {2} 1 b 0 a 4 b 3

16 b 0 b 1 +b 2 a 0 +a 1 +a 2 +a 3 {18} {2} 1 b 0 b 1 +b 2 a 4 b 3

17 a 0 +a 1 +a 2 +a 3 a 4 b 3

18 0 a 0 +a 1 +a 2 +a 3 a 4 b 3

19 a 4 b 3

20 b 0 +b 1 +b 2 {} {} 1 a 4 b 3

21 b 0 +b 1 +b 2 a 4 b 3

22 a 0 +a 1 +a 2 +a 3 a 4 a 0 +a 1 +a 2 +a 3 {} {} 1 b 0 +b 1 +b 2 a 4 b 3

23 b 0 +b 1 +b 2 b 3

24 b 0 +b 1 +b 2 b 3

25 b 0 +b 1 +b 2 b 3

26 b 0 +b 1 +b 2 b 3 a 0 +a 1 +a 2 +a 3 +a 4 {} {} 0 b 0 +b 1 +b 2 b 3 1
27
28
29
30 b 0 +b 1 +b 2 +b 3 {} {} 0 1

reduction operator: adder with 4-stage pipeline

For the sake of simplicity, the registers used to delay one clock cycle are included in the buffer 2 and buffer 3, and the elements of the same column in the
buffer 2 and buffer 3 does not mean that they are cached in the same physical unit.

TNI: to_next_iteration

iteration dout_valid
data

cycle din_valid din set_end buffer 2 buffer 3 buffer 4path_table path_table

dout

data
op1 op2

𝑥௜,௝
𝑥௜,௝ିଵ

Figure 11. An example to show how BTPP hardware works. The reduction operator used is an adder with 4-stage pipeline,
and the calculation tasks are ∑4

i=0 ai and ∑3
i=0 bi.

6. Evaluations and Comparison

We implemented BTPP on Xilinx XC5VLX110T platform using Verilog HDL because
most of the existing work is implemented on the same platform. Our circuit is designed and
validated manually. To ensure that the reduction operator used by BTTP is the same as other
works, a double-precision floating-point adder with 14-stage pipeline, which is synthesized
by Xilinx ISE 10.1, is chosen as the reduction operator. The post-implementation results
are shown in Table 1. MFPA, AeMFPA, and A2eMFPA are designs of multiple reduction
operators. They consume more slices than the design of a single reduction operator, but
the two designs proposed by [21] are exceptions. Although they are designs of a single
reduction operator, their frequency and slices are related to the number of data sets they
can process simultaneously. As the number of data sets grows, the slices increase more,
which will limit its application. The frequency and slices of BTPP and SBM are stable. It
has nothing to do with the number of data sets and the number of elements contained in
each data set. Their frequency and slices are more balanced in all designs. However, the
circuit of SBM is more complicated, which is mainly reflected in the buffer management
unit. It needs to identify which units in the buffer store data that are valid, and it also
needs to detect elements in the buffer that belong to the same data set. Compared with
SBM, the hardware structure of BTPP is simple, without particularly complex logic. At
the same time, it can guarantee a better clock frequency and slice consumption than SBM.
On Virtex-5, each slice includes four 6-input LUTs and four registers. BTPP uses 1554 slice
registers. In addition, 1495 slice LUTs are used as logic, and only three slice LUTs are used
as route-thru. The buffers in BTPP are all implemented with dual-port RAM, so 10 BRAMs
are used. In addition, 3 DSP48Es are used in BTPP.
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Table 1. Implementation results comparison between different designs on Xilinx XC5VLX110T.

BTPP SBM [23]
Prototype [21] High Speed [21]

MPFA [18] AeMFPA [18] A2eMFPA [18]
m∗ = 512 m∗ = 1024 m∗ = 2048 m∗ = 512 m∗ = 1024 m∗ = 2048

adders 1 1 1 1 1 1 1 1 5 2 2

Freq. (MHz) 305 300 268 245 201 378 359 356 367 321 247

Slices 648 680 1260 1848 3645 1055 1394 2176 1692 1234 1309

pipeline stages of adder: 14, data type: double-precision floating-point (64-bit), *m is the upper limit of the number of data sets processed
simultaneously by Prototype [21] and High Speed [21].

We compared the execution time and area-time product of different designs in Table 1,
and the results are shown in Figure 12. The number of pipeline stages of reduction operator
is 14. The parameter m is the number of data sets, and n is the number of elements in each
data set. The two designs of [21] in Figure 12 are two circuits that support a maximum
of 512 data sets. Since the clock frequency of BTPP is lower than High Speed, MFPA and
AeMFPA, BTPP does not have an advantage in execution time. However, it has a smaller
consumption of slices, so it has the least area-time product of all designs, which makes
BTPP extremely competitive.
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Figure 12. The comparison of execution time and area-time product between different designs, where p = 14.

To prove that the BTPP can be used for different reduction operators, we give pre-
synthesis simulation examples of BTPP using an adder and a multiplier, respectively, in
Figure 13. Since the most common problems are ∑n−1

i=0 xi and ∏n−1
i=0 xi, which are the main

problems solved by the reduction circuit, we chose adder and multiplier as the reduction
operator. The adder and multiplier are IPs generated by Xilinx Vivado 2019.1 software,
their data are double-precision floating-point numbers, and the number of pipeline stages
is 14. The circuit is implemented in Verilog HDL, and is simulated by ModelSim called by
Vivado. Data sets {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}, and {1, 2, 3, 4, 5, 6} are the test. It can be
seen from the figure that the input signals of Figure 13a,b are the same, and the time for
dout_valid to become valid is also the same. At 256ns, both circuits output the calculation
results of the last data set. The output of Figure 13a is 21 (= 1 + 2 + 3 + 4 + 5 + 6), and the
output of Figure 13b is 720 (= 1× 2× 3× 4× 5× 6).
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(a)

(b)

Figure 13. Pre-synthesis simulation. (a) reduction operator is a double-precision floating-point adder with a 14-stage
pipeline; (b) reduction operator is a double-precision floating-point multiplier with a 14-stage pipeline.

We have implemented the two designs in Figure 13 on Xilinx Artix-7 XC7A100T, and
the post-implementation results are shown in Table 2. Since the multiplier uses more DSP,
its frequency is much higher than that of the adder, and it uses fewer slice LUTs and slice
registers than the adder. The BTPP that uses the adder as the reduction operator and the
BTPP that uses the multiplier as the reduction operator are listed in the last two columns
of Table 2. Through comparison, it can be seen that the control circuit of BTPP does not
use DSP but uses 9.5 BRAMs. The resources used by the two BTPP control circuits are
approximately equal.

Table 2. BTPP with different reduction operators are implemented on Xilinx Artix-7 XC7A100T.

Adder Multiplier
BTPP BTPP

(Adder) (Multiplier)

bit-width 64 64 64 64

pipeline stages 14 14 −− −−
Freq. (MHz) 296 344 294 285

Slice LUTs 661 176 1372 926

Slice Reg. 995 557 1809 1324

DSPs 3 11 3 11

BRAMs 0 0 9.5 9.5

We have implemented two circuits for matrix-vector multiplication on Xilinx Artix-7
XC7A100T. The first one is composed of a multiplier and an adder. The accumulation
function is realized by feeding back the output of the adder to the input. The second circuit
is composed of a multiplier and BTPP that uses an adder as a reduction operator. The adder
and multiplier used here are the same as those in Table 2, and the data type and number of
pipeline stages are unchanged. The circuit is implemented in Verilog HDL, synthesized
and placed and routed through Xilinx Vivado 2019.1 software. The post-implementation
results are shown in Table 3. For the circuit that does not use BTPP, the slice LUTs and slice
registers consumed are less than the design using BTPP.
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Table 3. Two circuits for matrix-vector multiplication are implemented on Xilinx Artix-7 XC7A100T.

Multiplier + Adder Multiplier + BTPP

bit-width 64 64

Freq. (MHz) 294 285

Slice LUTs 835 1541

Slice Reg. 1744 2430

DSPs 14 14

BRAMs 0 9.5

The two circuits in Table 3 are applied to matrix–vector multiplication, and the results
are shown in Figure 14. The matrix in Figure 14 has 15 rows and the number of columns is
between 15 and 30. In other words, the reduction circuit needs to handle 15 data sets, and
the number of elements in each data set is between 15 and 30. For the case of not using
BTPP, it needs to consume a lot of execution time. This is because the deep pipelining of
the adder does not bring about an increase in throughput. BTPP takes full advantage of the
deep pipelining of the adder and greatly reduces the execution time. Compared with the
design that does not use BTPP, it can achieve a 12× speed up. BTPP uses the less additional
area in exchange for a great improvement in performance, which fully demonstrates the
advantages of BTPP.
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Figure 14. The comparison of execution time between the design using BTPP and the design not
using BTPP. The number of rows of the matrix is 15 and the number of columns varies from 15 to 30.

7. Conclusions

In this paper, we propose a novel reduction circuit based on binary tree path partition.
It can process any number of data sets, and each data set can contain any number of
elements. We introduced BTPP by taking the adder as the reduction operator as an example.
BTPP divides the input data into multiple data groups, and each data group contains p
elements. The p elements are added through a binary tree to get the partial result, and the
final result is obtained by adding these partial results. After all operations are software
pipelined, the circuit only needs to use a p-stage pipeline adder to perform these operations.
We implemented BTPP on FPGAs. Compared with other methods, BTPP has the least
area-time product.

Author Contributions: Funding acquisition, Z.H. and J.C.; Investigation, L.T.; Methodology, L.T.;
Project administration, G.C.; Writing—original draft, L.T.; Writing—review & editing, Z.H., G.C., Y.Z.
and J.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
Nos. 61704173, 61901440), the Beijing Municipal Natural Science Foundation (Grant No. 4202080),
and the One Hundred Person Project of the Chinese Academy of Sciences.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Algorithms 2021, 14, 30 17 of 18

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alawad, M.; Lin, M. FIR Filter Based on Stochastic Computing with Reconfigurable Digital Fabric. In Proceedings of the 2015

IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines, Vancouver, BC, Canada,
2–6 May 2015; pp. 92–95.

2. Mittal, R.; Prince, A.A.; Nalband, S.; Robert, F.; Fredo, A.R.J. Low-Power Hardware Accelerator for Detrending Measured
Biopotential Data. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [CrossRef]
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