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Abstract: Three computer algorithms are presented. One reduces a network N to its interior, I .
Another counts all the triangles in a network, and the last randomly generates networks similar
to N given just its interior I . However, these algorithms are not the usual numeric programs
that manipulate a matrix representation of the network; they are set-based. Union and meet are
essential binary operators; contained_in is the basic relational comparator. The interior I is shown
to have desirable formal properties and to provide an effective way of revealing “communities” in
social networks. A series of networks randomly generated from I is compared with the original
network, N .
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1. Introduction

The textbook way of describing network structure is to represent a network,N , as two
sets (N, L) where N is a set of nodes and L is a set of unordered pairs {x, y} ⊆ N, called
links (In graph theory, these unordered pairs are called “edges”. This seems to be derived
from the edges of the solid “dodecahedron puzzle” of Sir William Hamilton (1857) and re-
tained through inertia. However, since in social networks they connect individuals, it seems
more appropriate to call them “links”) [1,2]. However, although textbook network theory
is almost always set based, virtually all computer network algorithms are algebraic [3,4].
Any network can be represented by its adjacency matrix, An,n, where ai,j = 1 if {i, j} is a
link and 0 otherwise. There is an abundance of matrix algorithms one can use, such as
eigenvector evaluation [3]. In this paper, we supplement these matrix-based algorithms.
The common goal is to describe the nature of a network in terms of fundamental properties.
A matrix based approach yields numeric properties; the set based approach of this paper
yields set-theoretic properties.

Unfortunately, there is a dearth of practical set manipulation software. To overcome
this problem, we created our own C++ set management system [5]. In this system, sets
are strongly typed; for example, there are “sets of nodes” and “sets of links” which are
completely distinct. Invoking the subroutines that execute set operations can be awkward
and takes time to master; however, one can faithfully duplicate all of the pseudocode
presented in this paper. (The C++ source code for all procedures of this paper can be
obtained from the author.)

Section 2 is long and somewhat heavy for an algorithm paper. The pseudocode for
the set based procedure ω that reduces any network N to its “interior” I is presented
as Pseudocode I. However, first, we must formally develop the notions of neighborhood
closure and irreducibility on which this algorithm, ω, is based. Then, it must be shown
(Proposition 2) that ω really is a well-defined function mappingN into itself, that is that the
output of ω is unique, regardless of the order in which the elements of N are encountered.
Finally, it must be shown (Proposition 4) that I can be characterized as a network of
“chordless” cycles.

We believe it is worth it. First, the reduction algorithm ω separates N into distinct
“communities”, a process which is always of interest. Second, I appears to be an excellent,
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compressed descriptor of the network N . Much of the remaining paper is a justification of
this observation.

To support the claim that I is a rather good descriptor of any network N , the paper
follows an unusual course. It is shown in Section 4 that from I one can generate a series of
networksN 1,N 2, . . ., each of which has the same interior I and similar network properties
as N . Section 3 develops those properties, most of which come from the network literature.
A short procedure (Pseudocode II) is presented, primarily to illustrate the flexibility of a
set based approach since such algorithms already exist in the literature.

Section 3.3 is devoted to showing that I preserves important centrality features,
including both the “center” and “betweeness centers” of a network. This requires three
lemmas and two propositions, which might be skipped on a first reading.

Finally, in Section 4, the interior I of a small network N (Figure 3) is used to generate
by expansion (Pseudocode III) three networksN 1,N 2,N 3 together with Table 2 comparing
their properties including their principal eigenvector, with those of N . We leave it to the
reader to decide if these generated networks are similar to N .

2. The Interior

Let S be a set. An operator τ : 2S → 2S is an injective function which maps subsets of
S into subsets of S. We denote operators by Greek letters and use postfix notation, as in
Y.τ, where Y ⊆ S. An operator ϕ is said to be a closure operator if, for all X, Y ⊆ S, (C1)
Y ⊆ Y.ϕ (expansive), (C2) X ⊆ Y implies X.ϕ ⊆ Y.ϕ (monotone) and (C3) Y.ϕ.ϕ = Y.ϕ
(idempotent). Closure operators are a staple of topological mathematics.

If we replace axiom C1 with an contractive axiom I1, so that for all X, Y ∈ S : (I1)
Y.ι ⊆ Y (contractive); (I2) X ⊆ Y implies X.ι ⊆ Y.ι (monotone); and (I3) Y.ι.ι = Y.ι
(idempotent), then ι is said to be an interior operator. We use ι to denote interior operators
and ϕ to denote closure operators; they are similar, except that one is contractive while the
other is expansive.

If one visualizes S as a polytope, then its closure might be the smallest sphere contain-
ing S (often called its convex hull), while its interior could be the largest inscribed sphere,
or ball. Alternatively, if one thinks of S as being a bit of irregular surface terrain with
ridges and valleys, then a closure operator fills in the valleys until the terrain is uniformly
smooth. An interior operator, in contrast, levels the peaks and ridges until a smooth terrain
is obtained.

Let N be a network. For any Y ⊆ N, we say the neighborhood of Y is Y.η = {z|∃y ∈
Y, {y, z} ∈ L} ∪ Y. (In graph theory, Y.η is sometimes called the “closed neighborhood”
of Y, and denoted N[Y], while N(Y) = Y.η−Y is called the “open neighborhood” [1,2]).
Finally, since all operators map sets into sets, even when we are talking about the neighbor-
hood of a single node, for example z in (1) below, we express it as {z}.η. A neighborhood
closure operator, ϕη , on N can be defined by

Y.ϕη = {z ∈ Y.η | {z}.η ⊆ Y.η}. (1)

Y ⊆ Y.ϕη ⊆ Y.η, so ϕη is expansive. It is not hard to see that ϕη is monotone. Finally,
since Y.ϕη ⊆ Y.η, Y.ϕη must be idempotent, implying ϕη is a closure operator. (C3,
or idempotency, is normally the most difficult property to prove when establishing a
closure, or interior, operator.) The neighborhood closure operator, ϕη , is fundamental to
the development of following sections.

2.1. The Network Interior

Consider any node y ∈ N, and suppose there exists z ∈ {y}.ϕη implying {z}.η ⊆
{y}.η. Such a node, z whose “horizon” is contained in that of y, contributes very little
to the information content of the network so that its removal from {y}.η will result in
little information loss. This node z ∈ {y}.ϕη can be reduced. The node y is irreducible if
{y}.ϕη = {y}. A sub-network, I ⊆ N , of irreducible nodes is called the network’s interior.
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In the remainder of this section we define an operator, ω, which reduces any network to its
irreducible core, and prove that it is almost an interior operator.

If {y} is not closed, only elements z in {y}.η could possibly be in {y}.ϕη so only those
need be considered. If {z}.η ⊆ {y}.η so that z ∈ {y}.ϕη , we say z is subsumed by y, or
z belongs to y. We can remove z from N, together with all its connections, and add z to
{y}.β, the set of all nodes belonging to {y}. This set {y}.β is called its β-set. Of course,
y ∈ {y}.β. The cardinality |{y}.β| is called its β-count.

The pseudocode reduce Pseudocode I was used to implement a process ω that reduces
any network N to its irreducible core, I = N .ω.

while there exist reduceable nodes {
reducible = 0
for_each {y} in N {

for_each {z} in {y}.nbhd - {y} {
if ({z}.nbhd contained_in {y}.nbhd {

// z is subsumed by y
remove z from network;
{y}.beta = {y}.beta union {z}.beta
reducible = 1 } } } }

Pseudocode I, ω, reduce_network

Applied to N 1, the well-known “Karate” network [6], this reduction code yields the
interior depicted by bolder links in Figure 1.
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Figure 1. The interior I of N 1, the Karate network, is shown with bolder links.

In this figure, two nodes of the interior have been suffixed by “:n” to denote their
β-count. Only nodes 1 and 33 have non-trivial β-sets of 12 and 8 elements, respectively,
which have been delimited by dotted lines. (The β-set of node 33 might equally well have
been the β-set of node 34; however, 33 precedes 34 in the reduction process).

Proposition 1. The process ω described above is (I1) contractive and (I3) idempotent.

Proof. Readily, ω is contractive and it is idempotent because, when I = N .ω is irreducible,
the loop is not executed, so N .ω.ω = I = N .ω.

One can show that N ⊂ N ′ need not imply that N .ω ⊂ N ′.ω, so ω is not an interior
operator, even though we call I = N .ω the “interior”.

Proposition 2. Let I = N .ω and I ′ = N .ω′ be irreducible subsets of a finite network N , then
I ∼= I ′.

Proof. Let y0 ∈ I , y0 6∈ I ′. Then, y0 belongs to some point y1 in I ′ and y1 6∈ I else because
y0.η ⊆ y1.η implies y0 ∈ {y1}.ϕ so I would not be irreducible.
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Similarly, since y1 ∈ I ′ and y1 6∈ I , there exists y2 ∈ I such that y1 belongs to y2. Now, we
have two possible cases; either y2 = y0, or not.

Suppose y2 = y0 (which is often the case), then y0.η ⊆ y1.η and y1.η ⊆ y0.η or
y0.η = y1.η. Hence, i(y0) = y1 is part of the desired isometry, i.

Now, suppose y2 6= y0. There exists y3 6= y1 ∈ I ′ such that y2.η ⊆ y3.η, and so forth.
Since I is finite, this construction must halt with some yn. The points {y0, y1, y2, . . . yn}
constitute a complete graph Yn with {yi}.η = Yn.η, for i ∈ [0, n]. In any reduction, all
yi ∈ Yn reduce to a single point. All possibilities lead to mutually isomorphic maps.

Proposition 2 assures us that, even though which nodes are preserved in I is com-
pletely dependent on the order in ω that they are visited, the output must be effectively
identical. For example, in Figure 2, assume the nodes x and z are irreducible elements of I .

y
0

y
1 y

1
y

2

y
0

x z x z

Figure 2. Equivalent nodes yi in an interior I .

In each case, if y0 ∈ I , then y1 or y2 could be as well. They are the equivalent nodes
defining the isometry. Each set of equivalent nodes must be a “complete” subgraph of N .
(A graph, or network, K is said to be complete if for all x, y ∈ K, there is a link {x, y}. A
complete graph on n nodes is denoted by Kn.)

A sequence, ρ̇ = 〈y0, . . . , yn〉 of n + 1 nodes, where {yi−1, yi} ∈ L, or a set of n links
ρ̄ = 〈{y0, y1}, . . . , {yn−1, yn}〉 is called a path ρ(y0, yn) of length n. It is often easier to
describe a path in terms of its nodes, ρ̇ rather than ρ̄, which is more precise. By |ρ(x, z)|,
we mean the length of the path independent of whether we are counting nodes or links.

A cycle Ċ = 〈y0, y1, . . . , yn〉, where yn = y0, of length n ≥ 4 is said to have a bridge if
there exists a path ρ̄(yi, yk) ∈ L where (k− i) mod(n) 6= 1 [2]. If the path consists of a single
link, it is called a chord. If C has no such chords, it is said to be a chordless cycle. Graphs,
in which every cycle of length ≥ 4 must have a chord, are called “chordal graphs” [7].)

Proposition 3. The nodes of a chordless cycle are irreducible.

Proof. Let {yi−1, yi}, {yi, yi+1} ∈ L. Suppose yi ∈ yi−1.ϕη implying yi+1 ∈ {yi}.η ⊆
{yi−1}.η or {yi+1, yi−1} ∈ L contradicting chordless assumption.

Proposition 4. Let N be a finite network with I = N .ω being an irreducible subset. If y ∈ I is
not an isolated point, then either:

(1) there exists a chordless k-cycle Ċ, k ≥ 4 such that y ∈ Ċ; or
(2) there exist chordless k-cycles Ċ1, Ċ2 each of length ≥ 4 with x ∈ Ċ1 z ∈ Ċ2 and y lies on a

path from x to z.

Proof. Let y1 ∈ I . Since y1 is not isolated, let y0 ∈ y1.η, so {y0, y1} ∈ L. ≥ 4. Since y1 is
not subsumed by y0, ∃y2 ∈ y1.η, y2 6∈ y0.η, and since y2 is not subsumed by y1, ∃y3 ∈ y2.η,
y3 6∈ y1.η. Since y2 6∈ y0.η, y3 6= y0.
Suppose y3 ∈ y0.η, then 〈y0, y1, y2, y3, y0〉 constitutes a k-cycle k ≥ 4, and we are done.
Suppose y3 6∈ y0.η. We repeat the same path extension. y3.η 6⊆ y2.η implies ∃y4 ∈ y3.η,
y4 6∈ y2.η. If y4 ∈ y0.η or y4 ∈ y1.η, we have the desired cycle. If not ∃ y5, . . . and so forth.
BecauseN is finite, this path extension must terminate with yk ∈ yi.η, where 0 ≤ i ≤ n− 3,
n = |N|.
The preceding establishes that any link sequence in I terminates in a cycle of length
≥4. Since N is symmetric, the link sequence could be extended in the opposite direction
yielding (2).
Thus, if (1) is not the case, (2) must be.
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The condition that y not be an isolated point is significant. Any tree structured network
reduces to a single point, as do many networks consisting of triangles.

Corollary 1. N is connected if and only if I is connected.

A collection of chordless cycles constitutes a cycle system which is itself a matroid [8]
with a well defined rank [9]. If the network is projected onto a planar representation, then
counting those cycles without a bridge yields the rank.

Figure 3 illustrates the interior of a small network on 21 nodes. It is a cycle system of
rank 5. Here, the links of the interior have been made bolder and again its nodes have their
β-counts appended.
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p:2

j:3

n:1

o:1

r:4

i:1

a b

c
d

k

g

q

s
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u

l

Figure 3. A small network, N 2, of 21 nodes. Interior links are bolder. β-sets are dotted.

The β-sets, such as {e:2}.β, are suggested by dotted lines. Note that this process effec-
tively resolves the question of partitioning networks into disjoint communities [3,10,11],
without having to specify the number of communities in advance, although some β-sets
would have to be combined.

2.2. Reduction Performance

Technically, the ω process of Pseudocode I is O(n2) since it can achieve a worst case
performance on the unbalanced network of Figure 4 provided the outer loop of the ω code
of Pseudocode I encounters the nodes in order of their subscripts.

y
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Figure 4. An unbalanced network.

Then, it will remove only one node on each iteration. However, in practice, ω appears
to actually offer sub-linear performance. With networks of several thousand nodes, ω has
never required more than seven iterations. For example, given the well-known Newman
co-authorship network [12] of 363 persons with 823 connecting links, three iterations of
the outer loop of the ω code of Pseudocode I reduces the network to 65 individuals with
111 links constituting its interior shown in Figure 5. (A fourth iteration is required to verify
that there are no more reducible nodes.) The node Stauffer, in the upper left, has a β-set of
23 elements for which it may be regarded as a surrogate, and the lower left node Barabasi
has a β-set of 41 elements. In the case of the Newman co-authorship network, the interior
represents a significant reduction in the complexity of the network,
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Figure 5. The interior I of N 3, the 363 node co-authorship network of Newman [12].

3. Network Properties

There are several scalar properties associated with every network N , including
n_nodes = |N|, n_links = |L| and density = |L|/|N|. The average node degree over
all nodes is 2 · density, since every link has two end nodes [1,2]. These are trivial to
calculate given N and L.

The number of triangles [13] embedded inN can be calculated by the count_triangles
whose code is given in Pseudocode II.

k_total = 0
for_each link {x, z} in L {

MEET = {x}.nbhd meet {z}.nbhd
{x, z}.k_count = cardinality_of(MEET)
k_total = k_total + {x, z}.k_count }

n_triangles = k_total/3

Pseudocode II, count_triangles

Here, the k_count of a link denotes the number of triangles for which the link {x, z} is
one “side”. Since that triangle has three links, n_triangles = k_total/3. The computational
cost of {x}.nbhd ∩ {z}.nbhd is essentially constant, so the cost of count_triangles is linear,
or O(L).

Other scalar properties are dependent on the concept of shortest paths. Let x, z be
two nodes in a connected network N . Because N is connected, there exists a path ρ(x, z)
of length n. This may, or may not, be the shortest path (of minimal length) between
them. We let σ(x, z) denote the (or all) shortest path(s) between x and z. The path length
|σ(x, z)| is also known as the distance, d(x, z), between x and y [1,2]. The diameter(N ) of
the network is the maximal distance, d(x, z) for all x, z ∈ N. The eccentricity of a node
x is e(x) = max(d(x, z)) for all z ∈ N. The radius, r(N ), of the network is minimum
eccentricity of any node y [2].

3.1. Communities

Many networks, especially those that represent social connections, are spotted with
“clusters” of more densely connected nodes. These clusters of triangular links, which are
often called communities, arise from the social phenomenon called triadic closure [14].
It is known that, in many social contexts, if x is connected to y and y is connected to z,
then x is likely to be connected to z. Even though triadic closure is not really a closure
operator, its principle has been identified on many repeated occasions [11,15]. (As normally
encountered, triadic closure is not idempotent. Applied literally, the triadic closure of any
network would be the complete graph/network on its n nodes).
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However, we know of no formal definition as to what really constitutes a “community”.
There have been numerous efforts to identify communities in a network [16]. Several

work on the principle of “bisection” in which removal of certain links separates the network
into n distinct communities [10]. A common problem is that usually n must be designated in
advance. Others iteratively partition the network, often using the Fiedler eigenvector [17].
Here, the question is when to stop the iteration.

A portion of the network that is dense with triangles may be regarded as a community.
A connected sub-network of triangles is called a k-truss [18]. A connected subset of
triangles could be tree-structured, so it is common to specify that a k-truss is a connected
collection of links with a k_count > 1, where the k_count of a link {x, z} is |{x}.η ∩ {z}.η|
as in Pseudocode II. If k_count = 2, the Karate network of Figure 1 has just one 2-truss,
consisting of links connecting the nodes {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 30, 31, 33, 34} or just
less than half the network. It has two 3-trusses connecting the nodes {1, 2, 3, 4, 8, 14} and {9,
24, 33, 34}. The small network of Figure 3 has two 2-trusses of links connecting the nodes
{a, e, d, g, h, l, m, p, q, r, s} and {b, f, j, k, o} and four small 3-trusses, which are {b, j}, {d,
g, l, m}, {p, q} and {r, s}. There are 23 2-trusses in the Newman network and each is large;
however, there are only three 8-trusses. They are {Arenas, Dido-Guilera}, {Mano, Occaletti}
and {Barabasi, Jeong, Oltavi, Raven, Schubert}; however, Arenas, Mano, Oltavi, Raven, and
Schubert are not elements of the interior and thus not shown in Figure 5.

The larger values of the principal eigenvector of An×n (the adjacency matrix of the
network) can indicate well-connected nodes, and often communities [3]. Nodes 1, 3, 33 and
34 of N 1, the Karate network of Figure 1, dominate its principal eigenvector. The principal
eigenvector of N 2, the small network of Figure 3, are given in Table 2. Here, nodes d, e, m, r
stand out. Higher values in this eigenvector appear to correlate with higher node degree.
The nodes Barabasi, Jeong and Oltvai (in {Jeong}.β) are most prominent in the eigenvector
of the Newman network.

All of these methods have been proposed to denote “communities”. We would suggest
that the β-sets attached to I also denote “communities”.

3.2. Important Nodes

A fundamental quest in the analysis of many networks is the identification of its
“important” nodes. They may be a node of high degree in a community, but need not be. In
social networks, “importance” may also be defined with respect to the path structure [19,20].
Those nodes, Cd = {y ∈ N} for which the eccentricity, e(y), or ∑x 6=y d(x, y), is minimal,
have traditionally been called the center of N [1,2]; they are “closest” to all other nodes.
It is well known that this subset of nodes must be edge connected. One may assume that
these nodes in the “center” of a network are “important” nodes.

Alternatively, one may consider those nodes which “connect” many other nodes, or
clusters of nodes, to be the “important” ones. Let nspxz(y) denote the number of shortest
paths σ(x, z) containing y; then, those nodes y for which nspxz(y) is maximal are involved
in the most connections. Let Cb = {y ∈ N}, for which nspxz(y) is locally maximal. This is
sometime called “betweenness centrality” [19–21]. (In [20], Newman proposed the notion
of “random walk betweenness” as an alternative to shortest path betweenness).

3.3. Network Properties Preserved by the Interior

The next three lemmas, culminating in Proposition 5, help clarify the interaction of
β-sets with the nodes of I . In these lemmas, we assume that x0, y0 and z0 ∈ I .

Lemma 1. Let yk ∈ {y0}.β. There exists a node sequence 〈y0, y1, . . . , yk〉 such that yi ∈ {y0}.β,
0 ≤ i ≤ k.

Proof. In the reduction process of Pseudocode I, if yi+1 is subsumed by yi, then {yi+1}.β ⊂
{yi}.β yielding the chain of nested sets {yk}.β ⊂ {yk−1}.β ⊂ . . . ⊂ {y0}.β.
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Note that, even if yi ∈ {yi−1}.η belongs to yi−1, there may be other nodes xi ∈ {yi−1}.η
such that xi 6∈ {yi−1}.β.

Lemma 2. Let 〈y0, . . . , yk〉 ∈ {y0}.β and let {yk, z} ∈ L where z 6∈ {y0}.β. Then, for all
yi, 0 ≤ i ≤ k, {yi, z} ∈ L.

Proof. By the reduction process ω, when yi is subsumed by yi−1, {yi}.η ⊆ {yi−1}.η. Thus,
if {yi, z} ∈ L, then z ∈ {yi−1}.η or {yi−1, z} ∈ L.

Lemma 3. Let x ∈ {x0}.β, z ∈ {z0}.β where x0, z0 ∈ I . If {x, z} ∈ L, then there exists y ∈ I
such that {x, y}, {y, z} ∈ L.

Proof. By Lemma 2, we know ∃{x, z0}, {z, x0} ∈ L. If {x0, y0} ∈ L, we are done. Thus,
let us suppose not. By Proposition 4, we can assume ∃y ∈ I (or a sequence yi) such
that {x0, y}, {y, z0} ∈ L. We claim {x, y} ∈ L, since otherwise 〈y, x0, . . . , x, . . . , z0, y〉 is
a chordless cycle of length ≥ 4, and hence by Proposition 3 is irreducible. Similarly,
{y, z0} ∈ L.

Two β-sets, {x0}.β, {y0}.β are said to be β-connected if there exists x, y 6= x0, y0 where
x ∈ {x0}.β, y ∈ {y0}.β and {x, y} ∈ L. The preceding lemmas describe links that must
exist if β-sets are connected. These are illustrated in Figure 6.

x
0

z
0

x
1

x
2

z
1

z
2

z
3

y

Figure 6. Links that can be inferred between connected β-sets.

In this figure, solid lines denote links that are “known” to exist for one reason or
another. The dotted (. . . ) lines that enclose β-sets were established by the reduction
process. Each conforms to Lemma 1. Observe that the entire set of nodes, {x1, x2, z1, z2, z3}
could constitute either {x0}.β or {z0}.β depending solely on the order of node reduction.
This is illustrated in N 1, Figure 1, where {33}.β could have been {34}.β. Proposition 2
establishes that the structure of the interior, I , is independent of the order in which nodes
are encountered in the ω process; however, the structure of β-sets produced by the code
reduce can be very dependent on this order.

The dashed links ( - - - ) denote links that can be inferred from Lemma 2. For instance,
z1 cannot subsume z2 unless x1 ∈ {z1}.η because x1 ∈ {z2}.η. The ( - ·· - ) links connecting
y to the nodes x1, z1, z2 can be inferred from Proposition 3.

While in many networks the β-sets will be separated (as in Figure 3), they may be
links between them. It is not hard to imagine a link between a ∈ {e}.β and c ∈ {h}.β. The
lemmas establish that either such a link must introduce a new chordless cycle into I , or
else there must be an abundance of “triangles” surrounding the network interior.

Proposition 5. Let ρ(x, z) be a path where {x, z} 6∈ L (i.e., |ρ(x, z)| ≥ 2) and x ∈ {x0}.β and
z 6∈ {x0}.β. Then, there exists a path ρ′(x, y, z) where y ∈ I and |ρ′(x, y, z)| ≤ |ρ(x, z)|.
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Proof. We may assume that ρ(x, z) ∪ I = ∅, else there is nothing to prove. Thus, we may
also assume that ρ(x, z) lies entirely within connected β-sets. By Lemma 3, ∃y ∈ I such
that {x, y}, {y, z} ∈ L, so |ρ′(x, y, z)| = 2 ≤ |ρ(x, z)|.

3.4. Network Centrality

Proposition 6. If N is not unbalanced, then the center Cd (in terms of distance) is an element of
(or intersects with) the interior I of N .

Proof. If x and z are in separated β-sets, then σ(x, z) = 〈x = xk, xk−1, . . . , x0〉∪ 〈y1, . . . , ym〉∪
〈z0, . . . , zn〉where y1 = x0, ym = z0 and yi ∈ I . SinceN is not unbalanced, we may assume
k ≈ n, so the center of σ(x, z) is one of the y1, . . . , ym.
If x and z are in connected β-sets and |ρ(x, z)| ≥ 2, then Proposition 5 establishes the
existence of a shortest path through I as well.
If x, z ∈ {x}.β, then no shortest path involves I ; however, sinceN is not unbalanced, these
constitute a small number of cases and can be ignored.

In Figure 2b, if y1 is in the center C, then so are y0 and y2, implying C ∩ I 6= ∅.
Proposition 6 requires that N not be too unbalanced. Figure 4 illustrates why. It is not

hard to show that y5 is the center with maximum distance over all x being d(x, y5) = 4.
Our rule of thumb is that a network is reasonably well-balanced if, given any x ∈ {x0}.β,
then the probability that a randomly chosen y is also in {x0}.β is small, that is pr(y ∈
{x0}.β|x ∈ {x0}.β) < ε where ε < 0.20.

Proposition 7. If N is not unbalanced, then any center Cb of N (in terms of betweenness) is an
element of I .

Proof. This proof follows the line of Proposition 6, in which, unless x and z are in the same
β-set, all shortest paths σ(x, z) either involve I or have a path ρ′(x, y, z) of the same length
through I . Hence, a node y for which σx,z(y) is maximal will be an element of I .

That I contains the betweenness center is evident in the Karate network of Figure 1
and the small network of Figure 3.

Figure 7 illustrates a somewhat different “unbalanced” network in which x and z 6∈ I
are betweenness centers.

0
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1

2

3

4
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6

x

Figure 7. Another unbalanced network.

One can calculate that nsp(x) = nsp(z) = 6 ∗ 6 + 4 ∗ 6 ∗ 6 + 4 ∗ 6 = 204 which are
locally maximal.

Calculating betweenness centers is computationally expensive, even with improved
algorithms (e.g., [21]). Knowing that they must exist in the interior I and restricting
the calculation to just those nodes can greatly improve performance, especially when
betweenness is employed in other procedures (e.g., [10]). Consequently, dwelling too much
on unbalanced networks can be self defeating since the majority, and possibly almost all,
networks are well-balanced.
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4. Network Generation by Expansion

The interior, I , of a network N represents its global structure. If the β-count is
appended to each node of I , how well does I represent N as a whole? In effect, what is
the information content of I , so augmented?

One measure of the information content of any collection of network properties is the
ability to construct, or generate, similar networks based on those properties. For example,
given a network N = (N, L) one can construct many different networks N ′ = (N′, L′)
such that |N′| = |N| and |L′| = |L|. However, they need not be at all similar to N . Here,
we are using “similar” in its colloquial sense. A formal notion of “similarity” would require
it to be an equivalence relation. One way of determining the nature of networks with
a given interior, I , and known β-counts is to randomly generate some. Let I be given.
Suppose the β-count of a node y is greater than one. New nodes can be attached to replace
those of the original β-set. Let y:n be the node to be expanded (n > 1) and let z denote the
new node. Our code generates artificial node names of the form ‘A0, B0, . . ., Z0, A1, . . .’.
The last generated node in the expansion of Figure 5 is M11. Besides the link {y, z}, we
require {z}.η ⊆ {y}.η. A random number determines how many of the other nodes in
{y}.η will be linked to z, and which, if any, of those are also randomly chosen.

In the reduction process, ω, nodes with considerable β-sets may be subsequently
reduced themselves. In the re-expansion, a portion of the β-count of y may be transferred
to the β-count of z. Pseudocode for a procedure expand to implement an operator ε that
generates new nodes relative to the interior is given in Pseudocode III. (ε, as shown here,
is a round-robin procedure expanding one node in a β-set at a time. An alternative, and
slightly faster, process can be found in [22]).

while still_expanding {
still_expanding = 0
for_each y in NODES {

if (y.beta_count > 1) {
z = new_node()
add new_node to NODES
chosen = choose_subset (y.nbhd)

// distribute some of y.beta_count to z
increment = y.beta_count/(n_chosen+1)
y.beta_count = y.beta_count - increment
z.beta_count = 1 + increment
add (y, z) to LINKS

// link z to chosen nodes in y.nbhd
for_each x in chosen {

add (x, z) to LINKS }
still_expanding = 1 } } }

Pseudocode III, ε, expand_network

As a test, the interior I of N 2, Figure 3, was expanded three times (using different
random number seeds) to yield exp.1, exp.2 and exp.3 of Figure 8.
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(3)(2)(1) Figure 8. Three different expansions of I = N 2.ω, Figure 3.

Proposition 8. Let I be the interior of a network N , that is I = N .ω, then I .ε.ω = I .
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Proof. The expansion procedure of Pseudocode III was written to make this true. Consider
zn, the last node appended by ε. By construction, xn.η ⊆ yn.η for some yn; thus, zn can be
subsumed into yn.β. A finite induction zn, . . . , z1 completes the proof.

Considered as operators, ε is a left-inverse of ω since ε ·ω = 1, where 1 denotes the
identity operator. However, ω · ε 6= 1, as shown by Figure 8.

To what extent are the network features ofN enumerated in the preceding section pre-
served in the randomly generated networks, N .ω.ε? Readily, the generation process ε was
constrained so that |N .ω.ε| = |N | and N .ω.ε.ω = I = N .ω, thus the path-based centers
of Section 3.4 are preserved. Some other network properties are illustrated in Table 1.

Table 1. Network properties of networks in Figure 8 generated from I = N 2.ω, Figure 3.

|N| |L| Density Triangles 2_Trusses 3_Trusses

N 2 21 44 2.095 21 2 4

exp.1 21 49 2.333 31 1 3
exp.2 21 46 2.190 25 2 3
exp.3 21 37 1.762 13 2 2

Table 2 presents the principal eigenvector associated with the nodes of N 2 in Figure 3
and for the three expansions shown in Figure 8. Note that, except for the ten nodes of
I , node values for generated expansions are not comparable with node values of the
original N .

Table 2. Value of nodes in Figures 3 and 8 as expressed by the principal eigenvector.

a b c d e f g h i j k

N 0.179 0.182 0.123 0.350 0.293 0.155 0.226 0.234 0.194 0.231 0.120

A0 B0 C0 D0 e f E0 h i j F0

exp.1 0.170 0.295 0.225 0.033 0.355 0.129 0.053 0.306 0.202 0.265 0.162
exp.2 0.048 0.095 0.203 0.021 0.262 0.183 0.026 0.192 0.254 0.285 0.303
exp.3 0.125 0.212 0.056 0.187 0.265 0.120 0.093 0.353 0.270 0.243 0.195

l m n o p q r s t u

N 0.291 0.293 0.159 0.174 0.271 0.220 0.280 0.187 0.104 0.022

G0 m n o p H0 r I0 J0 K0

exp.1 0.054 0.190 0.387 0.133 0.112 0.265 0.224 0.164 0.104 0.272
exp.2 0.192 0.118 0.379 0.271 0.142 0.253 0.325 0.307 0.017 0.115
exp.3 0.144 0.236 0.336 0.208 0.163 0.056 0.369 0.276 0.132 0.132

This section began with the question “how well does I represent N as a whole?”
Figure 8 and Tables 1 and 2 provide abundant evidence that, given just I , with each
node augmented with its β-count, a random process can generate new networks whose
properties are very similar to those of N . It would seem to be a very good description
of N .

5. Observations

This paper might have been titled “An Operator Approach to . . .” since the operators
η, ϕη , ω and ε play such an important role. This aspect is briefly suggested by Proposition 8,
but not enlarged. However, surely, interesting networks are dynamic; they change over
time which demands an operator approach. Thus, one might ask: “Is a transformation
τ : N → N ′ continuous?” [23] The operators ω and ε are, in fact, “continuous” with
respect to ϕη . Moreover, it appears that N .ν = N−N .ω = N−I is a violator space in the
sense of [24]. This could be expanded in the future.

However, computability is such a dominant theme in current network analysis and
understanding that we thought focusing on the use of set-theoretic computer procedures
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such as reduce, count_triangles and expand was more important. Programming with
set operators is not widespread. However, these set-theoretic procedures appear to be fast
and quite scalable. The reduction, ω, of the Newman co-authorship network to Figure 5
took 0.008 s; reduction of the smaller networks (Figures 1 and 3) were each less than
0.001 s. Calculation of the eigenvectors of Figure 5 exceeded 5 s. Such anecdotal evidence
is suggestive, but far from definitive.

Only standard set-theoretic reasoning was used to develop the reduction process,
ω, which leads to the concept of the “interior”, I , of a network, N , and its β-set. It is a
powerful concept that effectively captures the essence of many networks, as shown by
Section 4, in which very similar networks can be generated from I alone. Moreover, by
reducing a network to its interior, one effectively partitions the network into it constituent
β-set communities.

However, the reduction process has its limitations. Some networks are nearly irre-
ducible to start with. The sparse network of Norwegian corporate directors [25] is an
example. Hierarchical networks reduce to a single node, that is a single node interior with
a very large β-set. Other networks can be too dense. The complete network Kn also reduces
to a single node. However, we believe that the easily computed interior is a most effective
network descriptor and possibly should be an automatic first step in network description
and understanding.
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