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Abstract: K-Means Clustering is a popular technique in data analysis and data mining. To remedy
the defects of relying on the initialization and converging towards the local minimum in the K-Means
Clustering (KMC) algorithm, a chaotic adaptive artificial bee colony algorithm (CAABC) clustering
algorithm is presented to optimally partition objects into K clusters in this study. This algorithm
adopts the max–min distance product method for initialization. In addition, a new fitness function
is adapted to the KMC algorithm. This paper also reports that the iteration abides by the adaptive
search strategy, and Fuch chaotic disturbance is added to avoid converging on local optimum. The
step length decreases linearly during the iteration. In order to overcome the shortcomings of the
classic ABC algorithm, the simulated annealing criterion is introduced to the CAABC. Finally, the
confluent algorithm is compared with other stochastic heuristic algorithms on the 20 standard test
functions and 11 datasets. The results demonstrate that improvements in CAABA-K-means have an
advantage on speed and accuracy of convergence over some conventional algorithms for solving
clustering problems.

Keywords: artificial bee colony (ABC) algorithm; K-means clustering (KMC) algorithm; chaos
algorithm; Metropolis algorithm; simulated annealing

1. Introduction

Clustering procedure [1–3] is a process that divides a set of objects into clusters
according to the predefined criteria such that objects in the same cluster are more parallel
to each other than other objects in different clusters. Clustering is often used in solving
a part of complicated tasks in pattern recognition [4], image analysis [5], and other fields
on data processing [6]. An excellent clustering algorithm still has a higher interference-
free capability and lower time complexity than traditional algorithm when processing
large amounts of data. The clustering algorithms can be subdivided into two categories:
hierarchical clustering and partitional clustering. The hierarchical clustering algorithm
divides the pattern into fewer structures continuously, and it is usually described by the
tree structure. Partition clustering is the division of a set of objects into K non-intersecting
subsets with high internal similarity. The center-based clustering algorithms are the most
popular partitional clustering methods.

K-means is simple and efficient, in which case it becomes one of the most popular
center-based cluster methods [3]. However, relying on the initialization of K states and
convergence towards the local minimum are significant shortcomings of K-means classifi-
cation. In order to overcome these problems, many other methodologies have been applied
to algorithm. A clustering algorithm which based on genetic algorithm was proposed by
Mualik and Bandyopadhyay, and its effectiveness is proved on real-life datasets. Simulated
Annealing (SA) approach is proposed to solve the clustering puzzle by Selim and Al-Sultan
(1991). Beyond that, many heuristic algorithms like Particle Swarm Optimization (PSO) [7],
Differential Evolution (DE), and ABC, have also been successively adapted in the clustering
algorithm optimization improvements.
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ABC is a swarm intelligence algorithm that is derived from the honeybee colony’s
gathering behavior. After Turkish scholars Karabogac Denis raised this problem in
2005 [8,9], it was widely applied to solve function optimization problems, for the ad-
vantages of less parameters, simpler structure, and being easier to implement [10]. Com-
pared with PSO and Genetic Algorithm (GA), ABC’s advantage is proved further in
Section 4. Similar to other swarm intelligence algorithms, the performance of optimized
ABC mainly depends on its search strategy. Due to the randomness of the search mecha-
nism, the algorithm is easy to get stuck at local optimal value and has slow convergence
speed. ABC has been optimized gradually after the proposal, and it has been extended
to various fields. Inspired by PS0 algorithm, the global optimal solution is used to guide
the search formula (GABC) in [11]. Inspired by the DE algorithm, another new improved
algorithm MABC was proposed. In [10], comparing with the original ABC algorithm,
the MABC modifies the employed bee stage and onlooker bee stage, which improves the
efficiency. The proposed algorithm is then applied to solve a loudspeaker design problem
using FEM. The CGABC based on the crossover is proposed in [12]. The Crossover op-
erator of genetic algorithm is introduced into the Global optimized Artificial Bee Colony
algorithm. Crossover is the transfer of good genes from the parent of a population to its
offspring. The brand new ABC_elite is proposed in [13]. To better balance the tradeoff be-
tween exploration and exploitation, it proposes a depth-first search (DFS) framework. The
article introduces two novel solution search equations which incorporates the information
of elite solutions and can be applied to the employed bee phase. Furthermore, many studies
increase search efficiency by changing the greedy search mechanism. Sharma T K [14]
changes the search path of scout bee. Two new mechanisms for the movements of scout
bees are proposed. In the first method, the scout bee follows a non-linear interpolated path
while in the second one, scout bee follows Gaussian movement. Yang, Weifeng Gao [15,16]
improves the greedy search and adapts to more optimization problems using introduced
adaptive methods. In addition, to enhance the global convergence, when producing the
initial population and scout bees, both chaotic systems and opposition-based learning
method are employed. Xiang W L [8] proposes a depse-first search framework. Gao W [17]
increases information sharing among individuals through improvement. In addition, many
scholars [18,19] choose to combine the ABC algorithm with other familiar algorithms
for optimization. Each bee should select whether adopts greedy strategy or not based
on its fitness value on each generation. A great progress in solving complex numerical
optimization problems has achieved in [19,20]. With the continuous improvement and
optimization, ABC has been applied in more fields, such as workshop scheduling [21–25]
software aging prediction [26], machine learning [27], multi-objective optimization [28],
dynamic optimization [29,30] and so on.

ABC has unique advantages for data optimization problems. In this work, the im-
proved ABC is extended to clustering procedures. Crossover operation and adaptive
threshold are integrated to improved ABC algorithm. The simulated annealing technique
and Fuch chaotic perturbation operation are drawn into the algorithm. Furthermore, the ini-
tialization equation and the fitness function are reformed according to the shortcomings of
the K-means. The CAABA-K-means has been proved to be superior on speed and accuracy
of convergence over some conventional algorithms for solving clustering problems.

The remainder of this work is distributed as follows: Section 2 discusses the ABC
algorithm and clustering analysis problems. The chaotic adaptive ABC (CABC) algorithm
adapted for solving K-means clustering problems is introduced in Section 3. Section 4
shows that our method outperforms some other methods by showing experimental studies.
Section 5 is the conclusion, which summarizes our proposed method.

2. Relative Work
2.1. Artificial Bee Colony Algorithm

ABC is a swarm intelligence algorithm, which imitates the division of labor and
the search mode of bees to find the maximum amount of nectar [8]. In the classic ABC
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algorithm, the artificial bee colony is divided into three categories according to their
behaviors: employed bee, onlooker bee, and scout bee. In the beginning, the number of
employed bees equals to onlooker bees, and the third kind of bees appear gradually. The
employed bee uses information about the initial honey source to find new honey source
and shares the information with the onlooker bee. The onlooker bee waits in the hive
and chooses a better source according to the greedy selection mechanism. However, if
the honey source information has not been updated for a long time, the corresponding
employed bee will be transformed into a scout bee. The task of scout bee is to search for the
honey source randomly around the hive and find a new valuable honey source eventually.
Self-organization, self-adaption, social division, and collaboration are significant features
of the entire colony. ABC simulates the foraging behavior as the process of searching for
the optimal solution, defines the adaptability to the environment of individuals as the
objective function of the problem to be solved, and takes the greedy selection method as
the basis for eliminating the different solution. This process is iterated until the optimal
solution is reached and the entire function gradually converges. The steps can be described
specifically as follows.

2.1.1. Initialization Stage

In ABC algorithm, the fitness value represents the quality of nectar sources and
candidates solution corresponding to food sources. It is assumed that the population size
is N. The initial solution is obtained through Equation (1).

xij = xmin
j + rand ∗ (xmax

j − xmin
j ) (1)

where xij is the j-th component of the i-th vector. i = 1, 2, . . . N, j = 1, 2, . . . D. xmax
j and

xmin
j are the upper bound and lower bound of the j-th component, and rand ∈ [0, 1] is a

random number from 0 to 1. The algorithm executes global searching randomly for food
sources and derives the revenue value.

2.1.2. Employed Bee Stage

After initialization, the ABC algorithm starts the stage of employed bees. Employed
bees search randomly around the current region according to Equation (2) and shares the
information with the onlookers; thus, a new set of honey sources, Vi = (Vi1, Vi2, . . . ViD),
is generated

Vij = xij + φij

(
xij − xkj

)
(2)

where φij ∈ [−1, 1], i = 1, 2, . . . N. In addition, j = 1, 2, . . . D is the index, which is chosen
randomly. In addition, i 6= k is a necessary requirement to reduce duplication of effort. If
the fitness value of a new source Vij is ameliorated, the source will be superseded by the
new one.

2.1.3. The Probability of Selecting the New Food Source

The fitness value is calculated by Equation (3), which is an evaluation criteria of nectar
source quality.

f iti =

{
1

1+ fi
, fi ≥ 0;

1+| fi|, fi < 0
(3)

where i = 1, 2, . . . N. f iti denotes the fitness value of xi. The larger f iti value means the
higher quality of honey source. In addition, fi is the value of the i -th nectar source′s
objective function.

When the fitness values are calculated, they are applied to calculate the probability of
selecting the i-th honey source Pi, which can be used as a basis for onlooker bees to select
honey sources.

Pi =
f iti

∑N
n=1 f iti

(4)
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where f iti denotes the fitness value of the xi.

2.1.4. Scout Bee Stage

If the search steps reach a certain threshold, but no better position is found, the position
of this employed bee is re-initialized randomly according to Equation (1).

Each food source is verified by employed bees and/or onlooker bees for its potential
inclusion as a candidate position. The ABC algorithm utilizes employed bees, onlooker bees
and scout bees to iteratively search the solution space until reach the maximum number
of iterations. If a food source is not improved further through limit trials, it is deemed as
an exhausted source and abandoned. Under different conditions, the three kinds of bees
transform into each other and the result gradually approaches the optimal solution. The
transformation diagram is as Figure 1.
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2.2. K-MEANS Cluster Algorithm

Clustering methods are suitable for finding internally homogeneous groups in data.
The K-means algorithm is one of the oldest clustering techniques [1], which is constructed
based on the iterative hill-climbing process. The main idea is to gather the original data
into K clusters according to similar attributes. The main processing procedure is as follows.
Firstly, K samples are randomly selected from the original data, and each sample is taken as
the center of K clusters. Then the distance between the K center samples and the remained
samples is separately calculated. According to the calculation, each sample is classified
into the nearest cluster. The iterative process is repeated until the cluster no longer changes.
Therefore, the traditional K-means clustering is expressed as follows.

x =
{

xi ∈ Rd, i = 1, 2, · · · , n
}

is the original data sample, where xi(i = 1, 2, · · · , n)
is d -dimensional vectors. C = {C1, C2, · · · , Ck} is the cluster sets, where k is the num-
ber of clusters.

K-means criterion function is expressed as follows:

J =
k

∑
j=1

∑
xi∈Cj

d
(
xi, Cj

)
(5)

where d
(

xi, Cj
)

represents the distance between data xi and its clustering center Cj, and J
represents sum of its internal distances.

3. Chaotic Adaptive Artificial Bee Colony (CAABC) for Clustering

During the iterative optimization process of the classic ABC algorithm, both employed
bee and onlooker bee follow a completely random search strategy. As a result, the ABC



Algorithms 2021, 14, 53 5 of 23

algorithm has strong global search capabilities. However, the algorithm selects the honey
source blindly at the stage of the employed bee. Only the random number φij, between
–1 and 1], can be used to control the search region of the neighborhoods, and the search
direction of onlooker bee is guided by the information of honey source from employed
bee. In the entire iteration process of the algorithm, the blindness and randomness make
the algorithm more complex and sacrifice the accuracy of algorithm results. For balancing
the exploration and exploitation performance, ABC has been optimized from different
perspectives. To improve the convergence speed, GABC combines the ABC with PSO
algorithm and the global optimal solution is referred to change the random neighborhood
searching of classic ABC, which enhances the exploitation performance of algorithm.
However, simply adding the global optimal solution not only enhances the convergence
speed but also increases the risk of premature convergence. Therefore, inspired by GABC,
the information carried by ordinary individuals in this paper is effectively utilized and
the search space is adaptively adjusted to avoid premature convergence. In order to
overcome the disadvantages of K-means clustering algorithm, such as over dependence on
the initial clustering center, easily falling into local optimum, and the premature and slow
convergence of the artificial bee colony algorithm due to the limitations of search strategies,
a hybrid clustering method combining the improved artificial bee colony algorithm and
K-means algorithm is proposed which makes full use of the characteristics of the improved
artificial bee colony algorithm and K-means algorithm.

3.1. MAX–MIN Distance Product Algorithm

Initialization affects the global convergence and the performance of the algorithm, so
it is particularly important in the evolutionary algorithm. K-means clustering algorithm
has high sensitivity to the initial stage. Based on [31,32], we propose a max–min distance
product algorithm for initialization. The initialization process not only reduces the ran-
domness of colony initialization but also reduces the sensitivity of Kmeans clustering to
initial points. In [33], the max–min distance means is used to search the optimal initial
clustering center, in which case convergence speed and accuracy of the algorithm have
been significantly improved. However, it may lead to clustering conflict when the initial
clustering center is excessive dense. The maximum distance method proposed in [34]
reduces the number of iterations effectively, but there would be the problem of initial point
deviation. It is possible that the product of two distances is the same, but the density of the
points is quite different.

To improve the efficiency, we propose a max–min distance product algorithm. We can
get Tm from T according to Equation (6). Tm represents the product of the maximum and
minimum values in od.

Tm = mix(od) ∗min(od) (6)

where k points are randomly selected as the initial cluster centers from the original data
set. Meanwhile, is a data set used to store the distance between other points in the data
set among cluster centers. T is an array that stores the product of elements in od. Tm is the
product of the maximum center distance and the minimum center distance. The points
that corresponding to the Tm are selected as cluster centers instead of initial points. The
distribution of current initial points can be dispersed by the max–min distance product.
Moreover, it can avoid the situation that two distance products are equal, but the point
density of their regions is quite varied, and magnify the difference between points. The
enhanced selection method is better.

3.2. New Fitness Function

Fitness function is the crux of population evolution, which determines the solution
quality directly. It is the key factor which affects the stability and convergence of the
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algorithm. Based on the characteristics of the iteration of ABC and the basic idea of the
K-means algorithm, a new fitness function is adopted in this work:

f itnessi = CNi/Ji; i = 1, 2, · · ·N (7)

where CNi represents the number of samples in the i -th cluster.

Ji = ∑
xj∈Cj

d
(
xj, Ci

)
(8)

Ji denotes the sum of the distance between the sample points among the centers. The
new fitness value can give rise to equilibrate the influence of the numbers and distance of
samples. The phenomenon of inaccurate judgment caused by the same value of CNi or Ji is
avoided, which improves the adaptability of the function and makes the iterative process
more accurate.

3.3. New Position Update Rules
3.3.1. Arregate-Dispeise Algorithm

To improve convergence speed and accuracy, aggregate-disperse algorithm is intro-
duced here. On the basis of the simplex method, we propose an “aggregate-disperse
operation” as a guiding strategy for the iteration. According to the relationship among the
global optimal solution, elite solution and ordinary individual, the search range and step
length change adaptively.

• The Simplex Method

The simplex method is a traditional optimization method which uses the iterative
transformation of the vertex of the geometric graph to approach the optimal value gradually.
Take a dual function as example. Take three points X1, X2, X3, which are not collinear, as the
vertices to form a triangle. Calculate the function value f (X1), f (X2), f (X3) and compare
them to each other. Calculate the function value f (X1), f (X2), f (X3) and compare them to
each other.

(1) f (X1) > f (X2) > f (X3) means X1 is the worst solution, and X3 is the best one.
The algorithm should search in the opposite direction to find the minimum. X4 =
(X2 + X3)/2 is the midpoint of X2X3, X5 is on the extension line of X1X4, and X5 is
called the reflection point of X1 with respect to X4:

X5 = X4 + α(X4 − X1) = −αX1 + (1 + α)X4 (9)

where α is the reflection coefficient, which equals 1 as usual. The geometric relation-
ship is shown in Figure 2:
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(2) f (X5) ≤ f (X3) denotes that that direction of searching is correct, the algorithm should
keep going in this direction. Let α = 1.5. If f (X6) ≤ f (X5), X5 is replaced by X6 to
form a new simplex, or X6 is dropped.
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(3) f (X3) ≤ f (X5) ≤ f (X2) means that the searching is going in the right direction, but
doesn’t need to expand.

(4) f (X2) ≤ f (X5) ≤ f (X1) demonstrates that X5 has gone too far to need to be retracted.
(5) If f (X5) > f (X1), X1, X2 need to be retracted toward X3.

• Aggregate and Disperse Operator

The purpose of the aggregate operation is to provide guidance for the population
gathering in a potential direction during the iteration. With this operation, the algorithm
can increase the convergence speed in the initial stage and strengthen the local search
ability in the later stage. xglobal , xebest, Xk are three given solutions, the worst individual is
moved toward the others. In order to accelerate the convergence speed, the elitist solution
xebest and the global optimal solution xglobal are used to guide the search process.

The parameter setting is α ∈ (0, 2) [31] to ensure that the new solution maintains
convergence while moving toward a better direction generally. α can be considered as the
punishment parameter for the poor individual, and -α is the encouragement parameter.

α ∈ (0, 1) denotes that the better solution is not found, so the influence of the original
strategy should be moderately weakened.

α ∈ (1, 2) denotes that the original strategy should be strengthen.
The parameters are transformed to form a convex combination to avoid negative

weight in the later stage.

X5 = (1− β)X1 + β(ϕX2 + (1− ϕ)X3) (10)

The simplex method and ABC are fused in the two-dimensional coordinate space
in Figure 3:

Xi = (1− β)Xk + β
(

ϕXelite + (1− ϕ)Xglobal

)
(11)

where β ∈ (0, 2), ϕ ∈ (0, 1). The vectors OA, OB, and OC represent the global optimal
solution, elite solution, and ordinary individual respectively. If OE = βOA + (1− β)OB,
according to convex combination analysis, the point E lies on the line segment AB, and
OF ends up in the triangle ∆A′B′C. When the searching area is extended to n-dimensional
space, the point F will fall into an area with the line segment AB as the median line, which
is the potential space limited by elite solutions and globally optimal solutions. Finally,
multiple planes intersect at the global optimum. The results converge to the globally
optimal solution with high probability.
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However, if the three solutions are collinear, it will be trapped in the local optimum
because the search space is too narrow. Therefore, the disperse operation is used to expand
the search space.

Xi = (1− 2× ς)× Xc + ς× (γ× Xa + (1− γ)× Xb) (12)

The vectors ζ, γ are random numbers between 0 and 1. After the dispersion oper-
ation, the search area is extended to triangle area ∆ABC′. In multidimensional space,
multiple planes intersect at the global optimum with high probability eventually. Figure 4.
demonstrates the disperse operation in the two-dimensional plane.
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3.3.2. Adaptive Adjustment

In the iterative process of ABC algorithm, the neighborhood search range is controlled
by a random parameter, and the neighborhood search is performed randomly and aimlessly.
The effectiveness of the algorithm is influenced by the blindness and randomness visibly. In
order to remedy the defects, an adaptive parameter is used to adjust the algorithm’s search
step length. Furthermore, in order to have stronger adaptive performance, we replace the
fixed-size parameter with an alterable one, s(iter), during the iteration.

s(iter) = −2(exp(−qˆ1.9)) + 2; (13)

where q = iter/max cycle. iter and max cycle are the number of current iteration and the
maximum iteration severally. As is shown in Equation (13), the step length factor s(iter)
decreases and adjusts adaptively with the iteration process. In the initial time, the global
searching is executed efficiently with a large step length, and the step length is variable in
the later process to achieve a detailed local search.

3.3.3. Genetic Crossover

The randomness of the searching method limits the optimization ability and affect
the convergent rate of canonical ABC. To balance the performance of the algorithm, the
crossover operation is carried out to intersect with the global optimal solution based on
unbiased adaptive optimization. The main goal of the GA algorithm is for reference, and
the diversity of the population and overall optimization ability are further increased by
crossing with the excellent parent generation. Crossover operations are performed to find
more valuable individuals in the searchable space. The larger the size of the intersection,
the more combinations of the allogeneic genes are exchanged, and the wider the searchable
range is. However, with the expanding of the size of the intersection, the increase of
searchable scope shrinking. The larger the scope of the crossover operation means the
smaller the probability that any individual in the space can be searched. Therefore, the
probability of excellent vertices being searched will affected by the scope of intersection.
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CR is the local search coefficient, that is used to control the activity of individuals during
the local search. The smaller the value means the more active of individual’s behavior.

The improved algorithm in this paper has as good local search ability because of the
ergodicity of chaotic search. Combined with the characteristics of gene crossover and the
ergodicity of the chaotic disturbance, we conduct a comparative test for different CR values
from 0 to 1, and finally concludes that the algorithm can achieve better performance when
CR = 0.6.

Combining the improvements above, we can get a new position updating formula,
the calculation process is shown as Equation (14).

xi,j =


(1−s(iter)) ∗ xk,j + s(iter) ∗ ϕ ∗ xebest

+ (1− ϕ) ∗ xglobal), rand < cr
xglobal + s(iter) ∗ (xglobal − xk,j), others

(14)

If the location of three solutions is on the same line, the position updating criterion is
changed to Equation (15) on the base of disperse operation:

xi,j =


(1−s(iter)) ∗ xk,j +

s(iter)
2 ∗ ϕ ∗ xebest

+ (1− ϕ) ∗ xglobal), rand < cr

xglobal +
s(iter)

2 ∗
(

xglobal − xk,j

)
, others

(15)

In the iteration, the cross factor cr = 0.6, xglobal represents the global optimal solution,
xk,j is the ordinary individual selected from {1, 2 . . . N} randomly, and xebest is the elitist
solution. After sorting the solution, xebest is selected from the top R ∗ N solutions randomly,
where N is the population number, and R = 0.1.

In order to verify the effectiveness of the improved method in this part, the improved
ABC algorithm whose position updating according to the “aggregate-disperse operation”
and cross operation is temporarily named CAABC-2. As the components of CAABC, its
effectiveness will be proved in the fourth part.

3.4. New Chaotic Disturbance

Chaos is a unique movement pattern of a nonlinear system with particular features of
sensitivity to the initial value, randomness, and ergodicity. Chaotic search is generated by
iterating chaos sequence through a certain particular format and extending the numerical
range of the chaos variables to the value range of the optimization variables through the
form of the carrier wave. Fuch chaos [32], as a new type of discrete mapping, has unique
advantages over logistic chaotic mapping, with more optimized chaotic performance and
fewer iterations. It is proved that the chaotic map has no rational number fixed point, then
the mapping relational formula is used to establish a chaotic model that is used to solve
the Lyapunov exponent, and the sensitivity of chaotic maps to initial values is investigated
under large variation and small variation on initial starting points. The chaotic map is then
used to establish chaotic generator to replace the finite-collapse map, and to improve the
dynamic performance of chaotic optimization. The method improves the search efficiency
by continuously reducing the searching space of variables and enhancing search precision.
It is more ergodic and does not fall into local optimum with incorrect initial value setting.
The expression is:

xn+1 = cos(1/x2
n) (16)

Thus, iteration sequence Xn+1 is obtained. In the formula, n = {1, 2, 3 . . . N};
The Lyapunov exponent of Fuch chaos is solved in [32], and the results shows that

Fuch chaos has a stronger chaotic property and a more homogeneous ergodic property
than Logistic chaos and Tent chaos.

In this work, the adaptive value of the function is computed based on a novel function
and the chaotic disturbance is increased to 15% of individuals with poor performance and
the elite solution to update the historical optimal adaptive value. If the new solution is
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superior, the new position will be used to replace the original one. The chaotic algorithm
can effectively avoid converging on local optimum and gain higher precision.

To verify the effectiveness of the Fuch chaos in the CAABC, on the basis of CAABC-2,
chaotic disturbance is added. It is named CAABC-1 temporarily.

3.5. New Probability of Selecting Based on SA

Simulated Annealing (SA) algorithm is a heuristic Monte Carlo inversion method [33].
The temperature attenuation function is used to control the temperature declining process
for simulated annealing of solid-state systems. In this work, the Metropolis algorithm is
integrated into ABC. When the adaptive value of the new honeybee source is lower than
the current one, it might be accepted with a certain probability. The annealing temperature
T determines the probability.

For the simulated annealing nonlinear inversion, the cooling function is:

T(t + 1) = σT(t) (17)

where T(t) is the temperature of t times, T0 is initial temperature value, and σ is the
coefficient of cooling, generally between 0.9 and 1. In this work, the single variable
experiments were carried out within the standardized threshold for several times, and
the algorithm achieved the best performance when the value of σ was determined to be
0.95 eventually. The difference between the new fitness value F′ and the current fitness
value F is:

∆F = F′ − F (18)

If ∆F < 0, the new food source is selected, or the selection is conducted according to
the Metropolis algorithm.

exp
(
−∆F

T

)
≥ rand(0, 1) (19)

The inferior solution with poor performance is accepted possibly according to the
metropolis rule, therefore, the points are easier to escape from the local optimum, and the
prematurity of ABC algorithm has been largely curbed.

3.6. The Procedures of CAABC-K-means

The novel clustering algorithm is integrated with chaotic adaptive artificial bee colony
(CAABC) and K-means cluster (KMC) algorithm. The new location obtained by CAABC
is used as the initial point of KMC for iteration process, and then the new center point
obtained after calculation is applied to update the swarm. In order to match up to KMC, the
max–min distance product algorithm and a novel fitness function are proposed based upon
ABC algorithm. In the search space, the step length is reduced adaptively when the search
approaches the optimum solution. Moreover, the cross-operation increases population
diversity in the position updating process. Furthermore, the ergodicity of Fuch chaotic
perturbation is carried out on the elite solution and infeasible solutions, meanwhile, the
inferior solution is accepted with a certain probability according to the metropolis rule.
Hence, the points are easier to jump out of the local optimum, and the prematurity of ABC
algorithm has been largely curbed. The employed bee is translated into a scout when the
food source of which has been exhausted. If a scout discovered a valuable food source, it
would be employed.

In this way, CAABC algorithm and K-mean clustering are alternately performed until
the end of the algorithm. The flow chart of algorithm execution is shown in Figure 5. The
main steps of the algorithm can be described as follows:
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1. Initial parameters are set as follows: N represents the number of population, D
denotes the space vector dimension, max cycle is the maximum iteration times, and
cross parameter cr = 0.6. limit is the threshold of maximum optimization times, and
the annealing coefficient σ = 0.95. The initial population is obtained according to the
max–min distance product algorithm.

2. The fitness value can be obtained according to Equation (3), and then solution ap-
proaches to the global optimal solution. At the same time, chaotic perturbations are
added into the elite solution, which is selected from the preponderant solution set
randomly and the infeasible solution in the bottom 15% according to Equation (16).
The position is updated according to Equation (14) or Equation (15). Eventually, the
location of the honey source is extended to the D-dimensional space. Whether the
new solution is accepted depends on the Metropolis criteria.

3. Onlooker bee executes the employed bee option and neighborhood searching per-
forms under the same criteria.

4. The updated location information, which is obtained after all the onlooker bees have
completed the search, is used as the clustering center, the data set is performed a
K-means iterative clustering, and the clustering center of each class is refreshed with
the clustering division.

5. If limit for abandonment is reached, the employed bee determines whether the num-
ber of updates reaches the limit. If the limit is reached, the employed bee is translated
into a scout when the food source of which has been exhausted. A new round of
honey source searching begins.

6. If the number of iterations has reached the maximum “max cycle”, the optimal solution
is output, otherwise, the algorithm goes back to step 2.

7. K-means algorithm is executed to get results.

4. Numerical Experiments

In order to verify the effectiveness of CAABC, we design an optimization performance
test on 20 benchmark functions. In order to make fair comparison, the parameter settings
are referred as [35]. The algorithm is compared with the classic ABC, the Hybrid Artificial
Bee Colony which proposed memory mechanisms (HABC) [34], the Improved Artificial Bee
Colony which charges permutation as employed to represent the solutions (IABC) [36] and
the DFSABC algorithm respectively. In order to verify the effectiveness of each component
of the algorithm, CAABC-1 and CAABC-2 are also compared. The details of benchmark
functions are listed in Table 1. In addition, we also use three standard evaluation index to
evaluate the clustering performance of CAABC-K-means algorithm and other algorithms
in this part.

Table 1. Benchmark Function.

Number Equation Name Domain

1 f01(x) =
D
∑

i=1
|xi sin(xi) + 0.1xi| Alpine [−10, 10]D[−10, 10]D

2 f02(x) =
D
∑

i=1
|xi|+

D
∏
i=1
|xi| Schwefel2.22 [−10, 10]D

3 f03(x) = max{|xi|, 1 ≤ xi ≤ D} Schwefel2.21 [−10, 10]D

4 f04(x) =
D
∑

i=1
ixi

4 + random[0, 1) QuarticWN [−1.28, 1.28]D

5 f05(x) =
D
∑

i=1
ixi

4 Quartic [−1.28, 1.28]D

6 f06(x) =
D
∑

i=1
|ixi|(i+1) SumPower [−10, 10]D
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Table 1. Cont.

Number Equation Name Domain

7 f07(x) =
D
∑

i=1
zi

2z = x− ShiftedSphere [−100, 100]D

8 f08(x) =
D
∑

i=1
(xi + 0.5)2 Step [−100, 100]D

9 f9 =
D
∑

i=1
xi

2 +

(
D
∑

i=1
0.5ixi

)2

+

(
D
∑

i=1
0.5ixi

)4
Zakharow [−5, 5]D

10 f10(x) =
D
∑

i=1
ixi

2 SumQuares [−10, 10]D

11 f11(x) =
D
∑

i=1
|xi|(i+1) SumDifference [−10, 10]D

12
f12(x) = −418.98288727243369× D

+
D
∑

i=1
[−xi sin(xi)

√
|xi|
] Schwefel2.26 [−500, 500]D

13 f13(x) =
D
∑

i=1
[100(zi+1 − xi

2)
2
+
(
zi − 1)2],

z = x−
ShiftedRosenbrock [−10, 10]D

14 f14(x) =
D
∑

i=1

(
i

∑
J+1

xj

)2
Schwfel1.2 [−100, 100]D

15 f15 = −20exp

(
−0.2

√
1
D

D
∑

i=1
x2

i

)
Ackley [−32, 32]D

16 f16(x) =
D
∑

i=1
(xi

2 − 10cos(2πx) + 10) Griewank [−600, 600]D

17 f17(x) = 1
4000

D
∑

i=1
xi

2 −
D
∏
i=1

cos( xi√
i
) + 1 Rastrigin [−5.12, 5.12]D

18 f18(x) = 0.5 + sin2
√

∑D
i=1 xi

2−0.5

(1+0.001 ∑D
i=1 xi

2)
2

Schaffer [−100, 100]D

19 f19(x) =
D
∑

i=1
[100(xi+1 − xi

2)
2
+
(

xi − 1)2] Rosenbrock [−10, 10]D

20 f20(x) =
D
∑

i=1
xi

2 Sphere [−100, 100]D

The simulation experiment is coded using MATLAB® R2019a, running on a system
with 2.5 GHz Core-i5 CPU, 4 GB RAM, and Windows 10 operating system.

4.1. Test Environment and Parameter Settings

The experimental parameters are set as follows: dimensions D are 30 and 60 respec-
tively, and the maximum number of iterations max cycle is set to 15e4 and 30e4 respectively.
In addition, the population size N is set to 20 and the limit is set to D ∗N/2. Under different
dimension conditions, we run each benchmark function for 20 times independently.

4.2. CAABC Performance Analysis

To demonstrate the superiority and effectiveness of the CAABC, the CAABC algorithm
is compared with other well-known algorithms on twenty benchmark problems. The
population parameter settings are same as the setting mentioned in [36]: N = 25, the
maximum number of evaluations maxcycle = 10, 000 ∗ D, and other function parameter
settings are shown in Table 2. Tables 3 and 4 demonstrate the comparison under the
30-dimensional and 60-dimensional parameter settings respectively. The best results are
shown in bold. All algorithms are executed in the same machine environment. Each
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result was recorded after separate trials for 20 times. The results are listed in Tables 3
and 4; it can be clearly seen that most results of CAABC are remarkable in accuracy of
convergence. Other algorithms are run with longer CPU time, which proves the superiority
of CAABC algorithm. We select five representative test function for comparison, namely,
Sphere (unimodal separable function US), Rosenbrock (unimodal nonseparable function
UN), Rastrigin, Alpine (multimodal separable function MS) and Ackley (multimodal
nonseparable function MN). The result is given in Figures 6 and 7, which can make it
visualized clearly from different views. In addition, the abscissa of the Figure 6 and 7
represents the number of iterations of the algorithm, the ordinate represents the value of
the optimization function.

Table 2. Parameter Setting.

Algorithm Parameter

DFSABC N = 20, max cycle = 10, 000 ∗ D, limit = N ∗ D

IABC N = 30, max cycle = 10, 000 ∗ D, limit = 100, MI = 10, r = 3

CAABC N = 20, max cycle = 10, 000 ∗ D, limit = N ∗ D/2cr = 0.6

ABC N = 20, max cycle = 10, 000 ∗ D, limit = N ∗ D

HABC M = 3, N = 20, maxcycle = 10, 000 ∗ D, limit = N ∗ D lmax

PSO+K-means N = 20, limit = N ∗ D, max cycle = 10, 000 ∗ D, C = 5, ωminmax

Table 3. Comparison with other improved Artificial Bee Colony in 30 dimensions.

No. Mean/Std. ABC IABC HABC CAABC DFSABCelite CAABC1 CAABC2

f 1

Mean 1.37 × 10−16 2.10 × 10−16 1.15 × 10−15 3.17 × 10−29 8.91 × 10−25 4.55 × 10−25 6.90 × 10−16

Std. 1.14 × 10−16 5.39 × 10−16 3.04 × 10−15 2.39 × 10−145 6.24 × 10−25 5.19 × 10−105 1.82 × 10−15

CPUtime 25.23 8.45 6.25 4.03 6.49 5.36 7.02

f 2

Mean 8.94 × 10−186 1.04 × 10−30 3.76 × 10−183 3.73 × 10−195 7.98 × 10−193 3.73 × 10−195 2.26 × 10−183

Std. 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CPUtime 16.44 5.26 7.68 3.60 4.02 5.92 6.74

f 3

Mean 2.30 × 10−180 1.99 × 10−9 3.04 × 10−179 1.45× 10−179 8.94 × 10−175 6.25 × 10−177 5.37 × 10−175

Std. 0.00 4.84 × 10−3 0.00 0.00 0.00 0.00 0.00

CPUtime 15.50 6.64 7.65 4.67 5.63 7.45 8.34

f 4

Mean 7.52 × 10−4 1.95 × 10−4 2.42 × 10−4 2.95 × 10−4 6.92 × 10−4 2.92 × 10−4 5.61 × 10−4

Std. 4.28 × 10−6 4.33 × 10−6 4.80 × 10−6 2.30 × 10−6 3.07 × 10−6 3.33 × 10−6 4.72 × 10−6

CPUtime 52.42 25.21 24.43 11.53 16.43 15.92 42.53

f 5

Mean 4.76 × 10−228 6.01 × 10−4 9.95 × 10−217 1.49 × 10−237 1.95 × 10−230 1.82 × 10−230 5.97 × 10−217

Std. 0.00 0.00 6.67 × 10127 0.00 3.01 × 10−197 1.01 × 10−197 4.00 × 10127

CPUtime 40.05 30.21 25.34 18.77 23.43 19.52 20.32

f 6

Mean 1.86 × 10−189 7.00 × 10−32 4.43 × 10−198 4.83 × 10−218 1.41 × 10−199 4.00 × 10−200 2.74 × 10−198

Std. 0.00 8.85 × 10−32 0.00 0.00 0.00 0.00 0.00

CPUtime 59.32 31.46 29.56 10.42 28.45 25.64 35.28

f 7

Mean 3.47 × 10−118 3.03 × 10−6 3.06 × 10−120 2.67 × 10−124 8.68 × 10−123 1.02 × 10−124 1.84 × 10−120

Std. 7.77 × 10−218 6.21 × 10−7 9.18 × 10−120 3.53 × 10−124 8.33 × 10−122 1.03 × 10−122 5.56 × 10−120

CPUtime 17.04 10.26 12.46 7.53 12.64 12.02 13.31

f 8

Mean 4. 72× 10−121 8.83 × 10−6 1.12 × 10−123 2.04 × 10−124 1.06 × 10−123 2.04 × 10−124 1.31 × 10−123

Std. 1.05 × 10−124 2.19 × 10−7 2.39 × 10−123 2.93 × 10−124 2.06 × 10−123 2.83 × 10−123 2.67 × 10−123

CPUtime 5.66 3.61 4.73 2.63 3.76 3.32 4.47

f 9

Mean 3.81 × 10−69 5.35 × 10−26 3.73 × 10−69 3.87 × 10−69 3.20 × 10−68 3.97 × 10−69 2.14 × 10−68

Std. 9.36 × 10−67 1.54 × 10−27 9.69 × 10−68 9.74 × 10−69 9.74 × 10−69 9.74 × 10−67 1.17 × 10−68

CPUtime 47.32 35.22 33.52 23.38 26.71 28.41 32.25
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Table 3. Cont.

No. Mean/Std. ABC IABC HABC CAABC DFSABCelite CAABC1 CAABC2

f 10

Mean 2.21 × 10−5 2.73 × 10−5 3.36 × 10−258 1.09 × 10−237 3.39 × 10−236 1.22 × 10−238 2.22 × 10−235

Std. 1.32 × 10−6 1.90 × 10−6 0.00 0.00 0.00 0.00 0.00

CPUtime 34.75 15.75 14.75 12.82 16.43 15.76 17.34

f 11

Mean 5.56 × 10−184 7.83 × 10−32 1.19 × 10−190 1.00 × 10−192 1.39 × 10−192 1.99 × 10−190 9.06 × 10−181

Std. 0.00 2.73 × 10−33 0.00 2.97 × 10−161 6.97 × 10−159 3.57 × 10−159 6.64 × 10−144

CPUtime 24.69 15.67 14.39 11.71 14.04 13.52 15.43

f 12

Mean 4.32 × 10−5 3.05 × 10−5 0.00 0.00 0.00 0.00 0.00

Std. 2.98 × 10−6 3.63 × 10−7 0.00 0.00 0.00 0.00 0.00

CPUtime 23.53 13.24 12.88 7.54 12.67 13.85 27.48

f 13

Mean 1.94 × 10−238 2.61 × 10−8 8.74 × 10−286 1.65 × 10−294 8.24 × 10−286 1.44 × 10−288 5.74 × 10−285

Std. 0.00 2.21 × 10−9 0.00 0.00 0.00 0.00 0.00

CPUtime 25.65 19.56 17.55 10.59 17.66 18.95 19.05

f 14

Mean 1.36 × 10−56 1.46 5.95 × 10−102 3.50 × 10−106 5.95 × 10−103 4.90 × 10−105 3.93 × 10−102

Std. 3.00 × 10−56 1.29 × 10−2 4.75 × 10−102 6.99 × 10−106 6.75 × 10−106 7.99 × 10−106 2.85 × 10−102

CPUtime 18.64 15.45 15.04 6.24 8.75 9.77 13.94

f 15

Mean 8.86 × 10−17 4.49 × 10−16 2.21 × 10−17 1.54 × 10−20 9.81 × 10−19 7.91 × 10−20 1.39 × 10−17

Std. 1.15 × 10−16 5.02 × 10−17 3.12 × 10−17 1.76 × 10−20 3.45 × 10−19 1.40 × 10−19 1.89 × 10−17

CPUtime 9.86 9.07 8.52 6.87 8.05 7.92 8.09

f 16

Mean 3.09 × 10−16 2.83 × 10−17 3.44 × 10−17 3.30 × 10−20 3.54 × 10−19 3.58 × 10−19 2.09 × 10−17

Std. 2.03 × 10−17 3.53 × 10−17 3.64 × 10−17 4.16 × 10−20 6.67 × 10−18 6.63 × 10−19 2.59 × 10−17

CPUtime 20.34 14.35 17.45 12.86 15.99 17.63 18.63

f 17

Mean 1.81 × 10−19 3.32 × 10−17 7.86 × 10−17 2.32 × 10−20 2.09 × 10−20 3.00 × 10−18 4.72 × 10−17

Std. 2.59 × 10−17 2.53 × 10−17 3.34 × 10−17 3.85 × 10−20 3.97 × 10−18 3.97 × 10−18 2.24 × 10−17

CPUtime 12.96 10.32 8.44 7.56 8.94 8.07 9.30

f 18

Mean 3.39 × 10−12 1.47 × 10−242 2.21 × 10−242 6.81 × 10−251 4.38 × 10−247 4.38 × 10−247 1.33 × 10−242

Std. 2.22 × 10−13 0.00 0.00 0.00 0.00 0.00 0.00

CPUtime 22.37 20.73 19.55 18.83 20.08 20.44 21.56

f 19

Mean 1.36 × 10−15 4.21 × 10−17 2.09 × 10−17 7.68 × 10−21 6.59 × 10−19 8.51 × 10−20 1.29 × 10−17

Std. 8.02 × 10−16 6.04 × 10−17 3.42 × 10−17 2.62 × 10−25 3.75 × 10−19 2.25 × 10−19 2.08 × 10−17

CPUtime 16.32 13.44 14.35 13.01 15.33 15.53 16.22

f 20

Mean 1.36 × 10−15 6.25 × 10−17 3.09 × 10−17 7.68 × 10−21 2.53 × 10−18 1.51 × 10−18 2.01 × 10−17

Std. 8.02 × 10−16 8.84 × 10−17 3.02 × 1017 7.70 × 10−21 3.94 × 10−19 3.75 × 10−19 1.84 × 10−17

CPUtime 4.78 4.14 4.02 3.63 3.98 4.02 4.64

Table 4. Comparison with other improved Artificial Bee Colony in 60-dimensions.

No. Mean/Std. ABC IABC HABC CAABC DFSABC_elite CAABC1 CAABC2

f 1

Mean 1.52 × 10−14 4.93 × 10−17 4.53 × 10−19 2.78 × 10−22 1.04 × 10−19 5.36 × 10−20 3.61 × 10−19

Std. 2.99 × 10−14 2.06 × 10−17 6.22 × 10−19 2.16 × 10−22 6.17 × 10−19 3.17 × 10−19 8.03 × 10−19

CPUtime(s) 34.36 11.55 12.25 8.09 9.99 7.56 11.03

f 2

Mean 3.92 × 10−210 6.88 × 10−61 7.14 × 10−210 9.17 × 10−253 5.45 × 10−240 2.80 × 10−240 4.63 × 10−210

Std. 0.00 1.70 × 10−61 0.00 0.00 0.00 0.00 0.00

CPUtime 25.40 11.23 13.60 5.69 7.32 8.92 11.04

f 3

Mean 4.54 × 10−179 4.45 × 10−2 5.96 × 10−178 2.26 × 10−181 8.32 × 10−180 4.40 × 10−180 3.92 × 10−178

Std. 0.00 5.29 × 10−3 0.00 0.00 0.00 0.00 0.00

CPUtime 27.50 13.64 15.63 8.97 10.43 12.55 15.32

f 4

Mean 2.03 × 10−4 1.22 × 10−4 6.04 × 10−4 2.02 × 10−4 2.04 × 10−4 2.09 × 10−4 2.09 × 10−4

Std. 3.36 × 10−7 9.67 × 10−7 9.54 × 10−6 6.08 × 10−7 2.11 × 10−7 4.21 × 10−7 6.32 × 10−6

CPUtime 80.47 39.21 37.43 20.33 26.42 30.02 34.53
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Table 4. Cont.

No. Mean/Std. ABC IABC HABC CAABC DFSABC_elite CAABC1 CAABC2

f 5

Mean 2.52 × 10−229 2.02 × 10−4 4.08 × 10−237 0.00 8.15 × 10−242 4.19 × 10−242 2.64 × 10−237

Std. 0.00 3.07 × 10−5 0.00 0.00 0.00 0.00 0.00

CPUtime 79.05 59.34 60.32 37.08 40.02 43.22 69.02

f 6

Mean 4.05 × 10−195 3.05 × 10−62 6.66 × 10−205 1.47 × 10−249 4.56 × 10−224 2.35 × 10−224 4.32 × 10−205

Std. 0.00 7.49 × 10−63 6.02 × 10−157 0.00 3.32 × 10−189 1.71 × 10−189 3.90 × 10−157

CPUtime 106.99 43.42 39.53 18.02 36.43 37.66 49.58

f 7

Mean 3.70 × 10−121 4.25 × 10−6 7.08 × 10−120 1.49 × 10−122 1.33 × 10−120 6.92 × 10−121 5.45 × 10−120

Std. 7.66 × 10−121 2.20 × 10−8 4.10 × 10−119 3.08 × 10−122 2.10 × 10−119 1.08 × 10−119 4.02 × 10−119

CPUtime 23.44 15.42 15.33 10.93 13.41 13.02 16.33

f 8

Mean 1.08 × 10−120 3.56 × 10−6 9.05 × 10−119 2.19 × 10−121 5.65 × 10−120 3.02 × 10−120 6.23 × 10−119

Std. 2.23 × 10−120 6.24 × 10−7 2.85 × 10−118 4.54 × 10−121 1.27 × 10−120 8.87 × 10−121 1.85 × 10−118

CPUtime 11.73 7.61 7.52 3.32 4.66 5.32 6.45

f 9

Mean 9.34 × 10−254 1.37 × 10−28 2.66 × 10−258 2.54 × 10−265 9.06 × 10−258 4.66 × 10−258 7.59 × 10−258

Std. 0.00 1.24 × 10−29 0.00 0.00 0.00 0.00 0.00

CPUtime 87.77 55.22 53.88 27.31 29.75 30.41 58.22

f 10

Mean 6.63 × 10−178 5.40 × 10−6 9.12 × 10−123 1.29 × 10−123 9.01 × 10−123 5.30 × 10−123 1.17 × 10−122

Std. 1.65 × 10−128 1.38 × 10−7 1.84 × 10−122 2.33 × 10−132 9.84 × 10−123 6.26 × 10−123 1.83 × 10−122

CPUtime 46.64 19.75 24.56 18.62 19.04 19.35 20.53

f 11

Mean 6.63 × 10−178 8.67 × 10−62 1.86 × 10−204 4.01 × 10−220 9.86 × 10−214 5.07 × 10−214 1.21 × 10−204

Std. 1.65 × 10−128 6.90 × 10−63 0.00 0.00 0.00 0.00 0.00

CPUtime 31.72 23.42 19.34 18.21 20.35 20.42 23.22

f 12

Mean 3.98 × 10−5 1.83 × 10−5 2.04 × 10−5 2.07 × 10−5 2.31 × 10−5 2.25 × 10−5 2.82 × 10−5

Std. 8.19 × 10−6 3.31 × 10−6 3.87 × 10−7 3.84 × 10−5 5.99 × 10−7 5.06 × 10−7 9.00 × 10−8

CPUtime 34.13 18.34 17.15 12.66 17.68 18.97 20.88

f 13

Mean 6.10 × 10−235 1.32 × 10−8 6.29 × 10−236 1.08 × 10−241 5.96 × 10−238 3.07 × 10−238 4.11 × 10−236

Std. 0.00 1.12 × 10−9 0.00 0.00 0.00 0.00 0.00

CPUtime 35.95 30.66 27.64 20.59 28.43 27.05 28.43

f 14

Mean 8.43 × 10−136 2.00 4.13 × 10−103 1.74 × 10−145 5.13 × 10−131 2.64 × 10−131 2.68 × 10−103

Std. 8.00 × 10−9 5.62 × 10−2 8.54 × 10−103 3.61 × 10−145 8.04 × 10−113 4.14 × 10−113 5.53 × 10−103

CPUtime 28.14 16.85 19.44 10.32 12.75 12.42 15.64

f 15

Mean 9.96 × 10−18 2.24 × 10−18 2.57 × 10−1 1.54 × 10−20 8.96 × 10−21 4.92 × 10−4 1.67 × 10−1

Std. 1.15 × 10−16 2.24 × 10−2 5.76 × 10−1 1.76 × 10−20 9.96 × 10−9 5.12 × 10−9 3.73 × 10−1

CPUtime 12.43 10.77 10.42 7.04 9.65 7.32 10.04

f 16

Mean 3.09 × 10−16 5.83 × 10−17 1.68 × 10−17 2.17 × 10−22 4.97 × 10−18 2.56 × 10−18 1.41 × 10−17

Std. 2.03 × 10−17 3.93 × 10−17 1.55 × 10−17 2.24 × 10−22 1.35 × 10−19 6.96 × 10−20 1.01 × 10−17

CPUtime 30.03 27.44 26.42 24.60 25.56 25.60 29.33

f 17

Mean 3.06 × 10−16 3.33 × 10−17 6.94 × 10−17 3.84 × 10−24 6.44 × 10−20 3.31 × 10−20 4.50 × 10−17

Std. 2.59 × 10−17 2.53 × 1017 1.41 × 10−16 4.91 × 10−24 3.43 × 10−22 1.79 × 10−22 9.14 × 10−17

CPUtime 18.06 17.32 15.84 15.01 17.33 16.87 18.05

f 18

Mean 1.56 × 10−12 2.00 × 10−216 5.33 × 10−242 2.09 × 10−248 5.03 × 10−245 2.59 × 10−245 3.46 × 10−242

Std. 2.05 × 10−13 0.00 0.00 0.00 0.00 0.00 0.00

CPUtime 27.56 23.77 23.05 22.85 22.98 23.05 24.63

f 19

Mean 3.76 × 10−15 7.03 × 10−17 6.20 × 10−18 6.00 × 10−24 3.42 × 10−19 1.76 × 10−19 4.24 × 10−18

Std. 6.25 × 10−15 6.66 × 10−17 8.07 × 10−18 6.91 × 10−24 3.07 × 10−21 1.58 × 10−21 5.23 × 10−18

CPUtime 21.93 17.46 17.55 17.02 17.39 17.53 18.27

f 20

Mean 3.82 × 10−16 3.21 × 10−17 1.24 × 10−17 4.21 × 10−25 3.77 × 10−21 1.94 × 10−21 8.04 × 10−18

Std. 1.63 × 10−16 2.36 × 10−17 5.71 × 10−17 4.39 × 10−25 3.01 × 10−19 1.55 × 10−19 3.71 × 10−17

CPUtime(s) 9.36 4.55 4.23 3.04 3.99 3.54 5.03
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According to the results in Tables 3 and 4, it shows that CAABC is superior to or at
least equal to other algorithms in the rest of benchmark functions except for the several
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benchmark functions. The case shown in Table 3 happens only on f9, f11 and f14. In
addition, in these functions, the difference between the improved algorithm and the others
is less than 5%. However, in 60 dimensional comparison experiment, in Table 4, the
improved algorithm achieves good results in f15. At the same time, it can be clearly seen in
Figure 5 that CAABC also has a better convergence rate. Based on the above experimental
sresults, the superiority of this algorithm is proved.

With the increase of dimension, the results of CAABC are even closer to ideal results.
It indicates that the optimization effect of the CAABC is better than canonical ABC and
other mentioned algorithms. The best value, the worst value, the average value, or the
standard deviation, might be more ideal when the running time is basically the same. By
comparing with CAABC-1 and CAABC-2, the effectiveness of the improved algorithm
components has also been verified. Overall, compared with classic ABC and other im-
proved ABC algorithms, the accuracy and efficiency of convergence have been enhanced.
The exploration and exploitation performance are productively balanced at the same time.

4.3. CAABC-K-means Performance Analysis

The CAABC clustering algorithm on four standard evaluation indices are tested and
compared with other well-known algorithms to evaluate the clustering performance of the
proposed algorithm. To prove the clustering performance of the improved algorithm, in
addition to the comparison algorithm mentioned above, experimental comparison with
PA [35] and GPAM [37] clustering algorithm are also added. The general parameter setting
is shown in Table 2. In addition, the maximum number of iterations max cycle is set to
100. The eleven datasets are Iris (7 January 1988), Balance-scale (22 April 1994), Wine
(7 January 1991), E.coli (1 September 1996), Glass (9 January 1987), Abalone (12 January
1995), Musk (9 December 1994), Pendigits (7 January 1998), Skin Seg (17 July 2012), CMC
(7 July 1997), and Cancer datasets (3 March 2017)(http://archive.ics.uci.edu/ml/). They
have been considered to study and evaluate the performance of algorithms by many
authors. The details of Iris, Balance-scale, Wine, E.coli, Glass, Abalone, Musk, Pendigits,
Skin Seg, CMC, and Cancer datasets are summarized in Table 5. The optimal result is
shown in bold in Tables 6–9.

Table 5. The datasets downloaded from UCI Machine Learning Repository.

Datasets Samples Dimensions Classes

Iris 150 4 3

Balance-scale 625 4 3

Glass 214 10 6

Wine 178 13 3

ECOLI 336 7 8

Abalone 4177 8 28

Musk 6598 166 2

Pendigits 10,992 16 10

Skin Seg. 245,057 3 2

CMC 1473 9 3

Cancer 683 9 2

http://archive.ics.uci.edu/ml/
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Table 6. The Normalized Mutual Information for classifying the eleven training datasets.

Datasets K-Means ABC+K-
Means

PSO+K-
Means

CAABC-
K-Means PAM GPAM

Iris 70.22 71.32 73.32 79.08 77.39 79.06

Balance-
scale 52.33 53.21 56.33 59.03 53.49 57.83

Glass 39.44 40.32 40.36 49.32 48.23 49.03

Wine 38.09 40.30 53.20 57.20 56.32 57.04

ECOLI 57.00 57.30 57.40 60.32 56.03 58.33

Abalone 49.00 47.30 49.50 68.09 48.22 57.34

Musk 50.02 53.40 59.32 59.98 47.56 54.99

Pendigits 40.05 40.78 49.03 58.93 40.00 56.09

Skin Seg. 78.00 79.03 83.01 88.7 63.04 80.37

CMC 68.04 79.03 83.07 89.00 69.34 74.95

Cancer 53.99 58.34 56.83 59.99 57.09 59.03

Table 7. The Accuracy for classifying the eleven training datasets.

Datasets K-Means ABC+K-
Means

PSO+K-
Means

CAABC-
K-Means PAM GPAM

Iris 50.28 54.32 53.02 59.06 58.99 59.00

Balance-
scale 50.33 52.29 51.03 60.01 54.04 58.32

Glass 60.44 59.32 58.96 69.32 68.33 69.08

Wine 89.10 89.19 90.43 93.11 92.84 92.94

ECOLI 83.76 84.30 85.29 89.04 86.00 87.04

Abalone 70.99 72.02 74.91 84.11 84.01 84.05

Musk 60.73 69.93 68.34 70.00 68.35 69.68

Pendigits 50.82 50.01 59.11 63.47 53.06 62.44

Skin Seg. 70.93 72.38 80.93 81.02 60.99 75.64

CMC 59.02 59.24 59.15 62.03 58.37 60.75

Cancer 49.03 53.04 53.75 59.23 57.98 59.00

Table 8. The average running time (sec.) for classifying the eleven training datasets.

Datasets K-Means ABC+K-
Means

PSO+K-
Means

CAABC-
K-Means PAM GPAM

Iris 0.35 0.49 0.27 0.23 0.33 0.25

Balance-
scale 0.78 0.79 0.7 0.49 0.79 0.52

Glass 0.98 1.03 0.9 0.79 1.03 0.96

Wine 1.06 1.79 0.99 0.61 1.11 0.85

ECOLI 0.73 0.95 0.7 0.57 0.95 0.60

Abalone 3.90 3.07 2.33 0.93 7.99 0.95
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Table 8. Cont.

Datasets K-Means ABC+K-
Means

PSO+K-
Means

CAABC-
K-Means PAM GPAM

Musk 2.02 1.68 1.42 0.61 10.04 3.02

Pendigits 2.97 2.03 1.93 0.38 9.73 1.04

Skin Seg. 3.01 2.93 4.09 0.46 6.83 1.97

CMC 1.92 1.31 1.77 0.58 2.98 0.82

Cancer 0.34 0.32 0.28 0.15 0.44 0.19

Table 9. The f-score of the training datasets.

K-Means ABC+K-Means PSO+K-Means CAABC-K-
Means PAM GPAM

Datasets P R F P R F P R F P R F P R F P R F

Iris 0.90 0.88 0.90 0.90 0.90 0.90 0.91 0.92 0.92 0.99 0.97 0.98 0.94 0.96 0.94 0.97 0.97 0.97

Balance-
scale 0.93 0.92 0.93 0.91 0.92 0.93 0.94 0.95 0.95 1.00 1.00 1.00 0.98 0.96 0.94 0.98 0.99 0.94

Glass 0.84 0.83 0.85 0.84 0.83 0.80 0.82 0.83 0.8 0.90 0.91 0.95 0.82 0.83 0.8 0.9 0.88 0.82

Wine 0.93 0.94 0.94 0.93 0.93 0.94 0.97 0.98 0.96 1.00 1.00 1.00 0.96 0.96 0.92 0.98 0.96 0.94

ECOLI 0.76 0.77 0.79 0.80 0.84 0.83 0.82 0.84 0.83 0.89 0.89 0.89 0.80 0.84 0.83 0.83 0.85 0.84

Abalone 0.29 0.34 0.32 0.23 0.24 0.22 0.19 0.24 0.22 0.49 0.39 0.42 0.22 0.24 0.22 0.29 0.34 0.32

Musk 0.73 0.72 0.70 0.63 0.60 0.67 0.57 0.52 0.60 0.83 0.82 0.80 0.53 0.50 0.50 0.63 0.72 0.70

Pendigits 0.70 0.72 0.73 0.77 0.72 0.75 0.78 0.77 0.78 0.83 0.83 0.83 0.70 0.70 0.73 0.79 0.79 0.73

Skin
Seg. 0.66 0.63 0.64 0.76 0.72 0.74 0.60 0.63 0.64 0.88 0.85 0.85 0.66 0.63 0.64 0.71 0.73 0.71

CMC 0.79 0.74 0.78 0.82 0.82 0.82 0.79 0.79 0.79 0.94 0.94 0.94 0.79 0.74 0.76 0.83 0.84 0.83

Cancer 0.69 0.69 0.69 0.73 0.73 0.73 0.79 0.76 0.77 0.90 0.89 0.89 0.69 0.69 0.59 0.83 0.79 0.89

We use standard evaluation index, Normalized Mutual Information (NMI), Accu-
racy (ACC), and F-score [38] to evaluate the clustering performance of CAABC-K-means
algorithm and other algorithms. The corresponding results and the running time of the
algorithm are analyzed in Tables 6–9.

The NMI is defined as follows:

NMI = 2
I(X, Y)

H(X) + H(Y)
(20)

In the function, the I is mutual information between the sample and the label and H
is the entropy.

In addition, the Accuracy (ACC) can be described as follow:

ACC =
NC
NS

(21)

where NS is the number of samples, and NC is the correct number of samples.
In this paper, F-score is used to measure the accuracy of the clustering results. The

performance comparisons among all the models are reported before and visualized in Table 9.
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Precision (P), Recall (R), and F-measure (F) are often used to describe the accuracy of
the clustering results. They are defined as follow:

P =
TP

TP + FP
(22)

R =
TP

TP + FN
(23)

F =
2TP

2TP + FP + FN
(24)

where TP is True Positive, which is the number of the data that is classified into the cluster
correctly. FN means False Negative, which is the number of the data that is not classified
into the correct cluster. FP means False Positive, the number of the data that is classified
into the cluster which is not belong. F-measure is the weighted harmonic average of
Precision and Recall.

By analyzing the data of NMI, ACC, and running time from Tables 6–8, it is obvious that
our proposed algorithm achieves excellent results than comparison algorithms. Specifically,
Tables 7 and 8 show that CAABC-K-means obtains a better accuracy of classification than
most compared algorithms, and Tables 6 and 8 show the proposed algorithm is more
efficient and far superior to others. It is encouraging to find that CAABC-K-means achieves
the highest F-core on ten datasets out of eleven datasets. The accuracy of the algorithm is
better among the other clustering algorithms we compared with. Table 9 shows that the
CAABC-K-means algorithm can offer a much better accuracy of classification than and
similar efficiency to the traditional and some improved clustering algorithm.

From the above results, we can obtain that the CAABC algorithm performs better
in terms of accuracy and efficiency. KMC algorithm is sensitive to initialization, so the
computing time is longer, and it needs multiple iterations to reach the optimal value.
ABC+K-means algorithm is easy to remain local optima, and it is difficult to achieve
local optimization due to the stagnation of convergence in the later stage. The PSO+K-
means and ABC_elite+K-means algorithms have improved the global optimization ability,
however, the sensitivity of initialization of the clustering algorithm still exists, and the
optimization effect of the algorithm is inconspicuous. Although the standard deviation has
been reduced, the effect is inapparent. The improvement measures proposed in CAABC-K-
means algorithm reduces the randomness in initializing, impairs the effect of an initial point,
adaptive search mechanism to accelerate the algorithm convergence, and the disturbance
and simulated annealing algorithm provide more possibility for solutions to escape from
local optimum. Thus, the superiority of CAABC is obvious and the proposed algorithm
can be considered as a feasible and efficient heuristic to find optimal solutions to clustering
problems of allocating objects to K clusters.

5. Conclusions

Modeling the behavior of honey bees to search and solve problems has been the
emerging area of swarm intelligence. In this paper, an improved artificial bee colony
algorithm (CAABC) is developed to solve clustering problems. The method is inspired
by the forage behavior in nature. The CAABC-K-means algorithm can be adapted to the
process that the number of clusters known as a priori. In the CAABC algorithm, for the
purpose of stabilizing the disturbance caused by the variety of the initial value of the
clustering algorithm, we adapt the max–min distance product method in the initialization
stage of the algorithm, which weakened the randomness of the initialization process to
some extent. In the iterative process, chaotic disturbance and adaptive adjustment are
added to obtain a better performance. After the comparison, chaos disturbance was added
to the elite solution and unsatisfactory solutions in a certain percentage. The introduce
of the “aggregate-disperse operation” speeds up the convergence of the algorithm and
provides favorable conditions for escaping from the local optimal. Furthermore, on this
basis, the global optimal solution is cross-operated to retain dominant individuals and
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improve population diversity. Moreover, the simulated annealing criterion is integrated
into the probability selection to achieve a better precision. By selecting the appropriate
functions, the characteristics of ABC for group optimization are retained, and the local
optimal solution can be avoided effectively. In addition, CAABC-K-means has the global
search ability of CAABC, which reduces the number of iterations of K-means. The problem
of poor global search ability of Kmeans algorithm is solved by the combination of two
algorithms. Furthermore, according to the characteristics of the clustering algorithm, the
impacts of the sample numbers and the distance between the sample centers are took
into account in fitness selection, which reduces the possibility that the distribution of
samples is excessive clustered. To evaluate the performance of the confluent algorithm, it is
compared with other stochastic heuristic algorithms on several benchmark functions and
real datasets. It can be concluded from the primary results of experience, which are very
promising in terms of the accuracy of the solution found and the processing efficiency, that
the CAABC-K-means clustering algorithm achieves better results.

The efficiency and accuracy of the algorithm have been improved, but the time com-
plexity cannot be reduced effectively because of the location update formula which is still
guided by global optimal solution. How to ensure the advantages of the existing algorithm
while reducing the time complexity will be our next research direction. Applying the
proposed algorithm to solve other optimization problems and improving the performance
of the clustering algorithm will be considered in our future work.
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