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Abstract: This article describes a set of methods for quickly computing the solution to the regularized
optimal transport problem. It generalizes and improves upon the widely used iterative Bregman
projections algorithm (or Sinkhorn–Knopp algorithm). We first proposed to rely on regularized
nonlinear acceleration schemes. In practice, such approaches lead to fast algorithms, but their
global convergence is not ensured. Hence, we next proposed a new algorithm with convergence
guarantees. The idea is to overrelax the Bregman projection operators, allowing for faster convergence.
We proposed a simple method for establishing global convergence by ensuring the decrease of a
Lyapunov function at each step. An adaptive choice of the overrelaxation parameter based on the
Lyapunov function was constructed. We also suggested a heuristic to choose a suitable asymptotic
overrelaxation parameter, based on a local convergence analysis. Our numerical experiments showed
a gain in convergence speed by an order of magnitude in certain regimes.

Keywords: optimal transport; Sinkhorn–Knopp algorithm; overrelaxation

1. Introduction

Optimal transport (OT) is an efficient and flexible tool to compare two probability
distributions, which has been popularized in the computer vision community in the
context of discrete histograms [1]. The introduction of entropic regularization of the
optimal transport problem in [2] has made possible the use of the fast Sinkhorn–Knopp
algorithm [3], scaling with high-dimensional data. Regularized optimal transport has thus
been intensively used in machine learning with applications such as geodesic PCA [4],
domain adaptation [5], data fitting [6], training of a Boltzmann machine [7], or dictionary
learning [8,9].

The computation of optimal transport between two data relies on the estimation of an
optimal transport matrix, the entries of which represent the quantity of mass transported
between data locations. Regularization of optimal transport with strictly convex regulariza-
tion [2,10], nevertheless, involves a spreading of the mass. Hence, for particular purposes
such as color interpolation [11] or gradient flow [12], it is necessary to consider small
parameters ε for the entropic regularization term. The Sinkhorn–Knopp (SK) algorithm is a
state-of-the-art algorithm to solve the regularized transport problem. The SK algorithm
performs alternated projections, and the sequence of generated iterates converges to a
solution of the regularized transport problem. Unfortunately, the lower ε is, the slower
the SK algorithm converges. To improve the convergence rate of the SK algorithm, several
acceleration strategies have been proposed in the literature, based for example on mixing
or overrelaxation.
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1.1. Accelerations of the Sinkhorn–Knopp Algorithm

In the literature, several accelerations of the Sinkhorn–Knopp algorithm have been
proposed, using for instance greedy coordinate descent [13] or screening strategies [14].
In another line of research, the introduction of relaxation variables through heavy ball
approaches [15] has recently gained popularity to speed up the convergence of algorithms
optimizing convex [16] or non-convex [17,18] problems. In this context, the use of reg-
ularized nonlinear accelerations (RNAs) [19–21] based on Anderson mixing has led to
important numerical improvements, although the global convergence is not guaranteed
with such approaches, as is shown further. In this paper, we also investigated another
approach related to the successive overrelaxation (SOR) algorithm [22], which is a classical
way to solve linear systems. Similar schemes have been empirically considered to accelerate
the SK algorithm in [9,23]. The convergence of these algorithms has nevertheless not been
studied yet in the context of regularized optimal transport.

Recent progress has been made on computational complexity guarantees for the Sinkhorn–
Knopp algorithm and accelerated versions [13,24–26]. Since the methods we discuss in this
paper are based on asymptotic acceleration techniques, it is challenging to show their efficiency
via global computational complexity guarantee, and we do not cover these aspects here.

1.2. Overview and Contributions

The contribution of this paper is twofold. First, the numerical efficiency of the RNA
methods applied to the SK algorithm to solve the regularized transport problem is shown.
Second, a new extrapolation and relaxation technique for accelerating the Sinkhorn–Knopp
(SK) algorithm while ensuring convergence is given. The numerical efficiency of this new
algorithm is demonstrated, and a heuristic rule is also proposed to improve the rate of
the algorithm.

Section 2 is devoted to the Sinkhorn–Knopp algorithm. In Section 3, we propose to
apply regularized nonlinear acceleration (RNA) schemes to the SK algorithm. We experi-
mentally show that such methods lead to impressive accelerations for low values of the
entropic regularization parameter. In order to have a globally converging method, we then
propose a new overrelaxed algorithm: Sinkhorn–Knopp with successive overrelaxation
(SK-SOR). In Section 4, we show the global convergence of this algorithm and analyze
its local convergence rate to justify the acceleration. We finally demonstrate numerically
in Section 5 the interest of our method. Larger accelerations are indeed observed for
decreasing values of the entropic regularization parameter.

Remark 1. This paper is an updated version of an unpublished work [27] presented at the NIPS
2017 Workshop on Optimal Transport & Machine Learning. In the meantime, complementary
results on the global convergence of our method presented in Section 4 were provided in [28]. The au-
thors showed the existence of a parameter θ0 such that both global convergence and local acceleration
were ensured for overrelaxation parameters ω ∈ (1, θ0). This result was nevertheless theoretical,
and the numerical estimation of θ0 is still an open question. With respect to our unpublished
work [27], the current article presents an original contribution in Section 3: the application of RNA
methods to accelerate the convergence of the SK algorithm.

2. Sinkhorn Algorithm

Before going into further details, we now briefly introduce the main notations and
concepts used throughout this article.

2.1. Discrete Optimal Transport

We considered two discrete probability measures µk ∈ Rnk
+∗. Let us define the two

following linear operators:

A1 :

{
Rn1n2 → Rn1

(A1x)i = ∑j xi,j
A2 :

{
Rn1n2 → Rn2

(A2x)j = ∑i xi,j,
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as well as the affine constraint sets:

Ck = {γ ∈ Rn1n2 | Akγ = µk}.

Given a cost matrix c with nonnegative coefficients, where ci,j represents the cost of
moving mass (µ1)i to (µ2)j, the optimal transport problem corresponds to the estimation
of an optimal transport matrix γ solution of:

min
γ∈C1 ∩ C2 ∩R

n1n2
+

〈c, γ〉 := ∑
i,j

ci,jγi,j.

This is a linear programming problem whose resolution becomes intractable for
large problems.

2.2. Regularized Optimal Transport

In [2], it was proposed to regularize this problem by adding a strictly convex entropy
regularization:

min
γ∈C1 ∩ C2 ∩R

n1n2
+

Kε(γ) := 〈c, γ〉+ ε KL(γ, 1), (1)

with ε > 0, 1 the matrix of size n1 × n2 full of ones, and the Kullback–Leibler divergence is:

KL(γ, ζ) = ∑
i,j

γi,j

(
log

(
γi,j

ζi,j

)
− 1

)
+ ∑

i,j
ζi,j (2)

with the convention 0 log 0 = 0. It was shown in [29] that the regularized optimal transport
matrix γ∗, which is the unique minimizer of Problem (1), is the Bregman projection of
γ0 = e−c/ε (here and in the sequel, exponentiation is meant entry-wise) onto C1 ∩ C2:

γ∗ = argmin
C1 ∩ C2

Kε(γ) = PC1 ∩ C2(e
−c/ε), (3)

where PC is the Bregman projection onto C defined as:

PC(ζ) := argmin
γ∈C

KL(γ, ζ).

2.3. Sinkhorn–Knopp Algorithm

Iterative Bregman projections onto C1 and C2 converge to a point in the intersection
C1 ∩ C2 [30]. Hence, the so-called Sinkhorn–Knopp (SK) algorithm [3] that performs alter-
nate Bregman projections can be considered to compute the regularized transport matrix:

γ0 = e−c/ε γ`+1 = PC2(PC1(γ
`)),

and we have lim`→+∞ γ` = PC1 ∩ C2(γ
0) = γ∗.

In the discrete setting, these projections correspond to diagonal scalings of the input:

PC1(γ) = diag(u)γ with u = µ1 � A1γ (4)

PC2(γ) = γ diag(v) with v = µ2 � A2γ

where � is the pointwise division. To compute the solution numerically, one simply has to
store (u`, v`) ∈ Rn1 ×Rn2 and to iterate:

u`+1 = µ1 � γ0v` v`+1 = µ2 � tγ0u`+1. (5)

We then have γ` = diag(u`)γ0 diag(v`).
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Another way to interpret the SK algorithm is as an alternate maximization algorithm
on the dual of the regularized optimal transport problem; see [31], Remark 4.24. The dual
problem of (1) is:

max
α∈Rn1
β∈Rn2

E(α, β) := 〈α, µ1〉+ 〈β, µ2〉 − ε ∑
i,j

e(αi+β j−ci,j)/ε. (6)

As the function E is concave, continuously differentiable, and admits a maximizer,
the following alternate maximization algorithm converges to a global optimum:

α`+1 = argmax
α

E(α, β`) (7)

β`+1 = argmax
β

E(α`+1, β). (8)

The explicit solutions of these problems are:

α`+1
i = ε log

(
∑

j
exp

(
log(µ1)i −

(
β`

j − ci,j

)
/ε
))

i = 1 · · · n1 (9)

β`+1
j = ε log

(
∑

i
exp

(
log(µ2)j −

(
α`+1

i − ci,j

)
/ε
))

j = 1 · · · n2 (10)

and we recover the SK algorithm (5) by taking ui = eαi/ε, vj = eβ j/ε, and γ0
i,j = e−ci,j/ε.

Efficient parallel computations can be considered [2], and one can almost reach real-
time computation for large-scale problems for certain classes of cost matrices c, allowing the
use of separable convolutions [32]. For low values of the parameter ε, numerical issues can
arise, and the log stabilization version of the algorithm presented in Relations (9) and (10)
is necessary [12]. Above all, the linear rate of convergence degrades as ε → 0 (see for
instance Chapter 4 in [31]). In the following sections, we introduce different numerical
schemes that accelerate the convergence in the regime ε→ 0.

3. Regularized Nonlinear Acceleration of the Sinkhorn–Knopp Algorithm

In order to accelerate the SK algorithm for low values of the regularization parameter ε,
we propose to rely on regularized nonlinear acceleration (RNA) techniques. In Section 3.1,
we first introduce RNA methods. The application to SK is then detailed in Section 3.2.

3.1. Regularized Nonlinear Acceleration

To introduce RNA, we first rewrite the SK algorithm (7) and (8) as:

β`+1 = SK(β`) := argmax
β

E
(

argmax
α

E(α, β`), β

)
. (11)

The goal of this algorithm is to build a sequence (β`)l>1 converging to a fixed point of
SK, i.e., to a point β∗ satisfying:

β∗ = SK(β∗). (12)

Many optimization problems can be recast as fixed-point problems. The Anderson
acceleration or Anderson mixing is a classical method to build a sequence (xn)n that con-
verges numerically fast to a fixed point of any operator T from RN to RN . This method
defines at each step a linear (but not necessarily convex) combination of some previous val-
ues of (xk)k and (Txk)k to provide a value of xn such that ‖xn − Txn‖ is as low as possible.

Numerically, fast local convergence rates can be observed when the operator T is
smooth. This method can nevertheless be unstable even in the favorable setting where
T is affine. Such case arises for instance when minimizing a quadratic function F with
the descent operator T = I − h∇F, with time step h > 0. Unfortunately, there are no
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convergence guarantees, in a general setting or in the case T = SK, that the RNA sequence
(xn)n converges for any starting point x0.

RNA is an algorithm that can be seen as a generalization of the Anderson acceleration.
It can also be applied to any fixed-point problem. The RNA method [21] applied to
algorithm (11) using at each step the N previous iterates is:

(s`+1
l )N−1

l=0 = argmin
s; ∑N−1

l=0 sl=1

Pλ

(
s, (β`−l − y`−l)N−1

l=0

)
(13)

y`+1 =
N−1

∑
l=0

s`+1
l (y`−l + ω(β`−l − y`−l)) (14)

β`+1 = SK(y`+1), (15)

where extrapolation weights s = (sl)
N−1
l=0 are the solution to the optimization problem (16)

defined below, and ω is a relaxation parameter. RNA uses the memory of the past trajectory
when N > 1. We can remark that for N = 1, s`0 = 1 for all ` > 0, and RNA is reduced to a
simple relaxation parameterized by ω:

y`+1 = y` + ω(β` − y`).

Let us now discuss the role of the different RNA parameters ω and s.
Relaxation: Taking origins from Richardson’s method [33], relaxation leads to numer-

ical convergence improvements in gradient descent schemes [34]. Anderson suggested
underrelaxing with ω ∈ (0; 1], while the authors of [21] proposed to take ω = 1.

Extrapolation: Let us define the residual r(y) = SK(y) − y. As the objective is to
estimate the fixed point of SK, the extrapolation step builds a vector y such that ||r(y)||
is minimal. A relevant guess of such y is obtained by looking at a linear combination of
previous iterates that reaches this minimum. More precisely, RNA methods estimate the
weight vector (s`+1

l )N−1
l=0 as the unique solution of the regularized problem:

(s`+1
l )N−1

l=0 = argmin
s; ∑N−1

l=0 sl=1

Pλ(s, R) := ||Rs||2 + λ||s||2 (16)

=
(tRR + λIdN)

−11N

〈(tRR + λIdN)−11N , 1N〉
. (17)

where the columns of R := [r(y`), · · · , r(y`+1−N)] are the N previous residuals. The regu-
larization parameter λ > 0 generalizes the original Anderson acceleration [19] introduced
for λ = 0. Taking λ > 0 indeed leads to a more stable numerical estimation of the
extrapolation parameters.

3.2. Application to SK

We now detail the whole Sinkhorn–Knopp algorithm using regularized nonlinear
acceleration, which is presented in Algorithm 1.

In all our experiments corresponding to N > 1, we considered a regularization λ =
1× 10−10 for the weight estimation (16) within the RNA scheme. For the SK algorithm, we
considered the log-stabilization implementation proposed in [9,12,35] to avoid numerical
errors for low values of ε. This algorithm acts on the dual variables α, β. We refer to the
aforementioned papers for more details.

As the SK algorithm successively projects the matrix γ` onto the set of linear con-
straints Ck, k = 1, 2, we took as the convergence criterion the error realized on the first
marginal of the transport matrix γ = diag(exp(α/ε)) exp(−c/ε)diag(exp(β/ε)), that is
∑i |∑j γ`

i,j − (µ1)i| < η = 1e− 9. Note that the variable α is introduced into the algorithm
only for computing the convergence criterion.
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Algorithm 1 RNA SK Algorithm in the Log Domain.

Require: µ1 ∈ Rn1 , µ2 ∈ Rn2 , c ∈ Rn1×n2
+

Set ` = 0, β0, y0 = 0n2 , γ0 = exp−c/ε, ω ∈ R, N > 0 and η > 0
Set xi = −maxj(ci,j − y0

j ) and αi = −maxj(ci,j − β0
j ), i = 1 · · · n1

while || exp(α/ε)⊗ (γ0 exp(β`/ε))− µ1|| > η do
Ñ = min(N, `+ 1)
R = [β` − y`, · · · , β`+1−Ñ − y`+1−Ñ ]
w = (tRR + λIdÑ)

−11Ñ/〈(tRR + λIdÑ)
−11Ñ , 1Ñ〉

y`+1 = ∑Ñ−1
l=0 wl((1−ω)y`−l + ωβ`−l)

x̃i = −maxj(ci,j − y`+1
j ), i = 1 · · · n1

xi = x̃i − ε log(∑j exp ((−ci,j + x̃i + y`+1
j )/ε− log(µ1)i)), i = 1 · · · n1

β`+1
j = y`+1 − ε log(∑i exp ((−ci,j + xi + y`+1

j )/ε− log(µ2)j)), j = 1 · · · n2

αi = −maxj(ci,j − β`+1
j ), i = 1 · · · n1

`← `+ 1
end while
return γi,j = diag(exp(α/ε))γ0 diag(exp(β/ε))

We now present numerical results obtained with random cost matrices of size 100× 100
with entries uniform in [0, 1] and uniform marginals µ1 and µ2. All convergence plots are
mean results over 20 realizations.

We first considered the relaxation parameter ω = 1, in order to recover the original
SK algorithm for N = 1. In Figure 1, we show the convergence results obtained with RNA
orders N ∈ {1, 2, 4, 8} on four regularized transport problems corresponding to entropic
parameters ε ∈ {0.003, 0.01, 0.03, 0.1}. Figure 1 first illustrates that the convergence is
improved with higher RNA orders N.
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Figure 1. Convergence of RNA schemes for a relaxation parameter ω = 1 and different orders
N ∈ {1, 2, 4, 8}. All approaches lead to similar convergence as the original SK algorithm (order
N = 1, with blue dots) for high values of the entropic parameter such as ε = 0.1. When facing
more challenging regularized optimal transport problems, high-order RNA schemes (N > 1) realize
important accelerations. This behavior is highlighted in the bottom row for ε = 0.01 and ε = 0.003.
In these settings, with respect to SK, RNA of order N = 8 (plain red curves) reduces by a factor 100
the number of iterations required to reach the same accuracy.
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The acceleration is also greater for low values of the regularization parameter ε. This
is an important behavior, as many iterations are required to have an accurate estimation
of these challenging regularized transport problems. In the settings ε ∈ {0.003, 0.01},
a speedup of more than ×100 in terms of the iteration number was observed between RNA
orders N = 8 and N = 1 (SK) to reach the same convergence threshold. We did not observe
a significant improvement by considering higher RNA orders such as N = 16.

Next, we focus on the influence of the relaxation parameter ω ∈ {0.5, 1, 1.5, 1.9} onto
the behavior of RNA schemes of orders N ∈ {1, 2, 8}. We restricted our analysis to the
more challenging settings ε = 0.01 and ε = 0.003. As illustrated in Figure 2, increasing ω
systematically led to improvements in the case N = 1. For other RNA orders satisfying
N > 1, we did not observe clear tendencies. Taking ω ≈ 1.5 generally allowed accelerating
the convergence.

To sum up, we recommend the use of the parametrization N = 8 and ω = 1.5 when
applying the RNA method to the SK algorithm.

We recall that the convergence of such approaches is not ensured. This last experiment
nevertheless suggested that in the case N = 1, there is room to accelerate the original
SK algorithm (ω = 1), while keeping its global convergence guarantees, by looking at
overrelaxed schemes with parameters ω > 1.

ε
=

0.
01

0 2000 4000 6000 8000
iteration 

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

er
ro

r

RNA order N=1

=0.5
=1.0
=1.5
=1.9

10,000

0 2000 4000 6000 8000
iteration 

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

er
ro

r

RNA order N=1

=0.5
=1.0
=1.5
=1.9

10,000
0 2000 4000 6000 8000

iteration 

10 9

10 7

10 5

10 3

10 1

er
ro

r

RNA order N=2

=0.5
=1.0
=1.5
=1.9

10,000

0 2000 4000 6000 8000
iteration 

10 9

10 7

10 5

10 3

10 1

er
ro

r

RNA order N=2

=0.5
=1.0
=1.5
=1.9

10,000
0 1000 2000 3000 4000

iteration 

10 9

10 7

10 5

10 3

10 1

er
ro

r

RNA order N=8

=0.5
=1.0
=1.5
=1.9

0 1000 2000 3000 4000
iteration 

10 9

10 7

10 5

10 3

10 1

er
ro

r

RNA order N=8

=0.5
=1.0
=1.5
=1.9

ε
=

0.
00

3

0 2000 4000 6000 8000
iteration 

10 5

10 4

10 3

10 2

10 1

er
ro

r

RNA order N=1

=0.5
=1.0
=1.5
=1.9

10,000
0 2000 4000 6000 8000

iteration 

10 5

10 4

10 3

10 2

10 1

er
ro

r

RNA order N=1

=0.5
=1.0
=1.5
=1.9

10,000
0 2000 4000 6000 8000

iteration 

10 7

10 5

10 3

10 1

er
ro

r

RNA order N=2

=0.5
=1.0
=1.5
=1.9

10,000

0 2000 4000 6000 8000
iteration 

10 7

10 5

10 3

10 1

er
ro

r

RNA order N=2

=0.5
=1.0
=1.5
=1.9

10,000
0 2000 4000 6000 8000

iteration 

10 8

10 6

10 4

10 2

100

er
ro

r

RNA order N=8

=0.5
=1.0
=1.5
=1.9

10,000
0 2000 4000 6000 8000

iteration 

10 8

10 6

10 4

10 2

100

er
ro

r

RNA order N=8

=0.5
=1.0
=1.5
=1.9

10,000

N = 1 N = 2 N = 8

Figure 2. Comparison of RNA schemes on an optimal transport problem regularized with the
entropic parameters ε = 0.01 (top line) and ε = 0.003 (bottom line). The convergence of RNA
scheme N ∈ {1, 2, 8} is illustrated for different relaxation parameters ω ∈ {0.5, 1, 1.5, 1.9}. Higher
values of ω lead to larger improvements in the case N = 1 (first column). When N > 1 (as in the
middle column for N = 2 and the right column for N = 8), it is not possible to conclude and to
suggest a choice for the parameter ω with the obtained numerical results.

3.3. Discussion

The nonlinear regularized acceleration algorithm involves relevant numerical accelera-
tions without convergence guarantees. To build an algorithm that ensures the convergence
of iterates, but also improves the numerical behavior of the SK algorithm, we now propose
to follow a different approach using Lyapunov sequences, which is a classical tool to study
optimization algorithms. The new scheme proposed here uses the specific form of the SK
algorithm with the two variables α and β. It performs two successive overrelaxations (SOR)
at each step, one for the update of α and one for β. The algorithm does not use any mixing
scheme, but the simple structure allows defining a sequence, called a Lyapunov sequence,
which decreases at each step. This Lyapunov approach allows ensuring the convergence of
the algorithm for a suitable choice of the overrelaxation parameter.
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The algorithm can be summarized as follows:

α`+1 = (1−ω)α` + ω argmax
α

E(α, β`) (18)

β`+1 = (1−ω)β` + ω argmax
β

E(α`+1, β). (19)

Our convergence analysis relied on an online adaptation of the overrelaxation param-
eter ω ∈ [1, 2). As illustrated by Figure 3, in the case for ε = 0.01, the proposed SK-SOR
method was not as performant as high RNA orders N > 1 with ω = 1.5. It nevertheless
gave an important improvement with respect to the original SK method, while being
provably convergent.

0 1000 2000 3000 4000 5000
iteration 

10 10

10 8

10 6

10 4

10 2

100

er
ro

r

order N=1
order N=2
order N=4
order N=8
SK-SOR

Figure 3. Comparison between RNA schemes with ω = 1.5 and SK-SOR for a transport regularized
with ε = 0.01. The SK-SOR performance is in between the ones of RNA of orders N = 1 and N = 2.

4. Sinkhorn–Knopp with Successive Overrelaxation

In this section, we propose a globally convergent overrelaxed SK algorithm. Different
from the RNA point of view of the previous section, our algorithm SK-SOR relies on
successive overrelaxed (SOR) projections.

As illustrated in Figure 4a,b, the original SK algorithm (5) performs alternate Bregman
projections (4) onto the affine sets C1 and C2. In practice, the convergence may degrade
when ε → 0. The idea developed in this section is to perform overrelaxed projections in
order to accelerate the process, as displayed in Figure 4c.

γ0

γ∗

C1C2

(a)

γ0

γ∗

C1C2

(b)

γ0

γ∗

C1C2

(c)
Figure 4. The trajectory of γ` given by the SK algorithm is illustrated for decreasing values of ε in
(a,b). Overrelaxed projections (c) typically accelerate the convergence rate.
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In what follows, we first define overrelaxed Bregman projections. We then propose a
Lyapunov function that is used to show the global convergence of our proposed algorithm
in Section 4.3. The local convergence rate is then discussed in Section 4.4.

4.1. Overrelaxed Projections

We recall that PCk are operators realizing the Bregman projection of matrices γ ∈ Rn1n2

onto the affine sets Ck, k = 1, 2, as defined in (4). For ω ≥ 0, we now define the ω-relaxed
projection operator Pω

Ck
as:

log Pω
Ck
(γ) = (1−ω) log γ + ω log PCk (γ), (20)

where the logarithm is taken coordinate-wise. Note that P0
Ck

is the identity, P1
Ck

= PCk is the
standard Bregman projection, and P2

Ck
is an involution (in particular because Ck is an affine

subspace). In the following, we will consider overrelaxations corresponding to ω ∈ [1; 2).
A naive algorithm would then consist of iteratively applying Pω

C2
◦ Pω
C1

for some choice of ω.
While it often behaves well in practice, this algorithm may sometimes not converge even
for reasonable values of ω. Our goal in this section is to make this algorithm robust and to
guarantee its global convergence.

Remark 2. Duality gives another point of view on the iterative overrelaxed Bregman projections:
they indeed correspond to a successive overrelaxation (SOR) algorithm on the dual objective E given
in (6). This is a procedure that, starting from (α0, β0) = (0, 0), defines for ` ∈ N∗,

α`+1 = (1−ω)α` + ω argmax
α

E(α, β`) (21)

β`+1 = (1−ω)β` + ω argmax
β

E(α`+1, β), (22)

From the definition of the projections in (4) and using again the relationships ui = eαi/ε, vj =

eβ j/ε and γ0
i,j = e−ci,j/ε, Expressions (21) and (22) correspond to the overrelaxed projections (20).

4.2. Lyapunov Function

Convergence of the successive overrelaxed projections is not guaranteed in general.
In order to derive a robust algorithm with provable convergence, we introduced the
Lyapunov function:

F(γ) = KL(γ∗, γ), (23)

where γ∗ denotes the solution of the regularized OT problem. We used this function to en-
force the strict descent criterion F(γ`+1) < F(γ`) as long as the process has not converged.

The choice of (23) as a Lyapunov function is of course related to the fact that Bregman
projections are used throughout the algorithm. Further, we show (Lemma 1) that its
decrease is simple to compute, and this descent criterion still allows enough freedom in the
choice of the overrelaxation parameter.

Crucial properties of this Lyapunov function are gathered in the next lemma.

Lemma 1. For any M ∈ R∗+, the sublevel set {γ | F(γ) ≤ M} is compact. Moreover, for any γ
in Rn1n2

+∗ , the decrease of the Lyapunov function after an overrelaxed projection can be computed as:

F(γ)− F(Pω
Ck
(γ)) = 〈µk, ϕω((Akγ)� µk)〉, (24)

where
ϕω(x) = x(1− x−ω)−ω log x (25)

is a real function, applied coordinate-wise.
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Proof. The fact that the Kullback–Leibler divergence is jointly lower semicontinuous
implies in particular that K is closed. Moreover, K ⊂ Rn1×n2

+ is bounded because F is the
sum of nonnegative, coercive functions of each component of its argument γ.

Formula (24) comes from the expression:

F(γ1)− F(γ2) = ∑
i,j

(
γ∗i,j log(γ2

i,j/γ1
i,j) + γ1

i,j − γ2
i,j

)
and Relations (4) and (20).

It follows from Lemma 1 that the decrease of F for an overrelaxed projection is very
inexpensive to estimate, since its computational cost is linear with respect to the dimension
of data µk. In Figure 5, we display the function ϕω(x). Notice that for the Sinkhorn–Knopp
algorithm, which corresponds to ω = 1, the function ϕω is always nonnegative. For other
values 1 ≤ ω < 2, it is nonnegative for x close to one.

Figure 5. Value of ϕω(x). The function is positive above the red line, negative below. For any relax-
ation parameter ω smaller than two, there exists a neighborhood of one on which ϕω(·) is positive.

4.3. Proposed Algorithm

We first give a general convergence result that later serves as a basis to design an
explicit algorithm.

Theorem 1. Let Θ1 and Θ2 be two continuous functions of γ such that:

∀γ ∈ Rn1n2
+∗ , F(PΘk(γ)

Ck
(γ)) ≤ F(γ), (26)

where the inequality is strict whenever γ /∈ Ck. Consider the sequence defined by γ0 = e−c/ε and:

γ̃`+1 = PΘ1(γ
`)

C1
(γ`)

γ`+1 = PΘ2(γ̃
`+1)

C2
(γ̃`+1).

Then, the sequence (γ`) converges to γ∗.

Lemma 2. Let us take γ0 in Rn1n2
+∗ , and denote:

S =
{

diag(u)γ0 diag(v), (u, v) ∈ Rn1+n2
+∗

}
the set of matrices that are diagonally similar to γ0. Then, the set S ∩ C1 ∩ C2 contains exactly one
element γ∗ = PC1 ∩ C2(γ

0).
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Proof. We refer to [2] for a proof of this lemma.

Proof of the Theorem. First of all, notice that the operators Pθ
Ck

apply a scaling to lines or

columns of matrices. All (γ`) are thus diagonally similar to γ0:

∀` ≥ 0, γ` ∈ S

By construction of the functions Θk, the sequence of values of the Lyapunov function
(F(γ`)) is non-increasing. Hence, (γ`) is precompact. If ζ is a cluster point of (γ`),
let us define:

ζ̃ = PΘ1(ζ)
C1

(ζ)

ζ ′ = PΘ2(ζ̃)
C2

(ζ̃).

Then, by the continuity of the applications, F(ζ) = F(ζ̃) = F(ζ ′). From the hypothesis
made on Θ1 and Θ2, it can be deduced that ζ is in C1 and is thus a fixed point of PC1 , while
ζ̃ is in C2. Therefore, ζ ′ = ζ̃ = ζ is in the intersection C1 ∩ C2. By Lemma 2, ζ = γ∗, and the
whole sequence (γ`) converges to the solution.

We can construct explicitly functions Θk as needed in Theorem 1 using the following
lemma.

Lemma 3. Let 1 ≤ ω < θ. Then, for any γ ∈ Rn1n2
+∗ , one has:

F(Pω
Ck
(γ)) ≤ F(Pθ

Ck
(γ)). (27)

Moreover, equality occurs if and only if γ ∈ Ck.

Proof. Thanks to Lemma 1, one knows that:

F(Pω
Ck
(γ))− F(Pθ

Ck
(γ)) = 〈µk, (ϕθ − ϕω)((Akγ)� µk)〉.

The function that maps t ∈ [1, ∞) to ϕt(x) is non-increasing since ∂t ϕt(x) =
(x1−t − 1) log x. Moreover, for x 6= 1, it is strictly decreasing. Thus, Inequality (27) is
valid, with equality iff Akγ = µk.

We now argue that a good choice for the functions Θk may be constructed as follows.
Pick a target parameter θ0 ∈ [1; 2), which will act as an upper bound for the overrelaxation
parameter ω, and a small security distance δ > 0. Define the functions Θ∗ and Θ as:

Θ∗(w) = sup{ω ∈ [1; 2] | ϕω(min w) ≥ 0}, (28)

Θ(w) = min(max(1, Θ∗(w)− δ), θ0), (29)

where min w denotes the smallest coordinate of the vector w.

Proposition 1. The function:
Θk(γ) = Θ((Akγ)� µk) (30)

is continuous and verifies the descent condition (26).

Proof. Looking at Figure 5 can help understand this proof. Since the partial derivative of
∂ω ϕω(x) is nonzero for any x < 1, the implicit function theorem proves the continuity of
Θ∗. The function Θ∗((Akγ)� µk)) is such that every term in Relation (24) is non-negative.
Therefore, by Lemma 3, using this parameter minus δ ensures the strong decrease (26) of
the Lyapunov function. Constraining the parameter to [1, θ0] preserves this property.
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This construction, which is often an excellent choice in practice, has several advantages:

• it allows choosing arbitrarily the parameter θ0 that will be used eventually when
the algorithm is close to convergence (we motivate what are good choices for θ0 in
Section 4.4);

• it is also an easy approach to having an adaptive method, as the approximation of
Θ∗ has a negligible cost (it only requires solving a one-dimensional problem that
depends on the smallest value of (Akγ)� µk, which can be done in a few iterations of
Newton’s method).

The resulting algorithm, which is proven to be convergent by Theorem 1, is written
in pseudocode in Algorithm 2. The implementation in the log domain is also given in
Algorithm 3. Both processes use the function Θ defined implicitly in (29). The evaluation
of Θ is approximated in practice with a few iterations of Newton’s method on the function
ω 7→ ϕω(min u), which is decreasing, as can be seen in Figure 5. With the choice θ0 = 1,
one recovers exactly the original SK algorithm.

Algorithm 2 Overrelaxed SK Algorithm (SK-SOR).

Require: µ1 ∈ Rn1 , µ2 ∈ Rn2 , c ∈ Rn1×n2
+

Set u = 1n1 , v = 1n2 , γ0 = e−c/ε, θ0 ∈ [1; 2) and η > 0
while ||u⊗ γ0v− µ1|| > η do

ũ = µ1 � (γ0v),
ω = Θ(u� ũ)
u = u1−ω ⊗ ũω

ṽ = µ2 � (tγ0u)
ω = Θ(v� ṽ)
v = v1−ω ⊗ ṽω

end while
return γ = diag(u)γ0 diag(v)

Algorithm 3 Overrelaxed SK Algorithm (SK-SOR) in the Log Domain.

Require: µ1 ∈ Rn1 , µ2 ∈ Rn2 , c ∈ Rn1×n2
+

Set α = 0n1 , β = 0n2 , γ0 = e−c/ε, θ0 ∈ [1; 2) and η > 0
while || exp (α/ε)⊗ (γ0 exp (β/ε))− µ1|| > η do

ri = ∑j exp ((−ci,j + αi + β j)/ε− log(µ1)i), i = 1 · · · n1
α̃ = α− ε log r
ω = Θ(r)
α = (1−ω)α + ωα̃
sj = ∑i exp ((−ci,j + αi + β j)/ε− log(µ2)j), j = 1 · · · n2

β̃ = β− ε log s
ω = Θ(s)
β = (1−ω)β + ωβ̃

end while
return γ = diag(exp(α/ε))γ0 diag(exp(β/ε))

4.4. Acceleration of the Local Convergence Rate

In order to justify the acceleration of convergence that is observed in practice, we now
study the local convergence rate of the overrelaxed algorithm, which follows from the
classical convergence analysis of the linear SOR method. Our result involves the second
largest eigenvalue of the matrix:

M1 = diag(1� µ1) γ∗ diag(1� µ2)
tγ∗ (31)
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where γ∗ is the solution to the regularized OT problem (the largest eigenvalue is one,
associated with the eigenvector 1). We denote the second largest eigenvalue by 1− η;
it satisfies η > 0 [36].

Proposition 2. The SK algorithm converges locally at a linear rate 1− η. For the optimal choice
of extrapolation parameter θ∗ = 2/(1 +

√
η), algorithm SK-SOR converges locally linearly at a

rate (1−√η)/(1 +
√

η). The local convergence of SK-SOR is guaranteed for θ ∈ ]0, 2[, and the
linear rate is given in Figure 6 as a function of 1− η and θ.

Figure 6. Local linear rate of convergence of the SK-SOR algorithm as a function of 1− η, the local
convergence rate of the SK algorithm, and θ the overrelaxation parameter. (Plain curve) The original
rate is recovered for θ = 1. (Dashed curve) Optimal overrelaxation parameter θ∗.

Proof. In this proof, we focus on the dual problem, and we recall the relationship γ` =

eα`/εγ0eβ`/ε between the iterates of the overrelaxed projection algorithm γ` and the iterates
(α`, β`) of the SOR algorithm on the dual problem (21), initialized with (α0, β0) = (0, 0).
The dual problem (6) is invariant by translations of the form (α, β) 7→ (α− k, β + k), k ∈ R,
but is strictly convex up to this invariance. In order to deal with this invariance, consider the
subspace S of pairs of dual variables (α, β) that satisfy ∑ α = ∑ β; let πS be the orthogonal
projection on S of kernel (1,−1), and let (α∗, β∗) ∈ S be the unique dual maximizer in S.

Since one SK-SOR iteration is a smooth map, the local convergence properties of the
SK-SOR algorithm are characterized by the local convergence of its linearization, which
here corresponds to the SOR method applied to the maximization of the quadratic Taylor
expansion of the dual objective E at (α∗, β∗). This defines an affine map Mθ : (α`, β`) 7→
(α`+1, β`+1) whose spectral properties are well known [22,37] (see also [38] (Chapter 4)
for the specific case of convex minimization and [39] for the non-strictly convex case).
For the case θ = 1, this is the matrix M1 defined in Equation (31). The operator norm of
πS ◦M1 is smaller than 1− η, so the operator (πS ◦M1)

` = πS ◦M`
1 converges at the linear

rate 1− η towards zero (observe that by construction, πS and M1 are co-diagonalizable
and thus commute): for any (α, β) ∈ Rn1 × Rn2 , it holds ‖πS ◦ M`

1(α − α∗, β− β∗)‖2 ≤
‖πS(α− α∗, β− β∗)‖2(1− η)`. More generally, the convergence of πS ◦M`

θ is guaranteed
for θ ∈]0, 2[, with the linear rate:

f (θ, η) =

{
θ − 1 if θ > θ∗

1
2 θ2(1− η)− (θ − 1) + 1

2

√
(1− η)θ2(θ2(1− η)− 4(θ − 1)) otherwise.

(32)

This function is minimized with θ∗ := 2/(1 +
√

η), which satisfies f (θ∗, η) = (1−√
η)/(1 +

√
η). The function f is plotted in Figure 6.
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To switch from these dual convergence results to primal convergence results, we
remark that γ` → γ∗ implies KL(γ`, γ0)→ KL(γ∗, γ0), which in turn implies E(α`, β`)→
max E, so by invoking the partial strict concavity of E, we have πS(α

`, β`) → (α∗, β∗).
The converse implication is direct, so it holds [πS(α

`, β`) → (α∗, β∗)] ⇔ [γ` → γ∗]. We
conclude by noting the fact that πS(α

`, β`) converges at a linear rate, which implies the
same rate on γ`, thanks to the relationship between the iterates.

Corollary 1. The previous local convergence analysis applies to Algorithm 3 with Θ defined as in
Equation (29), and the local convergence rate is given by the function of Equation (32) evaluated at
the target extrapolation parameter θ0.

Proof. What we need to show is that eventually, one always has Θ(γ`) = θ0. This can
be seen from the quadratic Taylor expansion ϕθ0(1 + z) = z2(θ0 − θ0

2/2) + o(z2), which
shows that for any choice of θ0 ∈ ]1, 2[, there is a neighborhood of one on which ϕθ0(·)
is nonnegative.

5. Experimental Results

We compared Algorithm 2 to the SK algorithm on two very different optimal transport
settings. In the setting of Figure 7a, we considered the domain [0, 1] discretized into 100
samples and the squared Euclidean transport cost on this domain. The marginals were
densities made of the sum of a base plateau of height 0.1 and another plateau of height
and boundaries chosen uniformly in [0, 1], subsequently normalized. In the setting of
Figure 7b, the cost was a 100× 100 random matrix with entries uniform in [0, 1], and the
marginals were uniform.

Given an estimation of 1− η, the local convergence rate of the SK algorithm, we define
θ0 as the optimal parameter as given in Proposition 2. For estimating η, we followed two
strategies. For strategy “estimated” (in blue on Figure 7), η was measured by looking at
the local convergence rate of the SK algorithm run on another random problem of the
same setting and for the same value of ε. For strategy “measured” (in orange on Figure 7),
the parameter was set using the local convergence rate of the SK algorithm run on the same
problem. Of course, the latter was an unrealistic strategy, but it was interesting to see in
our experiments that the “estimated” strategy performed almost as well as the “measured”
one, as shown in Figure 7.

(a) (b)
Figure 7. Speed ratio between the SK algorithm and its accelerated SK-SOR version Algorithm 2 w.r.t.
parameter ε. (a) Quadratic cost, random marginals; (b) Random cost, uniform marginals.

Figure 7 displays the ratio of the number of iterations required to reach a precision
of 10−6 on the dual variable α for the SK algorithm and Algorithm 2. It is worth noting
that the complexity per iteration of these algorithms is the same modulo negligible terms,
so this ratio is also the runtime ratio (our algorithm can also be parallelized on GPUs just
as the SK algorithm). In both experimental settings, for low values of the regularization
parameter ε, the acceleration ratio was above 20 with Algorithm 2.
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6. Conclusions and Perspectives

The SK algorithm is widely used to solve entropy-regularized OT. In this paper,
we first showed that RNA methods are adapted to the numerical acceleration of the SK
algorithm. Nevertheless, the global convergence of such approaches is not guaranteed.

Next, we demonstrated that the use of successive overrelaxed projections is a natural
and simple idea to ensure and accelerate the convergence, while keeping many nice prop-
erties of the SK algorithm (first order, parallelizable, simple). We proposed an algorithm
(SK-SOR) that adaptively chooses the overrelaxation parameter so as to guarantee global
convergence. The acceleration of the convergence speed was numerically impressive,
in particular in low regularization regimes. It was theoretically supported in the local
regime by the standard analysis of SOR iterations. Nevertheless, the SK-SOR algorithm
was not as performant as RNA, and no guarantee was given on the global computational
complexity of either algorithm.

This idea of overrelaxation can be generalized to solve more general problems such
as multi-marginal OT, barycenters, gradient flows, and unbalanced OT [38] (Chapter 4),
but there is no systematic way to derive globally convergent algorithms. Our work is a
step in the direction of building and understanding the properties of robust first-order
algorithms for solving OT. More understanding is needed regarding SOR itself (global
convergence speed, choice of θ0), as well as its relation to other acceleration methods [13,20].
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