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Abstract: This study presents a novel performance metric for feature selection algorithms that is
unbiased and can be used for comparative analysis across feature selection problems. The baseline
fitness improvement (BFI) measure quantifies the potential value gained by applying feature selection.
The BFI measure can be used to compare the performance of feature selection algorithms across
datasets by measuring the change in classifier performance as a result of feature selection, with respect
to the baseline where all features are included. Empirical results are presented to show that there is
performance complementarity for a suite of feature selection algorithms on a variety of real world
datasets. The BFI measure is a normalised performance metric that can be used to correlate problem
characteristics with feature selection algorithm performance, across multiple datasets. This ability
paves the way towards describing the performance space of the per-instance algorithm selection
problem for feature selection algorithms.

Keywords: feature selection; baseline fitness improvement; performance analysis

1. Introduction

There is no shortage of algorithms to solve popular, computationally difficult problems.
As new approaches are discovered, the current state-of-the-art algorithms are improved
upon. In some problem domains, the performance of new algorithms clearly dominates the
performance of previous approaches. More often than not, however, new algorithms do not
dominate the performance of earlier algorithms for all instances of a problem [1]. Perfor-
mance complementarity amongst algorithms is the phenomenon where algorithms perform
better on certain problem instances than on others. In a recent survey, Kerschke et al. [2]
acknowledged performance complementarity for a variety of NP-hard optimisation and
machine learning problems.

The feature selection problem has the goal of finding the smallest subset of all features
that are the most relevant for a machine learning task. Feature selection is regarded as
either a single objective or multi-objective combinatorial optimisation problem. There are a
number of objectives to consider when selecting a feature selection algorithm depending on
the application at hand, namely (1) simplicity, (2) stability, (3) number of reduced features,
(4) classification accuracy, (5) storage and (6) computational requirements [3]. For this
study, we consider the two primary objectives of classification accuracy and reducing the
number of features.

This study takes both goals into account by formulating a single objective function
for the feature selection problem in the context of classification. Multi-objective feature
selection algorithms are not within the scope of this study.

A number of different algorithms have been proposed for solving the feature selection
problem [3-5]. Chandrashekar and Sahin [3] showed that the performance of different
feature selection techniques are often problem dependent and that the methods show vast
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disparity in their success ratios. They concluded that performance comparison for feature
selection algorithms cannot be carried out using multiple datasets, since each underlying
algorithm will behave differently for different datasets.

The per-instance algorithm selection problem considers the problem space, algorithm
space, feature space and performance space of a class of problems [6]. The underlying
performance measure of algorithms is a core component in automated algorithm selec-
tion [2] as represented by the performance space in the algorithm selection model. The
baseline fitness improvement (BFI) measure is presented, which allows for performance
comparison of feature selection algorithms across multiple datasets. The introduction of
the BFI measure allows for the future development of landscape-aware algorithm selectors
for feature selection.

An empirical performance evaluation is conducted, using six different feature selection
algorithms applied to 29 different real world datasets. The performance complementar-
ity phenomenon as it applies to feature selection algorithm performance, using the BFI
measure and an algorithm ranking approach, is shown. The presence of performance com-
plementarity for feature selection algorithms is necessary before the benefits of algorithm
selection can be realised. The structural properties of the proposed BFI measure allows
for performance comparisons across datasets. The ability to compare feature selection
algorithm performance across datasets enables the development of algorithm selectors that
are informed by characteristics of the underlying dataset and feature selection problem.

The following section gives an overview of the feature selection problem, feature
selection algorithm performance evaluation and the algorithm selection problem. Section 3
describes the composition of the fitness function that is used in the study. Section 4 intro-
duces the BFI measure, a new measure of feature selection algorithm performance. The
robustness of the fitness function and BFI measure is evaluated in Section 5. The experimen-
tal setup is discussed in Section 6. Finally, the results obtained are discussed in Section 7
and the study is concluded in Section 8.

2. Background and Related Work

This section discusses the feature selection problem and provides an overview of the
existing approaches to evaluate feature selection algorithm performance.

2.1. Feature Selection

The application of feature selection on a classification dataset ideally results in the
smallest set of relevant features with respect to the classification task. Feature selection is
applied as a pre-processing technique in order to reduce the dimensionality of a problem
by removing redundant and irrelevant features. In addition, feature selection attempts to
improve the performance of classification algorithms. By reducing the number of features,
the classification model complexity is reduced which results in lower computational cost
to construct and use the classification model. The probability for the classification model
to overfit is reduced when using less, but relevant, features since the model is simpler
and noise in the form of irellevant features is removed. Despite this advantage of simpler
models, the dimensionality reduction in, and performance improvement objectives of,
feature selection can often be in conflict with each other.

Feature irrelevance is misleading since two mutually exclusive features could be
irrelevant, where the union of these features could be information rich with respect to the
dependant variable [7]. The utilisation of a subset of relevant features, as opposed to the
set of all features, has been shown to increase classifier performance, reduce computational
complexity, and lead to a better understanding of the data for machine learning [3].

Feature selection algorithms can be categorised into three distinct categories, namely,
filter, wrapper and embedded methods. This study exclusively focuses on filter and wrap-
per techniques. Filter methods [3] establish feature relevance based on information with
respect to the dependent variable, using an information theoretic criterion such as correla-
tion coefficient or mutual information. Wrapper methods [3] use subsets of features, for
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which a measure of the model performance is obtained per subset of features. Heuristic
search is used by wrapper methods to determine the set of most relevant features, using
the model accuracy as the objective function.

Choosing the most suitable feature selection algorithm for a given dataset is an
unsolved problem. This is due to the lack of an underlying theoretical framework and a
limited understanding of the nature of the feature selection problem [7].

2.2. Approaches to Evaluating Feature Selection Algorithm Performance

When new feature selection algorithms are proposed, justification has to be provided
in the form of a performance comparison with other common feature selection algorithms.
A common approach is to measure the performance of the underlying classifier after
the feature selection algorithm has been applied. Classifier accuracy, i.e., counting the
number of correctly classified instances vs. the number of incorrectly classified instances,
is a popular approach [8-11]. Other accuracy measures have also been used to compare
the performance of feature selection algorithms, such as the F-measure [12] and Cohen’s
kappa statistic [13]. A disadvantage to using classifier accuracy alone as a performance
measure for feature selection algorithms is that it makes it impossible to compare feature
selection algorithms across datasets. This is because the classifier may not be well suited
for the variety of classification tasks. What is needed is a way of quantifying the relative
improvement gained by the feature selector. For example, a feature selection algorithm
that increases classification accuracy on one problem from 50% to 70% should arguably be
regarded as more successful than an algorithm that increases accuracy from 90% to 92%.

Attempts to measure the quality of the feature subset obtained by the application of
feature selection algorithms have been made. Measures include feature redundancy [8]
and the reduction in the number of features [12] amongst others.

There is no clear correct performance model for evaluating the performance of feature
selection algorithms for the purpose of automatic algorithm selection [1].

2.3. Algorithm Selection

The algorithm selection problem is concerned with finding the best algorithm to use,
assuming the availability of a number of alternative algorithms that may be applied to a
specific instance of a problem [14]. An instance of a problem, in the context of the feature
selection problem, is a classification dataset that feature selection algorithms are applied
to. The per-instance algorithm selection problem [2] was first formulated as an abstract
model consisting of a problem space, algorithm space, feature space and performance
space [6]. The feature space of the algorithm selection model should not be confused with
the feature space of the feature selection problem. The features describing the feature
selection problem are the features that expose the various complexities of the problem. In
order to avoid confusion, the features describing the feature selection problem are referred
to as problem characteristics.

The per-instance algorithm selection problem assumes a set of instances I for a problem
P, the set F; of measurable problem characteristics describing the problem instance i € I,
the set A of algorithms and a performance metric m : A x I — R [2,14]. Given these
essential components of the algorithm selection model, the objective of the per-instance
algorithm selection model is to find the selection mapping, S(f;(i)), to algorithm space
A, wherei € I and f; € F; such that the performance, m(«(i)), of the selected algorithm
a € A is maximised [14].

Given a set of features F in the feature selection domain, the feature selection problem
is concerned with finding the best set of features F’ C F such that the performance of the
underlying classifier is maximised while minimising the number of features selected, i.e.,
|F'|. As an example, the algorithm selection model for the feature selection problem consists
of P as the general feature selection problem, where I is a set of specific feature selection
problems as applied to a specific classification dataset. Candidate problem characteristics
may include characteristics such as the level of feature interdependence, the number of
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features and fitness landscape characteristics. A is the set of candidate feature selection
algorithms. The interaction between the respective components of the algorithm selection
model is illustrated in Figure 1.

4. Select algorithm with
maximum performance

Problem Space Performance Space
A
1. Characteristic .
extraction 3. Apply algorithm
h 4
Problem Characteristic W \ 4 > Al Sgaes
Space
J 2. Selection mapping L

Figure 1. Illustration of the algorithm selection model component interactions [6].

Performance complementarity is the phenomenon where there is no single algorithm
that dominates the performance of all other algorithms on different instances of the same
problem [2]. The per-instance algorithm selection problem is of particular importance when
there is a high level of performance complementarity between the set of algorithms A on a
set of problem instances I. The use of per-instance algorithm selectors shows promising
opportunity to achieve better algorithm performance on problem instances for classification
problems [15].

3. Fitness Function

A composite fitness function is used to measure the quality of a candidate solution in
this study. The fitness function takes into account the two primary objectives of feature
selection, namely, the maximisation of classifier performance and minimisation of the
number of features used. In this study, a solution s to the feature selection problem is
encoded as a binary string of length N (the number of features in the dataset), where
1 indicates inclusion and 0 indicates exclusion of the feature. The fitness function is

formulated as
f(s) = fe(s)ke — fp(s)kpr 1)

where f.(s) is the classifier performance function and f,(s) is a penalty function scaled
exponentially on the number of features of the solution. The variables k. and k, are scaling
constants. The intention of the scaling constants is to determine the priority of each feature
selection objective respectively. The values of these scaling constants are determined in
Section 5. The sensitivity of the scaling constants is examined in Section 7.

The fitness function in Equation (1) bears a resemblance to the Akaike information
criterion (AIC) [16] for model selection. The AIC is formulated as

AIC =2k —2In(L), )

where k is the number of parameters to the model and L is the likelihood function of
the model. Lower AIC values are considered better where higher values for the fitness
function in Equation (1) are considered better. Equation (1) and the AIC both consist
of goodness of fit and penalty terms. The key difference between AIC and the fitness
function in Equation (1) lies in the penalty terms. AIC uses a linear scale for the number of
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features selected, i.e., the value of k. Equation (1) uses an exponential scale. An exponential
penalty scale is desirable for feature selection since the feature selection problem solution
space has a size of |S| = 2N, where N represents the number of features for the problem.
The behaviour and intent of AIC is also different to that of the fitness function presented
in Equation (1). The AIC establishes the quality of a model with respect to a collection of
other candidate models: a many-to-many relationship. The fitness function in Equation (1)
establishes the quality of a model with respect to the dimensionality of the problem on a
per problem basis: a many-to-one relationship.

The performance of the classifier, f(s), is measured using the F-measure [17]. The F-
measure computes a score from the combination of the precision and recall accuracies of the
model. The overall classifier performance is reported as the unweighted micro-average [18]
of the F-measure.

A classifier has its own bias with regard to features that are considered useful to the
classifier [19,20]. As a result of classifier bias, wrapper techniques will select different
features for different classifiers on the same dataset [19]. A recent study by Bajer et al. [20]
investigated the importance of the classifier for feature selection, concluding that the
choice of classifier directly affects the computation cost and algorithm performance. The
classic k-NN [21] using Euclidean distance, a simple non-stochastic classifier, is used as the
underlying classifier to calculate f;(s). For this reason, although the performance results
in the experiment of Section 7 cannot be generalised to other classifiers, the main result
confirming the presence of performance complementarity should hold for other classifiers
as well. The classifier implementation makes use of the Weka [22] library. k-NN is chosen
as a classifier since it is a very simple algorithm that does not require excessive training.
The best value for k is problem dependant. The focus of this study is on the evaluation of
the feature selection algorithms, not of the underlying classifer. Therefore, k is arbitrarily
chosen as k = 3.

The penalty function used in this study is an exponential function with respect to
the number of features selected for a solution. The exponential scale penalty function is
chosen since the feature selection search space also expands exponentially as the number
of features increases. The range of the penalty function is desired to be the same as that of
the classifier performance measure to be able to prioritise the feature selection objectives
equally. To match the range of the F-measure ([0, 1]), the penalty function is designed to
produce the value 1 when all the features are selected and the value 0 when one feature
is selected and to grow exponentially, so that higher numbers of selected features are
increasingly penalised. The penalty function is formulated as

—_

Is|—

_rle -1
_7771

fr(s) ’ 3)

where |s]| is the number of features selected and N is the total number of features available.
The scaling constant (y) controls how aggressive the penalty function is, without changing
the range of the function. Higher values of y will provide relatively less aggressive penalties
for lower numbers of features selected, and relatively more aggressive penalties for higher
numbers of features selected. The value of v is arbitrarily chosen as 10 for use in this study
since it provides a reasonable trade off for the penalty severity between a low number of
features and a high number of features. The penalty behaviour for N = 100 and different
values of 1 is visualised in Figure 2. Figure 2 also shows the effect of applying a scaling
constant of k, = 0.25 and y = 10.
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Figure 2. Penalty function.

4. Baseline Fitness Improvement

The baseline solution of a problem is defined herein as the solution with all features
selected, i.e., s*. The baseline fitness, f(s*), is the fitness of the baseline solution. The
baseline fitness improvement (BFI) is a measure of the benefit gained by applying feature
selection, relative to the baseline fitness of a problem. The BFI of a solution is calculated as

BFI(s) = f(s) — f(s") @)

The BFI is interpreted as the potential gain of performing feature selection. The BFI
measure also bears a resemblance to the AIC [16] for model selection. The fundamental
difference in behaviour of the BFl and AIC lies in the interpretation of the individual metrics.
The AIC establishes the quality of a model with respect to other models, whereas the BFI
establishes the relative quality of a feature selection solution with respect to the baseline
solution for a feature selection problem. A measure of algorithm performance, f. (s),aloneis
not representative of feature selection algorithm performance, but rather of the underlying
classifier performance. Table 1 contains fictional algorithm performance, baseline fitness
and the respective calculated BFI values to illustrate the differences in interpretation.

Table 1. Artificial baseline fitness improvement (BFI) and performance.

Algorithm fe(s) fe(s*) BFI(s)
Dataset 1

A 0.9 0.5 0.4

B 04 0.5 -0.1

C 0.7 0.5 0.2
Dataset 2

A 0.7 0.3 04

B 0.5 0.3 0.2

C 0.9 0.3 0.6

Table 1 shows that a simple comparison of algorithm A for the two datasets using
fe(s) would lead one to believe that feature selection algorithm A performed better on
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dataset 1 than on dataset 2. Whilst it may be true that the underlying classifier performed
better on dataset 1 than on dataset 2 with regard to classifier accuracy, it is not a true
representation of the effectiveness of the feature selection algorithm. The BFI values show
that algorithm A achieved a 0.4 improvement over the baseline fitness for both datasets.
Therefore, the feature selection algorithm actually managed to improve the classification
performance equally for the two datasets. In the absence of knowledge of the global optima
of the problem, the baseline fitness acts as a universal reference point for real world feature
selection problems. Therefore, the BFI can be used to assess the performance of a feature
selection algorithm across datasets.

The range of the BFI measure is dependant on the objective function that is used. The
robustness of the proposed fitness function in Equation (1), and BFI measure in Equation (4),
is evaluated in Section 5.

5. Fitness and BFI Robustness

An artificial dataset was constructed to test the robustness of the fitness function and
BFI measure. The artificial dataset consists of 20 data instances, with four features each.
The features and classes that are used in the artificial dataset are described in Table 2.

Table 2. Artificial dataset features.

Feature Description
F1 A unique incremental ID
F2 A completely correlated feature to the class
F3 A completely correlated and a completely redundant feature
F4 A completely irrelevant feature
Class true or false

F1is a unique ID that does not have any information to correlate with the class. F2 and
F3 are completely correlated with the class, but offer completely redundant information. F4
is a sequence of zeros, exhibiting no information related to the class. Complete correlation
means that the feature has discriminatory information with respect to the class, which will
always result in correct classification if selected. Table 3 reports a truncated example of the
artificial dataset.

Table 3. Robustness artificial dataset excerpt.

F1 F2 F3 F4 Class
1 1 2 0 true
2 2 1 0 false
3 1 2 0 true
4 2 1 0 false
5 1 2 0 true

The fitness function scaling constants, k, and k., need to be determined in line with
the importance of the feature selection objectives. In order to determine the correct scaling
constants for the fitness function, a set of test cases was created. These test cases represent
the priority we decided to give the individual feature selection objectives for the purposes
of this study. Each test case has a set of requirements to be satisfied to pass:

e Test Case A . One irrelevant feature is selected, e.g., F4. This case should have a fitness
lower than all other test cases since no relevant features are selected. Performance is
therefore expected to be poor.

®  Test Case B. All features are selected. This case should have a fitness greater than
test case A. A solution with discriminatory information should perform better than a
solution with no discriminatory information.
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e Test Case C. One relevant feature is selected, e.g., F2 or F3. This case should result in
the highest fitness over all other test cases. This is the ideal solution, where a single
feature can perfectly classify.

e Test Case D. Two relevant features, but one redundant, are selected, e.g., F2 and F3.
This case should have a fitness greater than test case A, but lower than test case C. The
features are both correlated; therefore, it is expected to perform better than test case
A where there are no relevant features. Redundant features are included; therefore,
performance should be worse than the best case scenario in test case C.

e Test Case E. One irrelevant feature and one relevant feature are selected, e.g., F2
and F4. This case should have a fitness greater than test case B and D but lower
than test case C. This case should be better than test case B because it uses fewer
features. This case contains a feature that is strongly correlated with the class and
should therefore perform better than a solution with no relevant features as in test
case A. One additional feature is considered than for test case C; therefore, it should
be penalised more.

e Test Case F. A mix of one relevant, one redundant and one irrelevant feature, e.g.,
F1,F2 and F4. This case should have a fitness better than test case B and worse than
test case E. One feature was removed in this test case in comparison to test case B.
Therefore, this test case is expected to perform better than test case B. Since this test
case includes more features than test case E, this test case should perform worse than
test case E.

Setting the fitness scaling constants to k, = 1.0 and k. = 1.0 resulted in the fitness
values as reported in Table 4. All of the test cases pass except for test cases A and B. The
failure of test case B indicates that the scaling constants determine perfect classification,
using all features, to be less fit than completely random classification using one bad feature
(test case A).

Table 4. Robustness results for k. = 1.0, k;, = 1.0.

Test Case f(s) BFI(s) kcfe(s) kpfp(s) Pass?
A 0.50 0.50 0.50 0.00 false
B 0.00 0.00 1.00 1.00 false
C 1.00 1.00 1.00 0.00 true
D 0.87 0.87 1.00 0.13 true
E 0.87 0.87 1.00 0.13 true
F 0.60 0.60 1.0 0.4 true

Table 5 shows the fitness values obtained for the artificial test where k, = 0.25
and k. = 1.0. The penalty scaling constant is relaxed here, to set a balance where good
classification will not be so harshly penalised in order to reduce the number of features.
All test cases pass with these scaling constants.

Table 5. Robustness results for k. = 1.0, k;, = 0.25.

Test Case f(s) BFI(s) kefe(s) kpfp(s) Pass?
A 0.50 —0.25 0.5 0.00 true
B 0.75 0.00 1.00 0.25 true
C 1.00 0.25 1.00 0.00 true
D 0.97 0.22 1.00 0.03 true
E 0.97 0.22 1.00 0.03 true
F 0.90 0.14 1.00 0.10 true

There may very well be other values for the scaling constants k. and k, that satisfy
the robustness test cases that were presented in this section. These scaling constants are a
representation of the feature selection objective priorities. Alternative values of k. and k,
are considered in Section 7 to determine the effect of differing feature selection objective
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priorities, and how it relates to the performance of the suite of feature selection algorithms.
The scaling constants for the fitness function are initially set as k. = 1.0 and k,, = 0.25 for
the analysis in Section 7.

6. Materials and Methods

This section describes the setup of the experimental study. A description of the
classification datasets is provided. Thereafter, the applicable feature selection algorithms
are discussed.

6.1. Datasets

The University of California, Irvine (UCI), Machine Learning Repository [23] hosts a
variety of real world datasets that can be used for machine learning objectives. Twenty nine
of these UCI repository classification datasets were used in this study and are summarised
in Table 6.

Table 6. Datasets.

Identifier Name # Attributes # Instances # Classes
D1 colic 28 368 2
D2 vote 17 435 2
D3 urbanland 148 675 9
D4 lung-cancer 57 32 2
D5 primary-tumor 18 339 22
D6 heart-c 14 303 5
D7 breast-cancer 10 286 2
D8 solar-flare 13 323 2
D9 sponge 46 76 3

D10 flags 30 194 8
D11 heart-h 14 294 5
D12 Z00 18 101 7
D13 lymph 19 148 4
D14 autos 26 205 7
D15 breast-w 10 699 2
D16 synthetic-control 62 600 6
D17 sonar 61 208 2
D18 credit-a 16 690 2
D19 dermatology 35 366 6
D20 cylinder-bands 40 540 2
D21 audiology 70 226 24
D22 labor 17 57 2
D23 hepatitis 20 155 2
D24 heart-statlog 14 270 2
D25 soybean 36 683 19
D26 hill-valley 101 606 2
D27 glass 10 214 7
D28 ionosphere 35 351 2
D29 molecular-biology 59 106 4

Two limitations were imposed on the choice of datasets. The first limitation is that
the number of features in a dataset must be greater than or equal to 10. This is done to
emphasise the importance of the dimensionality reduction objective of feature selection.
The minimum number of features is chosen as 10, since this allows for a sufficiently complex
problem to be able to showcase the nuances of individual feature selection algorithms. The
other limitation is to limit the number of data instances in the dataset to 800. This limitation
is in place purely from a computational perspective, since the k-NN classification algorithm
in use does not scale well with problems that have a large number of data instances.
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6.2. Feature Selection Algorithms

This section describes the feature selection algorithms and the parameters that were
used per algorithm. The feature selection algorithms that were used as benchmarks are
listed in Table 7.

Table 7. Feature selection algorithms.

Identifier Algorithm Name Algorithm Type
RAND Random Feature Selection Control Method
AMSO Adaptive Multi-Swarm Optimisation Filter and Wrapper Method
GAFS Genetic Algorithm for Feature Selection Wrapper Method

SBFS Generalised Sequential Backward Selection Wrapper Method
SFFS Generalised Sequential Forward Selection Wrapper Method
PCFS Pearson Correlation Coefficient Ranker Filter Method
IGFS Information Gain Ranker Filter Method

AMSO and GAFS are two population-based, global search wrapper techniques. SBFS
and SFFS are two simple local search wrapper techniques. PCFS and IGFS are two filter
methods that do not consider the model accuracy (except to decide on the best number of
features to select). These six algorithms all have very different approaches to solving the
feature selection algorithm. RAND, a control method that randomly selects features, is
included. A description of the individual algorithms follows.

Random Feature Selection (RAND). The random feature selection algorithm is not
intended to work well. This feature selection algorithm is used as a control method. It is
intended to be used as a sanity check to ensure that all other feature selection algorithms
do indeed perform better than random. A binary string representation of a solution starts
out with all features excluded. A random number between 0 and 1 is generated, drawn
from a uniform distribution, for each feature in the set of all available features. A feature is
included if the random number is greater than 0.5.

Adaptive Multi-Swarm Optimisation for Feature Selection (AMSO). The adapative multi-
swarm optimisation for feature selection algorithm (AMSO) [24] was proposed for high-
dimensional feature selection problems. AMSO starts by ranking available features in
descending order, using any information theoretic criterion. This study also uses sym-
metrical uncertainty as an information theoretic criterion, as presented by Tran et al. [24].
The ordered list of features is then split by length for each sub-swarm. The motivation
behind this is that particle swarm optimsation (PSO) will perform better with smaller
search spaces. AMSO uses a competitive swarm optimiser approach to particle velocity
updating [25]. The number of features considered in this study is substantially less than
in the study where the algorithm was proposed. Therefore, all parameters were set as
presented by Tran et al. [24], with the modification of the number of sub-swarms and pop-
ulation size. The population size was set to 50, and the number of sub-swarms to three.
These parameters are more appropriate for problems with lower dimensions due to the
particle lengths being significantly smaller for lower dimensionality problems. AMSO was
chosen to be included due to its novelty and attention to dimensionality reduction. Since
AMSO has a stochastic element, fitness is reported as the median over 30 independent runs
of the algorithm.

Genetic Algorithm for Feature Selection (GAFS). The genetic algorithm for feature se-
lection uses the classic genetic algorithm as described by Goldberg [26]. The Weka [22]
implementation and default parameters were used. The parameters are:

e  Population size: 20

¢ Number of generations: 20
¢ Crossover probability: 0.6
*  Mutation probability: 0.033

Since the genetic algorithm has a stochastic element, fitness is reported as the median
over 30 independent runs of the algorithm.
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Generalised Sequential Backward Feature Selection (SBFS). The SBFS algorithm is used as
implemented by the GreedyStepwise implementation in Weka [22]. The SBFS algorithm
starts with an initial full set of features and sequentially removes a feature that results in
better fitness. The process continues until there are no features that can be removed that
will result in a better fitness than the current solution.

Generalised Sequential Forward Feature Selection (SFFS). The SFFS is used as implemented
by the GreedyStepwise implementation in Weka [22]. The SFFS algorithm starts with an
initial empty set of features and sequentially adds a feature that results in better fitness.
The process continues until there are no features that can be added that will result in a
better fitness than the current solution.

Pearson Correlation Coefficient Feature Selection (PCFS). The Pearson correlation co-
efficient is used to determine feature relevance. The implementation makes use of the
Weka [22] library. Features are ranked based on relevance with respect to the class, in
descending order.

One of the disadvantages of using information theoretic criteria is that the approach
only assigns a measure of relevance to each feature. A method to determine the number
of most relevant features is required. A simple linear combination approach is taken to
evaluate the model accuracy for each combination. Given a list of ranked features in
descending order, each linear combination of features is considered and the fitness of the
solution is evaluated.

For example, let the set of all features sorted by decreasing relevancebe F = {1,5,2,4,3}.
The following five solutions will be used to evaluate the model fitness: {1}, {1,5}, {1,5,2},
{1,5,2,4}, and {1,5,2,4,3}. The feature set with the highest fitness value is selected as the
number of features to use.

Information Gain Feature Selection (IGFS). The information-gain [27] information theo-
retic criterion is used to determine feature relevance. The implementation makes use of
the Weka [22] library. Features are ranked based on relevance with respect to the class, in
descending order. The same process of linear combination evaluation is followed as in the
PCFS algorithm.

7. Results

This section reports the experimental results obtained by computing the BFI values for
each dataset considered in Table 6. The set of feature selection algorithms are ranked and
investigated to show performance complementarity across a variety of real world datasets.

Table 8 reports the BFI for each algorithm considered in this study, for each classifica-
tion dataset. Algorithms RAND, AMSO and GAFS are stochastic in nature. The median
and interquartile range of these stochastic algorithms are shown in Table 8. The expectation
is that all of the feature selection algorithms perform better than random.

Recall that higher BFI values are indicative of higher performance in terms of the
two feature selection objectives. At a glance, it is clear that the control method, RAND,
consistently performed worse than all other feature selection algorithms. There is no
dataset where RAND performed better than any other feature selection algorithm. The
control method is omitted in further analysis of these results.

The BFI values in Table 8 require further statistical analysis to be able to determine any
meaningful performance difference for the set of stochastic feature selection algorithms.
Table 8 contains two stochastic feature selection algorithms, namely, AMSO and GAFS.
A two-tailed Mann-Whitney U test was conducted on the sample of fitness values for
only these two stochastic algorithms over 30 independent runs. The null and alternative
hypotheses for the Mann—Whitney U test are stated below:

Hypothesis 1 (H1). the distributions of both BFI samples are equal.
Hypothesis 2 (H2). the distributions of both BFI samples are not equal.
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Table 8. BFI results reported as medians for the first three stochastic algorithms (with interquartile ranges in parentheses) and as single

values for the remaining deterministic algorithms.

RAND AMSO GAFS SBFS SFFS PCFS IGFS
D1 0.2307 (0.28-0.17) 0.3942 (0.40-0.38) 0.4607 (0.47-0.45) 0.3985 0.4620 0.3235 0.3642
D2 0.1488 (0.19-0.13) 0.2684 (0.27-0.27) 0.2684 (0.27-0.27) 0.2684 0.2684 0.2684 0.2684
D3 0.1959 (0.21-0.18) 0.3043 (0.31-0.30) 0.2984 (0.31-0.29) 0.1975 0.3253 0.2936 0.2996
D4 0.1362 (0.16-0.13) 0.4324 (0.43-0.38) 0.4688 (0.51-0.44) 0.3685 0.1875 0.2299 0.2506
D5 0.1130 (0.13-0.10) 0.1995 (0.20-0.19) 0.2207 (0.23-0.21) 0.2225 0.2207 0.1497 0.1902
D6 0.1105 (0.13-0.08) 0.2238 (0.23-0.22) 0.2284 (0.23-0.23) 0.2251 0.2284 0.1978 0.1978
D7 0.1886(0.21-0.16) 0.2687 (0.27-0.27) 0.2703 (0.27-0.27) 0.2748 0.2703 0.2500 0.2360
D8 0.1987 (0.21-0.16) 0.2500 (0.25-0.25) 0.2500 (0.25-0.25) 0.2500 0.2500 0.2500 0.2500
D9 0.1899 (0.20-0.18) 0.2500 (0.25-0.25) 0.2500 (0.25-0.25) 0.2500 0.2500 0.2500 0.2500
D10 0.1321 (0.17-0.11) 0.3320 (0.34-0.33) 0.3536 (0.36-0.34) 0.3001 0.3378 0.3217 0.2785
D11 0.2053 (0.22-0.17) 0.2500 (0.25-0.25) 0.2500 (0.25-0.25) 0.2500 0.2500 0.2500 0.2500
D12 0.1563 (0.19-0.11) 0.2484 (0.26-0.24) 0.2807 (0.28-0.26) 0.2817 0.2057 0.2217 0.2025
D13 0.1551 (0.18-0.14) 0.2841 (0.29-0.28) 0.3111 (0.32-0.31) 0.3038 0.3089 0.2901 0.3142
D14 0.1923 (0.21-0.12) 0.4629 (0.46-0.42) 0.4368 (0.44-0.42) 0.4238 0.4335 0.3523 0.3226
D15 0.1806 (0.20-0.16) 0.2379 (0.24-0.24) 0.2379 (0.24-0.24) 0.2379 0.2357 0.2169 0.2169
D16 0.1899 (0.20-0.18) 0.2500 (0.25-0.25) 0.2500 (0.25-0.25) 0.2500 0.2500 0.2500 0.2500
D17 0.1885 (0.20-0.18) 0.4027 (0.40-0.39) 0.3663 (0.39-0.33) 0.2781 0.4124 0.2825 0.2619
D18 0.1716 (0.25-0.03) 0.3399 (0.34-0.34) 0.3399 (0.34-0.34) 0.3073 0.3399 0.3399 0.3399
D19 0.0947 (0.13-0.06) 0.2301 (0.24-0.22) 0.2453 (0.25-0.23) 0.2093 0.2712 0.1603 0.1603
D20 0.1675 (0.19-0.15) 0.3000 (0.30-0.29) 0.3512 (0.37-0.34) 0.3210 0.3909 0.3223 0.2860
D21 0.1176 (0.18-0.08) 0.3522 (0.35-0.34) 0.3524 (0.36-0.35) 0.3555 0.3444 0.3433 0.3365
D22 0.1366 (0.20-0.08) 0.3509 (0.38-0.32) 0.3693 (0.41-0.35) 0.3693 0.3168 0.2757 0.3100
D23 0.1875 (0.20-0.17) 0.3241 (0.32-0.32) 0.3353 (0.34-0.32) 0.2689 0.3353 0.3111 0.2500
D24 0.1513 (0.18-0.12) 0.2963 (0.30-0.30) 0.2963 (0.30-0.29) 0.2232 0.2963 0.2963 0.2963
D25 0.0723 (0.09-0.02) 0.1664 (0.17-0.16) 0.2069 (0.21-0.20) 0.1752 0.1860 0.1457 0.1674
D26 0.1934 (0.21-0.17) 0.2843 (0.29-0.28) 0.3117 (0.32-0.31) 0.2122 0.3159 0.2610 0.2592
D27 0.1723 (0.22-0.14) 0.3054 (0.33-0.29) 0.3427 (0.34-0.34) 0.3405 0.3054 0.2471 0.2367
D28 0.1894 (0.20-0.17) 0.2696 (0.28-0.27) 0.2756 (0.28-0.27) 0.2440 0.2594 0.2525 0.2613
D29 0.1467 (0.17-0.11) 0.3919 (0.41-0.38) 0.4043 (0.43-0.40) 0.2644 0.4363 0.3395 0.3231

The null hypothesis was rejected for 20 datasets, i.e., the GAFS and AMSO algorithms
did not have the same distribution of BFI values at a significance level of 0.05. The null
hypothesis was not rejected for nine datasets, i.e., the GAFS and AMSO algorithms did
have the same distribution of BFI values at a significance level of 0.05.
Table 9 reports a ranked list of feature selection algorithms, based on the BFI in Table 8,
where 1 is the best and 6 is the worst performing algorithm. Table 9 contains two stochastic
algorithms and four deterministic algorithms. The comparison between two algorithms’
performance to determine a rank obeys the following rules:

Comparison between two stochastic algorithms: A Mann-Whitney U test is conducted
to determine if the BFI sample distributions are equal. If the null hypothesis is rejected,
the BFI median values are used to determine which algorithm performed better.
Should the null hypothesis not be rejected, the algorithms are assigned the same rank.
Comparison between a stochastic and deterministic algorithm: The BFI sample median
for the stochastic algorithm is compared with the single BFI value of the deterministic
algorithm. If the BFI value of the deterministic algorithm falls within the interquartile
range of the stochastic algorithm BFI sample, then the algorithms are assigned the

same rank.

Comparison between two deterministic algorithms: The single BFI values are simply

compared. Algorithms with the same BFI value are assigned the same rank.

Table 9 contains datasets where all algorithms resulted in the same rank (D2, D8 and
D11). Since all algorithms performed equally for these cases, it does not make sense to
include these datasets for analysis regarding best and worst performance. They are all
ranked on the same level and therefore do not provide any information regarding the
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choice of the feature selection algorithm. Datasets where all algorithms resulted in the
same ranks are pruned from further analysis.

Table 9. Algorithm performance rankings.

AMSO GAFS SBFS SFFS PCFS IGFS
D1 2 1 2 1 4 3
D2 1 1 1 1 1 1
D3 2 3 5 1 4 3
D4 2 1 3 6 5 4
D5 3 1 1 2 5 4
D6 2 1 3 1 4 4
D7 3 1 1 2 4 5
D8 1 1 1 1 1 1
D9 1 2 1 1 1 1
D10 2 1 4 2 3 5
D11 1 1 1 1 1 1
D12 2 1 1 4 3 5
D13 4 1 3 2 4 1
D14 1 1 1 1 2 3
D15 1 2 1 2 3 3
D16 1 2 1 1 1 1
D17 2 3 5 1 4 6
D18 1 1 2 1 1 1
D19 3 2 4 1 5 5
D20 5 2 4 1 3 6
D21 2 1 1 3 4 5
D22 1 1 1 2 4 3
D23 2 1 4 1 3 5
D24 1 1 2 1 1 1
D25 4 1 3 2 5 4
D26 3 2 6 1 4 5
D27 2 1 1 2 3 4
D28 1 1 5 3 4 2
D29 3 2 6 1 4 5

Figure 3 summarises the distribution of the ranks for each algorithm in Table 9 and
Figure 3 shows that all the algorithms did perform the best on at least one problem. The
SFFS algorithm, according to Figure 3, was the only algorithm that performed the worst
for at least one dataset. It is clear that there is no one algorithm that is the best for all
scenarios. Algorithm GAFS has a denser distribution in the lower ranks in comparison to
the other algorithms. GAFS performs effectively more often than other algorithms but is
not infallible with regard to the best performance. Figure 3 provides valuable information
regarding the distribution of algorithm ranks but does not consider algorithms that share
a rank.

The box plots in Figure 3 do not show the worst performing algorithm as rank 6 for
scenarios where two or more distinct algorithms performed equally. As an example, should
any two algorithms have been ranked on the same level then the worst rank for the specific
dataset would be rank 5. Table 10 shows the number of times each algorithm was ranked
as the lowest (best) and highest (worst) with respect to other candidate algorithms.

These results are based on the penalty scaling constant of k;, = 0.25, and the classifi-
cation scaling constant of k. = 1.0. These scaling constants were determined in Section 5
as a result of sanity tests with regard to which feature selection objectives this study has
considered as important. Table 10 clearly shows that all algorithms did perform the worst
and the best for at least one dataset. Table 11 reports the results for using different values
for the classification and penalty scaling constants. The same process was followed to
produce the algorithm ranks in Table 11 as for Table 10.
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Figure 3. Box plot of algorithm ranks.

Table 10. Best and worst algorithm counts.

Algorithm Best Worst
(1) ke =1.0,kp =025
AMSO 8 (13%) 1 (3%)
GAFS 17 (29%) 2 (6%)
SBFS 10 (17%) 6 (20%)
SFFS 14 (24%) 1 (3%)
PCFS 4 (6%) 8 (26%)
IGFS 5 (8%) 12 (40%)

Table 11. Sensitivity of performance complementarity to objective function constants.

Algorithm Best Worst
@ ke=1.0,k, =10
AMSO 9 (18%) 1 (3%)
GAFS 8 (16%) 3 (10%)
SBFS 8 (16%) 6 (20%)
SFFS 19 (38%) 2 (6%)
PCFS 3 (6%) 10 (33%)
IGFS 3 (6%) 8 (26%)
B ke =07k, =04
AMSO 7 (12%) 1 (3%)
GAFS 14 (25%) 3 (11%)
SBFS 8 (14%) 8 (29%)
SFFS 18 (33%) 1 (3%)
PCFS 4 (7%) 7 (25%)
IGFS 3 (5%) 7 (25%)
4 ke =09,k =0.1
AMSO 5 (9%) 2 (6%)
GAFS 18 (35%) 2 (6%)
SBFS 8 (15%) 6 (19%)
SFFS 13 (25%) 3 (9%)
PCFS 3 (5%) 7 (22%)

IGFS 4 (7%) 11 (35%)
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Table 11. Cont.

Algorithm Best Worst
() ke =1.0,k, = 0.0

AMSO 2 (4%) 7 (20%)

GAFS 21 (42%) 0 (0%)

SBFS 11 (22%) 2 (5%)

SFFS 10 (20%) 8 (22%)

PCFS 1 (2%) 6 (17%)
IGFS 4 (8%) 12 (34%)

Table 11 shows the relative performance of the six algorithms for different values of the
objective function scaling constants, with k, reduced from 1 to 0 and with different values
of k. (as denoted in the greyed rows). Considering the various different scaling constants
under observation, it is clear that there is no one algorithm that reigns supreme. Only one
combination of scaling constants, k. = 1.0, k, = 0.0, showed that the GAFS algorithm
did not perform the worst for at least one dataset. The performance complementarity for
feature selection algorithms in this study shows that choosing the best feature selection
algorithm remains problem dependant.

8. Conclusions

The goal of this study was to propose a novel performance metric: the baseline fitness
improvement (BFI) measure for feature selection algorithms, which is unbiased and can be
used for comparative analysis across feature selection problems. The BFI is a normalised
measure that allows performance comparison of algorithms across independent datasets, a
critical component to the algorithm selection model.

Using BFI, the experimental results showed that there is no algorithm that is consis-
tently the worst or the best. This observation remained valid for a variety of different
scaling constants. All algorithms did perform the best for at least one problem.

The experimental analysis shows that there is performance complementarity for
feature selection algorithms using BFI as the performance measure. Performance comple-
mentarity for feature selection algorithms is supported by other experiments carried out in
the feature selection community [28].

The per-instance algorithm selection problem is of particular importance when there
is a high level of performance complementarity between the set of algorithms A on a
set of problem instances I. The use of per-instance algorithm selectors shows promising
opportunity to achieve better algorithm performance on problem instances for classification
problems [15]. The performance complementarity of feature selection algorithms encour-
ages further research in automated algorithm selection for feature selection algorithms.

The experimental study in this paper was based on a set of 29 datasets with up to
148 features and 699 instances. In the era of big data, there are datasets that have many more
features and instances. Further work could include experimentation on larger datasets
to investigate the relative performance of different algorithms on large datasets and to
confirm that performance complementarity still holds. Future work also includes using the
BFI measure to determine the effect of fitness landscape characteristics on the performance
of feature selection algorithms and to develop methods for landscape aware automated
feature selection algorithm selection.
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