
algorithms

Article

Boundary Loss-Based 2.5D Fully Convolutional Neural
Networks Approach for Segmentation: A Case Study of the
Liver and Tumor on Computed Tomography

Yuexing Han 1,2,†, Xiaolong Li 2,†, Bing Wang 2 and Lu Wang 2,*

����������
�������

Citation: Han, Y.; Li, X.; Wang, B.;

Wang, L. Boundary Loss-Based 2.5D

Fully Convolutional Neural

Networks Approach for

Segmentation: A Case Study of the

Liver and Tumor on Computed

Tomography. Algorithms 2021, 14, 144.

https://doi.org/10.3390/a14050144

Academic Editor: Frank Werner

Received: 7 Arpril 2021

Accepted: 28 April 2021

Published: 30 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Shanghai Institute for Advanced Communication and Data Science, Shanghai University, 99 Shangda Road,
Shanghai 200072, China; han_yx@i.shu.edu.cn

2 School of Computer Engineering and Science, Shanghai University, 99 Shangda Road,
Shanghai 200444, China; long_lxl@163.com (X.L.); bingbignwang@shu.edu.cn (B.W.)

* Correspondence: luwang@shu.edu.cn
† These authors contributed equally to this work.

Abstract: Image segmentation plays an important role in the field of image processing, helping
to understand images and recognize objects. However, most existing methods are often unable to
effectively explore the spatial information in 3D image segmentation, and they neglect the information
from the contours and boundaries of the observed objects. In addition, shape boundaries can help
to locate the positions of the observed objects, but most of the existing loss functions neglect the
information from the boundaries. To overcome these shortcomings, this paper presents a new
cascaded 2.5D fully convolutional networks (FCNs) learning framework to segment 3D medical
images. A new boundary loss that incorporates distance, area, and boundary information is also
proposed for the cascaded FCNs to learning more boundary and contour features from the 3D
medical images. Moreover, an effective post-processing method is developed to further improve
the segmentation accuracy. We verified the proposed method on LITS and 3DIRCADb datasets that
include the liver and tumors. The experimental results show that the performance of the proposed
method is better than existing methods with a Dice Per Case score of 74.5% for tumor segmentation,
indicating the effectiveness of the proposed method.

Keywords: computed tomography; liver; tumor; segmentation; deep learning; boundary; loss
function

1. Introduction

Image segmentation is a fundamental task in computer vision. It plays an important
role in medical imaging technology, material science and other fields. Typical approaches
for image segmentation include intensity thresholds [1], region growing [2], deformable
models [3] and some methods based on machine learning. However, these methods
over rely on predefined characteristics, which makes it difficult to automated medical
image segmentation tasks. Recently, many deep learning methods have been proposed to
automatically segment medical images [4,5]. For instance, He et al. [6] proposed a residual
learning framework to improve accuracy by 28% on common objects in context (COCO)
dataset, which compared with previous methods. Moreover, Long et al. [7] constructed an
end-to-end fully convolutional network, which could input an image of any size and could
output the corresponding segmentation results. This method improved performance on
the visual object classes (VOC) dataset [8] by 20%.

Generally, deep learning methods can be classified into three categories based on the
dimension of input data: (1) 2D models: Cascaded-FCNs [9], and VGG based on fully
convolutional network (FCN) [10]; (2) 3D models: ConVNet based densely connected
convolutional networks [11], 3D FCN [12] and 3D U-Net [13]; and (3) 2.5D models:
U-Net based residual networks [14] and recursive neural networks (RNNs) based on
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intra-slice features [15]. In general, a 2D model inputs a preprocessed image and outputs
a probabilistic map. The 3D model can be regarded as an enhancement of the 2D model,
which inputs a series of adjacent images with related information and outputs a
corresponding set of probabilistic maps. Different from 2D and 3D models, the 2.5D
model inputs several adjacent images with related information and outputs the probability
map in the middle of these images. Although the current deep learning methods have
improved the performance of automated segmentation of 3D medical images, they still have
some problems and need to be improved. For example, the previous 2D FCNs [9,16,17]
ignore the context information between the slices in the z-axis direction, which results
in low segmentation accuracy. On the other hand, the effect of the 2.5D network on the
fuzzy boundary segmentation of the medical images was not sufficient [14]. In addition,
the training of 3D networks requires higher hardware configurations and more
computational resources. With the same computational resources, the larger number
of parameters and computational consumption from 3D networks limit the design of
deeper and more complex network structures. For instance, Li et al. [18] used 3D network
structures to segment 3D medical images, and used 24G video random access memory
(VRAM) to train and test their networks.

Moreover, the loss function is also key for the optimization of the deep learning
model. For the medical segmentation tasks, cross-entropy [19], similarity coefficient [20]
and contour [21] are usually used as loss functions. These loss functions tend to focus
on feature extraction in a specific region and lack the ability to learn features with fuzzy
boundary information since the boundary includes very important feature information
for image processing. With deep learning models, the learning of boundary information
can improve the performance of image segmentation. To learn more about the boundary
information for medical image segmentation, a boundary loss function is introduced into
the proposed 2.5D deep learning model.

Here, we perform segmentation of the liver and tumors in contrast-enhanced computed
tomography (CT) as experimental cases. The liver is one of the most important organs
in the human body and it can assist in the digestion of food and the breakdown of
toxic substances [22,23]. Liver cancer is known as the sixth most common cancer in
the world and is one of the most common cancers [24]. Primary hepatic malignancies
can occur when liver cells become abnormal, grow out of control and spread to other
areas of the body [25]. The stage of hepatic malignancies usually depends on the location
and size of the malignancy [26]. In clinical practice, accurate measurements of the size,
location and shape of the liver and tumors in CT images can help physicians make a
more comprehensive assessment of and plan for the condition of a patient. However, this
geometric information on the liver and tumors is often measured manually by experienced
doctors, who subjectively examine the CT images, thereby costing a lot of time. Therefore,
an automatic segmentation method for the liver and tumors of CT images is urgently
needed in clinical practice, which would have practical significance. Since CT images are
complicated and not clear, it is difficult to effectively segment the liver and the tumor.
As shown in Figure 1, the Hounsfield Unit (HU) values of the liver and tumor not only
have a large span but also has a large number of overlapping areas. In the HU histogram
of Figure 1, HU values of the liver are distributed in [50, 200]; HU values of tumor are
distributed in [0, 150]; and HU values of the overlap area is [50, 150]. Such a large range of
HU values overlap brings great challenges to the automated segmentation task of the liver
and tumor. In addition, intra-slice(from 0.45 mm to 6.0 mm) and inter-slice(from 0.45 mm
to 0.98 mm) resolutions in CT images are vastly different, which further create difficulties
for the automatic segmentation of the liver and tumor.
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Figure 1. (a) Images of slice of liver and tumor region from CT; (b,c) show two-dimensional and
three-dimensional liver and tumor information, respectively, where the red portion represents the
normal liver region, and the green portion represents the tumor region; and (d) is the HU values
histogram distribution of the liver and tumor from CT, in which the red portion represents the liver,
the green portion represents the tumor, and the shaded portion indicates that the HU values of the
liver and tumor have a large number of overlapping areas.

These problems prevent the accurate segmentation of medical images. To solve the
above problems, we propose a novel cascaded 2.5D FCNs learning framework for the
segmentation of the liver and tumor in medical images and design a new boundary loss
function for network optimization. The boundary loss function can effectively help the
convolutional neural network(CNN) deliberately learn boundary and contour features in
medical images. The proposed method can effectively segment medical images and can
reduce false-positive cases. Furthermore, the proposed 2.5D FCNs can reduce the cost of
VRAM and the utilization of computing resources. Specifically, the contributions of this
paper are as follows:

1. A boundary loss function is proposed to help capture more boundary and contour
features of the liver and tumor, from CT images, and to make the segmentation
boundaries smoother;

2. A cascading 2.5D FCNs based on the residual network is proposed, which can
effectively segment the liver and tumor in CT images and can reduce VRAM cost;

3. A post-processing method for the image boundary is presented to reduce false-positive
cases, which can further improve segmentation accuracy.

The rest of the paper is organized as follows—related work is reviewed in Section 2.
The proposed method is described in detail in Section 3. Details and experimental results
are presented in Section 4. In Section 5, a discussion and summary of the proposed method
are given.

2. Related Work

In recent years, the segmentation of the liver and tumor has mainly been performed
by using some methods of hand-crafted features, such as threshold and region growing.
The development of deep learning has achieved excellent results in the computer vision
field, including the automatic segmentation of medical images. Since the segmentation of
the liver and tumor is chosen as the experimental case, we primarily discuss work related
to this topic.

2.1. The Methods Based on Hand-Crafted Features

In early work, researchers have mainly the used threshold method [1], region growing
method [2] and methods based on machine learning [3,27,28] for the liver and tumor
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segmentation. The threshold method mainly determines whether the brightness value
in the medical images is greater than a threshold value to determine whether the target
pixel belongs to the foreground or the background. However, the threshold method is
often not effective for images with many overlapping areas. Different region growing
methods are also common in the liver and tumor segmentation tasks. By selecting seed
points, the region growing method gradually gathers pixels similar to the seed points into a
larger area. For instance, Wong et al. [2] proposed a 2D region growing method to segment
tumors empirically. However, the region growing method needs to manually select the seed
points and cannot complete the task of automatic segmentation. Machine learning-based
approaches have also been used to segment the tumor in medical images. For instance,
Vorontsov et al. [3] proposed a method to segment tumors by using a support vector
machine (SVM) classifier. Similar to this method, Kuo et al. [28] proposed texture feature
vectors to train SVMs and segment the liver and tumor. In addition, Rundo et al. [29]
proposed a two-stage computational framework based on unsupervised Fuzzy C-Means
Clustering (FCM) techniques that could achieve the automated sub-segmentation of the
different dense tissue from CT. This method can be readily integrated into clinical research
environments. Le et al. [27] proposed a fast-moving algorithm to generate an initial
region and train a separate feedforward network for classifying the tumor. The level set
method is also widely used by researchers. The advantages of the numerical calculation
of curves and surfaces provide an excellent solution for the segmentation of medical
images [30]. For example, Jimenez-Carretero et al. [31] proposed a multiresolution 3D level
set method with an adaptive curvature skill to classify tumors. Although there are many
excellent traditional methods for the segmentation of the liver and tumor, the disadvantages
of relying on hand-crafted features and insufficient segmentation accuracy cause the
traditional method to be difficult in the task of automatic liver and tumor segmentation.

2.2. The Methods Based on Deep Learning

In recent years, deep learning methods have achieved great success in many tasks
of the computer vision field, such as classification, segmentation and detection [32,33].
For example, the end-to-end convolutional neural network can continuously explore and
learn new image feature representations and can classify each pixel in the image to achieve
image segmentation. In the early days, the methods of most researchers obtain tissues
and organs in medical images by performing patchwise image classification [34]. These
segmentation methods, which only consider the local context information, easily fail in
challenging modalities, such as MRI, since there are too many misclassified voxels in
the image. Patchwise approaches [35] can obtain more accurate segmentation results
by constantly putting forward the proposed region input into CNN. However, many
calculations are redundant when dealing with patched extracted intensively by CNNs;
therefore, their total running time is too long [36]. Based on the emergence of end-to-end
convolutional neural networks, more image feature representations can be continuously
explored. For instance, each pixel in the image can be classified to achieve the goal of
automatic image segmentation [7].

Considering the excellent effect of deep convolutional neural networks, many
researchers have designed various networks to segment the liver and tumor by using the
strong learning ability of convolutional neural networks. For instance, Many researchers
have combined conditional random fields (CRFs) with deep learning techniques and
applied them in medical image segmentation. 3D CRFs is a conditional probability
distribution model for a given set of input sequences and another set of output sequences.
As each voxel i in 3D data has a corresponding category yi, each pixel is taken as a node
and the relationship between pixels is taken as an edge to form a conditional random field.
It can be used as a post-processing method to enhance deep learning. The essence of CRFs
is to predict its true category yi by observing the probability xi of voxel i. Christ et al. [9,37]
designed cascaded FCNs for the segmentation of the liver and tumor and used 3D
(CRFs) for postprocessing. Zormpas-Petridis et al. [38] proposed a novel superpixel-based
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conditional random fields (SuperCRF) that could improve the classification of the cells by
incorporating global and local context for enhanced deep learning. CRFs can also integrate
into deep learning as a network module. In [39], Zheng et al. formulated CRFs with
Gaussian pairwise potentials and mean-field approximate inference as RNNs. Then they
plugged the RNNs into CNN and applied this method to the problem of semantic image
segmentation, obtaining top results on the VOC dataset. Lapa et al. [40] also incorporated
CRFs into an end-to-end network for medical image segmentation. In addition, many
deep learning methods to enhance feature expression have also been proposed for medical
image segmentation. For example, Singh et al. [41] proposed a receptive-field-aware (RFA)
module that can enlarge the receptive field of the segmentation models and increase the
learning ability of the model without information loss. Chen et al. [42] proposed an
encoding and decoding neural network to segment tumors, which used the attention
network to mixture the high and low-level image features and improve the segmentation
accuracy. The structure and dimension of networks also play an important role in medical
image segmentation. Milletari et al. [43] proposed an end-to-end 3D fully convolutional
network for lesion segmentation in prostate CT data, which can fully explore the 3D context
information and use the similarity coefficient to optimize the network during training.
Li et al. [18] proposed a 2D and 3D hybrid dense network to segment the liver and tumor.
Zhu et al. [15] designed a 2.5D recursive neural network for tumor segmentation, which
used a continuous prostate biopsy as a sequence of data to explore the context information,
which assisted in the division. Yun et al. [44] proposed a new 2.5D network for the chest CT
segmentation. In this method, three 2D CNNs are trained to separately segment from the
sagittal, coronal, and axial planes. Afterwards, the segmentation results from each plane
are fused to obtain the final segmentation results. For efficient volumetric medical image
segmentation, some studies have also focused on fusing features extracted from 2D and
3D CNNs to obtain higher efficiency. Zhou et al. [45] proposed a hybrid 2.5D method for
chronic stroke lesion segmentation, which fuse 2D and 3D convolution in their network
and achieves excellent performance.

However, deep learning methods require considerable time and memory resources.
Moreover, the segmentation targets of medical images often have apparent contour shapes
and fuzzy boundary features, and many deep learning methods have not specifically
explored the boundary features. To utilize the boundary information, in this paper, we
present a boundary loss function for the proposed 2.5D FCNs, which not only solve
the problem of insufficient boundary feature exploration but also reduce the cost of
computing resources.

2.3. The Loss Function for Networks Optimization

During the process of neural network training, the loss functions play an essential
role in optimizing network parameters. Researchers can obtain higher segmentation
accuracy by selecting the appropriate loss functions to optimize the network model.
According to the derivation of the loss function [46], they can be divided into four
categories: distribution-based loss, region-based loss, boundary-based loss and compound
loss. Cross-entropy is a common distribution-based loss and it optimized the networks
by minimizing dissimilarity between two distributions. Focal loss [47] is derived from
cross-entropy. Lin et al. proposed the focal loss for target scene detection, which can
effectively solve the imbalance between foreground and background in the training process.
However, the focal loss function is very sensitive to relevant parameters, and it requires
repeated adjustment to find an appropriate value. Dice loss is a region-based loss and
it can optimize the networks by minimizing the mismatch. In essence, Tversky loss [48]
is a generalization of the Dice loss, which can achieve an improved tradeoff between
precision and recall by weighting the relevant parameters. Hausdorff distance loss [49]
a boundary-based loss and aims to minimize the distance between ground truth and
predicted segmentation. Compound loss is the (weighted) combination between the above
loss functions, such as the combination of Dice loss and cross-entropy loss [50].
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To better describe the proposed boundary loss function, we first briefly introduce the
other three loss functions used in this paper—the cross-entropy loss function [19], similarity
coefficient loss function [18,43] and contour loss function [21]. They are all representative
loss functions in medical image segmentation. In the following expressions, the marked
image and the predicted image are represented as T, P ∈ [0, 1]w×h, where 0 and 1 represent
the pixels in the background and foreground, respectively; w and h represent the width
and height of the image, respectively; n represents the index of pixel space of the image;
and N is the pixel space of the image. Tn and Pn represent the value of 0 or 1 at the position
index n, respectively.

Cross-entropy loss Cross-entropy is an important concept in Shannon information
theory. Cross-entropy is used to measure the difference between two probability distributions.
Cross-entropy can be used as a loss function in deep learning networks. The cross-entropy
loss function is a widely used pixel-level metric [19,20] to evaluate classification or
segmentation model performance. For the sake of description, let us take a binary problem
as an example, then, the binary cross-entropy loss function Lb can be expressed as follows:

Lb(T, P) = − 1
N

N

∑
n=1

[Tn × log(Pn) + (1− Tn)× log(1− Pn)]. (1)

Cross-entropy is sufficient to address most segmentation problems. However, in the
case of category imbalance, it is necessary to choose the category weight reasonably well to
achieve effective segmentation results.

Dice loss Dice coefficient is a set similarity measurement function, which is usually
used to calculate the similarity of two samples. The similarity coefficient can be a common
index to evaluate the segmentation performance. Milletari et al. [43] and Li et al. [18]
demonstrated that the similarity coefficient could also be used as a useful loss function.
The similarity coefficient measures the overlap rate between the labelled image and the
predicted image. Its range is [0, 1], where 1 represents complete overlapping, 0 represents
no overlapping, and other values represent partial overlapping. The similarity coefficient d
can be expressed as follows:

d(T, P) = 2× ∑N
n=1(Tn × Pn)

∑N
n=1(Tn + Pn)

. (2)

The loss of the similarity coefficient Ld is expressed as follows:

Ld(T, P) = 1− d(T, P). (3)

The loss of similarity coefficient loss function can solve the segmentation problem of
extremely unbalanced categories. However, it neglects the feature of the contour structure
in the segmentation target.

Contour loss Chen et al. [21] integrated the area and scale information as a loss
function with contour information, representing the image learning features with specific
contours. The contour loss function La is expressed as follows:

La = l + λ× r, (4)

where l is the length of the contour; and λ is the weight of the area r. Unlike the similarity
coefficient loss function, the contour loss function considers the segmentation target’s
contour attribute and obtains an improved segmentation effect. However, the contour loss
function effect is not sufficient for the target boundary fuzzy data.
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3. Method

The two 2.5D FCNs used in this paper are based on the idea of a cascading segmentation
method. Each of the cascading 2.5D FCNs undergoes preliminary training under the
combined loss function and boundary loss function, improving segmentation accuracy and
optimizing network parameters. In addition, we integrate the post-processing method into
our segmentation framework to further improve the segmentation effect. The flow of the
proposed method is described in Figure 2.

Figure 2. The flow chart of the proposed method. The whole process is divided into two stages. The first stage is to segment
liver shape from the image, and the second stage is to extract tumor shape based on the results from the first stage. In the
first stage, the ROI of the liver in the image is extracted with a residual network to improve the accuracy of the 2.5D FCN
for liver segmentation. Then, a 2.5D FCN is proposed to segment the liver in the ROI. In the second stage, the tumor is
segmented with the same 2.5D FCN. each 2.5D FCN is first trained with the combined loss function Lc in Formula (7),
and the boundary loss function Le in Formula (8). Finally, LPP and TPP are performed on the liver and tumor segmentation
results, respectively, by merging liver and tumor results as the final output.

3.1. Image Preprocessing

The density value of the CT data, that is, HU, is distributed within [−1024, 2048],
which spans an extensive range [38]. To reduce the influence of other tissues and organs
in CT during network training, we perform different preprocessing operations for liver
and tumor segmentation. The liver and tumor density values are mostly distributed within
[−150, 300] through statistics. Therefore, we truncate the image density value of all CT
scans within [−150, 300] and normalize the data to [0, 1], as shown in Figure 3. To segment
the tumor, we truncate the image density values of all CT scans to [−135, 265]. Since the
tumor’s pixel values are lower than the liver image, and the HU value is mostly distributed
within [−135, 265]. To highlight the tumor area, we do not directly normalize the data
to [0, 1]. Instead, we first scale the data to [0, 255] after adjusting the HU value. Then,
we reverse the grey and scale the data to [0, 1] to accelerate the convergence speed of
the network.
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Figure 3. (a) is the original image; (b) is the resulting image after we truncate HUs within [−150, 300];
(c) is the preprocessing image for the segmentation of the tumor, whose HUs are within [−135, 265];
and (d) is the image in which the gray values are reversed from (c).

3.2. Model Structure

Many studies have shown that the symmetric network of encoding and decoding
is helpful to improve segmentation performance [13,14,20]. In this paper, the proposed
model is similar to a 3D U-shaped full convolutional neural network proposed by
Milletari et al. [43]. However, unlike their model, we design a 2.5D network to reduce
the need for training parameters and VRAM occupancy. The 2.5D network is realized by
inputting five adjacent slices to ensure that the occupation of VARM is reduced and that
the exploration of 3D data spatial information is improved. In addition, the basic blocks
of the proposed network are built by using the residual structure [6]. Each basic block
based on the residual structure consists of two or three convolutional layers and a shortcut
connection. The residual structure can avoid network degradation while training a deeper
network and exploring more features to improve the model’s performance. The residual
structure is expressed as follows:

xl+1 = xl + F(xl , wl), (5)

where xl is the input in the l layer of the network, xl+1 is its output, F(·) is the residual
function, and wl is the weight parameter of the corresponding residual block.

Based on the basic block, that is, the residual structure, a 2.5D FCN network is
designed, as shown in Figure 4. A common 2D network inputs an image and outputs
a corresponding probabilistic map. Unlike normal 2D models, the input for our model
consists of five cascading slices. The model outputs a segmentation feature map, which
corresponds to the middle slice of the five slices. The descriptive formula of the structure
of the full convolutional neural network is described as follows:

I = f2.5D(X, L̂, θ
′
), (6)

where f2.5D is the formula of the 2.5D full convolutional network and X represents
five cascaded slices, which are input into the full convolutional network. θ

′
describes

the parameters that are used to train the network; L̂ is the corresponding loss function
optimization; and I is the output result of the network f2.5D. Therefore, a larger image
content on the x-y plane and z-axis context information is provided. Compared with 3D
networks, our network model not only maintains larger input image content but also
add deeper layers to the networks. As described in Figure 4, two convolution blocks
with the residual structure are used to structure the first two layers inside the model’s
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left part. The last three layers inside the left part of the model are structured by using
three other convolution blocks with the residual structure, which can acquire more feature
information. All convolution blocks consist of a convolution layer with a 3× 3 kernel,
a batch normalization layer and a ReLU activation layer. On the right part of the model
is a symmetric decoding structure to restore the resolution of the input image and to
output segmentation results. Compard with some 2.5D models [44,45], our 2.5D FCN is
different in that it incorporates interslice information into 2D CNNs to explore the spatial
correlation. Specifically, since our model takes a set of adjacent slices as input and outputs
the segmentation result corresponding to the centre slice, which makes it effective in
reducing parameters and memory usage.

Figure 4. The proposed 2.5D FCN structure is shown in the figure above. The CT slices of H×W × 5
are fed into the network and the model outputs the probability map of H ×W × 1.

3.3. Boundary Loss Function

In medical images, the area of interest usually has a specific shape and the boundary
is often blurred. It is difficult for networks with the cross-entropy loss function or similarity
coefficient loss function to learn boundary and contour features. Therefore, we propose a
new loss function for effective learning of boundary and contour features.

The boundary loss function can better optimize the network to explore the boundary
features, which makes the boundary of the segmentation result smoother. However,
to speed up the convergence rate of the network, we first use the combined loss function of
cross-entropy and similarity coefficient to optimize the network parameters in each stage of
network training. After the network loss decreases to a certain degree, that is, the combined
loss can no longer be reduced by changing the learning rate, the boundary loss function is
used to optimize the network further. The combined loss function of cross-entropy and
similarity coefficient can be described as follows:

Lc = ω1 × Lb(T, P) + ω2 × Ld(T, P), (7)

where ω1 and ω2 are the corresponding weights of the loss function of the cross-entropy
and similarity coefficient, respectively. Afterwards, the boundary loss function is used
to optimize network parameters to better learn the boundary information in the image.
The boundary loss function Le can be described as follows:

Le = d + α× a + β× e, (8)
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where d, a and e indicate the distance, area and boundary, respectively, and there is little
difference in detail with l and r in Formula (4). α and β are the weights of the area and the
boundary, respectively. d, a and e can be written in pixelwise manner as follows:

d =
N

∑
i=1,j=1

√
(∆uxi,j)

2 + (∆uyi,j)
2, (9)

and

a =

∣∣∣∣∣ N

∑
i=1,j=1

ui,j(1− vi,j)

∣∣∣∣∣+
∣∣∣∣∣ N

∑
i=1,j=1

vi,j(1− ui,j)

∣∣∣∣∣, (10)

where vi,j and ui,j represent the values of the marked and predicted values, respectively.
xi,j and yi,j are two coordinate values of pixel (i, j). N is the pixel space. ∆u represents the
result from subtracting the value of the corresponding pixel index.

We assume that the image with the true value is designated as A. B is the resulting
image of four iterative expansions of A. C is the resulting image of four iterative corrosions
of A. The extraboundary is Om = A⊗ B, and the intraboundary is Im = A⊗ C, where ⊗
represents an xor operation. Then, Im and Om are used to obtain the predicted values of
extraboundary O and intraboundary I. Thus, the boundary e can be described as follows:

e =

∣∣∣∣∣ N

∑
i=1,j=1

Oi,j +
N

∑
i=1,j=1

(1− Ii,j)

∣∣∣∣∣. (11)

The boundary loss function considers the distance, area and boundary as contour
features simultaneously. For distance, Formula (9), the adjacent pixel points in the same
target tissue and organ area in medical images have a certain similarity; therefore, taking
distance as part of the loss function, namely, minimizing the difference between adjacent
pixel points, can achieve the purpose of optimizing network parameters. For area, when
using Formula (10), similar to the Dice loss function, it is essential to maximize the pixel
value in the target area and minimize the pixel value in the background to ensure effective
segmentation. For the boundary, Formula (11), the boundary between organs in the medical
image is, therefore, the boundary can be weighted. The boundary can be taken as a part
of the loss function to optimize the segmentation of the target boundary and to make it
smoother. If the segmentation boundary of the target is distinct, the weighted constraint of e
in the loss function is strong. If segmentation does not need boundary information, the total
loss degenerates into Dice loss, that is, losing its utility in optimizing edge segmentation.

3.4. Training and Testing

In the training phase, we preprocess the data to train the first 2.5D FCN for segmenting
the liver. To accelerate the convergence of the network, the combined loss function
of Formula (7) is used to preliminarily the network during the training. Afterwards,
the boundary loss function is used to train the network further to improve the segmentation
performance. For segmenting the tumor, the liver mask is red dilated iteratively five times
for the network to focus more on the tumor during the training process, that is, the liver
mask is dilated five pixels. Afterwards, the dilated mask is used to obtain the ROI from the
CT data. The corresponding data processing is performed to train the second 2.5D FCN for
segmenting the tumor. The loss optimization method during training is the same as that in
the segmenting liver stage.

In the test phase, we use the first 2.5D FCN to obtain the liver segmentation results
after data preprocessing. Afterwards, we perform post-processing on the probability map
results from the network output and save the liver segmentation results. The results of
the liver segmentation are dilated iteratively five times and used as a mask to obtain liver
ROIs. In addition, the liver ROI data are processed accordingly. Then, tumor prediction
is performed in the ROI. Finally, the tumor probability map output from our network
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is post-processed. The post-processed results are combined with the liver segmentation
results obtained during the first stage as the output of the final segmentation results, and a
more accurate segmentation mask of the liver and tumor are obtained.

3.5. Image Post-Processing

After obtaining the segmented liver probability map from the 2.5D FCN, we use
the 3D full connectivity operation to reserve the maximum segmentation volume. Then
we dilate each slice once as the final segmentation result. For the tumor maps obtained
from the 2.5D FCN, we apply 3D dense conditional random fields (CRFs) [51] to them and
exclude false-positive cases and false-negative cases with higher than average HU to further
improve the accuracy. Finally, we combine the liver results with the results of the tumor
as the final output. As shown in Figure 5, after post-processing, the dice and accuracy of
the liver increased by 5.1% and 0.7%, respectively. In addition, false-positive cases also
decreased by 0.7%. For the segmentation of the tumor, the dice and accuracy of the tumor
increased by 4.1% and 0.7%, respectively. In addition, false-positive cases are also decreased
by 0.1%. The post-processed method can effectively improve segmentation accuracy.

Figure 5. In the segmentation of the liver and tumor, the post-processing method can effectively improve the dice, accuracy
and recall, and can reduce the presence of false-positive and false-negative cases.

4. Experiments and Results
4.1. Experimental Environment

We use the 3DIRCADb dataset and the LiTS dataset to train and test our model.
The LiTS dataset consists of 131 training CT data and 70 testing CT data. The dataset
was obtained from six different clinical sites by using different scanners and protocols.
Additionally, the resolution of each data point is very different, among which the resolution
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of the inter-slice is between 0.55 mm and 1.0 mm, and the resolution of the intraslice is
between 0.45 mm and 6.0 mm. For the LiTS dataset, we use 130 data points as training
data and 70 data points as test data. The 3DIRCADb dataset contains 20 intravenous
enhanced CT scans, 15 of which include tumors. For the 3DIRCADb dataset, of which
five of the 20 datasets did not contain tumors, we divided the data into different groups
for the segmentation of the liver and tumor. For 3DIRCADb liver segmentation, we use
15 data points as the training set and five data points as the test set, and cross-validation is
performed concurrently. For the segmentation of 3DIRCADB tumors, we use 12 data points
as the training set and 3 data points as the test set to test our method, and cross-validation
is performed.

According to the 2017 LiTS challenge’s evaluation criteria, the Dice Per Case and
Dice Global Score are used to evaluate the segmentation performance of the liver and
tumor. Dice Per Case is the average value of each CT Dice Score, and Dice Global is used to
combine all CT data into one data evaluation Dice Score. In addition, measures of standard
volumetric overlap error (VOE), root-mean-square error (RSME), relative voxel difference
(RVD), mean symmetric surface distance (ASD), intersection over union (IoU) are also used
to assess the performance of liver segmentation.

Our model is trained and tested on a machine with three NVIDIA Tesla K80 graphic
processing units (GPUs). We set the initial learning rate to 0.001 in training each 2.5D FCN.
The parameter ω1, ω2 of the combined loss function, that is, Formula (7), is set to 1 for
network optimization. For the boundary loss function’s optimization, we set the initial
learning rate to 0.00005, and α and β are set to 5 and 1, respectively. As shown in Figure 6,
β can affect the convergence degree of the boundary loss function, although overall,
the boundary loss can always approach a similar value. When the β value is set to 1,
the boundary loss can converge to the lowest point. In addition, we set a training accuracy
threshold of 0.002. Whenever the training accuracy is no longer improved beyond the
threshold, we multiply the learning rate by a factor of 0.5 to attenuate the learning rate.
The entire model is implemented by using Python and Pytorch. During the training, we
use data scaling of 0.8∼1.2 times to prevent overfitting. In the test, the total data prediction
time is between the 30 s and 100 s, which depends on the number of slices.

Figure 6. The abscissa represents the number of training iterations, and the ordinate represents the
corresponding loss value, Setting different β values can slightly affect the convergence degree of the
boundary loss function, but the boundary loss can always converge to a similar value on the total.
When the β value is set to 1, the loss can converge to the lowest point.

4.2. Ablation Study on the LiTS Dataset

To demonstrate the validity of the proposed model and loss, we designed an ablation
study to discuss the effects of different configurations of loss and possible models.
Specifically, in order to prove the validity of the 2.5D model, we modify the convolution
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block of the input of the proposed 2.5D model and obtain a 2D model. The 2D model is
also a fully convolutional network. Different from the 2.5D network, the input feature
dimension of the 2D FCN is modified as 1 × 320 × 320. Then, we use combined loss,
contour loss and boundary loss to optimize the 2D FCN and 2.5D FCN on LiTS dataset,
respectively and the results are shown in Table 1. When boundary loss is used to optimize
2D FCN for the segmentation of tumors, 2D FCN yield Dice Per Case and IoU scores of
73.7% and 58.3%, respectively. At the same time, the 2.5 FCN with boundary loss yield
clear improvements of 0.9% and 1.1% in the Dice Per Case and IoU scores respectively,
when compared to the 2D FCN with boundary loss. In addition, 2D FCN yield respectively
Dice Per Case and IoU scores of 93.9% and 88.5% for the segmentation of liver. The 2.5 FCN
with boundary loss yield clear improvements of 0.4% and 0.8% in the Dice Per Case and
IoU scores respectively, when compared to the 2D FCN with boundary loss. Since the
spatial dependent information between slices is considered in the input of 2.5D FCN and
more spatial feature information can be explored in the subsequent feature exploration. So
the 2.5D FCN can effectively improve the segmentation effect of 3D medical images.

Table 1. Performance of different configurations of the proposed method on the LiTS dataset (Dice
and IoU: %).

Loss
Tumor Liver

Dice Per Case IoU Dice Per Case IoU

2D FCN + Combined loss 65.2 48.4 91.3 84.0
2D FCN + Contour loss 72.4 56.8 93.2 87.3

2D FCN + Boundary loss 73.6 58.3 93.9 88.5
2.5D FCN + Combined loss 68.2 51.8 92.6 86.3
2.5D FCN + Contour loss 73.8 58.5 94.1 88.9

2.5D FCN + Boundary loss 74.5 59.4 94.3 89.3

4.3. Loss Analysis on the LiTS Dataset

To verify the effectiveness of the boundary loss function, we use different loss functions
to optimize our 2.5D FCN and to test the effect on the LiTS dataset. As shown in Table 2,
in the segmentation of the liver, the Dice Global with the cross-entropy, dice and combined
loss function is not very different. However, the Dice Global with contour and boundary
loss functions achieves excellent results. The Dice Global with proposed the loss is 96.1%,
which surpasses the other loss functions. In the segmentation of the tumor, the Dice Per
Case with a dice loss function is approximately 3.3% higher than that with a cross-entropy
loss function. Compared with the loss of cross-entropy and dice, the combined loss function
can be improved by at least 2.5% for tumor segmentation, as shown in Figure 7. The above
results indicate that the combined loss function is superior to the similarity coefficient loss
function or cross-entropy loss function alone. In addition, further optimization with the
contour loss function and the boundary loss function after using the combined loss function
in the experiment can improve the accuracy to 5.6% and 6.3%, respectively. The proposed
boundary loss function can optimize the boundary to a certain extent, as shown in Figure 8,
to remove false-positive cases more effectively for the subsequent post-processing method.
Therefore, our method can obtain higher segmentation accuracy and the Dice Per Case
with the proposed loss function is 74.5%, which is the highest value among loss functions
that are compared.
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Figure 7. By comparing the cross-entropy loss function, dice loss function, combined loss function, contour loss function
and boundary loss function, 2.5D FCNs have an improved segmentation effect when the boundary loss function is used.
The boundary loss function can better optimize the segmentation of the boundary of the liver and tumor. Afterwards,
the corresponding post-processing method can achieve an excellent segmentation effect.

Figure 8. The first column on the left side is the original image; the second column is the
corresponding GroundTruth; the third column is the segmentation result using the combined loss
function; and the fourth column is the segmentation results using the boundary loss function. In the
third and fourth columns, the colors used to represent the segmentation results are as follows: liver
TP (red), liver FP (yellow), liver FN (pink), tumor TP (green), tumor FP (purple), tumor FN (light
green), liver and tumor TN (black).
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Table 2. Performance of different loss functions on the LiTS dataset (Dice: %).

Loss
Tumor Liver

Dice Per Case Dice Global Dice Per Case Dice Global

Cross-entropy loss 62.4 67.7 91.2 92.6
Dice loss 65.7 68.3 92.3 93.4

Combined loss 68.2 71.2 92.6 93.8
Contour loss 73.8 75.6 94.1 95.2

Boundary loss 74.5 77.2 94.3 96.1

4.4. Methods Analysis on the 3DIRCADb Dataset

To verify the robustness of our method, we perform cross-validation based on the
3DIRCADb dataset. The test results are described in Tables 3 and 4. For liver segmentation,
the proposed method is compared with UNet [16] and 2D FCN [9]. 2D UNet is a classical
medical image segmentation network, but its model is not deep enough and cannot
effectively explore the spatial information in the 3D data due to the limitation of the
convolution dimension. Therefore, as shown in Table 3, our method achieves better
segmentation accuracy than 2D UNet, and the Dice Global of our method achieves
96.1%. As shown in Table 4, compared with 3D H-DenseUNet [18] and 2.5D ResNet [14],
the Dice Per Case of our method achieves 68% segmentation of the tumor. Compared with
Li et al. [52], the dice of the liver is improved to 96.1% with our method.

Table 3. Comparison of liver segmentation results on the 3DIRCADb dataset.

Model VOE RVD ASD RSMS Dice

2D UNet [16] 14.2 ± 5.7 −0.05 ± 0.1 4.3 ± 3.3 8.3 ± 7.5 0.923 ± 0.03
2D FCN [9] 10.7 −1.4 1.5 24.0 0.943

Han et al. [14] 11.6 ± 4.1 −0.03 ± 0.06 3.9 ± 3.9 8.1 ± 9.6 0.938 ± 0.02
Li et al. [53] 9.2 −11.2 1.6 28.2 -
Li et al. [52] - - - - 0.945
our method 8.5 ± 6.6 0.01 ± 0.02 1.6 ± 2.0 3.9 ± 6.5 0.961 ± 0.08

Table 4. Comparison of tumor segmentation results on the 3DIRCADb dataset.

Model VOE RVD ASD RSMS Dice

2D UNet [16] 62.5 ± 22.3 0.38 ± 1.95 11.1 ± 12.0 16.7 ± 13.8 0.51 ± 0.25
2D FCN [9] - - - - 0.56 ± 0.26

Han et al. [14] 56.4 ± 13.6 −0.41 ± 0.21 6.3 ± 3.7 11.6 ± 7.6 0.60 ± 0.12
Li et al. [18] 49.7 ± 5.2 −0.33 ± 0.10 5.29 ± 6.1 11.1 ± 29.1 0.65 ± 0.02
our method 57.5 ± 13.8 −0.18 ± 0.12 4.8 ± 3.7 15.9 ± 12.3 0.68 ± 0.15

4.5. Methods Analysis on the LiTS Dataset

To further validate our approach, we also train and test on the LiTS dataset and
compare our method with some networks, that is, UNet [16], Christ’s network [9], and
Chlebus’s network [17], as shown in Table 5. Since these networks all use 2D networks and
ignore 3D spatial information, the segmentation accuracy is generally not high. The dice
scores of the liver segmentation in our method achieve 96.1% and the result far exceed
those 2D methods. The 3D VNet is essentially a 3D UNet-like model. Compared with
3D VNet, the proposed method is 2.2% higher in Dice Global. Yuan et al. [54] and
H-DenseUNet [18] have both used 3D network structures. Their methods have a deeper
level of networking with 3D networking structures. Therefore, both Dice Per Case and
Dice Global in their methods are higher than the 2D network methods. However, the large
number of parameters and the utilization of computing resources are fatal disadvantages
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in these methods. As shown in Table 5, compared with H-DenseUNet [18], our method
obtains a performance improvement of 2% of Dice Per Case for the tumor segmentation.
Although our liver segmentation score is not higher than those from H-DenseUNet and
Yuan’s method, both are 3D networks, our method requires fewer resources. H-DenseNet
with a batch size of 1, the resolution of the input image is 5× 320× 320 with our method.
The H-DenseNet inputs the image with a resolution of 12× 224× 224, that is, 24 GB VRAM,
but our method only uses 4 GB VRAM.

Table 5. Comparison of liver and tumor segmentation results on the LiTS dataset (Dice: %).

Loss
Tumor Liver

Dice Per Case Dice Global Dice Per Case Dice Global

2D UNet [16] 65.0 - - -
2D FCN [9] 67.0 - - -

3D V-Net [43] - - - 93.9
Chlebus et al. [17] 0.680 0.796 - -

Yuan et al. [54] 65.7 82.0 96.3 96.7
3D H-DenseUNet [18] 72.2 82.4 96.1 96.5

3D AH-Net [55] 63.4 83.4 - -
Med3D [56] - - - 94.6

3D-DenseUNet [57] 69.6 80.7 96.2 96.7
Wang et al. [58] - 70.2 - 95.1

our method 74.5 77.2 94.3 96.1

5. Conclusions

In this paper, a new cascaded 2.5D FCNs learning framework based on the boundary
loss function is proposed to segment the liver and tumor of 3D medical images. Specifically,
we integrate distance, area and boundary information as a boundary loss to optimize the
parameters of the networks. Boundary loss will force the cascaded 2.5D FCNs to learn
more boundary and contour features, so as to improve the segmentation performance
of the network. To accurately extract the shapes of the liver and tumor, two types of
post-processing for the liver and tumor are adopted for the results with the 2.5D learning
framework. Compared with the 2D model and 3D model, the proposed 2.5D network
framework can explore sufficient 3D context information while minimizing computing
resource requirements. The boundary loss function can optimize the network to learn the
features of the boundaries in the observed objects to achieve a smoother segmentation
effect for the target boundary.

Although our method can explore specific 3D spatial characteristics, it is still inadequate
compared with some 3D models. In addition, the boundary loss function cannot learn the
boundary features effectively if the boundary is staggered and too complicated. Therefore,
in the future, we will try to plug a dual path attention mechanism module [59] into our
model. Dual path attention can incorporate the position and channel feature information
and capture more spatial information in the intra-slices and inter-slices of the 3D medical
data. At the same time, we will revise the 2.5D network to a lightweight 3D deep learning
network. A 3D surface loss based on boundary loss will be implemented and embedded in
a lightweight 3D deep learning network. In fact, we have implemented most of the work,
but the details of the work are still to be tested for a better segmentation performance.
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