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Abstract: In this paper, a proposed algorithm that dynamically changes the neural network structure
is presented. The structure is changed based on some features in the cascade correlation algorithm.
Cascade correlation is an important algorithm that is used to solve the actual problem by artificial
neural networks as a new architecture and supervised learning algorithm. This process optimizes
the architectures of the network which intends to accelerate the learning process and produce better
performance in generalization. Many researchers have to date proposed several growing algorithms
to optimize the feedforward neural network architectures. The proposed algorithm has been tested
on various medical data sets. The results prove that the proposed algorithm is a better method to
evaluate the accuracy and flexibility resulting from it.

Keywords: constructive neural networks; deep learning; neural networks; cascade correlation

1. Introduction

Several types of neural network models have been proposed, such as pattern classifi-
cation and regression problems. The feedforward neural networks (FNNs) class is common
because of their structural stability, strong representation, and large number of available
training algorithms. The growth in available data requires greater complexity in the struc-
ture of the neural networks to define large data sizes. Such special (FNN) architectures
are called deep neural networks (DNNs) and are now very popular in many applications
such as cancer diagnosis and medical imaging. Deep learning involves several layers of the
nonlinear processing of information. In order to learn abstraction layers with a stronger
capacity for generalization and representation, learning architectures are performed as
repeated sequences of smaller functions [1].

Although the training process is more complex because of a lot of hidden layers and
several links between them, the random connections initialization is also difficult because it
creates the non-convergence of the training algorithm. If the number of neural parameters
increases, the possibilities of the state space of all parameters’ values will be unlimited. The
probability of beginning the network from an optimal initial step is very little and this is
the first problem.

The second problem is the difficulty of discovering the best neural network that
can learn training data accurately and with great success in generalization. When the
two parameters, namely the number of layers and the number of neurons at each layer,
are joined together, there is an infinite number of possibilities. If the chosen network
architecture is not suitable for the fixed size network, this will cause under-fitting or over-
fitting. A network architecture that is neither too large nor too small is required for a better
performance in generalization and less training time.

It might be reasonable to choose a NN architecture through manual design if there
are qualified human experts with sufficiently advanced knowledge of the problem to be
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solved. However, this is clearly not the case for some real-world situations where several
advanced data are not available. NNs make a fixed architecture in the back-propagation
algorithm, while a constructive algorithm performs dynamic NN architectures.

The constructive algorithm is a supervised learning algorithm, and its dynamic models
are commonly used to solve real-world problems. Even so, its mechanism for achieving
dynamic NN architectures is totally the opposite. As such, the use of an acceptable NN
architecture is still an issue for dealing with real-world problems. A constructive algorithm
starts a NN with a limited design, i.e., with a limited number of hidden layers, neurons
and links. Firstly, it starts with a simple NN approach, then gradually attaches hidden
nodes and weights until an optimal methodology is identified.

Among these constructive algorithms are the cascade-correlation neural networks
(CCNNs), which are a well-known class of discriminatory (as opposed to generative)
models that have been effective in simulating several processes in development research.
The CCNN algorithm is a rapid algorithm, as the new candidate neuron is learned just
before connecting to the network, and the weights of the hidden input nodes are frozen in
the corresponding process. Consequently, the weights are frequently trained at the output
nodes after each new hidden neuron has been added.

In this paper, we proposed a method called “cascade-correlation growing deep learn-
ing neural network algorithm (CCG-DLNN)” which uses the growing phase at “growing
pruning deep learning neural network algorithm (GP-DLNN)” [2], however, by training
the latest hidden unit (a candidate unit) when connecting to an existing model, and af-
ter that, the weights of the hidden inputs are frozen. Consequently, the weights of the
output neurons are constantly trained after adding each new hidden neuron as in the
CCNN algorithm.

The proposed CCG-DLNN algorithm has two benefits: firstly, the cascade architecture
adds the hidden node to the neural network each time and it is not changed after inserting
it; secondly, it is a learning algorithm that creates and adds a new hidden neuron. Trials are
made to optimize the amount of correlation among the output of the node and the residual
error signal.

We aim to increase the accuracy of the deep neural network when we perform it in
the context of different real classification problems by combining some cascade-correlation
algorithm features and (GP-DLNN) algorithm [2].

The paper is set out as following: Section 2 presents a state of the art with respect to
the adaptive algorithms. Section 3 includes a comprehensive overview of the CCG-DLNN
algorithm, and proof of convergence is given of the algorithm. Section 4 is about results
and experimental analysis and a conclusion is made in Section 5.

2. State of the Art

With expanded computational power, artificial neural networks have demonstrated
great strength in solving data classification and regression problems in big data fields. Tra-
ditional neural network training uses the error-back propagation strategy for the iterative
alignment of all parameters. There are many challenges when the number of hidden layers
increases, like local minima, slow convergence, and its time-consuming nature [3].

Unlike traditional neural network (NNs) algorithms that demand the NN architecture
description before the start of the training, the dynamic neural network structure allows
the network architecture to be designed and trained. A number of algorithms have been
suggested to evaluate the optimal network model, including different algorithms for prun-
ing, constructive, and hybrid constructive-pruning algorithm. A constructive algorithm
combines neurons, hidden layers, and links into a small neural network architecture within
the training. However, a pruning algorithm discards unnecessary hidden layers, nodes,
and connections. it begins with large NNs during preparation [4].

In this paper, two methods were combined which are the cascade-correlation neural
network algorithm and a constructive algorithm. At the following two subsections, the
advantages of the two methods will be shown in detail to argue why we used them.
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2.1. Constructive Neural Networks

Constructive neural networks (CoNNs) are a set of algorithms that change the design
of the network, automatically generating a network with an acceptable dimension. The
algorithms used for the CoNN learning method are called constructive algorithms. A
constructive algorithm begins with a small network design and adding layers, nodes, and
connections as appropriate during training. The architecture adaptation process resumes
until the training algorithm obtains an almost best model that provides a sufficient problem
solution [4].

Constructive algorithms have many huge benefits over pruning algorithms, such as,
for constructive algorithms, it is fairly simple to define the initial network architecture,
whereas in pruning algorithms, the initial network does not have an accurate number of
layers [5]. In constructive algorithms, at the initial step of the training phase a smaller
number of parameters (weights) are to be modified, thus requiring less training data
for good generalization; however, we need large amounts of training data in pruning
algorithms [4]. One popular feature of constructive algorithms is to suggest that the
hidden nodes that are already installed in the network are useful for modeling part of the
underlying task. In such situations, the weights fed to such implemented nodes may be
frozen in order to prevent the problem of moving the target. The number of optimized
weights is reduced over time to reduce the time and requirements of the memory [4].

For all these previous reasons, we used a constructive algorithm rather than the
pruning algorithm for the proposed algorithm.

CoNN algorithms are different from each other, in terms of [6]:

1. Number of nodes that have been added per layer at each iteration;
2. The network grows forward or backward;
3. Whether all neurons make the same function;
4. Stopping criteria;
5. Newly added neuron connectivity pattern;
6. Kind of input patterns that deal with binary valued or categorical attributes;
7. Type of problems including classification and regression problems or clustering.

We preferred to make our proposed constructive algorithm according to the following
characteristics:

1. The network grows forward;
2. Stopping criteria are based on when the desired accuracy of the network is achieved;
3. Kind of input patterns is binary valued;
4. This algorithm can deal with classification problems.

Within neural network literature, several CoNN algorithms that are only suitable for
classification problems have been proposed. The well-known two-class CoNN algorithms
are the tower and pyramid [7], the tiling [8], the upstart [9] and the cascade of percep-
tron [10]. The MTower, MPyramid, Mtiling, MUpstart and MPerceptron cascade are the
multi-class versions of these algorithms. One can see these algorithms in [11,12]. The
major constructive algorithms for regression problems, as mentioned in [13], are dynamic
node creation (DNC) [14–22], cascade-correlation algorithm (CCA) [23], projection pursuit
regression based on the statistical technique [24], resource-allocating network [25], group
method of data handling [26] and miscellaneous [27].

Among these algorithms, the CCA was chosen as the proposed algorithm and the
next subsection will show how CCA works and its advantages over the other algorithms.

2.2. Cascade-Correlation Algorithm

One of the supervised learning models for neural networks is a cascade correlation.
Cascade correlation starts with a small number of layers, and then gradually trains and
installs new hidden nodes, one at each step, and thus generating many layer models rather
than only changing the weights in a fixed topology network. After adding a new hidden
node to the network, the weights of this node are fixed at the input side. This node is
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a fixed feature detector inside the network, ready for output production or many other
complex feature detectors to be produced, as seen in Figure 1. There are two ideas within
the CCNN algorithm: firstly, the cascade model, where hidden nodes are connected to the
network only once and do not alter after they have been added; secondly, the learning
algorithm, which produces and installs new hidden units. The algorithm aims to maximize
the magnitude of the correlation between the new unit’s output and the residual error
signal for each new hidden unit [23].

Figure 1. Traditional CCNN.

In our proposed algorithm, the CCNN algorithm was chosen due to its follow-
ing advantages:

1. It learns faster than other back-propagation algorithms (CCNN does not use the
back-propagation of error signals);

2. The network chooses the suitable size and topology at learning step;
3. At incremental learning, CCNNs algorithm is useful as it can add new information to

the trained network.

The following section will illustrate in detail our proposed algorithm with all its steps.

3. New Proposed Cascade-Correlation Growing Deep Learning Neural Network
Algorithm (CCG-DLNN)

The conclusion of the previous section is that the constructive algorithms have many
benefits over pruning algorithms in terms of building the NN structure. Usually, construc-
tive neural networks are used to solve the problems of classification. Using this type of
network has been shown to result in fewer computation requirements, smaller topologies,
faster learning and better classification. Furthermore, this reveals that such constructive
neural networks will still develop to a point where 100% of the training data can be correctly
identified [28].

In this section, we present a growing algorithm based on the deep neural architectures
(CCG-DLNN).

3.1. Notations and Assumptions

• NHL: number of hidden layers as in Figure 2;
• Nl

u: number of units within the lth layer as in Figure 2;
• S: is the attributes number at the training data set;
• l: Layer number, l = 0 is the input layer, l = NHL + 1 is the output layer and numbers

of hidden layers is defined as 1 ≤ l ≤ NHL;
• wl

ij: is the weight between the ith node at lth layer to the jth node at the (lth − 1) layer
1 ≤ l ≤ NHL + 1 as in Figure 2;

• W l = (wl
ij)Nl

u×Nl−1
u

: is the matrix of weights which links the lth layer to the (lth − 1)
layer as in Figure 2;

• ϕ = (wl
ij)n: is all the neural network weight connections n = ∑NHL+1

l=1 Nl
u × Nl−1

u ;
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• ϕ̂: is the new weights when the network is increased;
• L(ϕ): loss function;
• Em(ϕ): is the output error resulting from the mth input xm;
• ∇L(ϕ): the gradient of L(ϕ) based on the parameter ϕ and given by Equation (1):

∇L(ϕ) =
∂Em(ϕ)

∂wl
ij

(1)

To train the deep neural network, we use an online backpropagation algorithm and
update the weights using Equation (2):

∆wl
ij|m = −η∇L(ϕ) (2)

where the learning rate is η:
• xm: is the mth input sample of the training input data set X = (xm)S, 1 ≤ m ≤ S;
• om: is the mth desired output of the training output data set O = (om)S, 1 ≤ m ≤ S;
• ym: is the output of the NN obtained for the input xm, Y = (ym)S as in Figure 2;
• hl,m

i : the output of the ith hidden unit related to the lth hidden layer related to the mth
input xm and given by Equations (3) and (4):

hl,m
i = f (gm

i ) (3)

gm
i =

Nl−1
u

∑
j=1

(wl
ijh

l−1,m
i ) (4)

where gm
i is the summation of the product of previous layers’ neurons outputs and

weights and f (.) is the nonlinear activation function that could be sigmoid, tanh or
ReLU; and ym = gm

i when l = NHL + 1, i = 1.

Figure 2. NN notations.

3.2. The CCG-DLNN Algorithm

The CCG-DLNN algorithm uses the same strategy like CCNN but by adding more
than one hidden layer—that has more than one neuron—between the input and output
layers. Therefore, at each iteration, we add a new hidden layer with one neuron or add a
new neuron at the last added hidden layer (l = NHL).

At the beginning, the learning algorithm begins with a simple network that has only
the input and output layers and does not have any hidden layers. Due to the lack of hidden
neurons, this network can be learned by a simple gradient descent algorithm individually
applied to each output neuron.

New neurons are connected to the network one by one during the learning process.
Each of them is put in a new hidden layer and linked to all the previous hidden neurons
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at the previous hidden layer. When the neurons are eventually connected to the network
(activated), their input connections will freeze and no longer change.

Adding a new neuron can be divided into two sections. First, we start with a candidate
neuron and receive the input connections from all pre-existing hidden units at the last
hidden layer (l = NHL) as in Figure 3. The candidate unit’s output is not yet added to the
current network. We do a sequence of passes over the examples set for training, updating
the weights of the candidate unit for each pass at the input side. Second, the candidate
is linked to the output neurons (activated) and then all output connections are trained.
The entire process is repeated multiple times until the desired accuracy of the network
is achieved.

Figure 3. Candidate neuron at neural network.

3.3. Steps of CCG-DLNN Algorithm

As shown by Algorithm 1 and Figure 4, the CCG-DLNN algorithm begins with
minimal architecture (input and output layers) without any hidden layers, and this simple
network is trained and the loss function L(ϕt) is calculated. Let us consider that DE is the
desired error [2], L(ϕt) ≥ DE denotes that more neural hidden layers and more nodes are
required to fit the training data set correctly. To do so, we add a new completely linked
neuron to the last hidden layer or add a new hidden layer. We let C be introduced to
measure changes in the loss function when a new neuron is added to the current hidden
layer and τ is the threshold to add a new hidden layer. As shown in Equations (5) and (6),
if L(ϕt−1) is degraded compared to L(ϕ̂t) before adding the new neuron, then increases C
by one. Otherwise, C will be zero. While C is less than the threshold τ, we add one new
neuron to the last hidden layer. If C reaches the threshold value τ, then we add a new
hidden layer that has one neuron as in Figure 5:{

C = 0 i f L(ϕt−1)− L(ϕ̂t) > ε
C = C + 1 otherwise

(5){
l = l + 1 i f C ≥ τ

Nul = Nul + 1 otherwise
(6)

where ε is a growing process threshold.
The stage of the neuron can be divided into two parts. First, we start with a candidate

neuron that accepts input links at the last hidden layer from all pre-existing hidden units.
The candidate unit’s output is not yet connected to the active network. We run several
passes over the training set examples, adjusting the candidate unit’s input weights for each
pass. Second, the candidate is connected to the (activated) output neurons, and then all
output connections are learned. The entire cycle is repeated until the network’s required
accuracy is achieved. Increasing the number of hidden layers may or may not increase the
accuracy, as it really depends on the difficulty of the solved problem.

Increasing the number of hidden layers much more than a sufficient number of layers
would reduce the accuracy of the test set. It will make the network over-fit the training set,
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that is, it will know the training data, but it will not be able to generalize to new unknown
data [29].

The large weights in the neural network are a sign of over-fitting. The research in [30]
defined weights in a qualified network in a more coherent manner, by preventing them
from taking broad values using Equation (7):

min(E(ϕ)), where(l ≤ ϕ ≤ u) (7)

where ϕ is all the neural network weight connections, E(ϕ) is the output error, and l is a
lower bound and u is an upper bound.

Algorithm 1: Cascade-Correlation Growing Deep Learning Neural Network
Input:
X : training data set
S : the training data set size
iter: iteration number for the NN training
t: the index of training step
l: current hidden layer index
Nul : the count of neurons at layer l
W l : Matrix of the links from layers l to (l − 1)
L(ϕt): The loss function at the t step
DE: The threshold Error
τ: adding a new hidden layer Threshold
C: Condition for adding a new hidden layer
Output:
Deep Neural Network

1 l = 0, Nul = 0, C=0, t = 0
2 f eed f orward(X)
3 Calculate L(ϕt)
4 backpropagation(X, L(ϕt))

5 update weights W l of the initial architecture that has input and output layers only.
6 t = t + 1
7 while L(ϕt) ≥ DE and t ≤ iter do
8 if L(ϕt−1)− L(ϕ̂t) > ε then
9 break

10 else
11 if C ≥ τ then
12 l = l + 1
13 C= 0
14 Nul = 1
15 else
16 C= C+1
17 Nul = Nul + 1

18 Train the new Candidate unit with all neurons in layer l − 1
19 Connect the trained Candidate unit with output layer
20 The weights W l is trained for the new architecture
21 Calculate L(ϕt)
22 perform Weight Constrained Neural Network Training Algorithm [30]
23 t = t + 1

24 return The Deep Neural Network
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Figure 4. Steps of CCG-DLNN algorithm.

Figure 5. Steps of CCG-DLNN algorithm.
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3.4. The Convergence Proof

Theorem 1. There exists a weight setting for neurons within the newly added layer l and the
output neurons in the CCG-DLNN algorithm such that the number of patterns misclassified by the
network after the addition of the N neurons to the l layer and the retraining of the output weights is
less than the number of patterns misclassified before that (i.e., Et < Et−1).

Proof. At iteration t, the loss function L(ϕt) will be:

L(ϕt) =
1
S

S

∑
m=1

(Em(ϕt))
2 (8)

where:
Em(ϕt) = ym

t − om (9)

For hidden layer l:
gl,m

t = ϕthl−1,m
t (10)

if l = NHL + 1, then:
ym

t = ϕth
NHL ,m
t (11)

from [31], we have:
lim
t→∞
‖∇L(ϕt)‖ = 0 (12)

So:
L(ϕt) ≤ L(ϕt−1) (13)

from Equation (8):
1
S

S

∑
m=1

(Em(ϕt))
2 ≤ 1

S

S

∑
m=1

(Em(ϕt−1))
2 (14)

Let us dispose of the summing symbol for simplicity. The summation symbol is
important, particularly for the definition of the stochastic gradient descent (SGD) versus
batch gradient descent. In the batch gradient descent, we focus only on the error of all the
training examples at once when we look at each error at a time in the SGD. However, just to
keep things easy, we are going to assume that we are referring to each error one at a time:

1
S
(Em(ϕt))

2 ≤ 1
S
(Em(ϕt−1))

2 (15)

(Em(ϕt))
2 ≤ (Em(ϕt−1))

2 (16)

Em(ϕt) ≤ Em(ϕt−1) (17)

from Equation (9):
ym

t − om ≤ ym
t−1 − om (18)

ym
t ≤ ym

t−1 (19)

from Equation (11):
ϕth

NHL ,m
t ≤ ϕt−1hNHL ,m

t−1 (20)

If we add new one neuron to the last hidden layer, then ym
t will be:

ym
t = ym

t−1 + ϕnewhnew (21)

where ϕnew is the weight from the newly added neuron to the output neuron and hnew is
the output of the newly added neuron.

So Equation (19) will be:

ym
t−1 + ϕnewhnew ≤ ym

t−1 (22)
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So:
ϕnewhnew ≤ 0 (23)

After adding a new neuron and from Equation (9):

Em
new(ϕt) = ym

new,t − om (24)

from Equation (21):
Em

new(ϕt) = ym
t−1 + ϕnewhnew − om (25)

Em
new(ϕt) = Em(ϕt−1) + ϕnewhnew (26)

from Equation (23):
Em

new(ϕt) ≤ Em(ϕt−1) (27)

So the number of unclassified patterns by the network after adding the N neurons in
layer l and the extra training of the output weights Emnew(ϕt) is less than the amount of
patterns unclassified before that.

4. Experimental Results

The proposed CCG-DLNN algorithm was tested for a neural network implementa-
tion. The CCG-DLNN algorithm was evaluated on some real-world data sets benchmark
problems. The original CCNN are compared with the CCG-DLNN results and GP-DLNN
algorithms. All simulations were performed in the Python 3.7 environment and run in
Core i7 with CPU 3.60GHZ and 32.0 GB of RAM.

4.1. Two Spirals Classification Problem

As shown in Figure 6, the two-spiral problem consists of two interconnected spirals,
which has been commonly used to test the network algorithms. In this experiment, we
built and trained CCG-DLNN, which can correctly make a classification and make a good
generalization of test results. The training set size is 200, 50% of which will generate a −1
and leave 1 remaining. The size of the test data set is 100, which is generated from equal
space points in space [−6, 6]× [−6, 6]. The maximum number of installed hidden neurons
is 22. Figure 7 displayed the results obtained from the three separate neural architectures
shown in Table 1.

Figure 6. Training sample of two-spiral problem.



Algorithms 2021, 14, 158 11 of 18

Figure 7. Testing two-spiral problem using CCG-DLNN algorithm.

Table 1. Testing two-spiral problem using CCG-DLNN.

Two-Spiral Architecture Number of Neurons Accuracy (%) Avg Cost

Initial NN 0 44 1.004625

Adding 1st Hidden Layer 10 53 0.932671

Adding 2nd Hidden Layer 22 99.5 0.054119

As shown in Table 1, the third neural architecture which has two hidden layers with
22 neurons has the highest accuracy (99.5%) over the other two architectures with an
average loss of 0.054119. The results resulted from CCG-DLNN, CCNN and GP-DLNN,
which are in Table 2.

Table 2. Simulation results of CCG-DLNN, CCNN and GP-DLNN on the two-spiral problem.

# Hidden Layers # Neurons Accuracy (%) Avg Cost

CCG-DLNN 2 22 99.50 0.054119

CCNN 10 10 87.21 0.254895

GP-DLNN (growing step) [2] 3 70 92.23 0.075852

The proposed algorithm CCG-DLNN has the accuracy of 99.50% after adding two layers
with total 22 neurons, However, the growing step at the GP-DLNN algorithm gives an
accuracy of 92.23% after adding three layers with a total 70 neurons. The CCNN algorithm
performed 87.21% accuracy after adding 10 neurons at 10 layers.

4.2. Classification Problems at Real-World Data Sets

The proposed CCG-DLNN algorithm was tested on a number of different real classifi-
cation problems such as: the Lung Image Database Consortium image collection (LIDC-
IDRI) [32], and some benchmark problems from the UCI Machine Learning Repository [33]:
Diabetes 130-US hospitals (DH) [34], Hepatitis C Virus (HCV) for Egyptian patients, Heart
Disease (HD), Breast Cancer Wisconsin (Diagnostic) (BCW) [33], Breast Cancer Coimbra
(BCC) [35], Liver Disorders Data Set (LD) [33], Acute Inflammations Data Set (AI) [36], and
Pima Indians Diabetes Database (PID) [33].

Table 3 explains the description of all data sets as it shows the number of training
and testing samples and the overlapping level which is visually represented in Figure 8
using the t-distributed stochastic neighbor embedding (t-SNE) projection. Figure 8 shows
the 2-D representation of LIDC-IDRI, DH, HCV, HD, and BCC data sets. The t-SNE 2D
representation of BCW, AI, LD, and PID data sets will be founded at [2].
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For each event, 100 proceedings are performed and the resulting averages are shown
in Table 4 as well as Figures 9 and 10, where the best of each test are in bold face. The three
cases have the same condition for stopping. We can observe that the CCG-DLNN algorithm
obtains lower errors for all cases than the other two algorithms. The loss rate for the three
algorithms on the LIDC-IDR data set is shown at Figure 11. It can be seen from Figure 11
that the loss of CCG-DLNN strictly decreases faster than CCNN and slightly faster or equal
to GP-DLNN [2]. Figure 12 gives the curves of loss obtained by CCG-DLNN, GP-DLNN
and CCN on the LIDC-IDR data set. Figure 12 shows that the loss of CCG-DLNN decreases
as the number of hidden units increases. In addition, the CCG-DLNN loss curve will reach
zero at limited steps of the CCG-DLNN, which is the number of training data samples. We
observe that the CCG-DLNN algorithm will prevent a local minimum problem.

Figure 8. The 2-D distribution of some used data sets using t-distributed stochastic neighbor embedding (t-SNE).
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Table 3. Specification of real-world classification problems.

Data Set Training Sample Testing Sample Overlapping Level

LIDC-IDRI 20,000 20,000 No

DH 15,000 15,000 High

HCV 500 500 High

HD 150 150 High

BCW 547 136 Low

BCC 50 50 High

LD 276 69 High

AI 96 24 No

PID 615 153 High

Table 4. Simulation results of CCG-DLNN, GP-DLNN and CCNN on real-world classification problems.

Data Set Training Rate Testing Rate Number of Hidden Units

CCG-DLNN CCNN GP-DLNN CCG-DLNN CCNN GP-DLNN CCG-DLNN CCNN GP-DLNN

LIDC-IDRI 0.98 0.93 0.95 0.96 0.95 0.94 10 13 24

DH 0.89 0.85 0.86 0.75 0.69 0.70 15 20 34

HCV 1 0.96 0.98 0.98 0.92 0.95 20 25 44

HD 0.93 0.88 0.89 0.90 0.86 0.84 24 30 50

BCW 0.83 0.80 0.85 0.79 0.72 0.85 6 10 14

BCC 0.95 0.97 0.93 0.94 0.92 0.91 11 14 28

LD 0.99 0.95 0.98 0.93 0.89 0.93 9 15 22

AI 1 0.93 0.95 1 0.95 0.99 8 19 19

PID 0.98 0.95 0.96 0.98 0.91 0.97 14 19 23

Figure 9. Curves of training rate obtained by CCG-DLNN, GP-DLNN and CCNN on real-world
classification problems.
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Figure 10. Curves of testing rate obtained by CCG-DLNN, GP-DLNN and CCNN on real-world
classification problems.

The criteria used to measure the efficiency of the tests were sensitivity, specificity
and accuracy. The first performance, testing the accuracy of the proposed CCG-DLNN
algorithm, was compared to the GP-DLNN (growing step) [2] and CNN algorithms. The
best outcomes for all data sets resulted from the CCG-DLNN algorithm, as shown in
Table 5.

The classification performance related to the CCG-DLNN, CCNN and GP-DLNN on
the LIDC-IDRI data set is presented in Figure 13 and the classification performance for all
data sets is represented in Table 6. All methods achieved good performance in the classi-
fication. The highest AUC value was obtained for the proposed algorithm CCG-DLNN.
Sensitivity, specificity and accuracy were determined using the ROC curve threshold which
was the closest point to the upper left corner of the ROC plot (0, 1).

However, based on the Delong test, this difference in AUC values was statistically
significant (p-value < 0.05). The value of AUC obtained for the CCG-DLNN algorithm
was significantly greater than that for the GP-DLNN method (Delong test p values < 0.05).
The significance level and Z statistic between the AUC of CCG-DLNN and GP-DLNN
algorithms for all data sets is presented in Table 7.

To evaluate the speed of the three algorithms (CCG-DLNN, GP-DLNN, and CCNN),
we compared the runtime of these algorithms when solving the LIDC-IDRI problem.
Figure 14 shows that our proposed algorithm CCG-DLNN is not faster than the CCNN
algorithm at the beginning steps and it is faster at the final stages. GP-DLNN is the slowest
algorithm compared to the other two algorithms.

Figure 11. Curves of loss obtained by CCG-DLNN, GP-DLNN and CCNN on the LIDC-IDRI problem.
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Figure 12. Curves of loss obtained by CCG-DLNN, GP-DLNN and CCNN on the LIDC-IDRI problem.

Table 5. Summary of simulation results.

Data Sets Accuracy (%)

CCG-DLNN CCNN GP-DLNN

LIDC-IDRI 95 93.6 92.3

DH 84 77 82

HCV 94 83 90

HD 90 83 86

BCW 93 92 90

BCC 100 90 91

LD 87 69 73

AI 100 92 100

PID 80 65 74

Figure 13. The ROC curves for CCG-DLNN, GP-DLNN and CCNN algorithms on the LIDC-
IDR data set.
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Table 6. Classification performance summary.

Data Sets AUC Sensitivity (Avg.) Specificity (Avg.)

CCG-DLNN CCNN GP-DLNN CCG-DLNN CCNN GP-DLNN CCG-DLNN CCNN GP-DLNN

LIDC-IDRI 0.92 0.84 0.86 0.93 0.89 0.87 0.79 0.67 0.71

DH 0.91 0.74 0.80 0.91 0.65 0.66 0.78 0.76 0.89

HCV 0.97 0.79 0.80 0.97 0.78 0.76 0.83 0.72 0.72

HD 0.98 0.80 0.97 0.92 0.78 0.97 0.90 0.65 0.82

BCW 0.95 0.74 0.88 1 0.81 0.98 1 0.80 0.97

BCC 0.98 0.74 0.94 0.90 0.77 0.94 0.94 0.60 0.80

AI 0.91 0.73 0.80 1 0.98 1 1 0.95 1

LD 0.85 0.74 0.79 0.90 0.61 0.85 0.85 0.58 0.60

PID 0.93 0.74 0.90 0.75 0.58 62 0.92 0.80 0.86

Table 7. AUC significance level between CCG-DLNN and GP-DLNN algorithms.

Data Sets Z Statistic Significance Level (P)

LIDC-IDRI 2.78 0.0054

DH 3.81 0.0001

HCV 5.84 <0.0001

HD 2.95 0.0032

BCW 5.36 <0.0001

BCC 2.89 0.0039

AI 2.36 0.0035

LD 5.03 <0.0001

PID 3.22 0.0042

Figure 14. Runtime of GP-DLNN, CCG-DLNN and CCNN algorithm on the LIDC-IDRI data set.
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5. Conclusions

In this paper, we proposed a method called (CCG-DLNN) that uses the growing step
shown in [2], but by training the latest hidden unit (candidate unit) when connecting to the
existing network, and freezing the hidden input weights of the network. Therefore, we
repeatedly trained the weights linked to the output neurons after adding each new hidden
node. To prevent the problem of over-fitting, we defined weights in a qualified network in
a more coherent manner as in [28]. Theoretically, the convergence analysis of this algorithm
has been proven. The proposed CCG-DLNN showed good results compared to standard
algorithms. Its strength was evaluated on many data sets and the two mixed spirals were
checked on a standard difficult benchmark. The structure of the neural network at our
proposed algorithm was changed based on some cascade correlation algorithm features,
so: We start with a candidate neuron and receiving input connections from all pre-existing
hidden units at the last hidden layer. The candidate unit’s output was not yet added to the
current network until we do a sequence of passes over the data set for training, updating the
weights of the candidate unit for each pass at the input side. The candidate neuron is linked
to the output neurons (activated) and then all output connections are trained. The entire
process is repeated multiple times until the desired accuracy of the network is achieved.
Therefore, we are certain that each newly added neuron will improve the accuracy of the
neural network, and so the proposed algorithm performs better than the others. Finally,
our future research is reducing the running time of the CCG-DLNN algorithm.
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read and agreed to the published version of the manuscript.
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