
algorithms

Article

Phase Congruential White Noise Generator

Aleksei F. Deon 1 , Oleg K. Karaduta 2 and Yulian A. Menyaev 3,*

����������
�������

Citation: Deon, A.F.; Karaduta, O.K.;

Menyaev, Y.A. Phase Congruential

White Noise Generator. Algorithms

2021, 14, 118.

https://doi.org/10.3390/a14040118

Academic Editors:

Shankarachary Ragi and

Edwin K. P. Chong

Received: 5 February 2021

Accepted: 2 April 2021

Published: 5 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information and Control Systems, Bauman Moscow State Technical University,
2nd Baumanskaya St., 5/1, 105005 Moscow, Russia; deonalex@mail.ru

2 Biochemistry and Molecular Biology Department, University of Arkansas for Medical Sciences,
4301 W. Markham St., Little Rock, AR 72205, USA; OKKaraduta@uams.edu

3 Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St.,
Little Rock, AR 72205, USA

* Correspondence: YAMenyaev@uams.edu

Abstract: White noise generators can use uniform random sequences as a basis. However, such
a technology may lead to deficient results if the original sequences have insufficient uniformity
or omissions of random variables. This article offers a new approach for creating a phase signal
generator with an improved matrix of autocorrelation coefficients. As a result, the generated signals
of the white noise process have absolutely uniform intensities at the eigen Fourier frequencies. The
simulation results confirm that the received signals have an adequate approximation of uniform
white noise.

Keywords: pseudorandom number generator; congruential stochastic sequences; white noise;
stochastic Fourier spectrum

1. Introduction

The concept of white noise realization corresponds to randomness in appearance
and distribution of signals [1–4]. For audible signals, the conforming range is the band
of frequencies from 20 to 20,000 Hz. The randomness of such signals in this range is
usually perceived by the human ear as a hissing sound with different volume intensities.
White noise also manifests itself in myriad natural phenomena. For example, noises of
various intensities of the sea waves, waterfall, rain, wind, etc. Outside nature, in technical
systems, white noise appears in p-n junctions of semiconductors, in roars of different
engines (vehicles, aircrafts, etc.), in the overlapping of many sounds associated with big
cities and metropolitan life (traffic, construction, honking, life support systems), and so on.

An analysis of the literature shows that most of the articles describe different applica-
tions of white noise, as well as its recognition in transmitted signals. This includes the areas
such as theoretical and applied mathematics [5–9], physical research [3,4,10–13], electronic
and radio engineering [14–23], acoustics and noise phenomena [1–4,24,25], computer al-
gorithms [26,27], geological prospecting and exploration [28,29], medical and biological
research [30–36], psychology and psychiatry [37,38], and others. It is worth noting that
significant results have been achieved in those fields.

On the other hand, the literature describes the methods of white noise creation, as
well as its use in the artificial modeling of various situations. A fundamental feature
of this direction is the condition that a white noise generator is required initially. The
first approach, in this case, uses techniques of recording the physical phenomena with
subsequent digitizing and postprocessing filtration [39,40]. This method provides quasi
“natural” or “realistic” white noise, however the numerical accuracy of the registration
of stochastic quantities is often not sufficient. Moreover, the technical realization is quite
expensive. The second approach in creating a white noise generator utilizes the techniques
of computer-based algorithms. In this case, the generation accuracy is quite high. However,
different algorithmic methods have varying degrees of generation quality and usually

Algorithms 2021, 14, 118. https://doi.org/10.3390/a14040118 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-7735-4016
https://orcid.org/0000-0003-3873-052X
https://orcid.org/0000-0001-5861-3641
https://doi.org/10.3390/a14040118
https://doi.org/10.3390/a14040118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14040118
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14040118?type=check_update&version=3

Algorithms 2021, 14, 118 2 of 30

they are associated with diverse disadvantages. To analyze the grade of generation, the
verification methods are commonly applied.

As an example, in [41] the following form for white noise generation is proposed;
it should be noted here that this is just one of many ways to implement a white noise
generator. As a basis for forming n values cj of white noise (provided that j ∈

[
0, n− 1

]
) the

function rand() from Microsoft Visual Studio could be utilized. The algorithmic expression
used in [41] can be represented here in the following mathematical form:

cj = 4
(

rand()
randmax

− 0.5
)

(1)

By using this expression, the resulting values can be obtained in the range [−2 : +2].
This simple formula allows creation of the elements in the required diapason. The next
mandatory step is to check the condition of how much the obtained values cj really are the
elements of a process with white noise properties. For such verification it is necessary to
consider how the white noise process and the properties of its elements are formed, and
here it all depends on the quality of the function rand() and its maximum value of randmax.
Let us consider this in more details.

From a general point of view, the numerical sequences form a stationary random
process P if the characteristics of this process are not changing during its implementation.
One such characteristic is the consistent observation of the presence of numerical values
over the time period. Commonly, the term observation is replaced by the equivalent
concept of counting. Therefore, the summation of all countings makes up the process with
elements cj ∈ P. A number of n consecutive countings can be collected together as an
information signal S. Formally, there can be many signals, and each of them is a subset of
the process S ⊂ P. Let us denote the initial counting in signal S as c0 ∈ S; the next one
should have the following index c1 ∈ S. Carrying on with the numbering of countings, the
last one in this case would have the designation cn−1 ∈ S. This means that only the first
initial n countings are considered in signal S. Let us assign this initial signal as S0 ⊂ P.

Considering the random process further, it becomes obvious that cn /∈ S0 since there
are only n countings in that signal, starting from index 0 to n− 1. This means that the
next signal S1 starts from the counting cn. However, the initial counting in each signal
(S0, S1, etc.) should have a zero index relative to the beginning of the signal. To overcome
this issue, the dual indexing, such as cij, is used. The first index i indicates the signal
number Si, while the second one j specifies the assigned number of the counting in the
corresponding signal. In this case the next counting cn ∈ P in a random process is denoted
in a random signal S1 ⊂ P by a double indexing cn = c10 ∈ S1. This approach allows
consideration of the countings of a random process from the point of view related to their
sorting by signals.

Usually, the sequential signals are considered, and each of them contains an equal
number of n countings with equal time intervals τ between them. In this case, the time TS
of each information signal S could be designated as TS = (n− 1)τ. If the time τ between
countings admits a continual interpretation, then continuous stationary random processes
are considered. If the interval time τ and the number of countings n are finite in the signal
S, then such processes are discrete. Generally, the mathematical transition from continuous
signals to discrete ones is carried out using the Dirac delta function.

In a random discrete process, the countings are following one by one sequentially.
Dividing a process into n sequential countings can be interpreted as observing the se-
quential discrete signal. Thus, the initial n countings provide forming the signal S0; the
next n countings organize the subsequent signal S1, and so on. For the next step in signal
analysis, it is necessary to check whether the countings in each signal are independent. The
consistent observation of countings in a period of time is not exhaustive evidence of their
statistical independence. Therefore, it is necessary to analyze their interaction among other
countings within the signal. For this purpose, the adjacent pairs of signals are evaluated
using the mathematical correlation method. In this case, it is convenient to introduce the

Algorithms 2021, 14, 118 3 of 30

formal autovectors for each pair of signals. The first pair consists of the initial signal S0
and the adjacent one S1; the next pair is formed from signals S1 and S2, and so on. Thus,
the correlation approach uses adjacent signals Sk and Sk+1.

To any pair of adjacent signals, for example, S0 and S1, there is correspondence of n
autovectors 0Z0, 0Z1, · · · , 0Zn−1. The upper left index 0 underlines the origin of countings,
which are taken from signal S0. Countings of the original signal c0j ∈ S0 are initially located
in the autovector 0z0j ∈ 0Z0, which means that countings in the signal S0 are transferred to
the initial autovector 0Z0 as follows:

0z0,0 = c0,0,
0z0,1 = c0,1, . . .
0z0,n−1 = c0,n−1

(2)

Using the initial autovector (2), the next autovector 0Z1 could be obtained, which is
shifted one counting to the right relative to the autovector 0Z0. Autovector 0Z1 contains
part of countings of the signal S0 starting from the counting c01 ∈ S0. Herewith, only
the last counting in the autovector 0z1,n−1 ∈ 0Z1 belongs to the signal S1. Formation of
autovector 0Z1 contains the following steps:

0z1,0 = c0,1,
0z1,1 = c0,2, . . .

0z1,n−2 = c0,n−1,
0z1,n−1 = c1,0

(3)

From Formulas (2) and (3) it follows that the last autovector relative to the pair of
signals S0 and S1 contains only one counting from the signal S0, and the remaining n− 1
countings are taken from the signal S1 as follows:

0zn−1,0 = c0,n−1,
0zn−1,1 = c1,0, . . .

0zn−1,n−2 = c1,n−3,
0zn−1,n−1 = c1,n−2

(4)

Thus, with respect to signal S0 Formula (4) completes the formation of all autovectors
0Z0, · · · , 0Zn−1.

Now it is obviously seen that such a structure of autovectors is able to compose
the matrix with dimensions n × n. The countings of each autovector 0Zi occupy the
corresponding row i in the matrix 0Z. The values in line 0 correspond to the signal S0 and
the autovector 0Z = S0. Line 1 contains the countings of autovector 0Z1. The last row of
the matrix 0Z keeps the autovector 0Zn−1.

Below is the program P070101, in which according to Formula (1) the autovectors 0Zi
are created in the matrix 0Z using the Random generator from the algorithmic language C#.
The theoretical value of the amount of countings n has been replaced by a program variable
named NS. As an example, in this particular case, the number of countings in signal is
taken as NS = 33, although the values for NS can be chosen arbitrarily up to NS < 231.
The values of countings c0,i of the theoretical initial signal S0 are stored in the elements of
the program array s0. Theoretical autovectors 0Zi are located in the program matrix z.

namespace P070101
{ class cP070101

{ static void Main(string[] args)
{ const int NS = 33; // signal counter quantity

Console.WriteLine("NS = {0}", NS);

Algorithms 2021, 14, 118 4 of 30

Random rdm = new Random(0); // integer random generator
double max = (double)0x7FFFFFFF;
double[] s0 = new double [NS]; // initial signal s0
for (int i = 0; i < NS; i++)

s0[i] = 4.0 * ((double)rdm.Next() / max - 0.5);
Console.Write("S0 =");
for (int i = 0; i < NS; i++)
{ if (i % 6 == 0) Console.WriteLine();

Console.Write("{0,8:F3}", s0[i]);
}
Console.WriteLine(); // matrix z for vectors
double[,] z = new double[NS,NS];
MatrixZ(z, s0, rdm , NS, max);
Console.WriteLine("Z = ");
for (int i = 0; i < NS; i++)
{ Console.Write("{0,8:F3}", z[i, 0]);

Console.Write("{0,8:F3}", z[i, 1]);
Console.Write("{0,8:F3}", z[i, 2]);
Console.Write(" - - - -");
Console.Write("{0,8:F3}", z[i, NS-2]);
Console.WriteLine("{0,8:F3}", z[i, NS-1]);

}
Console.ReadKey(); // result viewing

}
//- – - - - - - -

static void MatrixZ (double [,] z, double[] s0,
Random rdm, int NS, double max)

{ for (int j = 0; j < NS; j++) z[0, j] = s0[j];
for (int k = 1; k < NS; k++) // vector shift
{ for (int j = 0; j < NS - 1; j++)

z[k, j] = z[k - 1, j + 1];
z[k, NS - 1] = 4.0*((double)rdm.Next()/max-0.5);

}
}

}
}

After starting the program P070101, the following outcome appears on the monitor. In
order to reduce the presentation of the entire listing of results, omitted values are replaced
by a dash.

NS = 33
S0 =

0.905 1.269 1.072 0.233 −1.176 0.236
1.624 −0.231 1.910 −0.905 −0.832 −0.131
0.531 −0.122 1.929 −1.879 1.449 1.981
0.709 −0.742 1.268 1.392 1.968 −1.869
0.800 0.105 1.736 0.750 0.187 −1.676
−1.252 −0.187 −0.811

Z =
0.905 1.269 1.072 - - - - - - - - - - - −0.187 −0.811
1.269 1.072 0.233 - - - - - - - - - - - −0.811 1.954
1.072 0.233 −1.176 - - - - - - - - - - - - 1.954 0.571
0.233 −1.176 0.236 - - - - - - - - - - - - 0.571 1.052

Algorithms 2021, 14, 118 5 of 30

−1.176 0.236 1.624 - - - - - - - - - - - - 1.052 −1.878
- - - -
−0.187 −0.811 1.954 - - - - - - - - - - - - 1.581 1.586
−0.811 1.954 0.571 - - - - - - - - - - - - 1.586 −1.654

According to Formulas (2)–(4), in the matrix 0Z of this listing there are the autovectors
0Z1, 0Z1, · · · , 0Zn−1, which are presented line by line.

An analysis of the current results obtained shows that these autovectors are not taken
into account by the random function during the realization of the white noise generation.
However, the white noise process has to keep the properties of statistical independence
of the autovectors in each of its Si signal. This is one of the fundamentals of the theory
of transformations of linear vectors, but unfortunately some well-known algorithmic
generators do not take this important feature into account. This case provides a discussible
issue: should the realization process be named as white noise generation? Moreover, how
to take into account the statistical independence checking of autovectors for a generator
during the realization of white noise process?

Thus, the purpose of this article is to propose instrumental algorithmic tools for
generating statistically independent white noise signals. This method allows a phase
signal generator to be created with an improved matrix of autocorrelation coefficients,
while maintaining the property of absolutely equivalent intensities at the eigen Fourier
frequencies.

2. White Noise Autocorrelation Matrix

The white noise autocorrelation matrix plays a fundamental role in analyzing the sta-
tistical independence of white noise signals [1–4,42–44]. Let us demonstrate this utilization
the example of the matrix of autovectors 0Z from the previous section.

Using the matrix 0Z, it is possible to calculate the paired scalar multiplications of
autovectors 0Z0, 0Z1, · · · 0Zn−1. To simplify the notation of these autovectors, let us omit the
upper left index 0, i.e., instead of 0Zi the indication Zi is considered further. For autovectors
Zi and Zk the scalar multiplication (Zi, Zk) is determined by the sum of multiplications of
countings as follows:

(Zi, Zk) =
n−1

∑
m=0

zim·zkm (5)

In Formula (5), the sum of multiplications of the corresponding countings is calcu-
lated, provided that these autovectors are in an orthogonal coordinate system. Formally,
the geometric length or norm ‖Zi‖ of the autovector Zi in an n-dimensional orthogonal
coordinate system is calculated by the following scalar multiplication:

‖Zi‖ =

√√√√n−1

∑
m=0

xim·xim =

√√√√n−1

∑
m=0

x2
im (6)

Formula (6) formally coincides with the Pythagorean Theorem in a multidimensional
linear geometric space. From analytical geometry it is known (or it could be counted
directly) that cosine of the angle between two linear vectors is determined by the scalar
multiplication (5) between them and their norms (6). So, using Expressions (5) and (6), the
following Formula (7) for the angle between the autovectors Zi and Zk can be obtained:

cos ϕik =
(Zi, Zk)

‖Zi‖·‖Zk‖
(7)

In applied signal analysis the statistical estimates are very important and could be
easily obtained by means of computer technologies. In this sense, it is of significant interest
to evaluate the linear connections of autovectors, which for cos ϕik = 0 are usually called

Algorithms 2021, 14, 118 6 of 30

statistically independent. In this case such autovectors have a correlation coefficient equal
to zero. For autovectors Zi and Zk the correlation coefficient is calculated as follows:

rik ==
∑n−1

m=0(zim − E1(Zi))·(zkm − E1(Zk))√
∑n−1

m=0(zim − E1(Zi))
2
√

∑n−1
k=0 (zkm − E1(Zk))

2
(8)

In Expression (8) the correlation coefficient rik deals with centered autovectors relative
to the first statistical moments E1(Zi) and E1(Zk), which are the following:

E1(Zi) =
1
n

n−1

∑
m=0

Zim, E1(Zk) =
1
n

n−1

∑
m=0

Zkm (9)

Further, using the Expressions (9) let us determine the autovector Vi, which is statisti-
cally centered for the autovector Zi after corresponding adjustment of each its counting
zim:

vim = zim − E1(Zi), m ∈
[
0 : n− 1

]
(10)

Finally, the angle ϕik between the autovectors Vi and Vk is defined by using
Expressions (5)–(10) in the following form:

cos ϕik = rki =
(Vi, Vk)

‖Vi‖·‖Vk‖
(11)

From Expressions (8) and (11) it follows that the autovectors Zi, Zk and the autovectors
Vi, Vk have equal angles to each other. Thus, the initial signal S0 is statistically independent,
since all pairs of its autovectors are orthogonal.

The centered autovectors Vi could be located in the matrix of autovectors V having
the size n× n. Below is a program P070102, in which the matrix V contains the autovectors
Vi obtained from the autovectors Zi of the matrix Z after using the transformation (10).

namespace P070201
{ class cP070201

{ static void Main(string[] args)
{ const int NS = 33; // signal counter quantity

Console.WriteLine("NS = {0}", NS);
Random rdm = new Random(0); // integer random generator
double max = (double)0x7FFFFFFF;
double[] s0 = new double[NS]; // initial signal s0
for (int i = 0; i < NS; i++)

s0[i] = 4.0 * ((double)rdm.Next() / max - 0.5); // matrix z for vectors
double[,] z = new double[NS, NS];
MatrixZ(z, s0, rdm, NS, max); // matrix v for vectors
double[,] v = new double[NS, NS];
MatrixV(v, z, NS);
Console.WriteLine("V = ");
for (int i = 0; i < NS; i++)
{ Console.Write("{0,8:F3}", v[i, 0]);

Console.Write("{0,8:F3}", v[i, 1]);
Console.Write("{0,8:F3}", v[i, 2]);
Console.Write(" - - - -");
Console.Write("{0,8:F3}", v[i, NS - 2]);
Console.WriteLine("{0,8:F3}", v[i, NS - 1]);

}
Console.ReadKey(); // result viewing

}

Algorithms 2021, 14, 118 7 of 30

//- -
static void MatrixV(double[,] v, double[,] z, int NS)
{ double dNS = (double)NS;

for (int i = 0; i < NS; i++)
{ double zE1 = 0.0;

for (int j = 0; j < NS; j++)
zE1 += z[i, j];

zE1 /= dNS;
for (int j = 0; j < NS; j++)

v[i, j] = z[i, j] - zE1;
}

}
//- -

Function MatrixZ from previous program P070101
//~~ ~~~~~~~ ~~~~~~~~~~

}
}

After launching the program P070201, the following result appears. The omitted
values are substituted by a dash.

NS = 33
V =

0.595 0.959 0.762 - - - - −0.497 −1.122
0.927 0.730 −0.110 - - - - −1.153 1.612
0.751 −0.088 −1.497 - - - - - 1.633 0.250
−0.088 −1.496 −0.085 - - - - - 0.250 0.731
−1.432 −0.021 1.368 - - - - - 0.795 −2.135

- - - - -
−0.414 −1.039 1.727 - - - - - 1.3544 1.358
−0.995 1.771 0.388 - - - - - 1.403 −1.837

Next, by using the matrix of autovectors V it is possible to obtain the autocorrelation
matrix A. For this, the multiplication of the matrix V and its transposed variant VT is used
as follows:

A = V·VT (12)

The calculation of the autocorrelation matrix A in Expression (12) is the main key tool
for further determining the statistical independence of the signals Si ∈ P in the stochastic
process of white noise P.

Using the following formula, it is possible to verify directly that each element aij ∈ A
is a scalar multiplication of centered autovectors Vi:

aij =
(
Vi, Vj

)
=

n−1

∑
m=0

vimvjm (13)

If the autovectors Zi are orthogonal, then the elements of the autocorrelation matrix A
in Expression (13) are zeros, and on the main diagonal there is a minimal dispersion σ2:

A = σ2 I (14)

In this Expression (14) the matrix I is the identity matrix, which means that this n× n
square matrix contains the meanings of ones on the main diagonal and zeros elsewhere.
Formula (14) is a fundamental tool of verifying whether a stochastic process P can be
considered as white noise.

Algorithms 2021, 14, 118 8 of 30

If the signals are not orthogonal, then in the matrix R the elements rij ∈ R show the
cosines of the angles between the autovectors Zi and Zj for the corresponding elements aij
(according to Formulas (8)–(11)). The program P070202 below calculates the autocorrelation
matrix A and autocorrelation coefficients R in matrix V.

namespace P070202
{ class cP070202

{ static void Main(string[] args)
{ const int NS = 33; // signal counter quantity

Console.WriteLine("NS = {0}", NS);
Random rdm = new Random(0); // integer random generator
double max = (double)0x7FFFFFFF;
double[] s0 = new double[NS]; // initial signal s0
for (int i = 0; i < NS; i++)
s0[i] = 4.0 * ((double)rdm.Next() / max - 0.5); // matrix z for vectors
double[,] z = new double[NS, NS];
MatrixZ(z, s0, rdm, NS, max); // matrix v for vectors
double[,] v = new double[NS, NS];
MatrixV(v, z, NS); // autocorrelation matrix A
double[,] a = new double[NS, NS];
MatrixA(a, v, NS);
Console.WriteLine("A = ");
for (int i = 0; i < NS; i++)
{ Console.Write("{0,8:F3}", a[i, 0]);

Console.Write("{0,8:F3}", a[i, 1]);
Console.Write("{0,8:F3}", a[i, 2]);
Console.Write(" - - - -");
Console.Write("{0,8:F3}", a[i, NS - 2]);
Console.WriteLine("{0,8:F3}", a[i, NS - 1]);

} // autocorrelation coefficient matrix R
double[,] r = new double[NS, NS];
MatrixR(r, a, v, NS);
Console.WriteLine("R = ");
for (int i = 0; i < NS; i++)
{ Console.Write("{0,8:F3}", r[i, 0]);

Console.Write("{0,8:F3}", r[i, 1]);
Console.Write("{0,8:F3}", r[i, 2]);
Console.Write(" - - - -");
Console.Write("{0,8:F3}", r[i, NS - 2]);
Console.WriteLine("{0,8:F3}", r[i, NS - 1]);

}
Console.ReadKey(); // result viewing

}
//- -

static void MatrixR(double[,] r, double[,] a,
double[,] v, int NS)

{ for (int i = 0; i < NS; i++)
for (int j = i; j < NS; j++)
{ double iE2 = 0.0;

double jE2 = 0.0;
for (int m = 0; m < NS; m++)
{ iE2 += v[i, m] * v[i, m];

jE2 += v[j, m] * v[j, m];
}

Algorithms 2021, 14, 118 9 of 30

r[i, j] = a[i, j] / Math.Sqrt(iE2 * jE2);
r[j, i] = r[i, j];

}
}

//- -
static void MatrixA(double[,] a, double[,] d, int NS)
{ for (int i = 0; i < NS; i++)

for (int j = i; j < NS; j++)
{ a[i, j] = 0.0;

for (int m = 0; m < NS; m++)
a[i, j] += d[i, m] * d[j, m];

a[j, i] = a[i, j];
}

}
//- -
Function MatrixV from previous program P070201

//- -
Function MatrixZ from previous program P070101

//~~~
}

}

After executing the program P070202, the autocorrelation matrix A and the matrix of
autocorrelation coefficients R appear on the monitor. The omitted values are changed by a
dash.

NS = 33
A =

44.628 −4.879 −1.959 - - - - 5.740 −2.823
−4.879 46.943 −5.032 - - - - −6.393 2.941
−1.959 −5.032 46.121 - - - - −3.466 −6.470
−12.693 −1.203 −5.562 - - - - −9.785 −4.531

2.965 −16.188 −1.669 - - - - 5.198 −5.778
- - - - -

5.740 −6.393 −3.466 - - - - 39.945 0.869
−2.823 2.941 −6.470 - - - - 0.869 43.248

R =
1.000 −0.107 −0.043 - - - - 0.136 −0.064
−0.107 1.000 −0.108 - - - - −0.148 0.065
−0.043 −0.108 1.000 - - - - −0.081 −0.145
−0.280 −0.026 −0.121 - - - - 0.228 −0.101

0.062 −0.332 −0.034 - - - - 0.115 −0.123
- - - - -

0.136 −0.148 −0.081 - - - - 1.000 0.021
−0.064 0.065 −0.145 - - - - 0.021 1.000

In the analysis of signals a set of consecutive n countings makes it possible to form or
detect discrete spectra of multiple internal Fourier frequencies. By the nature of the fre-
quency distribution there are white noise signals with a uniform distribution of intensities,
a normal Gaussian distribution, and many others. This article focuses on white noise with
a uniform intensity distribution at Fourier frequencies, i.e., all frequencies are of the same
intensity.

In a random process, the signals of uniform white noise are characterized by the
following properties:

Algorithms 2021, 14, 118 10 of 30

(1) Uniform distribution of intensities at all internal frequencies of the signal;
(2) Zero value of mathematical expectation (the first moment) of the values of countings

in the signal;
(3) Autocorrelation matrix has a diagonal form with equal meanings of dispersion (the

second moment) along the main diagonal and zero values for all other elements.

From this designation it follows that white noise signals should be orthogonal in an
environment of independent countings with equal amplitudes at all internal frequencies.
Therefore, property (1) forces us to consider the set of exactly n countings in the signals S
with the further use of Fourier frequency analysis.

The simulation results in the above presented programs P070101, P070201 and P070202
show that the Random generator creates the countings of signals with low quality for
white noise process. Their autocorrelation matrix A and the corresponding matrix of
autocorrelation coefficients R are far from the desirable zero values. In line with all of this,
in this article we offer a new congruential generator which has better quality of generating
the uniform white noise.

3. Theory

Consider a model, in which the values of countings of white noise random process
are present at a finite observation interval T. This process starts at point t0. In the inter-
val [t0, t1] = [t0, t0 + T] there are NS countings of the initial signal S0; in the interval
[t1, t2] = [t1, t1 + T] there are NS countings of the signal S1, and so on.

The designation NS for the number of countings in the signal exactly corresponds to n
in the previous sections above, i.e., NS = n. Suppose that in all signals the countings are
located with a constant step:

τ =
TS

NS − 1
(15)

In each signal S0, S1, · · · , Sn−1 a certain spectrum of frequencies is fixed. If among
these frequencies there is one with a period TS, then it is denoted as the initial frequency ω1.
Typically, in trigonometric studies the interval [−π, +π] is used. An isomorphic transition
of an observation point t ∈ [0, TS] to an isomorphic point x ∈ [−π,+π] is performed as
follows:

x = −π + 2π
t

TS
(16)

On the interval [−π,+π] the frequency ω1 is equal to one, i.e., ω1 = 1. Frequencies
ωk = k·ω1, integral multiples of the initial frequency ω1, refer to the discrete Fourier
spectrum, in which NF is the quantity of frequencies. These frequencies make it possible to
organize an orthonormal system of sine-cosine coordinates in Euclidean space E0[−π,+π]:

1√
2π

,
cos ω1x√

π
,

sin ω1x√
π

,
cos 2ω1x√

π
,

sin 2ω1x√
π

, · · · ,
cos NFω1x√

π
,

sin NFω1x√
π

(17)

In the trigonometric space with the coordinate system (17) the countings are observed
at the points xi ∈ [−π,+π], i ∈

[
0 : Ns − 1

]
. By the property of this space (17), the values

of countings f (xi) could be determined by the following Fourier polynom:

f (xi) = a0 +
NF

∑
k=1

(ak cos kω1xi + bk sin kω1xi) (18)

It is assumed that if the information signal is closely approximated to the white noise
signal, then it should have the same amplitudes at all frequencies ωk = kω1. However, in
Expression (18), each frequency is accompanied by two amplitudes ak and bk with possibly
separate distributions. This approach leads to a significant complication of the algorithm
for their calculations. To get around this obstacle, let us replace the calculation of each pair

Algorithms 2021, 14, 118 11 of 30

of intensities ak, bk with the generation of uniform intensity Ak at multiple frequencies kω1
with a phase shift. Let us analyze how this could be done in more detail.

It is known from trigonometric transformations that the spectral sine of the sum of
two angles γk and ψk can be calculated using the following expression:

Ak sin(γk + ψk) = Ak sin γk· cos ψk + Ak cos γk· sin ψk (19)

Considering Expressions (18) and (19) together, the following estimates are obtained:

γk = kω1xi,

ak = Ak sin ψk,

bk = Ak cos ψk

(20)

Using the Formulas (20), the relationship between the values Ak and the Fourier
coefficients ak, bk can be established as follows:

a2
k + b2

k = A2
k(sin ψk)

2 + A2
k(cos ψk)

2 = A2
k

Ak =
√

a2
k + b2

k

(21)

The value of the angle ψk is calculated using the Formulas (20) as well:

ψk = arcsin
ak
Ak

or ψk = arccos
bk
Ak

(22)

Thus, Expression (18) is equivalent to the following sine ratio:

f (xi) = a0 +
Nω

∑
k=1

Ak sin(kω1xi + ψk) (23)

A similar theoretical result can be obtained by using the cosine of the sum of two
angles:

Ak cos(γk + ϕk) = Ak cos γk cos ϕk − Ak sin γk sin ϕk (24)

Considering Expressions (18) and (24) together, the following estimates are derived:

γk = kω1xi,

ak = Ak cos ϕk,

bk = −Ak sin ϕk

(25)

Using the Formulas (25), the relationship between the values Ak and the Fourier
coefficients ak, bk can be established as follows:

a2
k + b2

k = A2
k(cos ϕk)

2 + A2
k(sin ϕk)

2 = A2
k

Ak =
√

a2
k + b2

k

(26)

The value of the angle ψk is calculated using the Formulas (25) as well:

ϕk = arccos
ak
Ak

or ϕk = −arcsin
bk
Ak

(27)

Thus, Expression (18) is equivalent to the following cosine ratio:

f (xi) = a0 +
Nω

∑
k=1

Ak cos(kω1xi + ϕk) (28)

Algorithms 2021, 14, 118 12 of 30

The value a0 is not a randomly organized constant. For a white noise generator it
could be set as 0 or any other number. Since the values of the amplitudes Ak have to
be constant in white noise, they can be chosen based on natural tests, or set equal to the
universal meaning such as value one, for example:

A1 = A2 = · · · = ANω = constA = 1 (29)

Frequency components kω1xi are also not random variables in Fourier space. There-
fore, only stochastic phases ψk of sine (23) or ϕk cosine (28) signals can provide stochastic
capabilities of a white noise signal at Fourier frequencies. This article discusses stochastic
phases ψk and ϕk which are uniformly distributed in the interval [−π/2,+π/2], since the
functions arcsine and arccosine are used in Formulas (22) and (27).

Now it is necessary to assign the corresponding generator of uniformly distributed
values for the stochastic phases ψk and ϕk. In our previous articles [45–50], we thoroughly
explored the capabilities of new congruential and twister generators, which ensure absolute
completeness and uniformity of integer random variable distribution. Based on the main
principles outlined in [45–50], further here we have established a new generator, which
is specially designed to implement the white noise process with the above mentioned
properties. In accordance with this, below is the basic generator cDeonYuliCongBase62 and
on its basis the derived congruential generator cDeonYuliCongSequence62. Together they
provide the absolute completeness of sequences of uniform integer random variables of
arbitrary size.

To design these generators, it is necessary, first of all, to choose the size or number of
bits in an integer random variable. Below is presented the base class cDeonYuliCongBase62,
in which the number of bits w of random integer variables is specified. Their amount can
be arbitrary in the range 2 ≤ w ≤ 62. The quantity of random variables N in one sequence
is N = 2w. Class cDeonYuliCongBase62 is made in the C# programming language in Mi-
crosoft Visual Studio. This class is located in a separate namespace file nsDeonYuliCongBase62.

namespace nsDeonYuliCongBase62
{ class cDeonYuliCongBase62

{ public int w; // bit length of random variable
public bool wFlag; // flag of w setting
public long N; // quantity of variables in the sequence
public bool NFlag; // flag of N setting

//- -
public cDeonYuliCongBase62()
{ wFlag = false; // w disable

NFlag = false; // N disable
}

//- -
public void SetW (int rw)
{ w = rw; // the bit length of random variable

if (w < 2) w = 3;
if (w > 63) w = 63; // maximal bit length
wFlag = true; // the bit length is set
NFlag = false; // to verify the bit length
VerifyWN(); // to verify w and N parameters

}
//- -

public void VerifyWN()
{ if (!wFlag && !NFlag)

{ w = 4; // the bit length by default
wFlag = true; // the bit length is set
N = 1L << w; // the sequence length

Algorithms 2021, 14, 118 13 of 30

NFlag = true; // the sequence is set
return;

}
if (wFlag && !NFlag)
{ N = 1L << w; // the sequence length

NFlag = true; // the sequence is set
return;

}
if (!wFlag && NFlag)
{ long r = 1L;

w = 0;
while (r < N) { r <<= 1; w++; }
wFlag = true; // the bit length is set
N = 1L << w; // the sequence length
NFlag = true; // the bit length is set
return;

}
}

//~~~
}

}

This base class is the basis for creating the uniform sequences in the derived class
cDeonYuliCongSequence62 having congruential parameters a and c. In a congruential se-
quence of N random elements the adjacent random variables xi and xi+1 are calculated
using the following formula:

xi+1 = (axi + c) mod N (30)

The parameter a in (30) has the following property:

(a− 1) mod 4 = 0 (31)

The parameter c is the odd number in (30):

c mod 2 6= 0 (32)

For congruential generation in accordance with Formula (30), compliance with proper-
ties (31) and (32) is mandatory. Below is a derived class cDeonYuliCongSequence62, in which
these properties are checked and subsequent congruential random variables are generated.
This class is located in a separate namespace file nsDeonYuliCongSequence62.

using nsDeonYuliCongBase62; //congruential base class
namespace nsDeonYuliCongSequence62
{ class cDeonYuliCongSequence62 : cDeonYuliCongBase62

{ public long a; // multiplicative constant
public bool aFlag; // setting flag of parameter a
public long c; // additive constant
public bool cFlag; // setting flag of parameter c
public long x0Beg; // initial setting of a
public long x0; // sequence beginning
public bool x0Flag; // setting flag of x0
bool x0TimeFlag; // true – setting x0 by timer
public bool xeFlag; // sequence end flag
public long x; // current random variable

Algorithms 2021, 14, 118 14 of 30

public long xCounter; // random variable counter
public long sCounter; // counter of sequences

//- -
public cDeonYuliCongSequence62()
{ aFlag = false; // parameter a is not set

cFlag = false; // parameter c is not set
xeFlag = false; // there is no sequence end
x0Flag = false; // there is no sequence beginning
x0TimeFlag = false; // setting x0 by not timer

}
//- -

public void SeqStart()
{ if (!wFlag || !NFlag) SetW(4); // by default

if (!aFlag) a = N / 2L; // parameter a by default
SeqVerifyA(); // congruential verification for a
aFlag = true; // parameter a is set
if (!cFlag) c = 3L; // default parameter a
SeqVerifyC(); // congruential verification for c
cFlag = true; // parameter c is set
x0 = x0Beg; // initial congruential value
x = x0; // congruential sequence beginning
xCounter = 0L; // random counter value
sCounter = 1L; // sequence counter

}
//- -

public void SeqTimeStart()
{ x0TimeFlag = true; // start by timer

x0 = (long)DateTime.Now.Millisecond; // msec
x0 = x0 % N; // initial random variable
x0Flag = true; // x0 is set
SeqStart(); // random variable generation

}
//- -

public long SeqNext()
{ if (0L < xCounter && xCounter < N) // x counter

{ x = SeqCong(x); // random variable generation
xCounter++; // x counter
return x; // random variable x

}
if (xCounter == 0L)
{ x = x0; // sequence beginning

xCounter = 1L; // x counter
return x; // random variable x
}
if (x0Flag == false) x0 = (x0 + 1L) % N;
else x0 = SeqCong(x0); // congruential variable x0
x = x0; // random variable
xCounter = 1L; // x counter
if (sCounter < N) sCounter++;
else { x0 = x0Beg; x = x0; sCounter = 1L; }
return x; // random variable

}
//- -

void SeqTimeInit()

Algorithms 2021, 14, 118 15 of 30

{ long xt = (long)DateTime.Now.Millisecond;
x = xt % N;

}
//- -

public long SeqCong(long xz)
{ return (a * xz + c) % N; // congruential variable
}

//- -
public void SetAC(long ra, long rc)
{ a = ra; // multiplicative constant a

SeqVerifyA(); // to verify a
c = rc; // additive constant c
SeqVerifyC(); // to verify c

}
//- -

public void SetA(long ra)
{ a = ra; // multiplicative parameter a

SeqVerifyA(); // to verify a
aFlag = true; // parameter a is set

}
//- -

public void SetC(long rc)
{ c = rc; // additive parameter c

SeqVerifyC(); // to verify c
cFlag = true; // additive parameter c is set

}
//- -

public void SetX0(long rx0, bool flag)
{ x0 = rx0;

SeqVerifyX0(); // to verify initial value
x0Beg = x0; // initial x0 setting
x0Flag = flag; // true – x0 beginning of sequence

}
//- -

public void SeqVerifyA()
{ if (a < 1L) a = 1L;

if (a >= N) a = N - 1;
for (int i = 0; i < 3; i++)

if ((a - 1) % 4L == 0) break;
else a–;

aFlag = true; // parameter a is set
}

//- -
public void SeqVerifyC()
{ if (c < 0L) c = 1L;

if (c >= N) c = N - 1L;
if (c % 2L == 0L) c–;
cFlag = true;
return;

}
//- -

public void SeqVerifyX0()
{ if (x0 < 0L) x0 = 0L;

if (x0 >= N) x0 = N - 1L;

Algorithms 2021, 14, 118 16 of 30

x0Flag = true; // sequence beginning is set
}

//~~~
}

}

These two instrumental classes are sufficient to ensure the computation of uniformly
distributed phases in stochastic spectra.

4. Construction and Results

When converting a discrete signal into the sum of Fourier frequencies, the following
fundamental relationship is realized between the minimum amount of countings NS and
the maximum one NF of Fourier frequencies on a circle of unit radius 2π long:

NS ≥ 2·NF + 1 (33)

As an example, let us set arbitrarily the quantity of frequencies in white noise equal
to NF = 16. Then, by condition (33), each signal can contain the following amount of
countings NS = 2·NF + 1 = 2·16 + 1 = 33.

According to Expressions (23) or (28), each spectral frequency ωk = kω1 has its
own phase ψk, ϕk ∈ [−π/2k,+π/2k], respectively. To generate random phases, let us
take stochastic sequences consisting of N = NF = 2w integer congruential variables
xcong ∈

[
0, NF − 1

]
=
[
0 : 2w − 1

]
. In binary form, each integer random variable xcong has

the following number w of bits:
w = log2 NF (34)

It should be emphasized that the congruential generator only works with an integer
number of bits. From Expression (34) it follows that a quantity of Fourier frequencies
should correspond to the following power function:

NF = 2w (35)

The phase interval [−π/2,+π/2] of length π/k is divided into NF subintervals of
length dϕ each:

dϕ =
π

kNF
(36)

Using Expressions (35) and (36), the random phases ψk or ϕk are determined by the
congruential technology [45–50] using corresponding integer random variable xcong k:

ψk = ϕk = xcong k·dϕ −
π

2k
(37)

Stochastic phases (37) set the random nature of values for the countings in the white
noise generator.

The stochastic values of countings together with phases for the white noise are com-
puted in the derived class cDeonYuliCongPhase62A below, using base classes cDeonYuli-
CongSequence62 and cDeonYuliCongBase62 from the previous section. Joint testing of these
classes will be carried out here later using sine based technology (23) in the P070401 pro-
gram.

using nsDeonYuliCongSequence62; // congruential generator
namespace nsDeonYuliCongPhase62A // congruential phase generator
{ class cDeonYuliCongPhase62A : cDeonYuliCongSequence62

{ public long NS; // counter quantity in signal
public long NF; // Fourier frequency quantity
public double constA =1.0; // uniform frequency amplitude

Algorithms 2021, 14, 118 17 of 30

public double w1f; // initial Fourier frequency
public long[] cong; // congruential sequence
public double[] psi; // phase frequencies
public long iNS; // counter number
public double dxs; // counter point step
public double xsWN; // counter value

//- -
public cDeonYuliCongPhase62A (long _NF, long _NS)

{ NS = _NS; // counter quantity in signal
if (NS < 17L) NS = 17L; // default counter quantity
iNS = -1L; // counter number
NF = _NF; // frequency quantity in counter
if (NF < 4) NF = 4L; // default frequency quantity
w1f = 1.0; // default initial Fourier frequency
dxs = 2.0 * Math.PI / NS; // counter point step
int wf = 0; // initial bit length of random variable
for (long nf = 1L; nf < NF; nf *= 2L) wf += 1;
w = wf; // bit length of random variables
SetW(w); // set w

}
//- -

public void SetACX(long _a, long _c, long _x0)
{ SetAC(_a, _c); // congruential parameters

SetX0(_x0, true); // beginning of congruential sequence
}

//- -
public void SetAmplitude(double _A)

{ constA = _A; // amplitude of all frequencies
}

//- -
public void PhaseStart()

{ SeqStart(); // congruential generator start
cong = new long[N+1]; // congruential sequence
psi = new double[N+1]; // frequency phases
PhaseCong(); // congruential sequence of phases

}
//- -

void PhaseCong()
{ for (int k = 1; k <= N; k++)

{ cong[k] = SeqNext(); // random variable
double pi2k = Math.PI / (double)k / 2.0;
double dpsik = pi2k / (double)N; // phase shift
psi[k] = dpsik * (double)cong[k] - pi2k / 2.0;

}
}

//- -
public double PhaseSinNext(double x)

{ iNS++; // counter point number
if (iNS == NS) { iNS = 0; PhaseCong(); }
PhaseSinWN(x); // calculation in point x
return xsWN; // white noise in point x

}
//- -

void PhaseSinWN(double x)

Algorithms 2021, 14, 118 18 of 30

{ double f = 0.0; // frequency value sum
for (long k = 1; k <= NF; k++)
{ double wk = (double)k*w1f; // spectrum frequency

f += constA * Math.Sin(wk * x + psi[k]);
}
xsWN = f; // counter value in point x

}
//- -

public double PhaseCosNext(double x)
{ iNS++; // counter point number

if (iNS == NS) { iNS = 0; PhaseCong(); }
PhaseCosWN(x); // calculation in point x
return xsWN; // white noise in point x

}
//- – - - - - - -

void PhaseCosWN(double x)
{ double f = 0.0; // counter value

for (long k = 1; k <= NF; k++)
{ double wk = (double)k*w1f;

// spectrum frequency
f += constA * Math.Cos(wk * x + psi[k]);

}
xsWN = f; // counter value in point x

}
//~~~

}
}

Below, in the program P070401 the values of countings are calculated by Formula (37)
using the congruential phase generator nsDeonYuliCongPhase62A. Autovectors Z0, · · · , Z32
are determined on the basis of the initial signal S0 with the addition of the next counting
of the random process by analogy with Formulas (2) and (3). These autovectors are
located in the matrix Z. For example, each autovector Z0, · · · , Z32 is in the corresponding
row m ∈

[
0 : 32

]
of the matrix Z. The original signal S0 is generated using congruential

constants a = 5 and c = 3. The intensities Ak of all internal frequencies are arbitrarily set
equal to Ak = 0.7.

using nsDeonYuliCongPhase62A; // congruential phase generator
namespace P070401
{ class cP070401

{ static void Main(string[] args)
{ const long NS = 33L; // signal counter quantity

const long NF = 16L; // frequency quantity in a counter
Console.WriteLine("NS = {0} NF = {1}", NS, NF);
cDeonYuliCongPhase62A PH =

new cDeonYuliCongPhase62A(NF, NS);
Console.WriteLine("tau = {0:F6}", PH.dxs);
double constA = 0.7; // amplitude of all frequencies
PH.SetAmplitude(constA);
Console.WriteLine("constA = {0:F2}", PH.constA);
PH.SetACX(5L, 3L, 2L); // congruential parameters
Console.WriteLine("a = {0} c = {1} Cong(x0) = {2}",

PH.a, PH.c, PH.x0);
PH.PhaseStart(); // phase generator start
Console.WriteLine("cong =");

Algorithms 2021, 14, 118 19 of 30

for (int i = 1; i <= NF; i++)
{ Console.Write("{0,4}", PH.cong[i]);

if (i % 12 == 0) Console.WriteLine();
}
Console.WriteLine();
Console.WriteLine("psi =");
for (int i = 1; i <= NF; i++)
{ Console.Write("{0,8:F3}", PH.psi[i]);

if (i % 6 == 0) Console.WriteLine();
}
Console.WriteLine();
double[] s0 = new double[NS]; // initial signal s0
double t = 0.0; // counter time
for (int i = 0; i < NS; i++)
{ s0[i] = PH.PhaseSinNext(t); // counter value

t += PH.dxs;
}
Console.Write("S0 =");
for (int i = 0; i < NS; i++)
{ if (i % 6 == 0) Console.WriteLine();

Console.Write("{0,8:F3}", s0[i]);
}
Console.WriteLine(); // matrix z for vectors
t = 0.0; // next period beginning
double[,] z = new double[NS, NS];
MatrixZ(z, s0, PH, NS, t);
Console.WriteLine("Z = ");
for (int i = 0; i < NS; i++)
{ Console.Write("{0,8:F3}", z[i, 0]);

Console.Write("{0,8:F3}", z[i, 1]);
Console.Write("{0,8:F3}", z[i, 2]);
Console.Write(" - - - -");
Console.Write("{0,8:F3}", z[i, NS - 2]);
Console.WriteLine("{0,8:F3}", z[i, NS - 1]);

}
Console.ReadKey(); // result viewing

}
//- -

static void MatrixZ(double[,] z, double[] s0,
cDeonYuliCongPhase62A PH, long ns, double t)

{ for (int j = 0; j < ns; j++) z[0, j] = s0[j];
for (int k = 1; k < ns; k++) // autovector shift
{ for (int j = 0; j < ns - 1; j++)

z[k, j] = z[k - 1, j + 1];
z[k, ns - 1] = PH.PhaseSinNext(t);
t += PH.dxs;

}
}

//~~~
}

}

After starting the program P070401, a complete uniform congruential sequence cong
of integers appears on the monitor (presented in the listing below). Next in listing is a

Algorithms 2021, 14, 118 20 of 30

stochastic sequence of congruential phases psi, which is derived from uniform integers
cong. This sequence is used to compute the countings of signal S0 using a technique
of sine harmonics (23). Further, on the basis of the initial signal S0 the matrix Z of au-
tovectors is created. Each autovector is located on the corresponding row of the matrix
Z. To shorten this listing, missing numbers and matrix rows have been replaced with a dash.

NS = 33 NF = 16
tau = 0.190400
constA = 0.70
a = 5 c = 3 Cong(x0) = 2
cong =

2 13 4 7 6 1 8 11 10 5 12 15
14 9 0 3

psi =
−0.589 0.245 −0.131 −0.025 −0.039 −0.115
0.000 0.037 0.022 −0.029 0.036 0.057
0.045 0.007 −0.052 −0.031

S0 =
−0.371 6.938 −0.398 2.317 −0.415 1.159
−0.540 0.626 −0.283 0.545 −0.396 0.479
−0.117 0.736 0.200 0.980 0.238 0.919
0.215 0.836 −0.125 0.483 −0.566 0.146
−0.779 0.226 −1.147 −0.087 −1.497 −0.077
−2.373 −0.201 −7.674

Z =
−0.371 6.938 −0.398 - - - - −0.201 −7.674

6.938 −0.398 2.317 - - - - −7.674 0.087
−0.398 2.317 −0.415 - - - - 0.087 7.450

2.317 −0.415 1.159 - - - - 7.450 0.015
- - - - -
−0.077 −2.373 −0.201 - - - - 0.436 −1.075
−2.373 −0.201 −7.674 - - - - −1.075 0.432
−0.201 −7.674 0.087 - - - - 1.000 0.021
−7.674 0.087 7.450 - - - - −1.923 0.169

The result of this listing allows the movement from the matrix of autovectors Z to
centering them with the same line-by-line arrangement in the matrix V. This is fulfilled
by analogy with Formulas (9) and (10) regarding the mathematical expectation for each
autovector separately. Below is program P070402, which presents how to implement this.

using nsDeonYuliCongPhase62A; // congruential phase generator
namespace P070402
{ class cP070402

{ static void Main(string[] args)
{ const long NS = 33L; // signal counter quantity

const long NF = 16L; // frequency quantity in a counter
Console.WriteLine("NS = {0} NF = {1}", NS, NF);
cDeonYuliCongPhase62A PH =

new cDeonYuliCongPhase62A(NF, NS);
double constA = 0.7; // amplitude of all frequencies
PH.SetAmplitude(constA);
PH.SetACX(5L, 3L, 2L); // congruential parameters
PH.PhaseStart(); // phase generator start
double[] s0 = new double[NS]; // initial signal s0

Algorithms 2021, 14, 118 21 of 30

double t = 0.0; // the beginning of signal counters
for (int i = 0; i < NS; i++)
{ s0[i] = PH.PhaseSinNext(t); // counter value

t += PH.dxs; // next counter time
}
Console.Write("S0 =");
for (int i = 0; i < NS; i++)
{ if (i % 6 == 0) Console.WriteLine();

Console.Write("{0,8:F3}", s0[i]);
}
Console.WriteLine(); // autovector matrix z
t = 0.0; // next period beginning
double[,] z = new double[NS, NS];
MatrixZ(z, s0, PH, NS, t); // autovector matrix v
double[,] v = new double[NS, NS];
MatrixV(v, z, NS);
Console.WriteLine("V = ");
for (int i = 0; i < NS; i++)
{ Console.Write("{0,8:F3}", v[i, 0]);

Console.Write("{0,8:F3}", v[i, 1]);
Console.Write("{0,8:F3}", v[i, 2]);
Console.Write(" - - - -");
Console.Write("{0,8:F3}", v[i, NS - 2]);
Console.WriteLine("{0,8:F3}", v[i, NS - 1]);

}
Console.ReadKey(); // result viewing

}
//- -

static void MatrixV(double[,] v, double[,] z, long ns)
{ double dns = (double)ns;

for (int i = 0; i < ns; i++)
{ double zE1 = 0.0;

for (int j = 0; j < ns; j++)
zE1 += z[i, j];

zE1 /= dns;
for (int j = 0; j < ns; j++)

v[i, j] = z[i, j] - zE1;
}

}
//- -

Function MatrixZ from previous program P070401
//~~~

}
}

After executing the program P070402, the matrix V of centered autovectors appears
on the monitor. To shorten the listing the skipping values have been substituted with a dash.

NS = 33 NF = 16
S0 =
−0.371 6.938 −0.398 2.317 −0.415 1.159
−0.540 0.626 −0.283 0.545 −0.396 0.479
−0.117 0.736 0.200 0.980 0.238 0.919

0.215 0.836 −0.125 0.483 −0.566 0.146

Algorithms 2021, 14, 118 22 of 30

−0.779 0.226 −1.147 −0.087 −1.497 −0.077
−2.373 −0.201 −7.674

V =
−0.371 6.938 −0.398 - - - - −0.201 −7.674

6.924 −0.411 2.303 - - - - −7.688 0.073
−0.427 2.288 −0.445 - - - - 0.057 7.421

2.275 −0.457 1.117 - - - - 7.408 −0.027
−0.427 1.102 −0.597 - - - - −0.043 2.767
- - - - -
−0.022 −2.318 −0.146 - - - - 0.491 −1.020
−2.333 −0.161 −7.635 - - - - −1.035 0.472
−0.175 −7.648 0.113 - - - - 0.458 −1.897
−7.660 0.102 7.465 - - - - −1.908 0.184

The matrix V of centered autovectors allows the calculation of the autocorrelation
matrix A and the matrix R of the corresponding autocorrelation coefficients by analogy
with Formulas (11) and (12) from the program P070202. In the following program P070403,
the corresponding calculations are performed.

using nsDeonYuliCongPhase62A; // congruential phase generator
namespace P070403
{ class cP070403

{ static void Main(string[] args)
{ const long NS = 33L; // signal counter quantity

const long NF = 16L; // frequency quantity in a counter
Console.WriteLine("NS = {0} NF = {1}", NS, NF);
cDeonYuliCongPhase62A PH =

new cDeonYuliCongPhase62A(NF, NS);
double constA = 0.7; // amplitude of all frequencies
PH.SetAmplitude(constA);
PH.SetACX(5L, 3L, 2L); // congruential parameters
PH.PhaseStart(); // phase generator start
double[] s0 = new double[NS]; // initial signal s0
double t = 0.0; // the beginning of signal counters
for (int i = 0; i < NS; i++)
{ s0[i] = PH.PhaseSinNext(t); // counter value

t += PH.dxs; // next counter time
}
t = 0.0; // next signal beginning
double[,] z = new double[NS, NS]; // autovector matrix z
MatrixZ(z, s0, PH, NS, t);
double[,] v = new double[NS, NS]; // autovector matrix v
MatrixV(v, z, NS); // autocorrelation matrix A
double[,] a = new double[NS, NS];
MatrixA(a, v, NS);
Console.WriteLine("A = ");
for (int i = 0; i < NS; i++)
{ Console.Write("{0,8:F3}", a[i, 0]);

Console.Write("{0,8:F3}", a[i, 1]);
Console.Write("{0,8:F3}", a[i, 2]);
Console.Write(" - - - -");
Console.Write("{0,8:F3}", a[i, NS - 2]);
Console.WriteLine("{0,8:F3}", a[i, NS - 1]);

} // autocorrelation coefficient matrix R

Algorithms 2021, 14, 118 23 of 30

double[,] r = new double[NS, NS];
MatrixR(r, a, v, NS);
Console.WriteLine("R = ");
for (int i = 0; i < NS; i++)
{ Console.Write("{0,8:F3}", r[i, 0]);

Console.Write("{0,8:F3}", r[i, 1]);
Console.Write("{0,8:F3}", r[i, 2]);
Console.Write(" - - - -");
Console.Write("{0,8:F3}", r[i, NS - 2]);
Console.WriteLine("{0,8:F3}", r[i, NS - 1]);

}
Console.ReadKey(); // result viewing

}
//- -

static void MatrixA(double[,] a, double[,] d, long ns)
double[,] d, long ns)

{ for (int i = 0; i < ns; i++)
for (int j = i; j < ns; j++)
{ double iE2 = 0.0;

double jE2 = 0.0;
for (int m = 0; m < ns; m++)
{ iE2 += d[i, m] * d[i, m];

jE2 += d[j, m] * d[j, m];
}
r[i, j] = a[i, j] / Math.Sqrt(iE2 * jE2);
r[j, i] = r[i, j];

}
}

//- -
static void MatrixA(double[,] a, double[,] d, long ns)

{ for (int i = 0; i < ns; i++)
for (int j = i; j < ns; j++)
{ a[i, j] = 0.0;

for (int m = 0; m < ns; m++)
a[i, j] += d[i, m] * d[j, m];
a[j, i] = a[i, j];

}
}

//- -
Function MatrixV from previous program P070402

//- -
Function MatrixZ from previous program P070401

//~~~
}

}

After launching the program P070403 the autocorrelation matrix A and the matrix
R of the autocorrelation coefficients appear. The omitted values of the listing below are
substituted by a dash.

NS = 33 NF = 16
A =

129.360 −7.555 −8.062 - - - - −10.614 −8.202
−7.555 129.224 −4.349 - - - - −11.034 −10.667
−8.062 −4.349 136.564 - - - - −6.537 −8.376

Algorithms 2021, 14, 118 24 of 30

−8.394 −8.227 −1.509 - - - - −5.415 −6.619
−9.268 −7.316 −3.298 - - - - −2.212 −4.479
- - - - -
−7.584 −4.653 1.473 - - - - −2.729 −5.097
−8.709 −8.208 −2.251 - - - - −3.444 −3.180
−9.999 −8.682 −4.441 - - - - −0.558 −3.358
−10.614 −11.034 −6.537 - - - - 136.653 −1.339
−8.202 −10.667 −8.376 - - - - −1.339 136.656

R =
1.000 −0.058 −0.061 - - - - −0.080 −0.062
−0.058 1.000 −0.033 - - - - −0.083 −0.080
−0.061 −0.033 1.000 - - - - −0.048 −0.061
−0.063 −0.062 −0.011 - - - - −0.040 −0.048
−0.069 −0.055 −0.024 - - - - −0.016 −0.033

- - - - -
−0.056 −0.035 0.011 - - - - −0.020 −0.037
−0.065 −0.061 −0.016 - - - - −0.025 −0.023
−0.075 −0.065 −0.032 - - - - −0.004 −0.024
−0.080 −0.083 −0.048 - - - - 1.000 −0.010
−0.062 −0.080 −0.061 - - - - −0.010 1.000

The analysis of the results received above shows that even such a limited listing
provides evidence that the resulting matrix R is closer to the statistical independence of
white noise R = I than the same matrix obtained earlier in the program P070101 using the
standard function Random.Next(). At the same time, the main advantage of this outcome
is that the developed congruential phase generator in the program P070403 creates anew
the Fourier frequency spectrum with equal intensities at the stochastic phases. The data
presented in the last listing demonstrate that the uniform white noise was indeed achieved
with an almost independent autocorrelation matrix for the autovectors of the original
signal.

5. Discussion

After obtaining the correlation matrices, the first thing which should be analyzed is
whether both experiments in the programs P070101 and P070403 ensure the realization of
the first fundamental property of uniform white noise (considered here earlier in subsection
White Noise Autocorrelation Matrix) by the equality of all intensities of the internal Fourier
spectrum. Let us discuss this issue further in more detail.

When considering the frequency properties of discrete information signals, usually
the Fourier polynom (11) is used, with the number of countings NS and the quantity of
internal frequencies NF in the original signal S0. The amplitudes of the cosine ak and sine
bk components are calculated from the meanings of countings f (xi) using the following
Euler–Fourier formulas below:

a0 =
1

NS

NS−1

∑
i=0

f (xi), (38)

ak =
2

NS

NS−1

∑
i=0

f (xi) cos kω1xi, (39)

bk =
2

NS

NS−1

∑
i=0

f (xi) sin kω1xi (40)

The process of white noise generation could be considered successful if the obtained
countings f (xi) of the signal admit transformations (38)–(40) into the Euler–Fourier coeffi-
cients ak and bk. It should be checked now whether the intensities Ak are the same at all

Algorithms 2021, 14, 118 25 of 30

frequencies ωk = kω1. This is required by the first property in the designation of white
noise, i.e., the demand of uniform distribution of intensities at all internal frequencies
of the signal. This check should be carried out both for the white noise of the function
Random.Next() in the program P070101 and for the congruential white noise in the program
P070401.

Below is the program P070501, which uses the random process generated earlier in
the program P070101 for the white noise signal S0 using the function Random.Next(). The
derivable spectral amplitudes Ak are calculated with help from sine technique using the
function Fourier(), which is composed according to the Euler–Fourier Formulas (38)–(40)
for the coefficients ak and bk.

namespace P070501
{ class cP070501

{ static void Main(string[] args)
{ const int NS = 33; // signal counter quantity

const int NF = 16; // frequency quantity in a counter
Console.WriteLine("NS = {0} NF = {1}", NS, NF);
double[] s0 = new double[NS]
{

0.905, 1.269, 1.072, 0.233, −1.176, 0.236,
1.624, −0.231, 1.910, −0.905, −0.832, −0.131,
0.531, −0.122, 1.929, −1.879, 1.449, −1.981,
0.709, −0.742, 1.268, 1.392, 1.968, −1.869,
0.800, 0.105, 1.736, 0.750, 0.187, −1.676,
−1.252, −0.187, −0.811,
};
Console.WriteLine("S0 = ");
for (int i = 1; i <= NS; i++)
{ Console.Write("{0,8:F3}", s0[i-1]);

if (i % 6 == 0) Console.WriteLine();
}
Console.WriteLine();
double[] AF = new double[NF + 1];
double[] phiF = new double[NF + 1];
Fourier(NS, NF, s0, AF, phiF);
Console.WriteLine("AFourier =");
for (int i = 1; i <= NF + 1; i++)
{ Console.Write("{0,8:F3}", AF[i - 1]);

if (i % 6 == 0) Console.WriteLine();
}
Console.WriteLine();
Console.ReadKey(); // result viewing

}
//- -

static void Fourier(int NS, int NF, double[] s,
double[] AF, double[] phiF)

{ double a, b;
for (long k = 1; k <= NF; k++)
{ a = 0.0; // cosine coefficients

b = 0.0; // sine coefficients
double w1 = 1.0;
double dx = 2.0 * Math.PI / NS;
for (long i = 0; i < NS; i++)
{ double x = i * dx;

Algorithms 2021, 14, 118 26 of 30

a += s[i] * Math.Cos(k * w1 * x);
b += s[i] * Math.Sin(k * w1 * x);

}
a = a * 2.0 / NS;
b = b * 2.0 / NS;
AF[k] = Math.Sqrt(a * a + b * b);
phiF[k] = Math.Asin(a / AF[k]);

}
}

//~~~
}

}

After executing the program P070501 the following outcome shows up.

NS = 33 NF = 16
S0 =

0.905 1.269 1.072 0.233 −1.176 0.236
1.624 −0.231 1.910 −0.905 −0.832 −0.131
0.531 −0.122 1.929 −1.879 1.449 −1.981
0.709 −0.742 1.268 1.392 1.968 −1.869
0.800 0.105 1.736 0.750 0.187 −1.676
−1.252 −0.187 −0.811

AFourier =
0.000 0.283 0.406 0.221 0.339 0.638
0.309 0.593 0.406 0.338 0.309 0.213
0.580 0.310 0.265 0.338 0.081 0.717

The listing of the results of this program begins with specifying the number of count-
ings NS = 33 and Fourier frequencies NF = 16. The values of countings are taken for the
original signal S0 from the result of the program P070101 in the subsection Introduction.
Then there are lines AFourier with the amplitudes of the internal phase sine frequencies.
Their analysis suggests that the function Random.Next() does not satisfy the first prop-
erty about equality of the amplitudes of the internal frequency spectrum of white noise.
Thus, taking into account the limited level of the corresponding matrix of autocorrelation
coefficients R (presented in the subsection Introduction), and also the lack of equality of
amplitudes in the internal spectrum of the signal frequencies, it becomes apparent that
the standard function Random.Next() generates sequences which are relatively far from
satisfactory quality of the white noise process.

Next, it is time to check the amplitudes of the internal frequency spectrum of the
congruential white noise generator, which has been proposed in the current article. Below
is the program P070502, which also uses the same number of NS countings. They were
created earlier in the program P070401 (in subsection Construction and Results) by using
congruential technology [45–50] in the generator cDeonYuliCongPhase62A.

namespace P070502
{ class cP070502

{ static void Main(string[] args)
{ const long NS = 33L; // signal counter quantity

double dNS = (double)NS;
const long NF = 16L; // frequency quantity in a counter
Console.WriteLine("NS = {0} NF = {1}", NS, NF);
double[] s0 = new double[]
{

Algorithms 2021, 14, 118 27 of 30

−0.371, 6.938, −0.398, 2.317, −0.415, 1.159,
−0.540, 0.626, −0.283, 0.545, −0.396, 0.479,
−0.117, 0.736, 0.200, 0.980, 0.238, 0.919,

0.215, 0.836, −0.125, 0.483, −0.566, 0.146,
−0.779, 0.226, −1.147, −0.087, −1.497, −0.077,
−2.373, −0.201, −7.674

};
Console.WriteLine("S0 =");
for (int i = 1; i <= NS; i++)
{ Console.Write("{0,8:F3}", s0[i - 1]);

if (i % 6 == 0) Console.WriteLine();
}
Console.WriteLine();
double[] AF = new double[NF + 1];
double[] phiF = new double[NF + 1];
int NNS = (int)NS;
int NNF = (int)NF;
Fourier(NNS, NNF, s0, AF, phiF);
Console.WriteLine("AFourier =");
for (int i = 1; i <= NF; i++)
{ Console.Write("{0,8:F3}", AF[i]);

if (i % 6 == 0) Console.WriteLine();
}
Console.WriteLine();
Console.WriteLine("psiFourier =");
for (int i = 1; i <= NF; i++)
{ Console.Write("{0,8:F3}", phiF[i]);

if (i % 6 == 0) Console.WriteLine();
}
Console.WriteLine();
Console.ReadKey(); // result viewing

}
//- -

Function Fourier from previous program P070501
//~~~

}
}

After launching the program P070502 the following outcome shows up as well.
NS = 33 NF = 16
S0 =
−0.371 6.938 −0.398 2.317 −0.415 1.159
−0.540 0.626 −0.283 0.545 −0.396 0.479
−0.117 0.736 0.200 0.980 0.238 0.919

0.215 0.836 −0.125 0.483 −0.566 0.146
−0.779 0.226 −1.147 −0.087 −1.497 −0.077
−2.373 −0.201 −7.674

AFourier =
0.700 0.700 0.700 0.700 0.700 0.700
0.700 0.700 0.700 0.700 0.700 0.700
0.700 0.700 0.700 0.700 0.700 0.700

psiFourier =
−0.589 0.245 −0.131 −0.025 −0.039 −0.115

0.000 0.037 0.022 −0.029 0.036 0.057

Algorithms 2021, 14, 118 28 of 30

0.045 0.007 −0.052 −0.031

The listing of the results demonstrates that the signal contains Ns = 33 countings
and NF = 16 Fourier frequencies. The values of countings are in the array s0, which are
taken from the signal S0 obtained earlier (subsection Construction and Results) using the
congruential phase generator cDeonYuliCongPhase62A in the program P070401. Further, the
listing includes the lines AFourier with the derived intensities Ak of the internal phase sine
frequencies. These intensities were calculated using the Euler–Fourier Formulas (38)–(40)

with the subsequent application of the elementary transformation Ak =
√

a2
k + b2

k . All
meanings received with the values 0.7 finely match to the first property of the uniform white
noise process. In the last part of this listing, the phases psiFourier show coincidence with
the congruential phases in program P070403. It should also be noted that the application of
the Euler–Fourier transform (38)–(40) completely recovers the generation of white noise
process received in the class cDeonYuliCongPhase62A.

Careful analysis of all results above satisfies that the generator cDeonYuliCongPhase62A
does indeed provide the equal amplitudes of all internal phase frequencies, and that it
ideally satisfies to the first property of the uniform white noise process. Thus, taking into
account the better approximation of the matrix R of autocorrelation coefficients obtained in
the program P070403 to the same matrix of theoretical white noise, and also taking into
consideration an ideal coincidence of the intensities of the internal phase frequencies, it
should be recognized that the here proposed congruential phase generator does indeed
ensure a sufficiently high quality of generation of the white noise signals, which closely
approximate true natural white noise.

6. Conclusions

Analysis of the source material shows that the algorithms of the commonly used
generators of white noise signals have a low stochasticity of countings in the given ob-
servation intervals. Based on this, in this article the instrumental algorithmic tools for
generating statistically independent white noise signals have been proposed. The designed
techniques allowed for the creation of a new phase signal generator with an improved
matrix of autocorrelation coefficients. The mathematical expressions used confirm that
at Fourier frequencies a single dimensional phase random variable could be obtained.
As a result, the derivative cDeonYuliCongPhase62A phase generator made it possible to
create information signals with a better approximation to the uniform white noise process.
The simulation outcomes verify that the information signals received have the properties
of white noise signals with equal amplitudes at all internal frequencies with uniformly
distributed random phases. These results can be used in a huge number of applications
where white noise processes are used.

Author Contributions: All the authors equally contributed to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors have no support or funding to report.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are thankful to Robert Weingold and Julia Alex Watts (University
of Arkansas for Medical Sciences, Little Rock, AR, USA) for the proofreading.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hida, T. Stochastic Analysis: Classical and Quantum: Perspectives of White Noise Theory; World Scientific Publishing Company:

Singapore, 2005; p. 300, ISBN 10:9812565264.

Algorithms 2021, 14, 118 29 of 30

2. Hida, T.; Si, S. Lectures on White Noise Functionals; World Scientific Publishing Company: Singapore, 2008; p. 266, ISBN
10:9812560521.

3. Bernido, C.C.; Carpio, M.V. Methods and Applications of White Noise Analysis in Interdisciplinary Sciences; World Scientific Publishing
Company: Singapore, 2014; p. 204. ISBN 10:9814569119.

4. Hida, T.; Streit, L. Let Us Use White Noise; World Scientific Publishing Company: Singapore, 2017; p. 232. ISBN 10:9813220937.
5. Howard, R.M. White noise: A time domain basis. In Proceedings of the 2015 International Conference on Noise and Fluctuations

(ICNF), Xi’an, China, 2–6 June 2015; pp. 1–4. [CrossRef]
6. Hakeem, A.O. The q-Gamma white noise. Tatra Mt. Math. Publ. 2016, 66, 81–90. [CrossRef]
7. Suryawan, H.P. Gaussian white noise analysis and its application to Feynman path integral. AIP Conf. Proc. 1707 2016, 030001.

[CrossRef]
8. Balan, M.R.; Ndongo, C.B. Malliavin differentiability of solutions of SPDEs with Lévy white noise. Int. J. Stoch. Anal. 2017, 2017,

1–9. [CrossRef]
9. Croci, M.; Giles, M.B.; Rognes, M.E.; Farrell, P.E. Efficient white noise sampling and coupling for multilevel Monte Carlo with

nonnested meshes. SIAM ASA J. Uncertain. Quantif. 2018, 6, 1630–1655. [CrossRef]
10. Zhu, D.; Beeby, S.P. A broadband electromagnetic energy harvester with a coupled bistable structure. J. Phys. 2013, 476, 012070.

[CrossRef]
11. Kang, Y.; Belusic, D.; Smith-Miles, K. Detecting and classifying events in noisy time series. J. Atmos. Sci. 2014, 71, 1090–1104.

[CrossRef]
12. Mitsuya, H.; Ashizawa, H.; Homma, H.; Hashiguchi, G.; Toshiyoshi, H. A method to determine the electret charge potential of

MEMS vibrational energy harvester using pure white noise. In Proceedings of the 2019 IEEE 32nd International Conference on
Microelectronic Test Structures (ICMTS), Fukuoka, Japan, 18–21 March 2019; pp. 171–174. [CrossRef]

13. Préaux, Y.; Boudraa, A. Statistical behavior of Teager-Kaiser energy operator in presence of white gaussian noise. IEEE Signal
Process. Lett. 2020, 27, 635–639. [CrossRef]

14. Pralgauskaitė, S.; Palenskis, V.; Matukas, J.; Seliuta, D.; Kašalynas, I.; Valušis, G. White noise peculiarities in diode structures.
In Proceedings of the 22nd International Conference on Noise and Fluctuations (ICNF), Montpellier, France, 24–28 June 2013;
pp. 1–4. [CrossRef]

15. Paik, H.; Sastry, N.N.; SantiPrabha, I. Effectiveness of noise jamming with white gaussian noise and phase noise in amplitude
comparison monopulse radar receivers. In Proceedings of the 2014 IEEE International Conference on Electronics, Computing and
Communication Technologies (CONECCT), Bangalore, India, 6–7 January 2014; pp. 1–5. [CrossRef]

16. Arslan, S.; Yildirim, B.S. A broadband microwave noise generator using zener diodes and a new technique for generating white
noise. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 329–331. [CrossRef]

17. Takada, A. White noise spectra obtained in a phase-locked loop operating like a Josephson junction. In Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [CrossRef]

18. Shi, X.; Cai, L.; Wang, G.; Liang, L. A new aircraft taxiing model based on filtering white noise method. IEEE Access 2020, 8,
10070–10087. [CrossRef]

19. Shen, Z.; Wu, Y. Mean square stabilization of multi-input discrete-time systems over stochastic multiplicative and additive white
gaussian noise channels. IEEE Access 2020, 8, 111791–111801. [CrossRef]

20. Yildirim, A.; Kiranyaz, S. 1D convolutional neural networks versus automatic classifiers for known LPI radar signals under white
gaussian noise. IEEE Access 2020, 8, 180534–180543. [CrossRef]

21. Oh, H.; Nam, H. Maximum rate scheduling with adaptive modulation in mixed impulsive noise and additive white gaussian
noise environments. IEEE Trans. Wirel. Commun. 2021, 1–13. [CrossRef]

22. Mukherjee, A.; Mandal, S.; Ghosh, D.; Biswas, B.N. Influence of additive white gaussian noise on the OEO output. IEEE J.
Quantum Electron. 2021, 57, 1–10. [CrossRef]

23. Ohmori, K.; Amakawa, S. Direct white noise characterization of short-channel MOSFETs. IEEE Trans. Electron. Devices 2021, 1–5.
[CrossRef]

24. Stansfeld, S.A.; Berglund, B.; Clark, C.; Lopez-Barrio, I.; Fischer, P.; Ohrström, E.; Haines, M.M.; Head, J.; Hygge, S.; van Kamp,
I.; et al. Aircraft and road traffic noise and children’s cognition and health: A cross-national study. Lancet 2005, 365, 1942–1949.
[CrossRef]

25. Prochnik, G. Pursuit of Silence: Listening for Meaning in a World of Noise, Reprint ed.; Anchor Books: New York, NY, USA, 2011;
p. 352. ISBN 10:0767931211.

26. Jespers, P.G.A. Integrated Converters: D to A and A to D Architectures, Analysis and Simulation, Illustrated ed.; Oxford University
Press: Oxford, UK, 2001; p. 280. ISBN 10:0198564465.

27. Olano, M. Modified noise for evaluation on graphics hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware HWWS’05, Los Angeles, CA, USA, 30–31 July 2005; pp. 105–110. [CrossRef]

28. Sun, X. Optimal weighted state fusion white noise deconvolution estimator. In Proceedings of the 2013 International Conference
on Advanced Mechatronic Systems, Luoyang, China, 25–27 September 2013; pp. 46–50. [CrossRef]

29. Liu, W.; Deng, Z. Robust weighted fusion white noise deconvolution estimators with uncertain-variance linearly correlated white
noises and missing measurements. In Proceedings of the 20th International Conference on Information Fusion, Xi’an, China,
10–13 July 2017; pp. 1–8. [CrossRef]

http://doi.org/10.1109/ICNF.2015.7288581
http://doi.org/10.1515/tmmp-2016-0022
http://doi.org/10.1063/1.4940829
http://doi.org/10.1155/2017/9693153
http://doi.org/10.1137/18M1175239
http://doi.org/10.1088/1742-6596/476/1/012070
http://doi.org/10.1175/JAS-D-13-0182.1
http://doi.org/10.1109/ICMTS.2019.8730995
http://doi.org/10.1109/LSP.2020.2988172
http://doi.org/10.1109/ICNF.2013.6578988
http://doi.org/10.1109/CONECCT.2014.6740286
http://doi.org/10.1109/LMWC.2018.2808422
http://doi.org/10.1109/ISCAS.2019.8702615
http://doi.org/10.1109/ACCESS.2020.2964754
http://doi.org/10.1109/ACCESS.2020.3002571
http://doi.org/10.1109/ACCESS.2020.3027472
http://doi.org/10.1109/TWC.2021.3049124
http://doi.org/10.1109/JQE.2020.3038464
http://doi.org/10.1109/TED.2021.3059720
http://doi.org/10.1016/S0140-6736(05)66660-3
http://doi.org/10.1145/1071866.1071883
http://doi.org/10.1109/ICAMechS.2013.6681748
http://doi.org/10.23919/ICIF.2017.8009660

Algorithms 2021, 14, 118 30 of 30

30. Menyaev, Y.A.; Zharov, V.P. Experience in development of therapeutic photomatrix equipment. Biomed. Eng. 2006, 40, 57–63.
[CrossRef]

31. Menyaev, Y.A.; Zharov, V.P. Experience in the use of therapeutic photomatrix equipment. Biomed. Eng. 2006, 40, 144–147.
[CrossRef]

32. Menyaev, Y.A.; Nedosekin, D.A.; Sarimollaoglu, M.; Juratli, M.A.; Galanzha, E.I.; Tuchin, V.V.; Zharov, V.P. Optical clearing in
photoacoustic flow cytometry. Biomed. Opt. Express 2013, 4, 3030–3041. [CrossRef]

33. Menyaev, Y.A.; Carey, K.A.; Nedosekin, D.A.; Sarimollaoglu, M.; Galanzha, E.I.; Stumhofer, J.S.; Zharov, V.P. Preclinical
photoacoustic models: Application for ultrasensitive single cell malaria diagnosis in large vein and artery. Biomed. Opt. Express
2016, 7, 3643–3658. [CrossRef]

34. Wang, X.; Li, Y.; Wang, X. The stochastic stability of internal HIV models with gaussian white noise and gaussian colored noise.
Discret. Dyn. Nat. Soc. 2019, 2019, 1–8. [CrossRef]

35. Karaduta, O.; Deon, A.; Menyaev, Y. Designing the uniform stochastic photomatrix therapeutic systems. Algorithms 2020, 13, 41.
[CrossRef]

36. Karaduta, O.; Zaman, L. Shk-9: A new tool in approach of glycoprotein annotation. SoftwareX 2018, 7, 302–303. [CrossRef]
37. Söderlund, G.B.; Sikström, S.; Loftesnes, J.M.; Sonuga-Barke, E.J. The effects of background white noise on memory performance

in inattentive school children. Behav. Brain Funct. 2010, 6, 55. [CrossRef]
38. Szalma, J.L.; Hancock, P.A. Noise effects on human performance: A meta-analytic synthesis. Psychol. Bull. 2011, 137, 682–707.

[CrossRef] [PubMed]
39. Deng, Z.L.; Zhang, H.S.; Liu, S.J.; Zhou, L. Optimal and selftuning white noise estimators with approach to deconvolution and

filtering problem. Automatica 1996, 32, 199–216. [CrossRef]
40. Ditlevsen, P.D.; Andersen, K.K.; Svensson, A. The DO-climate events are probably noise induced: Statistical investigation of the

claimed 1470 years cycle. Clim. Past 2007, 3, 129–134. [CrossRef]
41. Wikipedia. White Noise. Available online: https://en.wikipedia.org/wiki/White_noise (accessed on 17 March 2021).
42. Maurer, U.M. A universal statistical test for random bit generators. J. Cryptol. 1992, 5, 89–105. [CrossRef]
43. Kolmogorov, A.N.; Fomin, S.V. Elements of the Theory of Functions and Functional Analysis; Dover Publication: Mineola, NY, USA,

1999; p. 128. ISBN 10:0486406830.
44. Gnedenko, B. Theory of Probability, 6th ed.; CRC Press: Boca Raton, FL, USA, 2020; p. 520. ISBN 10:0367579316.
45. Deon, A.; Menyaev, Y. The complete set simulation of stochastic sequences without repeated and skipped elements. J. Univ.

Comput. Sci. 2016, 22, 1023–1047. [CrossRef]
46. Deon, A.; Menyaev, Y. Parametrical tuning of twisting generators. J. Comput. Sci. 2016, 12, 363–378. [CrossRef]
47. Deon, A.; Menyaev, Y. Twister generator of arbitrary uniform sequences. J. Univ. Comput. Sci. 2017, 23, 353–384. [CrossRef]
48. Deon, A.; Menyaev, Y. Uniform twister plane generator. J. Comput. Sci. 2018, 14, 260–272. [CrossRef]
49. Deon, A.; Menyaev, Y. Poisson twister generator by cumulative frequency technology. Algorithms 2019, 12, 114. [CrossRef]
50. Deon, A.; Menyaev, Y. Twister generator of random normal numbers by Box-Muller model. J. Comput. Sci. 2020, 16, 1–13.

[CrossRef]

http://doi.org/10.1007/s10527-006-0042-6
http://doi.org/10.1007/s10527-006-0064-0
http://doi.org/10.1364/BOE.4.003030
http://doi.org/10.1364/BOE.7.003643
http://doi.org/10.1155/2019/6951389
http://doi.org/10.3390/a13020041
http://doi.org/10.1016/j.softx.2018.08.004
http://doi.org/10.1186/1744-9081-6-55
http://doi.org/10.1037/a0023987
http://www.ncbi.nlm.nih.gov/pubmed/21707130
http://doi.org/10.1016/0005-1098(96)85549-X
http://doi.org/10.5194/cp-3-129-2007
https://en.wikipedia.org/wiki/White_noise
http://doi.org/10.1007/BF00193563
http://doi.org/10.3217/jucs-022-08-1023
http://doi.org/10.3844/jcssp.2016.363.378
http://doi.org/10.3217/jucs-023-04-0353
http://doi.org/10.3844/jcssp.2018.260.272
http://doi.org/10.3390/a12060114
http://doi.org/10.3844/jcssp.2020.1.13

	Introduction
	White Noise Autocorrelation Matrix
	Theory
	Construction and Results
	Discussion
	Conclusions
	References

