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Abstract: Genetic algorithms (GA’s) are mostly used as an offline optimisation method to discover a
suitable solution to a complex problem prior to implementation. In this paper, we present a different
application in which a GA is used to progressively adapt the collective performance of an ad hoc
collection of devices that are being integrated post-deployment. Adaptive behaviour in the context of
this article refers to two dynamic aspects of the problem: (a) the availability of individual devices
as well as the objective functions for the performance of the entire population. We illustrate this
concept in a video surveillance scenario in which already installed cameras are being retrofitted with
networking capabilities to form a coherent closed-circuit television (CCTV) system. We show that
this can be conceived as a multi-objective optimisation problem which can be solved at run-time,
with the added benefit that solutions can be refined or modified in response to changing priorities
or even unpredictable events such as faults. We present results of a detailed simulation study, the
implications of which are being discussed from both a theoretical and practical viewpoint (trade-off
between saving computational resources and surveillance coverage).

Keywords: adaptive scheduling; genetic algorithm; dynamic objective function; camera surveillance;
optimisation; run-time

1. Introduction

The Internet of Things (IoT) frequently involves retrofitting existing infrastructure
with “intelligent” capabilities, see, e.g., in [1]. In turn, this requires identifying methods for
turning an ad hoc collection of newly “connected” devices [2] into a cohesive whole capable
of providing a better service than was previously achievable, due to the isolation of its
various components [3]. This is often a challenging proposition and it could be argued that
the IoT has so far failed to deliver on some ambitious promises of seamless interoperability
and a step-change in how connected devices interact with their users and/or with each
other. At least part of the reason is that the “augmentation” of pre-existing “things” with
advanced communication and machine learning abilities is not enough. To recycle an
iconic IoT meme: it is not because your fridge is now connected to the Internet that it will
spontaneously enter a mutually beneficial relationship with the application responsible
for monitoring the stock of fresh milk at your local supermarket. Even when possible
in principle, useful interactions between “things” need to be identified and established
carefully to provide any tangible benefits, which is far from trivial.

In this article, we are focusing using a genetic algorithm to engineer self-organisation
into a population of devices which (a) were previously fulfilling a dedicated function
(that might be impacted (positively or negatively) [1] by their new status as parts of a
bigger whole) and which (b) could belong to different actors or organisations (that had
never before cooperated and therefore may not have any agreement in place to realize this
cooperation on an operational level, e.g., to share any resulting additional cost).
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To illustrate this, we chose to investigate a specific—if hypothetical—scenario in which
CCTV cameras in a shopping mall or retail space (street market, etc.) are being networked
to provide an integrated video surveillance system [2]. The protection of public places
through surveillance measures has been a concern for decades [4] and using the IoT to use
existing infrastructure is a sustainable and cost-efficient approach.

Our hypothetical cameras belong to different shops where they were installed with
the primary (and thus far only) objective to monitor the respective shops’ sensitive areas.
There are solutions proposed in the literature to determine beneficial location, orientation
and timing for integrated video surveillance systems (see, e.g., in [5]); however, in our
case, the cameras’ locations and orientations are optimised subjectively by the shop owners
without any organised pattern, resulting in partial overlap of coverage.

Using a genetic algorithm, we aim to optimise the system’s performance (i.e., the cost
for—and the benefit generated from—operating it) by scheduling the individual camera’s
activation. This is similar to solving a multi-objective optimisation problem:

• The cameras must spent as little time as possible in the “active” state [2] in which they
are consuming resources such as power, network bandwidth, disk storage, screen
space on the monitoring workstation, etc.

• The fraction of the shopping mall surface that is not being monitored (i.e., “blind
spots”) should be minimised.

• The overlap between “active” cameras (i.e., zones that are being shown on several
concurrent video feeds) is wasteful and must also be minimised.

We will show that once the alternative schedules are suitably encoded and a weighted
fitness function has been specified, this multi-objective optimisation problem is easily and
quickly solved by a genetic algorithm.

Genetic Algorithms (GAs) [6] are a nature-inspired [7] heuristic [8], i.e., an approach to
find or estimate good solutions to a problem, as opposed to reliably determine the best one.
Bio-inspired approaches apply principles found in nature [9] to improve algorithms [10]—
often with very good results [11]. In the case of genetic algorithms [12], the principle of
survival of the fittest is combined with the idea of mutation [13]: iteratively, the highest
performing solutions from a set of candidate solutions are selected (performance-based
selection) and subjected to local neighbourhood search (mutation) [14]. GAs have been
used successfully in camera related optimisation problems, both for the placement of
cameras [15] or for the interleaving of packets in messages sent by the cameras [16].

GAs—which are among the “most well-regarded evolutionary algorithms in history” [17]
are mostly used as an offline optimisation method to discover a suitable solution to a
complex problem prior to implementation. The idea to use them continuously at run-time
is, of course, not new [18] (cf., e.g., in [19] for continuous portfolio optimisation, [20] for
real-time task scheduling for multiprocessors or [21,22] for the optimisation of movement
direction for the members of a drone swarm), but its by far not as popular as using them
for a priori offline optimisation. In this paper, we apply the GA paradigm to the run-time
adaption [23] of schedules for an ad hoc collection of cameras.

2. Schedule Encoding and Fitness Function

The genome we used is a two-dimensional binary array. Each line represents a
camera and each column a time-slot in a periodic time window. A “1” indicates that the
corresponding camera is in operation (i.e., streaming video) during a certain time-step
while a “0” means that it is in stand-by mode.

Overlapping coverage is encoded as a three-dimensional binary matrix of size w× d× n,
with w and d the width and depth of the monitored area (in meters), and n the number
of cameras. If the one m2 cell centred on coordinates (x, y) is within the field of view of a
camera, then the corresponding entry is set to “1”. This information, while assumed to be
known in our study a priori, could be generated relatively easily, be, e.g., moving a physical
target over the area and recording which cameras are able to track it simultaneously
(solutions to this are proposed in the literature, see, e.g., in [24]).
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By cross-referencing this matrix with the activation schedule (genome), we determine
whether a cell is being monitored by zero, one or more than one camera at any point in
time. The area outside the field of view of any active cameras (“blind spots”) is measured
by subtracting the surface being monitored (by all devices, taking any overlap into account,
i.e., every m2 is only counted once) from the total area under surveillance.

The fitness function F only takes three global input variables: A (the total activation
time for all cameras, equivalent to the number of 1’s in the schedule matrix; unit = s), B
(the area of all “blind spots” over the duration of the periodic time-window; unit = m2s)
and C (the overlapping coverage, i.e., the area being monitored by more than one camera
over the duration of the periodic time-window; unit = m2s). Each variable’s impact on the
overall fitness is weighted by tunable parameters α, β, and γ, respectively,

F = αA + βB + γC (1)

As all three input variables are to be minimised we are also interested in minimising
F: the lower the value of F the fitter the schedule.

Our method is illustrated in Figure 1, for a simple 2-cameras example. The two boxes
below the images represent two possible genomes, the images show the camera activation
(over 4 times steps) defined in the genome on the left. In these genomes, the first line
corresponds to the activation schedule of the first camera (horizontal orientation) and the
second line to that of the second camera (vertical orientation). The red perimeter identifies
the coverage area of each camera. Greyed squares are “blind spots” (not monitored), and
orange squares are overlapping areas (monitored by more than one camera).

Figure 1. Schedule encoding scheme and evaluation of the input variables to the fitness function, for
a two-cameras example (two rows) and a four steps periodic time-window (four columns).

For example, to optimise coverage we might set the weighting parameter values to,
e.g., α = 2, β = 1 and γ = 2. Under these settings, the schedule on the left in Figure 1
results in a fitness value F of 126 and is thus outperformed by the schedule on the right
(score of 116). However, if we were more interested in saving resources, we might set α
to, e.g., 10 (while leaving the other parameters unchanged). Then, the schedule on the left
scores 158 while the one on the right comes in at 164 (and thus the one on the left is better).

In order to make weighting more transparent and considering that the values for
A, B, and C are dependent on experimental parameters such as the size of the area to be
monitored, the number of cameras, the length of the periodic time window, etc., we defined
secondary, dimensionless variables A′, B′, and C′ as follows:

X′ =
X

max(X)

where max(X) stands for the maximum possible value of the corresponding variable. With
respect to the example provided in Figure 1—with the maximum activation max(A) = 8s
(period (4s)× two cameras), the blind spots max(B) = 41m2 × 4s = 164m2s and the overlap
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max(C) = 6m2 × 4s = 24m2s—the resulting values of A′, B′ and C′ are 0.5, ≈0.65, ≈0.33,
and 0.75, ≈0.49 and ≈0.67 for the left and right schedule, respectively.

By choosing weighting parameters α, β, and γ such that

α + β + γ = 1

we ensure that the corresponding secondary fitness F′, defined as

F′ = αA′ + βB′ + γC′

is always comprised between 0 and 1. Unless stated otherwise, F′ is the value reported for
all numerical experiments in the remainder of this paper.

3. Genetic Algorithm, Reproduction, and Mutation/Selection Process

The GA was implemented as follows: on each generation, the fittest individuals (fixed
fraction of the total population), each one carrying a genome representing one possible
activation schedule, are selected to breed the next. Other individuals are eliminated and
replaced by the offspring of the selected breeders. Unless stated otherwise, the best 25% of
the individuals are allowed to survive and to pass on their genes. Each parent has three
offspring, so as to keep the population constant.

In one version, reproduction is asexual (parthenogenesis) and the only genetic operator
is mutation: every offspring in the new generation (75% of the population) starts as a clone
of its single parent, then every bit in the two-dimensional genome “flips” with a uniform
probability P (which, unless stated otherwise, is P = 0.01).

In the second version, sexual (hermaphrodite) reproduction is implemented as follows:
every surviving individual from the previous generation still “mothers” three offspring,
but the genome of each one of them is the result of a combination of that of the “mother”
with that of a “father”, randomly chosen among the other parents (each offspring can have
a different “father”). Each column from the offspring’s genome/schedule (corresponding to
every camera’s state during one given time-slot) is provided randomly (50% chance) by
one of the parents. Mixing the parents’ genome lines was discarded because fitness heavily
depends on the interoperation of cameras (e.g., overlap), effectively making substituting
one schedule for another equivalent to random mutation.

Mutation operates in exactly the same way as for asexual reproduction (P = 0.01). The
initial population is generated at random (every bit in the genome of every individual
is randomly set to 0 or 1 with equal probability). Note that as parents (a) survive to the
next generation, (b) are not subject to mutation and (c) are deterministically selected as the
fittest, the best identified schedule is always retained.

4. Numerical Experiment Set-Up

To test our method, we simulated 32× 32 = 1024 m2 two-dimensional space moni-
tored by 64 cameras. Each camera covers a “pie slice-shaped” area 90 degrees wide and
16 m deep (for an example, see Figure 2).

Cameras are randomly placed and oriented, within the limits of two constraints:

• No two cameras can be less than 4 m apart
• Cameras have at least 48 m2 from the monitored surface within their coverage area

The second constraint was introduced to ensure that cameras located on the edge of
the set-up do not face outward. A typical example of the resulting environment is shown
in Figure 2, using the same colour convention as in Figure 1.
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Figure 2. A typical environment semi-randomly generated for the numerical experiment setup.
Colour as in Figure 1: the zoomed-in picture on the right shows overlap (orange area) if all cameras
are turned on. Note the “blind spots” (grey area) that are permanently outside coverage.

The genetic pool is set to 64 individuals, with the 16 fittest (25%) surviving and
breeding the next generation. The duration of the periodic time window is set to 32s
(for comparison, the genome in Figure 1 covers only 4s), so the total size of the genome
is 2048 bits (32× 64). The genetic algorithms is allowed to run for 10,000 generations,
independently of reproduction type (parthenogenesis or hermaphrodite).

5. Limit-Cases and Benchmarking

Limit-cases correspond to situations in which the value of one of the three weighting
parameters α, β and γ is set to 1, which, according to the conservation law expressed
by Equation (2), means that the other two global variables are not taken into account
when computing fitness. As a benchmarking exercise, we investigated how our proposed
genetic algorithm framework would deal with each of the three limit-cases, and for both
reproduction methods. Figures 3–5 show the resulting values for A, B and C when α, β
and γ are evaluated in isolation, respectively.

Figure 3. Benchmarking tests: α = 1 We show the evolution over time of variables A, B and C
for the fittest individual of each generation (the plotted values are averaged over 20 independent
realisations). If α = 1 then β, γ = 0; and F is equal to A. Consequently, the GA is optimising F by
reducing the value of A to (eventually) zero. The convergence speed of the algorithm when using
mutation only (left panel) is significantly slower than with sexual reproduction (right panel).
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If α = 1, the optimal solution is to permanently switch off all cameras (A = 0).
Symmetrically (see Figure 4), if β = 1, then one optimal solution is to never switch any

of them off (although there will usually be others, in which some cameras, the coverage
area of which is 100% overlapping with others, are permanently deactivated).

Figure 4. Benchmarking tests: β = 1, i.e., the value of F is only based on blind spots. Both variations
(left: mutation only; right: with sexual reproduction) perform comparable, the value of B may never
drop entirely to zero due to unavoidable blind spots caused by the camera placement.

The third limit-case (γ = 1) has no such obvious optimum. Even though the optimal
solution for α = 1 is also one for γ = 1, depending on cameras’ locations and orientations,
there will usually be many other, less trivial schedules for which there is no overlapping
coverage (C = 0).

Figure 5. Benchmarking tests: setting γ = 1 implies (as above) that only one value contributes to
F, namely, C, the overlap. In both variations of the GA C is being reduced but the GA with sexual
reproduction (right panel) significantly outperforms the variation that uses only mutation (left).

The conclusion is twofold. First, the proposed framework is evidently capable of
converging on the best schedule for each separate objective, namely, “lowest resource
consumption” (α = 1), “fewest blind-spots” (β = 1) and “minimal overlap” (γ = 1).
Second, the mixing of schedules/genes through sexual reproduction has, unsurprisingly,
a very positive influence on the adaptation rate, especially when the objective is the
conservation of resource or the avoidance of overlapping coverage.
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6. Exploration of the Weighting Parameters Space

Because performance (rate of adaptation) is clearly better when using sexual repro-
duction (see Figure 5), all the following numerical experiments have been conducted using
this method. The Monte Carlo simulation was implemented in Java. Each combination of
weighting parameter values was the object of 180 independent realisations, each of them
running for 10,000 generations. One realisation takes≈4 min to complete on our Dell T7910
Workstation. Selected results are commented on below as well as presented as graphs in
Figures 6–8.

6.1. Case: α = β = γ = 1
3 (Equal Weights)

With equal weights, the most noticeable effect is that a combined reduction in resource
consumption (variable A) and in overlap (variable C) is achieved at the expense of severely
impaired coverage, which manifests itself as an increase in “blind spots” frequency (rising
from about 25% in initial conditions to over 40%).

Figure 6. The curves show the evolution over time of the three global variables (for the values
α = β = γ = 1

3 ) for the fittest individual of each generation (reported are the averaged values over
180 independent realisations).

We attribute this result to the fact that the A and C variables are not fully independent
in that they both benefit from switching off cameras indiscriminately. This would likely
be unacceptable in a real-world deployment so the weight of the β parameter should be
increased to compensate for the combined effect of variables A and C.

6.2. Case: α = γ = 1
4 , β = 1

2

Increasing the weight of variable B (“blind spots”) unsurprisingly improves coverage
while simultaneously reducing benefits in terms of minimising resource usage and overlap.
However, “blind spots” still increase compared to random initial conditions, albeit only by
a marginal fraction.
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Figure 7. The curves show the evolution over time of the three global variables (for the values
α = γ = 1

4 , γ = 2
4 ) for the fittest individual of each generation (the shown results are averaged over

180 independent realisations).

6.3. Case: α = β = 1
2 , γ = 0

More surprisingly, in our exploration of the weighting parameters space, completely
eliminating overlap from the fitness evaluation by assigning a value of zero to parameter γ
gave the best result, with strong to moderate improvements across all three performance
measurement variables.

Figure 8. The curves show the evolution over time of the three global variables (for the values
α = β = 1

2 , γ = 0) for the fittest individual of each generation (the presented results are the averages
over 180 independent realisations).

Our interpretation is that this is caused by the high density of cameras in the numer-
ical experiment set-up, which leads to substantial overlap (see Figure 2). Consequently,
explicitly trying to minimise the corresponding variable C forces the evolutionary process
to switch off cameras more often than is desirable from a coverage point of view, creating
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“blind spots” in areas monitored by just one camera in an attempt to minimise partial
overlap with other nearby devices.

7. Run-Time Adaptation and Real-World Considerations

One salient feature of our genetic algorithm framework is that it is not designed
for offline multi-objective optimisation, but intended as a run-time method to improve
the performance of an integrated video surveillance system “on-the-fly”. This includes
the ability to respond to disruptive events, such as the failure of cameras, by adaptively
reorganising the schedule of other devices so as to compensate for the loss of coverage
consecutive to the fault.

To demonstrate this ability, we ran a separate batch of simulations, using the best
identified weighting parameter values (α = β = 1

2 , γ = 0), in which 8 randomly chosen
cameras (out of 64) are “deactivated” at generation 10,000, and the system is allowed to
recover for another 10,000 generations after the event (during which the impacted devices
remain permanently offline), see Figure 9.

α = β = 1
2 , γ = 0

Figure 9. Response to a disruptive event (failure of 8 out of 64 cameras at generation 10,000). The
curves show the evolution over time of the three global variables for the fittest individual of each
generation (averaged over 180 independent realisations).

As expected, the sudden failure results in a sharp rise in the value of variable B (“blind
spots”). This boosts the relative fitness of genomes/schedules in which other cameras are
activated more often, leading to a temporary rise in variables A and C, following a sharp
drop of the latter consecutive to the disappearance of overlap with faulty devices (note that
these are still consuming resources in our scenario, so variable A is unaffected). After a
few hundred to a thousand generations though, the system has successfully adapted and
all variables have resumed a downward trend, albeit the fact that variable B is necessarily
converging to a higher plateau (this is necessarily so because some of the new “blind spots”
are out of coverage for all surviving cameras).

We argue that our method, although clearly perfectible, is already suitable for real-
world deployment “as is” and offers immediate benefits. It is straightforward and not
particularly computationally intensive to evaluate one generation per second (in our
simulations, we do over 40 over the same period), so for a system of the size envisaged
(64 cameras, 32 s periodic time window), identifying a suitable schedule would take a few
minutes to a few hours. More importantly, the system would respond to a disruptive event
over a similar time-scale, making run-time adaptation very feasible.

In terms of resource-saving performance, the benefit is roughly a 2
3 rd reduction

compared to an “always-on” schedule. This obviously means that for the same disk storage
capacity, archived footage would cover a period three times longer, e.g., 72 h instead
of a single day. By way of contrast, the loss of coverage resulting from this adaptation
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only represents about 10% of the monitored area (note that this does not mean that these
additional 10% are never monitored, only that they are filmed less often). Although we fully
acknowledge that these results are sensitive to the value of the parameters used for the
numerical experiment (number of cameras, field of view, etc.), there is no reason to believe
that they would be qualitatively different in other scenarios.

8. Conclusions and Future Work

We have presented what we believe to be a fully specified framework for orchestrating
the operation of an ad hoc video surveillance system using a genetic algorithm to achieve
multi-objective optimisation at run-time, in a dynamic environment. Simulation results
demonstrate that the proposed approach can save valuable resources (network bandwidth,
storage space, etc.) without significantly compromising coverage, as well as responding
quickly and efficiently to disruptive events.

We fully acknowledge that additional effort is required before such a system can be
deployed in the real world. This future work can roughly be divided into two categories:

1. There is room for further practical development on the implementation side, specif-
ically with regard to the design of reliable techniques to acquire the information
“consumed” by the genetic algorithm’s fitness function. For example, even though we
do not think that this represents in any way an unsurmountable obstacle, measuring
overlap between cameras could be a challenge in its own right. It is not hard to
imagine empirical methods, such as target tracking in a pre-deployment training
phase, to obtain a rough approximation (e.g., a binary matrix showing which pairs of
cameras do and do not overlap), but making a more precise estimate (e.g., the surface
of the overlapping coverage area) could prove difficult. However, as automated
surveillance is a rapidly growing market, solutions to this challenge are being worked
on. Furthermore, our numerical experiments indicate that this is the least critical of
the three fitness variables, so it is certainly no “show stopper”.

2. More exploration of the parameters space is required to quantify the influence of ex-
ternal parameters over the performance of the adaptive framework, and to determine
the best internal parameter values for any given deployment scenario. The difficulty
here comes from the large number of external parameters, some of which might not
even have been identified yet, which, together with the very wide range of possible
values for them, make a systematic approach unrealistic. We will focus our own
efforts on scale (i.e., number and density of cameras) as we suspect they might have
the strongest impact on the possible benefits of incorporating overlap into the fitness
function. There are, however, many other aspects to document. In particular, it would
be desirable to improve the way in which coverage is modelled, for instance, by
taking into account distance from the camera and substituting a continuous variable
(image quality) to our binary one.

By describing our method and publishing our results at this intermediate stage, we
hope to encourage the community to extend and complement this work. We believe that it
represents a promising and credible run-time application of genetic algorithms, of which
there are relatively few examples.
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