
algorithms

Article

Adding Matrix Control: Insertion-Deletion Systems with
Substitutions III

Martin Vu 1,* and Henning Fernau 2,*

����������
�������

Citation: Vu, M.; Fernau, H. Adding

Matrix Control: Insertion-Deletion

Systems with Substitutions III.

Algorithms 2021, 14, 131.

https://doi.org/10.3390/a14050131

Academic Editors: Frank Werner,

Riccardo Dondi and Florian Sikora

Received: 31 March 2021

Accepted: 19 April 2021

Published: 22 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Fachbereich 3, Universität Bremen, 28359 Bremen, Germany
2 Fachbereich 4, Universität Trier, 54296 Trier, Germany
* Correspondence: martin.vu@uni-bremen.de (M.V.); fernau@uni-trier.de (H.F.)

Abstract: Insertion-deletion systems have been introduced as a formalism to model operations
that find their counterparts in ideas of bio-computing, more specifically, when using DNA or RNA
strings and biological mechanisms that work on these strings. So-called matrix control has been
introduced to insertion-deletion systems in order to enable writing short program fragments. We
discuss substitutions as a further type of operation, added to matrix insertion-deletion systems.
For such systems, we additionally discuss the effect of appearance checking. This way, we obtain
new characterizations of the family of context-sensitive and the family of recursively enumerable
languages. Not much context is needed for systems with appearance checking to reach computational
completeness. This also suggests that bio-computers may run rather traditionally written programs,
as our simulations also show how Turing machines, like any other computational device, can be
simulated by certain matrix insertion-deletion-substitution systems.

Keywords: computational completeness; matrix control; insertions; deletions; substitutions

1. Introduction

Insertion-deletion systems, or ins-del systems for short, are well-established as com-
putational devices and as a research topic within Formal Languages throughout the past
nearly 30 years, starting off with the PhD thesis of Lila Kari [1]. Corresponding to the
mismatched annealing of DNA sequences, both the insertion and deletion operations
have a strong biological background, which led to their study in the molecular computing
framework (cf. [2]). Insertion rules add a substring to a string, given a specified left and
right context, while deletion rules remove a substring from a string, again taking a specified
left and right context into consideration. The replacement of single letters (possibly within
some context) by other letters by an operation, called substitution, is discussed in [3,4],
again from a bio-computing background.Interestingly, all of the theoretical studies on
grammatical mechanisms involving insertions and deletions (except [5]) omitted, including
the substitution operation in their studies. In [6–8], we started out a project to formally
and systematically study insertion-deletion systems with substitutions as an additional
operation, leading to ins-del-sub systems (for short).

It can be argued that the potentially most error-prone part of a bio-computing imple-
mentation of ins-del-sub systems are context checks concerning the site where the operation
(be it an insertion, a deletion or a substitution operation) may be applied. Therefore, it is in-
teresting to study how much context dependency is necessary for achieving computational
completeness, given the ability to add a substring of length n and to delete a substring of
length p.

Conversely, assuming that one can prove that ins-del-sub systems with limited context
checks exist that can simulate arbitrary Turing machines (or phrase structure grammars, or
any arbitrary computational mechanism that can be used to define terms like computability),
then this means that there is some hope that some day one could build computers that
are no longer silicon-based, but that compute with RNA, DNA, or protein structures.

Algorithms 2021, 14, 131. https://doi.org/10.3390/a14050131 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-4444-3220
https://doi.org/10.3390/a14050131
https://doi.org/10.3390/a14050131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14050131
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14050131?type=check_update&version=2

Algorithms 2021, 14, 131 2 of 22

It should be noted that all of our computational completeness proofs are constructive,
which means that algorithms exist that will finally turn any program written in some
high-level programming language of your choice into an ins-del-sub system that executes
this program based on insertion, deletion, or substitution operations.

As the following definitions will show, the ’derivation relation’, although formally
defined as a sequential series of insertion, deletion, or substitution operations, can be easily
seen to allow an inherent parallelism, as all operations that are ‘far enough’ from each
other can be executed in parallel. Because the potentially high degree of parallelism in
bio-computing is argued as one of the main attractive features of this form of compu-
tation, this gives another reason as to why one should strive for operations that are as
context-independent as possible, as context dependencies could be seen as semaphore-like
synchronization points. Namely, on the level of bio-computing, checking certain strings
means building up some structures (mostly proteins) that read and check ‘matching struc-
tures’ by forming chemical links between molecules. This means that ‘checking from one
side’ prevents and, hence, rules out ’checking from the other side’ in parallel.

Ins-del systems can be extended with some form of control to further reduce their
context dependency. Matrix insertion-deletion systems, or matrix ins-del systems for short,
were introduced in [9,10]. These systems group insertion and deletion rules in sequences,
called matrices; either the whole sequence of operations is applied consecutively, or no
rule is applied at all, thus resembling traditional matrix grammars, originally introduced
with a linguistic motivation [11]. From the perspective of bio-computing, the matrices
correspond to small program fragments without jumps that are easier to implement than
longer and more involved ones. Allowing such program fragments should also make
a better fit for finally implementing compilers that produce executable ’bio-code’ from
traditional high-level programming languages, as the sequential execution of commands is
one of the cornerstones of basically any of the programming languages of today. There is
certainly a certain trade-off between the potentially high degree of parallelism and these
new sequential program fragments. This is one of the motivations to limit (on top of
context lengths) the length of these program fragments (i.e., technical speaking the length
of the matrices).

Additionally, we discuss appearance checking in the context of matrix ins-del-sub sys-
tems. In the case of matrix grammars, it is known that allowing certain rules of a matrix
to be skipped if not applicable increases the computational power [12]. In this paper, we
investigate the effect of appearance checking on matrix ins-del-sub systems. We show that
the context dependency of ins-del systems can be greatly reduced if matrices, appearance
checking, and substitution rules are allowed. For instance, it is shown that a matrix ins-del-
sub system that only allows context-free single letter insertions and two-letter deletions in
addition to context-free substitution is sufficient for generating any recursively enumerable
language. In addition, we show that a ‘normal form’ for matrix ins-del-sub systems exists,
in which only matrices of size at most 2 occur. On the downside, it can be argued that
appearance checks is a particularly expensive feature when it comes to implementing it
in bio-computing devices, as many sites of potential rule applications have to be checked
before being able to execute the next command in the matrix. However, one clearly sees
a trade-off in our results between the necessity to have larger contexts and the necessity
to have appearance checks. Because it is not clear which of these mechanisms is really
harder to implement when it comes to build real bio-computers, it appears to be reasonable
to study the general possibilities of these mechanisms, hence paving the way to future
generations of new computing devices.

2. Definitions

We assume the reader to be familiar with the standard notations in formal language
theory. By λ we denote the empty string. Let w be an arbitrary string. We denote by wR

the reversal or mirror image of w. By LR and LR, we denote the reversal of a language L and
a language family L, respectively. We denote, by RE, CS, CF, and REG, the families of

Algorithms 2021, 14, 131 3 of 22

recursively enumerable, context-sensitive, context-free, and regular languages, respectively.
We are interested in computational completeness results, i.e., in describing RE with matrix
ins-del-sub systems with little resources as formally explained next.

2.1. Matrix Grammars

A matrix grammar is a tuple G = (N, T, MG, S) where N, T and S are the finite set of
nonterminals, the finite set of terminals and the start symbol, respectively. MG is a finite
set of sequences of the form m = [r1, r2, . . . , rn], n ≥ 1, with rewriting rules ri = αi → βi
with αi ∈ (N ∪ T)∗N(N ∪ T)∗ and βi ∈ (N ∪ T)∗. Such a sequence m is called a matrix [12].
The relation⇒ induced by G is defined, as follows. For words w1, w2 ∈ (N ∪ T)∗, w1 ⇒ w2
holds if a matrix m = [r1, r2, . . . , rn] and w′0, . . . , w′n ∈ (N ∪ T)∗ with w′0 = w1 and w′n = w2
exist, such that w′j ⇒rj+1 w′j+1 holds for all 0 ≤ j < n. The language that is generated by
G is L(G) = {w ∈ T∗ | S ⇒∗ w}. We denote, by L(M, CF), the language family that is
generated by matrix grammars with context-free rewriting rules [12]. A matrix grammar with
appearance checking is a tuple Gac = (N, T, MG, S, F), where N, T, MG, and S are defined as
in usual matrix grammars. F is a set of rewriting rules occurring in matrices of MG. All of
the rules in F may be skipped in a transition of Gac, if not applicable. Thus, the absence of
symbols can be checked.

2.2. Insertion-Deletion Systems

An insertion-deletion system (ins-del system for short) is a five-tuple ID = (V, T, A, I, D),
consisting of two alphabets V and T with T ⊆ V, a finite language A over V, a set of
insertion rules I and a set of deletion rules D. Both sets of rules are formally defined as sets
of triples of the form (u, a, v) with u, v ∈ V∗ and a ∈ V+. We call elements occurring in T
terminal symbols, while referring to elements of V \ T as nonterminals. Elements of A are
called axioms.

Let w1uvw2 and w1uavw2, with w1, u, v, w2 ∈ V∗, a ∈ V+, be strings. The application
of an insertion rule (u, a, v) ∈ I (also written (u, a, v)ins) to w1uvw2 corresponds to inserting
the string a ∈ V∗ between u and v, which results in the string w1uavw2. The application
of a deletion rule (u, a, v) ∈ D (also written (u, a, v)del) to w1uavw2 results in the removal
of a substring a from the context (u, v), which results in the string w1uvw2. The relation
=⇒ is defined, as follows: Let x, y ∈ V∗. Afterwards, we write x =⇒ y iff y is the result of
applying an insertion or deletion rule to x. We write =⇒ins/=⇒del if y is obtained via an
insertion/ a deletion rule. We denote, by =⇒+ and =⇒∗, the transitive and the reflexive
and transitive closure, respectively. The language that is generated by ID is defined by
L(ID) = {w ∈ T∗ | ∃α ∈ A : α =⇒∗ w}. Consider (u, a, v)ins or (u, a, v)del. We refer to
u as the left context and v as the right context of (u, a, v)ins/(u, a, v)del. A sentential form
of ID is a string over V. The size of ID describes its complexity and it is defined by a
vector (n, m, m′; p, q, q′), where n = max{|a| | (u, a, v) ∈ I}, p = max{|a| | (u, a, v) ∈ D},
m = max{|u| | (u, a, v) ∈ I}, q = max{|u| | (u, a, v) ∈ D}, m′ = max{|v| | (u, a, v) ∈ I}
and q′ = max{|v| | (u, a, v) ∈ D}.

By INSm,m′
n DELq,q′

p , we denote the family of all insertion-deletion systems of size
(n, m, m′; p, q, q′) [13,14]. Depending on the context, we also denote the family of lan-
guages that can be generated by insertion-deletion systems of size (n, m, m′; p, q, q′) by

INSm,m′
n DELq,q′

p .
We first study a concrete example now to clarify the definitions and also to return to

some of the general discussions of the introduction.

Example 1. Consider the following ins-del system ID = (V, T, A, I, D) where V = T = {a, b, c},
A = {acb}, I = {(a, a, c), (c, b, b)}, and D = {(λ, c, λ)}. Clearly this system is of size
(1, 1, 1; 1, 0, 0) and the generated language is L(ID) = a+b+ ∪ a+cb+.

As mentioned in the introduction, ins-del systems offer a high degree of parallelism. The
system ID, for instance, exhibits this trait when considering the rules (a, a, c) and (c, b, b). It is
easy to see that the order in which these rules are applied is insignificant and, thus, these rules do

Algorithms 2021, 14, 131 4 of 22

not affect each other. Hence, (a, a, c) and (c, b, b) are "far enough” from each other to be applied in
parallel without affecting the computation. However, note that the deletion rule (λ, c, λ) cannot be
applied in parallel with any insertion rule as the order does matter in this case. More precisely, the
deletion (λ, c, λ) cannot be applied before applying an insertion, as it removes necessary context
information.

Finally, observe that the amount of parallelism that is observable in generating the language
a+b+ ∪ a+cb+ can be further significantly increased by adding the insertion rules (a, a, a) and
(b, b, b).

2.3. Combining Ideas: Matrix Insertion-Deletion Systems

The idea of regulating ins-del systems with matrix control goes back to [10,15]. A
matrix ins-del system [10] is a construct MID = (V, T, A, M) where V, T and A are defined
as in usual ins-del systems. M = {m1, . . . , mt}, t ≥ 1, is a finite set of sequences, called
matrices, of the form mi = [ri,1, . . . , ri,ki

], where ki ≥ 1. ri,j, with 1 ≤ i ≤ t, 1 ≤ j ≤ ki,
is either an insertion or a deletion rule. A sentential form of MID is a string w ∈ V∗.
Consider a matrix mi = [ri,1, . . . , ri,ki

]. A transition w =⇒mi w′ is performed if there exist
strings w1, . . . , wki+1 ∈ V∗ such that wj =⇒ri,j wj+1 with w1 = w and wki+1 = w′. Let
=⇒:=

⋃
m∈M =⇒m. The language that is generated by MID is defined as

L(MID) = {w ∈ T∗ | ∃α ∈ A : α =⇒∗ w} .

We say that MID has matrices of size k if k = max1≤i≤tki. If MID is an ins-del sys-
tem of size (n, m, m′; p, q, q′) with matrices of size k , we also say that MID is of size

(k; n, m, m′; p, q, q′). We denote by MATkINSm,m′
n DELq,q′

p either the family of languages that
are generated by ins-del systems of size (k; n, m, m′; p, q, q′) or the family of ins-del systems

of size (k; n, m, m′; p, q, q′), depending on the context. Denote, by MAT∗INSm,m′
n DELq,q′

p SUBr,r′ ,
the family of matrix ins-del-sub systems with matrices of arbitrary size and insertion rules
and deletion rules, of size (n, m, m′) and (p, q, q′), respectively. The following matrix ins-del
systems are known to describe RE:

• MAT3INS1,1
1 DEL0,0

1 and MAT3INS0,0
1 DEL1,1

1 [16]
• MAT3INS0,0

1 DEL2,0
1 , MAT3INS2,0

1 DEL0,0
1 and MAT2INS1,0

1 DEL1,0
1 [17]

• MAT3INS1,0
1 DEL0,1

1 , MAT2INS1,0
1 DEL0,0

2 and MAT2INS0,0
2 DEL1,0

1 [10].

The incompleteness results for matrix ins-del sub systems includeMAT∗INS0,0
2 DEL0,0

2 ,
for instance. More precisely, the following theorem holds.

Theorem 1. REG \MAT∗INS0,0
2 DEL0,0

2 6= ∅, testified by a∗b.

This result follows from [18], as stated as in [10]. For reasons of completeness, we give
a formal proof of this result in the following.

Proof. Before we begin with our proof, we introduce ’markings’ [14,19] in the following
paragraph. We explain the details of the marking approach with the following example.
Consider the derivation

λ =⇒ins aA =⇒ins aAaA =⇒ins abCAaA =⇒ins abDECAaA

=⇒del abDAaA =⇒del abaA =⇒ins abaAbc =⇒del abac

of an ins-del system of size (2, 0, 0; 2, 0, 0). Then we introduce ‘markings’, as follows: Two
symbols that have been introduced together are joined with an overline, while two symbols
that are deleted together are joined with an underline. The overlines and underlines mark
the insertion pairs and the deletion pairs, respectively. The marking to a word abac, which
is derived in the manner presented above, is shown in Figure 1.

Algorithms 2021, 14, 131 5 of 22

a b D E C A a A b c

Figure 1. Marking corresponding to a derivation of abac [14,19].

Interpreting all of the symbols as labelled nodes and all lines as edges, it is easy to
see that any word w that is generated by an arbitrary ins-del system of size (2, 0, 0; 2, 0, 0)
corresponds to a graph, which consists of disjoint paths and/or cycles. If a symbol A is
deleted by a deletion rule (λ, A, λ), then we replace the corresponding node in the graph
with �A . The node �A is interpreted as λ. Additionally, the application of an insertion rule
(λ, A, λ) corresponds to adding a path, which consists of a single edge with nodes λ and
A, to the graph at the corresponding position. We assume that all letters of the axiom
have been introduced by such insertion rules. There is clearly no interaction between two
symbols of two different paths/cycles or between a symbol of a cycle and a symbol of a
path. We remark that all of the symbols/nodes, which have a degree of two, are deleted
and hence only symbols with a degree of one contribute to the final word w. Note that all
of the symbols of degree one only have an ‘overline’ edge, while nodes of degree two have
both types of edges. Therefore, it is clear that at most two symbols of a path can contribute
to w. We refer to [14,19] for more details on the ’marking’ approach. Clearly, the marking
approach can be applied to matrix-ins-del systems of size (∗; 2, 0, 0; 2, 0, 0), as well.

We now show that the language a∗b cannot be generated by any matrix ins-del systems
of size (∗; 2, 0, 0; 2, 0, 0) by contradiction. Assume that there is a matrix insertion-deletion
system MID, which generates the language a∗b. Subsequently, clearly the word amb, where
m > 2n + 1 and n is the length of the longest axiom, can also be generated. Consider
the graph that corresponds to amb. It is clear that this graph consist of more than n + 1
paths. Then there is at least one path which does not involve any symbols of the axiom
and contributes at least one letter a (and no b) to amb. Because this path does not involve
any letters of the axiom, all symbols of this path have been introduced with context-free
insertion rules. We denote this path as P. Consider the derivation of amb. Because there is
no interaction between two symbols of different paths and /or cycles, it is clear that there
is a derivation that applies all of the matrices used in the derivation of amb in the same
order, but in which all insertions and deletions corresponding to the path P occur right of
the final b. This, in turn, means that ID also generates a word in a∗ba+.

2.4. Adding Substitutions

With substitution rules, we now introduce the central notion of this paper. We define
substitution rules to be of the form (u, a → b, v); u, v ∈ V∗; a, b ∈ V. Let w1uavw2;
w1, w2 ∈ V∗ be a string over V. Afterwards, applying the substitution rule (u, a → b, v)
allows us to substitute a single letter a with another letter b in the context of u and v, which
results in the string w1ubvw2.

Formally, we define an insertion-deletion-substitution system, or ins-del-sub system for
short, to be specified by a six-tuple IDς = (V, T, A, I, D, S), where V, T, A, I, and D are
defined as in the case of usual ins-del systems and S is a set of substitution rules.

Let x = w1uavw2 and y = w1ubvw2 be the strings over V. The substitution rules
define a relation =⇒sub, as follows: x =⇒sub y if there is a substitution rule (u, a→ b, v).

In the context of ins-del-sub systems, we write =̂⇒ to denote any of the relations =⇒ins,
=⇒del or =⇒sub. We define =̂⇒∗ and =̂⇒+ as usual, denoting the reflexive-transitive and
transitive closure of =̂⇒, respectively.

The language that is generated by an ins-del-sub system IDς is defined as

L(IDς) = {w ∈ T∗ | α =̂⇒∗ w, α ∈ A} .

Algorithms 2021, 14, 131 6 of 22

As with usual ins-del system, we measure the complexity of an ins-del-sub system
IDς = (V, T, A, I, D, S) via its size, which is, an eight-tuple (n, m, m′; p, q, q′; r, r′), where
n, m, m′, p, q, and q′ are defined as in the case of usual ins-del systems and r and r′ limit
the maximal length of the left and right context of a substitution rule, respectively, i.e.,

r = max{|u| | (u, a → b, v) ∈ S}, r′ = max{|v| | (u, a → b, v) ∈ S}. INSm,m′
n DELq,q′

p SUBr,r′

denotes the family of all ins-del-sub systems of size (n, m, m′; p, q, q′; r, r′) Note that as only
one letter is replaced by any substitution rule, there is no subscript at SUB. Depending on
the context, we also refer to the family of languages generated by ins-del-sub systems of

size (n, m, m′; p, q, q′; r, r′) by INSm,m′
n DELq,q′

p SUBr,r′ .
As with ins-del systems, ins-del-sub systems can be regulated with matrix control

introducing matrix ins-del-sub systems. A matrix ins-del-sub system is a construct MIDς =
(V, T, A, Mς), where V, T and A are defined as in usual ins-del systems. Mς = {m1, . . . , mt},
t ≥ 1, is a finite set of sequences, called matrices, of the form mi = [ri,1, . . . , ri,ki

], where
ki ≥ 1. ri,j, with 1 ≤ i ≤ t, 1 ≤ j ≤ ki, is either an insertion, a deletion or a substitution rule.

We define the relation between the strings w and w′ over V w =̂⇒mi w′, as well
as the generated language of MIDς, analogously to the case without substitution rules.
We say that matrix ins-del-sub systems, which have insertion rules, deletion rules, sub-
stitution rules, and matrices of size (n, m, m′),(p, q, q′), (r, r′), and k, respectively, is of

size (k; n, m, m′; p, q, q′; r, r′). By MATkINSm,m′
n DELq,q′

p SUBr,r′ , denote the family of matrix
ins-del-sub systems of size (k; n, m, m′; p, q, q′; r, r′), as well as the family of languages
generated by such systems, depending on the context. Consider a language family

MATkINSm,m′
n DELq,q′

p SUBr,r′ . Concerning the reversal operator (that reads words from
right to left), the following lemma holds.

Lemma 1. Let L be a family of languages that is closed under reversal. Then:

1. L = MATkINSm,m′
n DELq,q′

p SUBr,r′ iff L = MATkINSm′ ,m
n DELq′ ,q

p SUBr′ ,r.

2. L ⊆ MATkINSm,m′
n DELq,q′

p SUBr,r′ iff L ⊆ MATkINSm′ ,m
n DELq′ ,q

p SUBr′ ,r.

3. MATkINSm,m′
n DELq,q′

p SUBr,r′ ⊆ L iff MATkINSm′ ,m
n DELq′ ,q

p SUBr′ ,r ⊆ L.

Proof. These claims follow analogously to [17].

By definition, it is also clear that the following lemma holds.

Lemma 2. MATkINSm,m′
n DELq,q′

p ⊆ MATkINSm,m′
n DELq,q′

p SUBr,r′ .

2.5. Appearance Checking: An Additional Feature

It is known that matrix grammars with context-free production are not computation-
ally complete, but they can reach computational completeness if used with appearance
checking. Transferring this idea to matrix ins-del-sub systems, we introduce matrix ins-del-
sub systems with appearance checking and show that, similar to the matrix grammar case,
formerly computationally incomplete matrix ins-del-sub systems can reach computational
completeness if they are used in conjunction with appearance checking. We begin by defin-
ing matrix ins-del-sub systems and appearance checking. A matrix ins-del-sub systems
and appearance checking is a tuple MIDς,ac = (V, T, A, Mς, F), where V, T, A, and Mς are
defined as in usual matrix ins-del-sub systems. F is a subset of all rules occurring in Mς.

Let w1, w2 ∈ V∗ and z be an arbitrary rule occurring in Mς. We define the re-
lation =̂⇒ac

z , as follows: w1 =̂⇒ac
z w2 if one of the following conditions hold: (a) the

rule z is applicable to w1, such that w1 =̂⇒z w2 or (b) the rule z is not applicable to
w1, z ∈ F and w1 = w2. Basically, this means that, if some rule in F is not applica-
ble, we can skip that rule. Let m = [r1, . . . , rn] ∈ Mς and x, y ∈ V∗. Then x =̂⇒ac

m y iff

Algorithms 2021, 14, 131 7 of 22

x = w0 =̂⇒ac
r1

w1 =̂⇒ac
r2

. . . =̂⇒ac
rn wn = y. The language that is generated by MIDς,ac is

defined as

L(MIDς,ac) ={w ∈ T∗ | ∃ m1, . . . , mn ∈ Mς, α ∈ A : α =̂⇒ac
m1

. . . =̂⇒ac
mn w}

We define the size of MIDς,ac analogously to matrix ins-del-sub systems without
appearance checking. We denote the language family that is generated by matrix ins-
del-sub systems with appearance checking of size (k; n, m, m′; p, q, q′; r, r′) by the term

MATac
k INSm,m′

n DELq,q′
p SUBr,r′ .

Again, we like to clarify these definitions by presenting a concrete example of a matrix
ins-del-sub system that makes use of appearance checking.

Example 2. Consider the matrix ins-del-sub systems with appearance checking MIDς,ac =
(V, T, A, Mς, F) of size (3; 1, 0, 0; 2, 0, 0; 0, 0) with V = {X, a, b}, T = {a, b}, A = {b},
Mς = {[(λ, X, λ)ins, (λ, bX, λ)del, (λ, X → a, λ)]} and F = {(λ, bX, λ)del}. The language
that is generated by MIDς,ac is a∗b. This can be shown, as follows.

Let m = [(λ, X, λ)ins, (λ, bX, λ)del, (λ, X → a, λ)], w1 ∈ a∗b and w2 ∈ {a, b}∗, such that
w1 =̂⇒ac

m w2.
Assume that during the application of m the nonterminal X is inserted to the right of b.

Subsequently, clearly the deletion rule (λ, bX, λ) is applicable after the insertion and we delete X
along with b. However, now the substitution rule (λ, X → a, λ) cannot be applied anymore and, as
(λ, X → a, λ) /∈ F, this means that the matrix as a whole cannot be applied.

Assume that, during the application of m, the nonterminal X is inserted somewhere left of b.
Clearly, (λ, bX, λ)del is not applicable and, as (λ, bX, λ)del ∈ F, we skip this rule and proceed with
the application of (λ, X → a, λ). Applying m in this way effectively inserts the letter a somewhere
left of b and, therefore, w2 ∈ a∗b.

Using the argument above inductively yields our claim. We remark that, for any word w
derived from the axiom b, |w|{X} = 0 holds, as any X introduced during the application of m is
resolved at the end of m.

The example above clarifies that appearance checking can result in an increase in
computational power, as a∗b /∈ MAT∗INS0,0

2 DEL0,0
2 SUB0,0 is known (Theorem 1).

3. Computational (In-)Completeness Results

In this section, we present the main results of our research.

3.1. A Normal Form Theorem

We begin by introducing a (binary) normal form for matrix ins-del-sub systems that
are similar to the two-normal form (also known as binary normal form) for matrix gram-
mars ([12] Def. 1.2.1). Recall our discussion in the introductory section concerning possible
applications of matrix ins-del-sub systems: there, we argued that short matrices offer
advantages, as they help allow for parallel execution in this type of computational devices.
However, when looking at the proof of the next theorem, one sees that it enforces some
sequentialization by introducing a shared resource in the form of specific nonterminals.
Therefore, in essence, the question of parallelizability within computational devices, like
(matrix) ins-del-sub systems, remains an interesting topic of future research.

A matrix ins-del-sub systems MIDς = (V, T, A, Mς) is said to be in normal form if all
the matrices are either of the form [r, (λ, A → B, λ)] or [r, (λ, A, λ)del], where r is some
insertion, deletion, or substitution rule and A, B ∈ V. Clearly, all matrix ins-del-sub

systems in normal form are included in MAT2INSm,m′
n DELq,q′

p SUBr,r′ . We show that, for
every matrix ins-del-sub system, there is a matrix ins-del-sub system in normal form that
generates the same language.

Algorithms 2021, 14, 131 8 of 22

Theorem 2. For every MIDς ∈ MATkINSm,m′
n DELq,q′

p SUBr,r′ , p > 0, there is a system MID′ς ∈
MAT2INSm,m′

n DELq,q′
p SUBr,r′ , such that L(MIDς) = L(MID′ς).

Proof. Let MIDς = (V, T, A, Mς) and all matrices of MIDς be labelled in a one-to-one
manner, i.e., a bijection from Mς to a set of labels exists. Subsequently, we define MID′ς =
(V′, T, A′, M′ς), where V′ = V ∪ {(i, j) | i is the label of a matrix of MIDς and j ≤ k} and
A′ = {α(i, 1) | α ∈ A and i is the label of a matrix of MIDς} ∪ {α | α ∈ A ∩ T∗}. Without a
loss of generality we assume V ∩ {(i, j) | i is the labelof a matrix of MIDς and
j ≤ k} = ∅. For every matrix m = [r1, r2, . . . , rn] of MIDς, where rj, with j = 1, . . . , n, is
some insertion, deletion, or substitution rule and i is the label of m, we add the follow-
ing matrices

[r1, (λ, (i, 1)→ (i, 2), λ)],

[r2, (λ, (i, 2)→ (i, 3), λ)],

. . . ,

[rn−1, (λ, (i, n− 1)→ (i, n), λ)] and

[rn, (λ, (i, n), λ)del]

to MID′ς. For every label i′ of some matrix of MIDς and every matrix m = [r1, r2, . . . , rn]
of MIDς, we add a matrix [rn, (λ, (i, n) → (i′, 1), λ)] to MID′ς. By definition, the second
component of every matrix of MID′ς is either a context-free deletion rule of the form
(λ, (i, j), λ)del or a context-free substitution rule of the form (λ, (i, j)→ (i′, j′), λ), where i
and i′ are the labels of some matrices of MIDς and j, j′ ≤ k. Furthermore, the first rule of
any matrix of MID′ς does not involve any nonterminals in V′ \V.

Consider a sentential form w1(i, j)w2 with w1, w2 ∈ V∗. It can be shown that all the
sentential forms of MID′ς are either of this form or of the form w ∈ V∗. The basic idea is
that the nonterminal (i, j) serves as an indicator where the matrix is to be applied next.
For instance, the occurrence of (i, j) in w1(i, j)w2 signifies that the next rule to be applied
is either (rj, (λ, (i, j) → (i, j + 1), λ)) if the length of the matrix of MIDς labelled by i is
greater than j or (rj, (λ, (i, j) → (i′, 1), λ)) / (rj, (λ, (i, j), λ)del), otherwise. We note that,
in every derivation of MID′ς, a matrix of the form (rj, (λ, (i, j), λ)del) is applied at most
once. Furthermore, we remark that, if a sentential form w ∈ V∗ occurs during a derivation
of MID′ς, then the derivation cannot proceed as the second rule of any matrix cannot be
applied. We now prove the correctness of the construction, i.e., L(MIDς) = L(MID′ς),
by showing both inclusion directions separately.
‘⊇’: Consider the following derivation w1(i, j)w2 =̂⇒[r,(λ,(i,j)→(i′ ,j′),λ)] w′1(i

′, j′)w′2, where
r is some insertion, deletion, or substitution rule and w1, w2 ∈ V∗. because r does not
involve any nonterminals in V′ \ V, clearly w1w2 =̂⇒r w′1w′2 holds. We now extend this
result. Consider a matrix m = [r1, . . . , rn] labelled by i. Subsequently, clearly

w1(i, 1)w2 =̂⇒
[r1,(λ,(i,1)→(i,2),λ)]

. . . =̂⇒
[rn−1,(λ,(i,n−1)→(i,n),λ)]

w′1(i, n)w′2 =̂⇒
[rn ,(λ,(i,n)→(i′ ,1),λ)]

w′′1 (i
′, 1)w′′2

or

w1(i, 1)w2 =̂⇒
[r1,(λ,(i,1)→(i,2),λ)]

. . . =̂⇒
[rn−1,(λ,(i,n−1)→(i,n),λ)]

w′1(i, n)w′2 =̂⇒
[rn ,(λ,(i,n),λ)del]

w′′1 w′′2

implies w1w2 =̂⇒[r1,...,rn] w′′1 w′′2 .

‘⊆’: Conversely, it can be shown that w =̂⇒[r1,...,rn] w′′ implies

w(i, 1) =̂⇒
[r1,(λ,(i,1)→(i,2),λ)]

. . . =̂⇒
[rn−1,(λ,(i,n−1)→(i,n),λ)]

w′(i, n) =̂⇒
[rn ,(λ,(i,n)→(i′ ,1),λ)]

w′′(i′, 1)

Algorithms 2021, 14, 131 9 of 22

and

w(i, 1) =̂⇒
[r1,(λ,(i,1)→(i,2),λ)]

. . . =̂⇒
[rn−1,(λ,(i,n−1)→(i,n),λ)]

w′(i, n) =̂⇒
[rn ,(λ,(i,n),λ)del]

w′′

We remark that, in the simulation of the application a matrix of MIDς, we can assume
that the leftmost symbol of any sentential form of a derivation of MID′ς is of a nonterminal
(i, j) ∈ V′ \V (unless a matrix of the form [rn, (λ, (i, n), λ)del] is applied).

Similarly, for every matrix ins-del-sub system MIDς ∈ MATkINSm,m′
n DEL0,0

0
SUBr,r′ , one can construct MID′ς ∈ MAT2INSm,m′

n DEL0,0
0 SUBr,r′ in normal form, such that

L(MID′ς) = L(MIDς).

Theorem 3. Let MIDς ∈ MATkINSm,m′
n DEL0,0

0 SUBr,r′ . Afterwards, it is possible to construct a
system MID′ς ∈ MAT2INSm,m′

n DEL0,0
0 SUBr,r′ in normal form, such that L(MIDς) = L(MID′ς).

Proof. Let MIDς = (V, T, A, Mς) and all matrices of MIDς be labelled in a one-to-one
manner, i.e., a bijection Mς to a set of labels exists. We define the set of symbols as

V′ = V ∪ {ai,j | a ∈ V, i is the label of a matrix of MIDς and j ≤ k} ,

where k denotes the maximal length of a matrix in Mς. We now describe how to construct
an equivalent matrix ins-del-sub system MID′ς of the same size, such that MID′ς is in
normal form.

For every v ∈ V, every label i′ of a matrix of MIDς and every matrix m = [r1, r2, . . . , rn]
of MIDς, where rj, with j = 1, . . . , n, is some insertion or substitution rule and i is the label
of m, we add the following matrices

[r1, (λ, vi,1 → vi,2, λ)]

[r2, (λ, vi,2 → vi,3, λ)]

. . .

[rn−1, (λ, vi,n−1 → vi,n, λ)]

[rn, (λ, vi,n → vi′ ,1, λ)] and [rn, (λ, vi,n → v, λ)],

to MID′ς. Intuitively, any letters of any sentential form of MID may be substituted or used
as a context of some rule. Hence, to simulate MID, any letter of the form vi,j may have to
be substituted or used as a context. Therefore, if one of the matrices added to MID′ς is of the
form [(w1, v→ v′, w2), (λ, vi,j → vi′ ,j′ , λ)], we add the matrix [(w1, vi,j → v′i,j, w2), (λ, v′i,j →
v′i′ ,j′ , λ)] to MID′ς, as well. Additionally, we add [(w1, vi,j → v′i,j, w2), (λ, v′i,j → v′, λ)] to MID′ς
if [(w1, v → v′, w2), (λ, vi,j → v, λ)] ∈ MID′ς. Furthermore, if one of the matrices added to
MID′ς is of the form [(w1,1vw1,2, w3, w2)ins, (λ, vi,j → vi′ ,j′ , λ)] with w1,1, w1,2, w2, w3 ∈ V∗,
then we add the matrix [(w1,1vi,jw1,2, w3, w2)ins, (λ, vi,j → vi′ ,j′ , λ)]. Additionally, if a matrix of
the form [(w1,1vw1,2, w3, w2)ins, (λ, vi,j → v, λ)] occurs in MID′ς, then [(w1,1vi,jw1,2, w3, w2)ins,
(λ, v′i,j → v′, λ)] is also added to MID′ς.

The cases

• [(w1, w3, w2,1vw2,2)ins, (λ, vi,j → vi′ ,j′ , λ)]

• [(w1, w3, w2,1vw2,2)ins, (λ, vi,j → v, λ)]

• [(w1,1vw1,2, a→ b, w2), (λ, vi,j → vi′ ,j′ , λ)]

• [(w1,1vw1,2, a→ b, w2), (λ, vi,j → v, λ)]

• [(w1, a→ b, w2,1vw2,2), (λ, vi,j → vi′ ,j′ , λ)]

• [(w1, a→ b, w2,1vw2,2), (λ, vi,j → v, λ)]

Algorithms 2021, 14, 131 10 of 22

are treated analogously. The set of axioms is defined as

A′ ={α1i,1 α2 . . . αn | α1, . . . , αn ∈ V, n ≥ 1, α1 . . . αn ∈ A and

i is the label of a matrix of MIDς}.

Additionally, if λ ∈ A, for every matrix of MIDς, which has the form

m = [(λ, a1 . . . an, λ)ins, r2, . . . , rn]

with a1, . . . , an ∈ V, we add a1i,2 a2 . . . an to A′, where i is the label of m. This simulates the
case that λ is the axiom of a derivation of MIDς and the matrix m is applied.

The basic overall idea is the same as in Theorem 2. Here, nonterminals vi,j control the
derivations. Hence, we can hence forego a formal inductive proof.

3.2. One-Sided Context Dependence

Our previous computational completeness results either required two-sided contexts
for insertion or two-sided contexts for deletions. As argued in the introduction, there are
good motivations to try to reduce the context dependence. Hence, we are now looking at
one-sided contexts for deletions and insertions. We are going to prove two main results
in this subsection: first, we show that uni-directional (for instance, left) single-symbol
context in insertions and deletions of single symbols suffice in achievinf computational
completeness, which this is in contrast with the second result that tells that we cannot
completely forego using context information: we do need one-sided context dependency
for both deletions and for insertions.

3.2.1. Computational Completeness

As a consequence of the previously introduced normal form for matrix ins-del-sub
systems, we obtain the following result:

Corollary 1. The following statements hold.

1. MAT2INS0,0
1 DEL1,1

1 SUB0,0 = RE.
2. MAT2INS1,1

1 DEL0,0
1 SUB0,0 = RE.

3. MAT2INS1,0
1 DEL1,0

1 SUB0,0 = RE.
4. MAT2INS1,0

1 DEL0,1
1 SUB0,0 = RE.

5. MAT2INS0,0
2 DEL1,0

1 SUB0,0 = RE.
6. MAT2INS1,0

1 DEL0,0
2 SUB0,0 = RE.

This follows easily with Theorem 2, as computational completeness has been shown for
MAT3INS1,1

1 DEL0,0
1 and for MAT3INS0,0

1 DEL1,1
1 , see [16]. Furthermore, computational com-

pleteness for MAT3INS1,0
1 DEL1,0

1 , MAT3INS1,0
1 DEL0,1

1 , MAT3INS0,0
2 DEL1,0

1 , and MAT3INS1,0
1

DEL0,0
2 has been shown in [10]. Clearly, context-free substitution rules improve the existing

completeness results by reducing the complexity of matrices.

3.2.2. Computational Incompleteness

Though ins-del systems with matrix control and substitution rules are powerful
devices, they are not always sufficient for achieving computational completeness.

Lemma 3. Let MIDς be a a matrix ins-del-sub systems of size (∗; 1, 1, 0; 1, 0, 0; 0, 0). Subsequently,
L(MIDς) ∈ L(M, CF).

Proof. Let MIDς = (V, T, A, Mς) be in normal form and constructed according to the
construction in Theorem 2. Subsequently, we construct the following matrix grammar
G = (N, T, MG, S) with N = {Na | a ∈ V}. For every α1 . . . αn ∈ A, we add a matrix

Algorithms 2021, 14, 131 11 of 22

[S→ Nα1 . . . Nαn] to MG.

For every matrix of the form X of MIDς, we add a matrix of the form Y to MG.

form X form Y
[(λ, b, λ)del, (λ, c→ d, λ)] [Nb → λ, Nc → Nd]
[(λ, b, λ)del, (λ, c, λ)del] [Nb → λ, Nc → λ]
[(λ, b→ b′, λ), (λ, c→ d, λ)] [Nb → Nb′ , Nc → Nd]
[(λ, b→ b′, λ), (λ, c, λ)del] [Nb → Nb′ , Nc → λ]
[(a, b, λ)ins, (λ, c→ d, λ)] [Na → NaNb, Nc → Nd]
[(a, b, λ)ins, (λ, c, λ)del] [Na → NaNb, Nc → λ]

For every matrix of the form X′ of MIDς and every Na ∈ N, we add matrices of the
form Y′ to MG.

form X′ form Y′

[(λ, b, λ)ins, (λ, c→ d, λ)] [Na → NaNb, Nc → Nd], [Na → NbNa, Nc → Nd]
[(λ, b, λ)ins, (λ, c, λ)del] [Na → NaNb, Nc → λ], [Na → NbNa, Nc → λ]

Furthermore, we add matrices of the form [Na → a] to MG if a ∈ T.
By induction, it can be shown that a1 . . . an ⇒G b1 . . . bm if and only if

Na1 . . . Nan =̂⇒MIDς Nb1 . . . Nbm .

Whenever a matrix [(λ, b, λ)ins, (λ, c → d, λ)] is applicable to a1 . . . an ∈ V∗, some
matrix of the form [Na → NaNb, Nc → Nd] is applicable to Na1 . . . Nan ∈ N∗ and vice versa.

We remark that, if a sentential form λ occurs during either a derivation of MIDς or
G, the derivation cannot proceed, as no matrix is applicable any more. (see Theorem 2).
Hence, the case that the axiom of a derivation of MIDς is λ is covered by an application of
S→ λ.
Therefore, it is easy to see that L(G) = L(MIDς) holds.
Moreover, L(G) ∈ L(M, CF).

Although systems of size (2; 1, 1, 0; 1, 0, 0; 0, 0) do not reach computational complete-
ness, they do characterize matrix grammars.

Lemma 4. Let G be a matrix grammar, such that L(G) ∈ L(M, CF). Subsequently, there exists
a matrix ins-del system with substitution rules MIDς of size (2; 1, 1, 0; 1, 0, 0; 0, 0), such that
L(G) = L(MIDς).

Proof. Let G = (N, T, MG, S) be a matrix grammar with context-free production rules.
Afterwards, we construct MIDς = (V, T, A, Mς) as follows: We define V = N ∪ T ∪ {X}
and A = {S}.

Consider a context-free production rule of the form A → λ. Clearly, this rule is
equivalent to a deletion rule (λ, A, λ). Analogously, a production rule A→ B is essentially
the same as a substitution rule (λ, A→ B, λ).

Consider a production rule of the form A→ B1 . . . Bn, n ≥ 2, B1, . . . , Bn ∈ N ∪ T, and
the following sequence of substitution and deletion rules

(λ, A→ X, λ), (X, Bn, λ), (X, Bn−1, λ), . . . , (X, B2, λ), (λ, X → B1, λ).

Clearly, applying this sequence to a word w ∈ (N ∪ T)∗ is the same as applying the
production rule A→ B1 . . . Bn.

Hence, we add the matrices that were obtained by the Algorithm 1 to Mς.

Lemmas 3 and 4 yield the following result.

Algorithms 2021, 14, 131 12 of 22

Algorithm 1 Generate_Mς(M)

Require: set MG of matrices with context-free production rules
for all m ∈ MG do

1. replace every occurrence of a rule of the form A→ λ in m with (λ, A, λ)del
2. replace every occurrence of a rule of the form A→ B in m with (λ, A→ B, λ)
3. replace every occurrence of a rule of the form A→ B1 . . . Bn in m with the sequence

(λ, A→ X, λ), (X, Bn, λ)ins, (X, Bn−1, λ)ins, . . . , (X, B2, λ)ins, (λ, X → B1, λ)

4. add the resulting matrix to Mς

end for

Theorem 4. L ∈ L(M, CF) if and only if there is a matrix ins-del-sub systems MIDς of size
(∗; 1, 1, 0; 1, 0, 0; 0, 0), such that L(MIDς) = L.

Because matrix grammars with context-free production are not computationally com-
plete [20], matrix ins-del-sub systems of size (∗; 1, 1, 0; 1, 0, 0; 0, 0) are not computationally
complete either. It is known [12] that L(M, CF) is closed under reversal. With Lemma 1,
we can conclude:

Corollary 2. MAT∗INS1,0
1 DEL0,0

1 SUB0,0 ∪MAT∗INS0,1
1 DEL0,0

1 SUB0,0 (RE.

We will now show that MAT∗INS0,0
1 DEL1,0

1 SUB0,0 is not computationally complete,
either. Consequently, we arrive at the conclusion that MAT∗INS0,0

1 DEL1,0
1 is not computa-

tionally complete either.
Consider the following construction for the proof. For each derivation of a matrix

ins-del-sub system MIDς = (V, T, A, Mς) of size (∗; 1, 0, 0; 1, 1, 0; 0, 0), we construct a group
of trees that represents the structure of the derivation.

Each tree node is labelled by a string over V, such that reading the rightmost symbols
of all root labels of the corresponding group of trees from left to right yields w (we refer to
Figure 2).

X

Y YX

Y

X

Figure 2. The tree group corresponding to a sentential form w = XY.

If an insertion rule (λ, a, λ) adds the letter a at some position of the sentential form,
we add a new tree with a single node labelled a at the corresponding position in the group
of trees (see Figure 3).

a X

Y YX

Y

X

Figure 3. The tree group following the application of (λ, a, λ)ins.

Applying a deletion rule (a, X, λ) has the following effect on the group of trees: the
node corresponding to X becomes the rightmost child of the node corresponding to a (see
Figure 4).

Algorithms 2021, 14, 131 13 of 22

a

X

Y YX

Y

X

Figure 4. The tree group following the application of (a, X, λ)del.

Let wY be the string of the node corresponding to a letter Y. If a substitution rule
(λ, Y → b, λ) is applied, then we concatenate b right of wY (see Figure 5).

a

X

Y YX

Yb

X

Figure 5. The tree group following the application of (λ, Y → b, λ).

Let the axiom of the derivation be α1, . . . , αn. Subsequently, the group of trees consists
initially of n trees with single nodes, each being labelled by a symbol of the axiom, such
that reading the labels of the respective roots from left to right yields α1, . . . , αn. Each root
node corresponds to a letter of the current sentential form.

By construction, it is clear that only (the rightmost letter of) root labels contribute
letters to the final word, i.e., each tree contributes, at most, one letter to the final word.
Furthermore, it is clear that there is no interaction between letters of two different trees,
i.e., a letter belonging to certain tree is not a context for some operation on a letter of
another tree.

Before explaining the weaknesses of matrix ins-del-sub systems with their size limited
to (∗; 1, 0, 0; 1, 1, 0; 0, 0), we illustrate their power by presenting a concrete example.

Example 3. Consider a matrix ins-del-sub system MIDς of size (∗; 1, 0, 0; 1, 1, 0; 0, 0), which has
the axiom X1X2. Let

m1 = [(λ, b, λ)ins, (b, X1, λ)del, (λ, X3, λ)ins]

m2 = [(λ, b, λ)ins, (b, X2, λ)del, (λ, Xa, λ)ins]

m3 = [(λ, Xa → a, λ), (λ, a, λ)ins, (a, X3, λ)del]

be matrices of MIDς. Clearly X1X2 =̂⇒m1m2m3 bab holds and the corresponding group of trees is

b Xaa b

X1 X3 X2.

Note that all of the letters corresponding to the eventual a-tree originate from context-free
insertions. Furthermore, because there is no interaction between letters of two different trees,
inserting all letters of the eventual a-tree (in the order specified by the a-tree) left or right of all
letters belonging to eventual b-trees does not affect the b-trees. Thus, X1X2 =̂⇒m1m2m3 abb and
X1X2 =̂⇒m1m2m3 bba also hold.

Theorem 5. REG \MAT∗INS0,0
1 DEL1,0

1 SUB0,0 6= ∅.

Proof. We show that there is no matrix ins-del-sub system of size (1, 0, 0; 1, 1, 0; 0, 0) gen-
erating the regular language a+b+. Assume to the contrary that MIDς = (V, T, A, Mς)
generates a+b+. Subsequently, MIDς generates the word anbn, n > γ, as well, where γ is
the length of the longest axiom of MIDς. Consider the group of trees corresponding to
a derivation of anbn starting from the axiom α. Because n > γ, there exists a tree t with
the following properties: (1) the tree contributes a letter a to anbn and (2) all nodes of the
tree originate from the application of some insertion rule. Consider the derivation from

Algorithms 2021, 14, 131 14 of 22

α to anbn. Subsequently, MIDς also generates an−1bna. The string an−1bna is generated by
applying the same matrices used in the derivation from α to anbn in the same order. All of
the insertion rules corresponding to nodes of the tree t that are specified above are applied
right of all letters belonging to (eventual) b-trees. Because there is no interaction between
letters of two different trees, none of the letters that correspond to nodes of t are used as
context to delete symbols not affiliated with nodes of t. Thus, inserting these letters right of
all letters belonging to (eventual) b-trees changes nothing for the other trees. Note that the
tree t specifies the position of the inserted letters in relation to each other as well as how
the rest of the rules concerning symbols of t are applied.

Interestingly, while neither MAT∗INS1,0
1 DEL0,0

1 SUB0,0 nor MAT∗INS0,0
1 DEL1,0

1 SUB0,0

are computationally complete, by Theorem 4 at least the context-free languages are included
in MAT∗INS1,0

1 DEL0,0
1 SUB0,0. MAT∗INS0,0

1 DEL1,0
1 SUB0,0 does not even include all regular

languages. Consequently, we can also state:

Corollary 3. REG \MAT∗INS0,0
1 DEL1,0

1 6= ∅.

We remark that Corollary 2 and Theorem 5 show that the result of Corollary 1 is
optimal, i.e., the context dependency cannot be reduced any further without losing compu-
tational power.

3.3. Context-Free Substitutions Do Not Always Help

We now show that extending context-free matrix ins-del systems with context-free
substitution rules does not result in an increase in computational power.

Theorem 6. MAT∗INS0,0
n DEL0,0

p SUB0,0 = MAT∗INS0,0
n DEL0,0

p with n, p ≥ 2.

Proof. Because MAT∗INS0,0
n DEL0,0

p ⊆ MAT∗INS0,0
n DEL0,0

p SUB0,0 holds by definition, we
only prove the converse.

Let MIDς = (V, T, A, Mς) be of size (∗; n, 0, 0; p, 0, 0; 0, 0). Subsequently, there ex-
ists a system MID = (V ∪ {X}, T, A, M′) of size (∗; n, 0, 0; p, 0, 0) where X is a new
symbol not in V, which simulates MIDς. It is sufficient to prove that context-free sub-
stitution rules can be simulated by MID. Let (λ, a → b, λ) be a context-free substitu-
tion rule. Consider the sequence (λ, Xb, λ)ins, (λ, aX, λ)del. Applying this sequence to
w1aw2, w1, w2 ∈ V∗, is equivalent to applying the substitution rule (λ, a → b, λ), i.e.,
w1aw2 =̂⇒w1aXbw2 =̂⇒w1bw2. Note that the string Xb has to be directly inserted right of
a letter a, as, otherwise, (λ, aX, λ)del cannot be applied.

Therefore, the set M′ is constructed, as follows: let m ∈ M, then we replace all of
the occurrences of substitution rules (λ, a → b, λ) in m with the sequence (λ, Xb, λ)ins,
(λ, aX, λ)del. The resulting matrix is added to M′. This procedure is applied to all m ∈
M.

By Theorem 1, we deduce that the matrix ins-del systems of size (∗; 2, 0, 0; 2, 0, 0; 0, 0)
are not computationally complete.

Corollary 4. MAT∗INS0,0
2 DEL0,0

2 SUB0,0 (RE.

3.4. One-Sided Substitutions

We now consider matrix ins-del systems with one-sided substitution rules. In particu-
lar, the families of systems that are discussed in detail now are MAT2INS0,0

1 DEL0,0
1 SUB1,0

and MAT2INS0,0
1 DEL0,0

0 SUB1,0.

Theorem 7. MAT∗INS1,0
1 DEL1,0

1 ⊆ MAT∗INS0,0
1 DEL0,0

1 SUB1,0.

Algorithms 2021, 14, 131 15 of 22

Proof. Let MID = (V, T, A, M) ∈ MAT∗INS1,0
1 DEL1,0

1 . Subsequently, MIDς = (V′, T, A, M′)
is defined as follows: Let V′ := V ∪ {X}. Without a loss of generality, we assume
V ∩ {X} = ∅.
The following procedure is applied to all matrices of MID. Consider an arbitrary matrix
m of MID. We replace every occurrence of an insertion rule of the form (a, b, λ) with an
insertion rule (λ, X, λ) and a substitution rule (a, X → b, λ). Additionally, any deletion
rule of the form (a, b, λ) is replaced with a substitution rule (a, b → X, λ) and a deletion
rule (λ, X, λ). The matrix that is obtained by these replacements is added to M′.

Clearly, MIDς ∈ MAT∗INS0,0
1 DEL0,0

1 SUB1,0. The basic idea of this proof is that the
nonterminal X is immediately resolved after being introduced. It is easy to see that
applying the substitution rule (a, b→ X, λ) immediately after the insertion rule (λ, X, λ) is
essentially the same as applying a rule of the form (a, b, λ). Likewise, applying the deletion
rule (λ, X, λ) immediately after the substitution rule (a, b→ X, λ) is basically the same as
applying the deletion rule (a, b, λ).

Therefore, clearly L(MID) = L(MIDς).

It has been shown in [10] that MAT3INS1,0
1 DEL1,0

1 = RE holds. Therefore, RE =

MAT∗INS0,0
1 DEL0,0

1 SUB1,0. We can improve this result by using the result that is presented
in Theorem 2. Together with Lemma 1, the next corollary follows.

Corollary 5. RE = MAT2INS0,0
1 DEL0,0

1 SUB1,0 = MAT2INS0,0
1 DEL0,0

1 SUB0,1.

We now show that omitting deletion rules in the systems mentioned above yields a
characterization of context-sensitive languages, which is quite rare with ins-del systems.

Lemma 5. MAT2INS0,0
1 DEL0,0

0 SUB0,1 ⊆ CS

Proof. Let MID = (V, T, A, Mς) ∈ MAT∗INS0,0
1 DEL0,0

0 SUB0,1 be constructed according to
Theorem 3. The basic idea is the same as in Lemma 3. We define the matrix grammar
G = (N, T, P, M) with N = {Na | a ∈ V}, as in Lemma 3 with the following addition: For
every matrix of the form [λ, b → b′, a), (λ, c → d, λ)] in Mς we add a matrix of the form
[NbNa → Nb′Na, Nc → Nd] to M (we remark that the second component of every matrix of
MID is a context-free substitution rule).

Clearly, G is a matrix grammar with context-sensitive production rules. In ([12]
[Theorem 1.2.1]), it is shown that L(M, CS) = L(CS) holds. Therefore, our claim holds.

We now prove the converse.

Lemma 6. CS ⊆ MAT2INS0,0
1 DEL0,0

0 SUB0,1

Proof. Let G = (V, T, S, P) be a context-sensitive grammar in Penttonen normal form [21].
Subsequently, we construct the following matrix ins-del-sub systems to simulate G:

MIDς = (V′, T, A, Mς)

with V′ = V ∪ {X1, X2} and A = {S}. Without a loss of generality, we assume V ∩
{X1, X2} = ∅.

The simulation of a production rule of the form AB → AC is carried out by the
following matrix

[(λ, B→ X1, λ), (λ, A→ X2, X1), (λ, X1 → C, λ), (λ, X2 → A, λ)].

A production rule of the form A→ BC is simulated by the matrix

[(λ, A→ X1, λ), (λ, X2, λ)ins, (λ, X2 → B, X1), (λ, X1 → C, λ)],

Algorithms 2021, 14, 131 16 of 22

while a production rule of the form A → a is simulated by a matrix [(λ, A → a, λ)]. We
make the following observation: all nonterminals X1, X2, which are introduced by a matrix
m, are resolved at the end of m.

In the following paragraph, we prove the equality L(MIDς) = L(G) by induction. We
begin by proving that, if there are matrices m1, . . . , mn ∈ Mς with n ∈ N, such that

S =̂⇒m1 . . . =̂⇒mn w,

then S ⇒n
G w holds. The base case, i.e., n = 0, is clear. We now consider the inductive

step. Let
S =̂⇒m1 . . . =̂⇒mn w =̂⇒mn+1 w′.

Let the matrix that is used in the derivation step w =̂⇒mn+1 w′ be a matrix of the form

[(λ, B→ X1, λ), (λ, A→ X2, X1), (λ, X1 → C, λ), (λ, X2 → A, λ)].

Subsequently, w = w1 ABw2 and w′ = w1 ACw2 follow. Consider an application of
mn+1. Clearly |w|{X1,X2} = 0 due to our observation. Therefore, the substitution rule
(λ, B→ X1, λ) of mn+1 must be applied to a letter B whose left context is A. Otherwise, the
substitution rule (λ, A→ X2, X1) of mn+1 (and mn+1 itself) cannot be applied. Hence, it is
easy to see that w = w1 ABw2 and w′ = w1 ACw2 hold. Because of our induction hypothesis
S ⇒n

G w = w1 ABw2 holds. Because of our construction, the existence of a matrix of the
form mn+1 implies the existence of a production rule AB→ AC. Clearly,

w = w1 ABw2 ⇒AB→AC w1 ACw2 = w′

holds. The case

mn+1 = [(λ, A→ X1, λ), (λ, X2, λ)ins, (λ, X2 → B, X1), (λ, X1 → C, λ)]

is handled analogously (clearly, the insertion rule (λ, X2, λ)ins must insert X2 left of X1,
otherwise (λ, X2 → B, X1) cannot be applied), while the case mn+1 = [(λ, A → a, λ)]
is obvious.

The converse follows analogously.

More specifically, with Lemmas 1, 5 and 6, we can state the following result.

Theorem 8. CS = MAT2INS0,0
1 DEL0,0

0 SUB0,1 = MAT2INS0,0
1 DEL0,0

0 SUB1,0.

3.5. Adding Appearance Checking

We have previously shown that there are even regular languages not included in
MAT∗INS0,0

2 DEL0,0
2 SUB0,0. We now show that expanding these systems with appearance

checking yields computational completeness. More precisely, we show that the expanded
systems can simulate type-0 grammars in Penttonen normal form, which means that all of
the production rules are of the form

AB→ AC or

A→ BC or

A→ a or

A→ λ,

where A, B, C are nonterminal symbols and a is a terminal symbol.

Theorem 9. MATac
∗ INS0,0

1 DEL0,0
2 SUB0,0 = RE.

Algorithms 2021, 14, 131 17 of 22

Proof. Because the inclusion MATac
∗ INS0,0

2 DEL0,0
2 SUB0,0 ⊆ RE is clear, we now proceed

to prove the converse by simulating a type-0 grammar G = (N, T, P, S) in Penttonen
normal form. The matrix ins-del-sub systems with appearance checking simulating G is
defined as MIDς,ac = (V, T, {$S}, Mς, F), with V = N ∪ T ∪ {X, X1, X2, $, $′} and (N ∪
T) ∩ {X, X1, X2, $, $′} = ∅. The nonterminal $ is an auxiliary symbol that marks the
beginning of a sentential form, and it is eventually deleted by the matrix [(λ, $, λ)del]. We
now describe how the rules of G are simulated.

For every rule of G of the form A → a, we add a matrix [(λ, A → a, λ)] to Mς, and,
for every rule A→ λ, we add the matrix [(λ, A, λ)del] to Mς. We remark that the following
matrices that are introduced to Mς require the sentential form to have $ as the leftmost
symbol. Hence, these rules cannot be applied if $ is absent. For every rule of the form
AB→ AC, to Mς, we add a matrix

[(λ, $→ $′, λ), (λ, B→ X, λ),

(λ, A1X, λ)del, . . . , (λ, AnX, λ)del,

(λ, X → C, λ), (λ, $′ → $, λ)]

with V \ {A} = {A1, . . . , An}. Add {(λ, A1X, λ)del, . . . , (λ, AnX, λ)del} to F. These dele-
tion rules are used to check whether the left context of the B, which is substituted by X,
has been A. The basic idea is as follows: consider the application of the matrix above to $w,
where w is a string over V \ {X, X1, X2, $, $′}. It is clear that the letter B, which is substi-
tuted by X, must have some symbol as its left context, i.e., this B cannot be the leftmost
symbol. Furthermore, if the matrix above has been successfully applied, neither of the
deletion rules in F has been applicable, as, otherwise, the substitution rule (λ, X → C, λ)
could not have been applied. Therefore, the application of these deletion rules has been
skipped during the processing of the matrix above. Because the letter B (which is eventually
substituted by X) must have some left context, but neither of the deletion rules from F has
been applicable, this means that the left context of this B could not have been a letter from
{A1, . . . , An} = V \ {A}. Hence, the left context of this B has been A. Therefore, it is easy
to see that the matrix above correctly simulates AB→ AC.

For every production rule of the form A→ BC, we add a matrix

[(λ, $→ $′, λ), (λ, A→ X1, λ), (λ, X2, λ)ins,

(λ, A′1X2, λ)del, . . . , (λ, A′nX2, λ)del, (λ, X2$′, λ)del),

(λ, X1 → B, λ)(λ, X2 → C, λ), (λ, $′ → $, λ)]

with {A′1, . . . , A′n} = V \ {X1} to Mς. The deletion rules (λ, A′1X1, λ), . . . , (λ, A′nX1, λ) and
(λ, X2$′, λ) are added to F.

Consider a string w over V \ {X, X1, X2, $, $′}. Let the matrix above be applied to
the string $w. Using the same argumentation as before, (λ, A′1X2, λ), . . . , (λ, A′nX2, λ) in F
ensure that the left context of the inserted X2 is not an element of {A′1, . . . , A′n} = V \ {X1}.
Additionally, if the matrix above has been successfully applied, then the deletion rule
(λ, X2$′, λ)del could not have been applicable, as, otherwise, the substitution rule (λ, X2 →
C, λ) could not have been be applied. Thus, X2 has not been inserted left of $′. This in turn
means that X2 must have been inserted left of X1 and, therefore, it is clear that the above
matrix simulates A→ BC.

We remark that applying any of the matrices, which simulate a production rule of G, to
a sentential form of MIDς,ac, whose leftmost symbol is $, results in a string whose leftmost
symbol remains $. By induction, we can show that S⇒∗G w iff $S=̂⇒ac∗$w.

Additionally, we can show that MATac
∗ INS0,0

1 DEL1,0
1 SUB0,0 is also computationally

complete.

Theorem 10. MATac
∗ INS0,0

1 DEL1,0
1 SUB0,0 = RE.

Algorithms 2021, 14, 131 18 of 22

Proof. The idea is the same as in Theorem 9. Replacing all the deletion rules of the form
(λ, ab, λ) in the matrices of the system constructed in Theorem 9 with deletion rules of the
form (a, b, λ) yields our claim.

This result shows that appearance checking is indeed powerful, as we have previ-
ously seen that MAT∗INS0,0

1 DEL1,0
1 SUB0,0 does not even include all regular languages.

Furthermore, we can conclude the following from this result.

Theorem 11. MATac
∗ INS0,0

2 DEL0,0
2 = RE.

Proof. All of the substitution rules occurring in matrices of the construction in Theorem 9
can be replaced, as specified in the proof of Theorem 6.

Additionally, the following can be derived from [22], based on ideas on P systems.
This is interesting, as P systems (also known as membrane systems, introduced in [23])
are another formalization of a bio-computing device, when considering a cell (abstractly
viewed as a membrane structure) as a computing mechanism.

An insertion-deletion P system is a construct Π = (O, T, µ, M1, . . . , Mn,
R1, . . . , Rn) where

• O is a finite alphabet,
• T ⊆ O is the terminal alphabet,
• µ is the tree structure of the system which has n nodes,
• Mi, 1 ≤ i ≤ n, is a finite language associated to the membrane i, and
• Ri, 1 ≤ i ≤ n, is a set of insertion and deletion rules with target indicators of the

node i. The rules are of the form: (u, x, v; tar), where (u, x, v) is an insertion rule or a
deletion rule, and tar ∈ {here, inj, out | 1 ≤ j ≤ n}.

A configuration of Π is an n-tuple (N1, . . . , Nn) of finite languages over O. The transition
between two configurations consists of applying rules in parallel to all possible strings,
non-deterministically with respect to the target indications associated with the rules. A
sequence of transitions between configurations of a given insertion-deletion P system Π
starting from the initial configuration is called a computation with respect to Π. The result
of Π’s computations is collected in the language L(Π) that consists of all strings over T
that are sent out of the root node during its computations.

An insertion-deletion P system has the priority of deletion rules over insertion rules if
a rule (u1, x1, v1; tar1), where (u1, x1, v1) is an insertion rule, is only allowed to be applied
if no rule (u2, x2, v2; tar2), where (u2, x2, v2) is a deletion rule, is applicable.

Theorem 12. MATac
∗ INS0,1

1 DEL0,0
1 = RE.

Proof. Consider an insertion-deletion P system with the priority of deletion rules over in-
sertion rules. It is known that such systems with insertion rules of size (1, 0, 1) and deletion
rules of size (1, 0, 0) are computationally complete, see [22]. We now show that such an
insertion-deletion P system with a priority of deletion rules over insertion rules can be sim-
ulated by an matrix ins-del system with the appearance checking of size (∗; 1, 0, 1; 1, 0, 0).

Let Π = (O, T, µ, M1, . . . , Mn, R1, . . . , Rn) be such a system. An equivalent matrix ins-
del system with appearance checking MIDς = (O ∪ {1, . . . , n} ∪ {X}, T, A, Mς, F), where
X is a trap symbol, is constructed, as follows. We define A = {wi | w ∈ Mi}. For every
deletion rule (λ, x, λ; tar) ∈ Ri, we add a matrix [(λ, i, λ)del, (λ, x, λ), (λ, k, λ)ins] to Mς,
where k = i if tar = here, k = j if tar = inj and k = i′ if tar = out and i′ is the parent node
of i. Furthermore, if the node i has no parent node and if the deletion rule (λ, x, λ; out) is
in Ri, then we add the matrix [(λ, i, λ)del, (λ, x, λ)] to Mς.

Algorithms 2021, 14, 131 19 of 22

Let Ki = {(λ, x1, λ), . . . , (λ, xm, λ)} denote the set of all deletion rules, which satisfy
(λ, xτ , λ; tar) ∈ Ri if (λ, xτ , λ) ∈ Ki. For every insertion rule (λ, x, v; tar) ∈ Ri, we add
the matrix

[(λ, i, λ)del, (λ, X, x1)ins, . . . , (λ, X, xm)ins, (λ, x, v), (λ, k, λ)ins]

to Mς, where k = i if tar = here, k = j if tar = inj and k = i′ if tar = out and i′ is the parent
node of i. In the case the node i has no parent node, we add

[(λ, i, λ)del, (λ, X, x1)ins, . . . , (λ, X, xm)ins, (λ, x, v), (λ, k, λ)ins]

to Mς. All insertion rules, which introduce the trap symbol X are added to F.
The basic idea is as follows. By definition of Π, an insertion rule (λ, x, v; tar) ∈ Ri can
only be applied if no deletion rule (λ, xτ , λ; out) ∈ Ri is applicable. In other words,
(λ, x, v; tar) can only be applied if the current sentential form does not have any occurrence
of x1, . . . , xm. This is simulated via the insertion rules (λ, X, x1)ins, . . . , (λ, X, xm)ins in our
matrices. Clearly, if any of these rules is applicable, then a trap symbol is introduced.
Becayse the language generated by Π consists of all words over T sent outside of the system
during the computation, it can be shown that L(Π) = L(MIDς).

4. Conclusions

Our results complement the results that were obtained in the long versions of [6,7]. In
particular, in these papers we have shown that extending ordinary ins-del systems with
substitution rules yields, in most cases, an increase in computational power. In some cases,
this increase can be quite significant. To give an overview, the main characterization results
for RE and for CS of [6] and [7] have been, as follows.

Previous Result Extended with Substitution

Size Family Size Family

(2, 0, 0; 2, 0, 0) ⊂ CF (2, 0, 0; 2, 0, 0; 1, 0) = RE

(1, 0, 0; 1, 0, 0) ⊂ REG (1, 0, 0; 1, 0, 0; 1, 1) = RE

(1, 0, 0; 0, 0, 0) ⊂ REG (1, 0, 0; 0, 0, 0; 1, 1) = CS

(1, 0, 1; 1, 0, 0) ⊂ RE (1, 0, 1; 1, 0, 0; 1, 0) = RE

The incompleteness results of systems without substitution rules can be found in [19]
([Th. 3.5] and [Th. 4.2]) and [24] [Th. 7], respectively.

We remark that deletion rules are essential for computational completeness results,
as we have shown that, even with the addition of substitution rules, systems that do not
have deletion rules lack computational power beyond CS. Furthermore, we have shown
that INS0,0

n DEL0,0
m = INS0,0

n DEL0,0
m SUB0,0, i.e., ins-del-sub systems require some context

information; otherwise, substitution rules do not offer any benefits in regards to the size
complexity of those systems.

We have shown that matrix ins-del systems do not need much context to reach
computational completeness if substitution rules and appearance checking are used. For
instance, we have shown that, in this setting, no context other than single symbol context
for deletion rules is necessary for computational completeness. In the case of no context
other than single symbol context for insertion rules, we have shown that appearance
checking is a necessary and sufficient feature for ensuring computational completeness.
Notice that the term "appearance checking” might, indeed, be a bit misleading, as it usually
applies to checking the non-applicability of certain rules. Because we (always) test for
the absence of single symbols, it might be better to formalize or interpret our results in
the context of (forbidden) random context [25–29], or, more generally speaking, to semi-
conditional (matrix) grammars. So-called generalized forbidding matrix grammars (GFM) have
been presented at ICMC 2020 (the corresponding paper will appear in the Springer LNCS

Algorithms 2021, 14, 131 20 of 22

volume 12687 of CMC21) and cover the idea of associating tests for the absence of symbols
(or even words) as a filter prior to applying a matrix. The mentioned paper uses (more
traditional) context-free rules within the matrices. In a sense, the results of our paper could
also be seen as initializing the study of generalized forbidding matrix ins-del-sub systems.
Subsequently, also studies on random context with respect to ins-del systems are also
interesting for comparison, see [30,31]. Another interpretation could be in terms of ordered
variants of matrix ins-del-sub systems, a topic so far explored only in connection with
context-free grammars [32], because ordered grammars and forbidden context grammars
mostly coincide, also see [12,33,34]. To provide an overview, our completeness results are
collected in the following table.

Normal Matrix Extended with Substitution
ins-del Systems and Appearance Checking

Size Family Size Family ac?

(2; 1, 0, 0; 1, 0, 0) (RE (2; 1, 0, 0; 1, 0, 0; 1, 0) = RE -

(2; 1, 0, 0; 0, 0, 0) (CS (2; 1, 0, 0; 0, 0, 0; 1, 0) = CS -

(∗; 1, 0, 0; 2, 0, 0) (RE (∗; 1, 0, 0; 2, 0, 0; 0, 0) = RE X

(∗; 1, 0, 0; 1, 1, 0) (RE (∗; 1, 0, 0; 1, 1, 0; 0, 0) = RE X

(∗; 2, 0, 0; 2, 0, 0) (RE (∗; 2, 0, 0; 2, 0, 0) = RE X

(∗; 1, 1, 0; 1, 0, 0) (RE (∗; 1, 1, 0; 1, 0, 0) = RE X

The incompleteness reults for normal matrix ins-del systems follow from [10] and
Theorem 1, Theorems 8, Theorem 5, and Corollary 2.

Although matrix ins-del systems extended with substitution rules are powerful de-
vices, this extension is not always sufficient for reaching computational completeness.
More precisely, our incompleteness results have been thus as follows.

Incompleteness Results

Size Family

(∗; 1, 1, 0; 1, 0, 0; 0, 0) = L(M, CF) (RE

(∗; 1, 0, 0; 1, 1, 0; 0, 0) (RE

(∗; 2, 0, 0; 2, 0, 0; 0, 0) (RE

Coming back to the original motivation of our study, that of exploring the limits
of computability with bio-computing devices, it is not that clear whether appearance
checks (which always mean that the whole, say, RNA string has to be checked for possible
sites where a rule might apply) can be efficiently implemented in real bio-computing
mechanisms. Yet, they may serve as a yardstick, showing what is possible and also
indicating in which way one might want to modify the formalisms in order to achieve
computational completeness with smaller context dependencies for the different types of
rules. Conversely, we suppose that, if bio-computing devices based on processing RNA
or other large molecules leaves the experimental laboratories one day, turning into an
industrial-strength technology, then computational completeness results, as presented in
this paper on matrix ins-del-sub systems, as well as in previous papers for ins-del-sub
systems, may serve as a basis of implementing compilers and so forth to master these
future machines.

Author Contributions: Conceptualization, H.F.; writing—original draft preparation, M.V.; writing—
review and editing, H.F., M.V.; supervision, H.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Algorithms 2021, 14, 131 21 of 22

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DNA Deoxyribonucleic acid
RNA Ribonucleic acid
RE Recursively enumerable (languages)
CS Context-sensitive (languages)
CF Context-free (languages)
REG Regular (languages)
ac Appearance checking
INS/ins Insertion
DEL/del Deletion
SUB/sub Substitution
MAT/M Matrix
P system Păun (membrane) system

References
1. Kari, L. On Insertions and Deletions in Formal Languages. Ph.D. Thesis, University of Turku, Turku, Finland, 1991.
2. Kari, L.; Păun, Gh.; Thierrin, G.; Yu, S. At the crossroads of DNA computing and formal languages: Characterizing recursively

enumerable languages using insertion-deletion systems. In DNA Based Computers III; the Center for Discrete Mathematics and
Theoretical Computer Science: Piscataway, NJ, USA; the Association for Computer Machinery (ACM): NewYork, NY, USA,1999;
Volume 48, pp. 329–338.

3. Beaver, D. Computing with DNA. J. Comput. Biol. 1995, 2, 1–7. [CrossRef] [PubMed]
4. Kari, L. DNA computing: Arrival of biological mathematics. Math. Intell. 1997, 19, 9–22.
5. Freund, R.; Rogozhin, Y.; Verlan, S. Generating and accepting P systems with minimal left and right insertion and deletion.

Nat. Comput. 2014, 13, 257–268. [CrossRef]
6. Vu, M.; Fernau, H. Insertion-Deletion Systems With Substitutions I. Computability in Europe, CiE; Anselmo, M., Vedova, G.D., Manea,

F., Pauly, A., Eds.; Springer Nature Switzerland AG, 2020; Volume 12098, pp. 366–378.
7. Vu, M.; Fernau, H. Insertion-Deletion Systems With Substitutions II. In Proceedings of the Descriptional Complexity of Formal

Systems—22nd International Conference, DCFS, Vienna, Austria, 24–26 August 2020; Jiraskova, G., Pighizzini, G., Eds.; Springer
Nature Switzerland AG, 2020; Volume 12442, pp. 231–243.

8. Vu, M. On Insertion-Deletion Systems with Substitution Rules. Master’s Thesis, Informatikwissenschaften, Universität Trier,
Trier, Germany, 2019.

9. Kuppusamy, L.; Mahendran, A.; Krishna, S.N. On Representing Natural Languages and Bio-molecular Structures using Matrix
Insertion-deletion Systems and its Computational Completeness. In Proceedings of the 1st International Workshop on AI
Methods for Interdisciplinary Research in Language and Biology (ICAART 2011), Rome, Italy, 28–30 January 2011; pp. 47–56.

10. Petre, I.; Verlan, S. Matrix insertion-deletion systems. Theor. Comput. Sci. 2012, 456, 80–88. [CrossRef]
11. Ábrahám, S. Some questions of phrase-structure grammars, I. Comput. Linguist. 1965, 4, 61–70.
12. Dassow, J.; Păun, Gh. Regulated Rewriting in Formal Language Theory; EATCS Monographs in Theoretical Computer Science;

Springer-Verlag: Berlin/Heidelberg, Germany, 1989; Volume 18.
13. Alhazov, A.; Krassovitskiy, A.; Rogozhin, Y.; Verlan, S. Small size insertion and deletion systems. In Applications of Language

Methods; Martin-Vide, C., Ed.; Imperial College Press: River Edge, NJ, USA, 2010; pp. 459–515.
14. Verlan, S. Recent Developments on Insertion-Deletion Systems. Comput. Sci. J. Mold. 2010, 18, 210–245.
15. Kuppusamy, L.; Mahendran, A.; Krishna, S.N. Matrix Insertion-Deletion Systems for Bio-Molecular Structures. In Proceedings

of the Distributed Computing and Internet Technology—7th International Conference, ICDCIT, Bhubaneshwar, India, 9–12
February 2011; Natarajan, R., Ojo, A.K., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; Volume 6536, pp. 301–312.

16. Fernau, H.; Kuppusamy, L.; Raman, I. Investigations on the power of matrix insertion-deletion systems with small sizes. Nat.
Comput. 2018, 17, 249–269. [CrossRef]

17. Fernau, H.; Kuppusamy, L.; Raman, I. On Matrix Ins-Del Systems of Small Sum-Norm. In SOFSEM: Theory and Practice of
Computer Science; Catania, B., Královič, R., Nawrocki, J., Pighizzini, G., Eds.; Springer Nature Switzerland AG, 2019; Volume
11376, pp. 192–205.

18. Krassovitskiy, A.; Rogozhin, Y.; Verlan, S. Computational power of insertion-deletion (P) systems with rules of size two. Nat.
Comput. 2011, 10, 835–852. [CrossRef]

19. Verlan, S. On Minimal Context-Free Insertion-Deletion Systems. J. Autom. Lang. Comb. 2007, 12, 317–328.
20. Hauschildt, D.; Jantzen, M. Petri net algorithms in the theory of matrix grammars. Acta Inform. 1994, 31, 719–728. [CrossRef]
21. Penttonen, M. One-sided and two-sided context in formal grammars. Inf. Control (Now Inf. Comput.) 1974, 25, 371–392. [CrossRef]

http://doi.org/10.1089/cmb.1995.2.1
http://www.ncbi.nlm.nih.gov/pubmed/7497113
http://dx.doi.org/10.1007/s11047-013-9396-3
http://dx.doi.org/10.1016/j.tcs.2012.07.002
http://dx.doi.org/10.1007/s11047-017-9656-8
http://dx.doi.org/10.1007/s11047-010-9208-y
http://dx.doi.org/10.1007/BF01178731
http://dx.doi.org/10.1016/S0019-9958(74)91049-3

Algorithms 2021, 14, 131 22 of 22

22. Alhazov, A.; Krassovitskiy, A.; Rogozhin, Y.; Verlan, S. P systems with minimal insertion and deletion. Theor. Comput. Sci. 2011,
412, 136–144. [CrossRef]

23. Păun, G. Computing with Membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [CrossRef]
24. Matveevici, A.; Rogozhin, Y.; Verlan, S. Insertion-Deletion Systems with One-Sided Contexts. In Proceedings of the Machines,

Computations, and Universality, 5th International Conference, MCU, Orléans, France, 10–13 September 2007; Durand-Lose, J.O.,
Margenstern, M., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2007; Volume 4664, pp. 205–217.

25. Fernau, H.; Kuppusamy, L.; Raman, I. Descriptional Complexity of Matrix Simple Semi-conditional Grammars. In Proceedings
of the Descriptional Complexity of Formal Systems—21st IFIP WG 1.02 International Conference, DCFS; Hospodár, M., Jirásková,
G., Konstantinidis, S., Eds.; Springer Nature Switzerland AG, 2019; Volume 11612, pp. 111–123.

26. Fernau, H.; Kuppusamy, L.; Oladele, R.O.; Raman, I. Improved descriptional complexity results on generalized forbidding
grammars. Discret. Appl. Math. 2021. [CrossRef]

27. Meduna, A. Generalized forbidding grammars. Int. J. Comput. Math. 1990, 36, 31–39. [CrossRef]
28. Păun, Gh. A variant of random context grammars: semi-conditional grammars. Theor. Comput. Sci. 1985, 41, 1–17. [CrossRef]
29. van der Walt, P.J. Random context languages. In Processing IFIP Congress; North-Holland Publishing Company: Amsterdam, The

Netherlands, 1972; pp. 66–68.
30. Fernau, H.; Kuppusamy, L.; Raman, I. Computational Completeness of Simple Semi-conditional Insertion-Deletion Systems.

In Unconventional Computation and Natural Computation, UCNC; Stepney, S., Verlan, S., Eds.; Springer International Publishing AG,
part of Springer Nature, 2018; Volume 10867, pp. 86–100.

31. Ivanov, S.; Verlan, S. Random Context and Semi-conditional Insertion-deletion Systems. Fundam. Inform. 2015, 138, 127–144.
[CrossRef]

32. Dassow, J.; Păun, G. On ordered variants of some regulated grammars. J. Inf. Process. Cybern. EIK 1985, 21, 491–504.
33. Fernau, H. Closure properties of ordered languages. EATCS Bull. 1996, 58, 159–162.
34. Freund, R. A General Framework for Sequential Grammars with Control Mechanisms. In Proceedings of the Descriptional

Complexity of Formal Systems—21st International Conference, DCFS, Košice, Slovakia, 17–19 July 2019; Hospodár, M., Jirásková,
G., Konstantinidis, S., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; Volume 11612, pp. 1–34.

http://dx.doi.org/10.1016/j.tcs.2010.08.025
http://dx.doi.org/10.1006/jcss.1999.1693
http://dx.doi.org/10.1016/j.dam.2020.12.027
http://dx.doi.org/10.1080/00207169008803908
http://dx.doi.org/10.1016/0304-3975(85)90056-8
http://dx.doi.org/10.3233/FI-2015-1203

	Introduction
	Definitions
	Matrix Grammars
	Insertion-Deletion Systems
	Combining Ideas: Matrix Insertion-Deletion Systems
	Adding Substitutions
	Appearance Checking: An Additional Feature

	Computational (In-)Completeness Results
	A Normal Form Theorem
	One-Sided Context Dependence
	Computational Completeness
	Computational Incompleteness

	Context-Free Substitutions Do Not Always Help
	One-Sided Substitutions
	Adding Appearance Checking

	Conclusions
	References

