Diagnosing Schizophrenia Using Effective Connectivity of Resting-State EEG Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. EEG Data
2.3. Data Pre-Processing
2.4. EEG-STE
2.5. Machine Learning
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Available online: https://www.who.int/mental_health/management/schizophrenia/en/ (accessed on 4 October 2019).
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for The Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A.; Hasan, A.; Gruber, O.; Falkai, P. Schizophrenia as a disorder of disconnectivity. Eur. Arch. Psychiatry Clin. Neurosci. 2011, 261, S150–S154. [Google Scholar] [CrossRef] [Green Version]
- Pachou, E.; Vourkas, M.; Simos, P.; Smit, D.; Stam, C.J.; Tsirka, V.; Micheloyannis, S. Working Memory in Schizophrenia: An EEG Study Using Power Spectrum and Coherence Analysis to Estimate Cortical Activation and Network Behavior. Brain Topogr. 2008, 21, 128–137. [Google Scholar] [CrossRef]
- Fujimoto, T.; Okumura, E.; Takeuchi, K.; Kodabashi, A.; Otsubo, T.; Nakamura, K.; Kamiya, S.; Higashi, Y.; Yuji, T.; Honda, K.; et al. Dysfunctional Cortical Connectivity During the Auditory Oddball Task in Patients with Schizo-phrenia. Open Neuroimag. J. 2013, 7, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Ravan, M.; Hasey, G.; Reilly, J.P.; MacCrimmon, D.; Khodayari-Rostamabad, A. A Machine Learning Approach Using Audi-tory Odd-ball Responses to Investigate the Effect of Clozapine Therapy. Clin. Neurophysiol. 2015, 126, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Cabral, J.; Kringelbach, M.L.; Deco, G. Exploring the network dynamics underlying brain activity during rest. Prog. Neurobiol. 2014, 114, 102–131. [Google Scholar] [CrossRef] [Green Version]
- Khodayari-Rostamabad, A.; Hasey, G.; MacCrimmon, D.; Reilly, J.P.; de Bruin, H. A Pilot Study to Determine Whether Ma-chine Learning Methodologies Using Pre-Treatment Electroencephalography Can Predict the Symptomatic Response to Clozapine Therapy. Clin. Neurophysiol. 2010, 121, 1998–2006. [Google Scholar] [CrossRef] [PubMed]
- Ravan, M.; Sabesan, S.; D’Cruz, O. On Quantitative Biomarkers of VNS Therapy Using EEG and ECG Signals. IEEE Trans. Biomed. Eng. 2017, 64, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Masychev, K.; Ciprian, C.; Ravan, M.; Manimaran, A.; Deshmukh, A. Quantitative biomarkers to predict response to clozapine treatment using resting EEG data. Schizophr. Res. 2020, 223, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Boostani, R.; Sadatnezhad, K.; Sabeti, M. An efficient classifier to diagnose of schizophrenia based on the EEG signals. Expert Syst. Appl. 2009, 36, 6492–6499. [Google Scholar] [CrossRef]
- Khodayari-Rostamabad, A.; Reilly, J.P.; Hasey, G.M.; de Bruin, H.; MacCrimmon, D.J. Diagnosis of Psychiatric Disorders Us-ing EEG Data and Employing a Statistical Decision Model. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar]
- Sabeti, M.; Katebi, S.; Boostani, R.; Price, G. A new approach for EEG signal classification of schizophrenic and control participants. Expert Syst. Appl. 2011, 38, 2063–2071. [Google Scholar] [CrossRef]
- Langdon, W.B.; Poli, R. Foundations of Genetic Programming; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Thilakvathi, B.; Shenbaga Devi, S.; Bhanu, K.; Malaippan, M. EEG Signal Complexity Analysis for Schizophrenia during Rest and Mental Activity. Biomed. Res. 2017, 28, 1–9. [Google Scholar]
- Liu, H.; Zhang, T.H.; Ye, Y.; Pan, C.; Yang, G.; Wang, J.J.; Qiu, R. A Data Driven Approach for Resting-state EEG signal Clas-sification of Schizophrenia with Control Participants Using Random Matrix Theory. arXiv 2018, arXiv:1712.05289. [Google Scholar]
- Phang, C.R.; Ting, C.M.; Noman, F.; Ombao, H. Classification of EEG-Based Brain Connectivity Networks in Schizophrenia Using a Multi-Domain Connectome Convolutional Neural Network. arXiv 2019, arXiv:1903.08858. [Google Scholar]
- Li, F.; Wang, J.; Liao, Y.; Yi, C.; Jiang, Y.; Si, Y.; Peng, W.; Yao, D.; Zhang, Y.; Dong, W.; et al. Differentiation of Schizophre-nia by Combining the Spatial EEG Brain Network Patterns of Rest and Task P300. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 594–602. [Google Scholar] [CrossRef]
- Oh, S.L.; Vicnesh, J.; Ciaccio, E.J.; Yuvaraj, R.; Acharya, U.R. Deep Convolutional Neural Network Model for Automated Diagnosis of Schizophrenia Using EEG Signals. Appl. Sci. 2019, 9, 2870. [Google Scholar] [CrossRef] [Green Version]
- Jahmunah, V.; Oh, S.L.; Rajinikanth, V.; Ciaccio, E.J.; Cheong, K.H.; Arunkumar, N.; Rajendra Acharya, U. Automated Detection of Schizophrenia Using Nonlinear Signal Processing Methods. Artif. Intell. Med. 2019, 100, 101698. [Google Scholar] [CrossRef]
- Buettner, R.; Beil, D.; Scholtz, S.; Djemai, A. Development of a Machine Learning Based Algorithm To Accurately Detect Schizophrenia based on One-minute EEG Recordings. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Wailea, HI, USA, 7–10 January 2020. [Google Scholar] [CrossRef] [Green Version]
- Racz, F.S.; Stylianou, O.; Mukli, P.; Eke, A. Multifractal and Entropy-Based Analysis of Delta Band Neural Activity Reveals Altered Functional Connectivity Dynamics in Schizophrenia. Front. Syst. Neurosci. 2020, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Goshvarpour, A. Schizophrenia diagnosis using innovative EEG feature-level fusion schemes. Phys. Eng. Sci. Med. 2020, 43, 227–238. [Google Scholar] [CrossRef]
- Baradits, M.; Bitter, I.; Czobor, P. Multivariate patterns of EEG microstate parameters and their role in the discrimination of patients with schizophrenia from healthy controls. Psychiatry Res. 2020, 288, 112938. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Lee, H.S.; Lee, S.-H. EEG Source Network for the Diagnosis of Schizophrenia and the Identification of Subtypes Based on Symptom Severity—A Machine Learning Approach. J. Clin. Med. 2020, 9, 3934. [Google Scholar] [CrossRef] [PubMed]
- Koleva, N. When and When Not to Use Deep Learning; Dataiku: New York, NY, USA, 2020. [Google Scholar]
- Friston, K.J. Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapp. 1994, 2, 56–78. [Google Scholar] [CrossRef]
- Vicente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer Entropy-A Model-Free Measure of Effective Connectivity for the Neu-rosciences. J. Comput. Neurosci. 2011, 30, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Faes, L.; Marinazzo, D.; Stramaglia, S. Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes. Entropy 2017, 19, 408. [Google Scholar] [CrossRef] [Green Version]
- Barnett, L.; Barrett, A.B.; Seth, A.K. Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables. Phys. Rev. Lett. 2009, 103, 238701. [Google Scholar] [CrossRef] [Green Version]
- Antonacci, Y.; Astolfi, L.; Nollo, G.; Faes, L. Information Transfer in Linear Multivariate Processes Assessed through Penalized Regression Techniques: Validation and Application to Physiological Networks. Entropy 2020, 22, 732. [Google Scholar] [CrossRef]
- Kaiser, A.; Schreiber, T. Information Transfer in Continuous Processes Physica D: Nonlin. Phenomena 2002, 166, 43–62. [Google Scholar]
- Verdes, P.F. Assessing causality from multivariate time series. Phys. Rev. E Stat. Nonlin. Bio. Soft Matter Phys. 2005, 72, 026222. [Google Scholar] [CrossRef]
- Lungarella, M.; Pitti, A.; Kuniyoshi, Y. Information transfer at multiple scales. Phys. Rev. E Stat. Nonlin. Bio. Soft Matter Phys. 2007, 76, 056117. [Google Scholar] [CrossRef] [Green Version]
- Staniek, M.; Lehnertz, K. Symbolic Transfer Entropy. Phys. Rev. Lett. 2008, 100, 158101. [Google Scholar] [CrossRef]
- Jordan, D.; Ilg, R.; Schneider, G.; Stockmanns, G.; Kochs, E.F. EEG Measures Indicating Anesthesia Induced Changes of Cortical Information Processing. Biomed. Tech. 2013, 58 (Suppl. 1G), 139–140. [Google Scholar]
- Lehnertz, K.; Dickten, H. Assessing directionality and strength of coupling through symbolic analysis: An application to epilepsy patients. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2015, 373, 20140094. [Google Scholar] [CrossRef]
- Zhou, G.; Pan, Y.; Yang, J.; Zhang, X.; Guo, X.; Luo, Y. Sleep Electroencephalographic Response to Respiratory Events in Pa-tients with Moderate Sleep Apnea–Hypopnea Syndrome. Front. Neurosci. 2020, 14, 310. [Google Scholar] [CrossRef]
- Ciprian, C.; Masychev, K.; Ravan, M.; Manimaran, A.; Deshmukh, A. A Machine Learning Approach Using Effective Con-nectivity to Predict Response to Clozapine Treatment. IEEE Trans. Neural. Syst. Rehabil. Eng. 2020, 28, 2598–2607. [Google Scholar] [CrossRef] [PubMed]
- Diagnostic and Statistical Manual of Mental Disorders: DSM-IV, 4th ed.; American Psychiatric Association: Washington, DC, USA, 1994.
- Jasper, H.H. The Ten-Twenty Electrode System of the International Federation. EEG Clin. Neurophysiol. 1958, 10, 371–375. [Google Scholar]
- Castellanos, N.P.; Makarov, V.A. Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. J. Neurosci. Methods 2006, 158, 300–312. [Google Scholar] [CrossRef]
- EEGapp, BIAPT lab, McGill University. Available online: https://github.com/BIAPT/EEGapp/wiki (accessed on 23 December 2017).
- Liu, H.; Motoda, H. Computational Methods of Feature Selection, 1st ed.; Chapman & Hall: Boca Raton, FL, USA, 2008. [Google Scholar]
- Elisseeff, G.A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Urbanowicz, R.J.; Meeker, M.; La Cava, W.; Olson, R.S.; Moore, J.H. Relief-based feature selection: Introduction and review. J. Biomed. Inform. 2018, 85, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Bhavsar, R.; Sun, Y.; Helian, N.; Davey, N.; Mayor, D.; Steffert, T. The Correlation between EEG Signals as Measured in Different Positions on Scalp Varying with Distance. Procedia Comput. Sci. 2018, 123, 92–97. [Google Scholar] [CrossRef]
- Parvandeh, S.; Yeh, H.-W.; Paulus, M.P.; McKinney, B.A. Consensus features nested cross-validation. Bioinformatics 2020, 36, 3093–3098. [Google Scholar] [CrossRef] [PubMed]
- Gavin, C.C.; Talbot, N.L.C. On Over-Fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation. J. Mach. Learn. Res. 2017, 11, 2079–2107. [Google Scholar]
- Brownlee, J. Master Machine Learning Algorithms: Discover How They Work and Implement Them from Scratch; Machine Learning Mastery: Melbourne, VIC, Australia, 2016. [Google Scholar]
- Bashashati, H.; Ward, R.K.; Birch, G.E.; Bashashati, A. Comparing Different Classifiers in Sensory Motor Brain Computer Interfaces. PLoS ONE 2015, 10, e0129435. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.H.K. On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality. Data Min. Knowl. Discov. 1997, 1, 55–77. [Google Scholar] [CrossRef]
- Borisoff, J.F.; Mason, S.G.; Bashashati, A.; Birch, G.E. Brain–Computer Interface Design for Asynchronous Control Applications: Improvements to the LF-ASD Asynchronous Brain Switch. IEEE Trans. Biomed. Eng. 2004, 51, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification; Department of Computer Science, National Taiwan University: Taipei, Taiwan, 2003. [Google Scholar]
- Criminisi, A.; Shotton, J. Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning; Microsoft Research Ltd.: Cambridge, UK, 2012. [Google Scholar]
- Platt, J. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines; MSR-TR-98-14; Microsoft Research Ltd.: Cambridge, UK, 1988. [Google Scholar]
- Olejarczyk, E.; Jernajczyk, W. Graph-based analysis of brain connectivity in schizophrenia. PLoS ONE 2017, 12, e0188629. [Google Scholar] [CrossRef] [PubMed]
- Olejarczyk, E.; Jernajczyk, W. EEG in schizophrenia. RepOD 2017. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tohid, H.; Faizan, M.; Faizan, U. Alterations of the occipital lobe in schizophrenia. Neurosciences 2015, 20, 213–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maller, J.J.; Anderson, R.J.; Thomson, R.H.; Daskalakis, Z.J.; Rosenfeld, J.V.; Fitzgerald, P.B. Occipital Bending in Schizophrenia. Aust. N. Z. J. Psychiatry 2017, 51, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki, Y.; Sumiyoshi, T.; Higuchi, Y.; Ito, T.; Takeuchi, M.; Kurachi, M. Voxel-based analysis of P300 electrophysiological topography associated with positive and negative symptoms of schizophrenia. Schizophr. Res. 2007, 94, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Jalili, M.; Lavoie, S.; Deppen, P.; Meuli, R.; Do, K.Q.; Cuénod, M.; Hasler, M.; Feo, O.D.; Knyazeva, M.G. Dysconnection To-pography in Schizophrenia Revealed with State-Space Analysis of EEG. PLoS ONE 2007, 2, e1059. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T.; Cho, R.Y.; Mizuno, T.; Kikuchi, M.; Murata, T.; Takahashi, K.; Wada, Y. Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: A multiscale entropy analysis. NeuroImage 2010, 51, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Ohi, K.; Matsuda, Y.; Shimada, T.; Yasuyama, T.; Oshima, K.; Sawai, K.; Kihara, H.; Nitta, Y.; Okubo, H.; Uehara, T.; et al. Structural alterations of the superior temporal gyrus in schizophrenia. Eur. Psychiatry 2016, 35, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Nakagome, K.; Itakura, M.; Iwata, M.; Nagata, I.; Kaneko, K. Association of fronto-temporal function with cognitive ability in schizophrenia. Sci. Rep. 2017, 7, 42858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibáñez-Molina, A.J.; Lozano, V.; Soriano, M.F.; Aznarte, J.I.; Gómez-Ariza, C.J.; Bajo, M.T. EEG Multiscale Complexity in Schizophrenia During Picture Naming. Front. Physiol. 2018, 9, 1213. [Google Scholar] [CrossRef] [Green Version]
- Harmah, D.J.; Li, C.; Li, F.; Liao, Y.; Wang, J.; Ayedh, W.M.A.; Bore, J.C.; Yao, D.; Dong, W.; Xu, P. Measuring the Non-linear Directed Information Flow in Schizophrenia by Multivariate Transfer Entropy. Front. Comput. Neurosci. 2020, 13. [Google Scholar] [CrossRef]
- Fuentes-Claramontea, P.; Martin-Suberoa, M.; Salgado-Pinedaa, P.; Santo-Anglesa, A.; Argila-Plazaa, I.; Salavertc, J.; Arévaloe, A.; Bosquef, C.; Sarrif, C.; Guerrero-Pedrazaf, A.; et al. Brain imaging correlates of self- and other-reflection in schizophrenia. Neuroimage Clin. 2020, 25, 102134. [Google Scholar] [CrossRef] [PubMed]
- Sponheim, S.R.; Clementz, B.A.; Iacono, W.G.; Beiser, M. Resting EEG in first-episode and chronic schizophrenia. Psychophysiol. 1994, 31, 37–43. [Google Scholar] [CrossRef]
- Uhlhaas, P.J.; Singer, W. Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 2010, 11, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Muller, K.-R.; Mika, S.; Ratsch, G.; Tsuda, K.; Schoelkopf, B. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 2001, 12, 181–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Article | # of Features | Classifier | Best Accuracy | EEG Dataset |
---|---|---|---|---|
Boostani et al. (2009) [11] | 286 | BDLDA | 87.51% | 13 SCZs and 18 HCs |
Khodayari et al. (2010) [12] | 42 | MFA | 87.1% | 40 SCZs, 64 MDDs, and 91 HCs |
Sabeti et al. (2011) [13] | 80 | Adaboost | 91.94% | 20 SCZs and 20 HCs |
Thilakvathi et al. (2017) [15] | 10 | SVM | 80% | 55 SCZs and 23 HCs |
Liu et al. (2018) [16] | 1500 | SVM | 91.16% | 40 SCZs and 40 HCs |
Phang et al. (2019) [17] | 2730 | MDC-CNN | 93.06% | 45 SCZs and 39 HCs |
Li et al. (2019) [18] | 4 | SVM | 88.10% | 19 SCZs and 23 HCs |
Oh et al. (2019) [19] | - | CNN | 81.26% | 14 SCZs and 14 HCs |
Jahmunah et al. (2019) [20] | 14 | SVM | 92.91% | 14 SCZs and 14 HCs |
Buettner et al. (2020) [21] | 200 | RF | 96.77% | 14 SCZs and 14 HCs |
Racz et al. (2020) [22] | 21 | RF | 89.29% | 14 SCZ and 14 HCs |
Goshvarpour et al. (2020) [23] | 19 | PNN | 100% | 14 SCZs and 14 HCs |
Baradits et al. (2020) [24] | 14 | SVM | 82.7% | 70 SCZs and 75 HCs |
Kim et al. (2020) [25] | 27 | LDA | 80.66% | 119 SCZs and 119 HCs |
Feature # | Frequency Band | Effective Connectivity Feature |
---|---|---|
1 | C3 to T3 | |
2 | P3 to T3 | |
3 | P4 to T4 | |
4 | O1 to Oz | |
5 | O1 to O2 | |
6 | O1 to O2 | |
7 | Fp1 to F4 | |
8 | F8 to T4 | |
9 | C3 to T3 | |
10 | O1 to O2 |
Classifier | Sensitivity | Specificity | Precision | Total Accuracy | F1-Score | MCC | |
---|---|---|---|---|---|---|---|
Training Performance | GNB | 97.97% | 95.71% | 95.33% | 96.78% | 0.97 | 0.94 |
LDA | 91.53% | 99.29% | 99.12% | 96.78% | 0.95 | 0.91 | |
SVM | 98.38% | 98.93% | 98.82% | 98.68% | 0.99 | 0.97 | |
KNN | 95.56% | 98.57% | 98.33% | 97.15% | 0.97 | 0.94 | |
RF | 100% | 100% | 100% | 100% | 1 | 1 | |
Test Performance | GNB | 96.67% | 94.28% | 93.81% | 95.44% | 0.95 | 0.91 |
LDA | 88.59% | 97.14% | 96.33% | 95.44% | 0.92 | 0.86 | |
SVM | 91.92% | 97.14% | 96.92% | 94.67% | 0.94 | 0.90 | |
KNN | 95.00% | 98.57% | 98.33% | 96.92% | 0.97 | 0.94 | |
RF | 95.12% | 95.71% | 95.48% | 95.47% | 0.95 | 0.91 |
Classifier | Sensitivity | Specificity | Precision | Total Accuracy | F1-Score | MCC |
---|---|---|---|---|---|---|
GNB | 90% | 91.43% | 91.32% | 90.71% | 0.90 | 0.81 |
LDA | 90% | 91.43% | 91.32% | 90.71% | 0.90 | 0.81 |
SVM | 95.71% | 100% | 100% | 97.86% | 0.98 | 0.96 |
KNN | 95.71% | 100% | 100% | 97.86% | 0.98 | 0.96 |
RF | 95.71% | 100% | 100% | 97.86% | 0.98 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciprian, C.; Masychev, K.; Ravan, M.; Manimaran, A.; Deshmukh, A. Diagnosing Schizophrenia Using Effective Connectivity of Resting-State EEG Data. Algorithms 2021, 14, 139. https://doi.org/10.3390/a14050139
Ciprian C, Masychev K, Ravan M, Manimaran A, Deshmukh A. Diagnosing Schizophrenia Using Effective Connectivity of Resting-State EEG Data. Algorithms. 2021; 14(5):139. https://doi.org/10.3390/a14050139
Chicago/Turabian StyleCiprian, Claudio, Kirill Masychev, Maryam Ravan, Akshaya Manimaran, and AnkitaAmol Deshmukh. 2021. "Diagnosing Schizophrenia Using Effective Connectivity of Resting-State EEG Data" Algorithms 14, no. 5: 139. https://doi.org/10.3390/a14050139
APA StyleCiprian, C., Masychev, K., Ravan, M., Manimaran, A., & Deshmukh, A. (2021). Diagnosing Schizophrenia Using Effective Connectivity of Resting-State EEG Data. Algorithms, 14(5), 139. https://doi.org/10.3390/a14050139