
algorithms

Article

Approximately Optimal Control of Nonlinear Dynamic
Stochastic Problems with Learning: The OPTCON Algorithm

Dmitri Blueschke * , Viktoria Blueschke-Nikolaeva and Reinhard Neck

����������
�������

Citation: Blueschke, D.;

Blueschke-Nikolaeva, V.; Neck, R.

Approximately Optimal Control of

Nonlinear Dynamic Stochastic

Problems with Learning: The

OPTCON Algorithm. Algorithms 2021,

14, 181. https://doi.org/10.3390/

a14060181

Academic Editor: Stephanie

Allassonniere

Received: 31 March 2021

Accepted: 4 June 2021

Published: 8 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Economics, University of Klagenfurt, 9020 Klagenfurt, Austria;
viktoria.blueschke-nikolaeva@aau.at (V.B.-N.); reinhard.neck@aau.at (R.N.)
* Correspondence: dmitri.blueschke@aau.at

Abstract: OPTCON is an algorithm for the optimal control of nonlinear stochastic systems which
is particularly applicable to economic models. It delivers approximate numerical solutions to
optimum control (dynamic optimization) problems with a quadratic objective function for nonlinear
economic models with additive and multiplicative (parameter) uncertainties. The algorithm was first
programmed in C# and then in MATLAB. It allows for deterministic and stochastic control, the latter
with open loop (OPTCON1), passive learning (open-loop feedback, OPTCON2), and active learning
(closed-loop, dual, or adaptive control, OPTCON3) information patterns. The mathematical aspects
of the algorithm with open-loop feedback and closed-loop information patterns are presented in
more detail in this paper.

Keywords: optimal control; stochastic control; algorithms; open-loop control; open-loop feedback
control; closed-loop feedback control; learning

1. Introduction

Optimal control of stochastic processes is a topic which occurs in many contexts of
applied mathematics such as engineering, biology, chemistry, economics, and management
science. These techniques are used to steer the behavior of a plant, natural, human or
social system over a certain (finite or infinite) time period where the system is driven by
differential or difference equations whose time path can be influenced by an external con-
troller. The controller (decision maker, policy maker) aims at achieving the best trajectory
of his/her controls according to some criterion (performance measure, objective function)
over that time horizon.

Unfortunately, only a few special cases can be solved explicitly, in particular the linear-
quadratic-Gaussian problem, where the dynamic system is linear, the objective function is
quadratic, and the stochastics are confined to additive normally distributed noise affecting
the system dynamics (e.g., [1]). In this case, it is possible to separate the estimation of the
state and the optimization of its behavior due to the property of certainty equivalence
(the separation theorem). For most practical applications, however, especially those where
the parameters of the system are not known precisely, an exact solution to the optimal
stochastic control problem is not available and some kind of approximation is required.
One of the reasons is the curse of dimensionality, which prevents the solving of dynamic
functional equations for multivariable systems [2,3]. This is particularly complicated by
the so-called dual effect of controls preventing the separation of estimation and control
in adaptive processes; it was discovered by [4] that “the control must have a reciprocal,
‘dual’ character: to a certain extent they must be of a probing nature, but also controlling to
a known degree” ([4], p. 31). The dynamic functional equations for general problems of
this kind are known (see, e.g., [5]) but cannot be solved except in very special cases; hence
approximations are required (see [6–8]).

In this paper, we present the OPTCON algorithm for calculating numerically (approx-
imately) optimal control solutions to nonlinear dynamic stochastic optimization problems
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without and with learning. The algorithm was developed in three stages (OPTCON1,
OPTCON2, and OPTCON3) over a long period. OPTCON1 determines optimal controls for
deterministic problems and stochastic problems based on the open-loop information pat-
tern [9]. OPTCON2 solves problems with passive learning about the unknown parameters
of the system model [10], so-called open-loop feedback policies (see [11] for the terminol-
ogy). Finally, OPTCON3 also includes active learning (dual, adaptive control) according to
an approximation procedure initiated by [12–14], and adapted to linear economic systems
by [15,16], cf. [17]. The present paper provides mathematical details for OPTCON3, which
is the most sophisticated version of the OPTCON algorithm; in [18] we concentrate on
computations aspects and applications of OPTCON3.

The OPTCON algorithm is applicable for stochastic control problems with the follow-
ing properties: The model of the process is multivariable, formulated in discrete time, and
described by a system of nonlinear difference equations with known functional form but
additive noise and (possibly) unknown parameters. The state is stochastically observable
and controllable. No inequality constraints on states or controls are given. Open-loop,
open-loop feedback, and closed-loop information structures can be considered. The objec-
tive function is quadratic and perfectly known; it is formulated in tracking form but can
easily be transformed to the general quadratic form. Quadratic functions can be interpreted
as second-order Taylor approximations to more general functional forms. There is only one
decision maker; for decentralized problems, see the OPTGAME algorithm [19].

The paper has the following structure. In Section 2 the relevant basic background
is provided, namely the class of problems to be solved by the algorithm as well as some
basic information about the linear-quadratic framework and nonlinear system solving
algorithms. Section 3 presents the OPTCON algorithm stepwise, starting with the basic
version (OPTCON1) and then introducing the more advanced versions OPTCON2 and
OPTCON3 for handling stochastic components in the optimal control process. In Section 4
some details on computational time and accuracy of the OPTCON algorithm are presented.
Section 5 concludes.

2. Theoretical Background
2.1. Optimal Control Problem

We consider optimal control problems with a quadratic objective function and a nonlin-
ear multivariate discrete-time dynamic system under additive and parameter uncertainties.
The basis for an optimal control problem is a deterministic dynamic system to be controlled
(plant, firm, economy, etc.) in discrete time in the form:

xt = f (xt−1, xt, ut, zt), t = 1, ..., T, (1)

where:

- xt ∈ Rn is a vector of state variables that describes the state of the system at any point
in time t,

- ut ∈ Rm is a vector of control variables; we assume that the decision maker determines
the values of the control variables exactly (without randomization) according to the
approximately optimal solution of the problem,

- zt ∈ Rl denotes a vector of non-controlled deterministic exogenous variables, whose
values are known to the decision maker at time t,

- T denotes the terminal time period of the finite planning horizon.

The function f is assumed to be twice continuously differentiable with respect to all
of its arguments.

We assume that there is some true law of motion given by Equation (1) in the back-
ground which is at least partially unknown to the policy maker while the function f
is known to him/her. The policy maker faces two sources of uncertainty, additive and
parameter uncertainties where:
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- θ ∈ Rp denotes a vector of stochastic variables of system parameters (parameter un-
certainty),

- θ ∈ Rp is a vector of true parameters whose values are assumed to be constant but
unknown to the policy maker,

- εt ∈ Rn is a vector of additive stochastic disturbances (system error).

θt and εt are assumed to be independent Gaussian random vectors with expectations
θ̂ and On respectively and covariance matrices Σθθ and Σεε respectively.

Including uncertainty, the system (1) can be written as:

xt = f (xt−1, xt, ut, θt, zt) + εt, t = 1, ..., T. (2)

The optimal control problem to be solved approximately assumes that there is a
modeler who wishes to control the system (2). It means that the controller wishes to bring
the state variables, using the control variables, as close as possible to some pre-defined
desired time path, according to a given optimality criterion. The OPTCON algorithm
allows for the optimal control of the system (2) using a quadratic objective function. To this
end the modeler needs to define the following variables:

- x̃t ∈ Rn are given target (‘ideal’) values (for t = 1, ..., T) of the state variables,
- ũt ∈ Rm are given target (‘ideal’) values (for t = 1, ..., T) of the control variables,
- Wt is an ((n + m)× (n + m)) symmetric matrix defining the relative weights of the

state and control variables in the objective function. In a frequent special case, Wt
includes a discount factor α with Wt = αt−1W.

The resulting intertemporal objective function is given in quadratic tracking form:

J = E

[
T

∑
t=1

Lt(xt, ut)

]
, (3)

with

Lt(xt, ut) =
1
2

(
xt − x̃t
ut − ũt

)′
Wt

(
xt − x̃t
ut − ũt

)
. (4)

The OPTCON algorithm allows us to find approximate optimal control solutions
which minimize the functions (3) and (4) and satisfy the system dynamics (2).

2.2. Linear-Quadratic Optimal Control (LQ) Framework

The novel feature of the OPTCON algorithm is the combination of a nonlinear dynamic
system and the above-mentioned stochastics when solving optimal control problems.
Before we can discuss this technique in detail, a few words should be said about the
underlying linear-quadratic optimal control framework. The dynamic system is given in
linear form as

xt = Axt−1 + But + ct. (5)

The corresponding optimal control objective function can be written in the same form as in
(3) and (4). Using well-known LQ optimization techniques, the rules for defining control
variables can be found iteratively backwards in time using dynamic Riccati equations. We
start from the familiar LQ framework (e.g., [20]), which was adapted to economic models
by [15,21,22]. The same standard technique is applied in the OPTCON algorithm whenever
an optimal control for a linearized system should be obtained.

Furthermore, for computational reasons it is useful to transfer the objective function
from the quadratic tracking form as used in Equation (4) into the general quadratic form:

Lt(xt, ut) =
1
2

(
xt
ut

)′
Wt

(
xt
ut

)
+

(
xt
ut

)′( wx
t

wu
t

)
+ wc

t , (6)
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where (
wx

t
wu

t

)
= −Wt

(
x̃t
ũt

)
and wc

t =
1
2

(
x̃t
ũt

)′
Wt

(
x̃t
ũt

)
.

The equivalence between the quadratic tracking form and the general quadratic form is
shown, for instance, in [23].

2.3. Solving Nonlinear Dynamic Systems

The OPTCON algorithm allows us to find approximately optimal control solutions
for nonlinear stochastic systems. In the solution process, the nonlinear dynamic system (2)
should be solved in a large number of iterations. For this reason the choice of an appropriate
solver is important to guarantee obtaining reliable solutions taking the computational
costs into account. In the OPTCON algorithm, different solution algorithms are included
attaching different importance to the trade-off between reliability and computational speed.
At the moment the following methods can be used: Levenberg–Marquardt [24], trust
region [25], Newton–Raphson [26], or Gauss–Seidel [27].

3. The OPTCON Algorithm
3.1. The OPTCON1 Algorithm

The first version of the OPTCON algorithm, the OPTCON1 algorithm, was developed
by [9]. It allows us to calculate an open-loop (OL) solution to a nonlinear stochastic dynamic
optimal control problem with a quadratic objective function under additive and parameter
uncertainties. Open-loop controls either do not take account of the effect of uncertainties
in the system or assume the stochastics (expectation and covariance matrices of additive
and multiplicative disturbances) to be given for all time periods at the beginning of the
planning horizon. The basic idea behind this algorithm is that it extends linear-quadratic
stochastic optimal control techniques (see, e.g., [1]) to nonlinear problems using an iterative
method of linear approximations.

The OPTCON algorithm solves the nonlinear optimal control problem iteratively by
a sequence of linear approximations where the next approximation is derived using the
optimal control solution of the previous one. The (optimal) solutions of the intermediate
linear approximations are iterated from one time path to another until the algorithm
converges. The criterion for convergence is that the difference in the values of the state
and control variables of current and previous iterations is smaller than a pre-specified
number. or the maximal number of iterations is reached. In each iteration the same
procedure is conducted, namely linearizing and optimizing the linearized system. The
system is linearized around the previous iteration’s result and the problem is solved for the
resulting time-varying linearized system. The solution of the linearized model is obtained
via Bellman’s principle of optimality and is used as the tentative path for the next iteration,
starting off the procedure all over again. If the OPTCON algorithm converges, the solution
of the last iteration is taken as the approximately optimal solution to the nonlinear problem
and the value of the objective function is calculated. Figure 1 shows the structure of the
OPTCON1 algorithm.
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no
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Figure 1. Flow chart of OPTCON1.

3.2. The OPTCON2 Algorithm

The second version of the algorithm (called OPTCON2, see [10,23] for more details)
extends the first version with a passive learning strategy (open-loop feedback (OLF)). OLF
uses the idea of re-estimating the model at the end of each time period t = 1, ..., T. For
that purpose, the model builder (policy maker) observes the current situation and uses
the new information, namely the current values of the state variables, to improve his/her
knowledge of the system.

Recall that the stochastic system includes two kinds of uncertainties, namely additive
(random system errors) and multiplicative (‘structural’ errors in parameters). We assume
that there is some true law of motion in the background which is unknown to the policy
maker. The passive learning strategy deals with the ‘true’ parameters θ which generate
the model. However, the policy maker does not know these true parameters θ and works
with the ‘wrong’ estimated parameters θ̂. The idea of the OLF strategy is to observe the
outcome of the model in each time period and use this information to bring the estimated
parameters θ̂ closer to the true values θ.

The OLF strategy of the OPTCON2 algorithm consists of the following (rough) steps
running in a forward loop.

In each time period S (S = 1, . . . , T) do the following:

• Find an (approximately) optimal open-loop solution for the remaining subproblem
(for the time periods from S to T) using the OPTCON1 algorithm.

• Fix the predicted solution for time period S, namely x∗S and u∗S.
• Observe the realized state variables xa∗

S which result from the chosen control variables
(u∗S), the true law of motion with parameter vector θ, and the realization of the random
disturbances εS. The main difference between xa∗

S and x∗S is that the former is driven
by the true dynamic process with parameter vector θ and the latter by the estimated
dynamic system with θ̂.

• Update the parameter estimate θ̂ (via the Kalman filter and using the difference
between xa∗

S and x∗S) and use it in the next iteration step S + 1.

The last step is carried out using the idea of the Kalman filter (see, e.g., [28] or [29]).
The updating procedure according to the Kalman filter consists of two distinct phases,
prediction and correction. First (the prediction phase), the predicted values of the state vari-
ables x̂S/S−1, the vector of parameters θ̂S/S−1, and the covariances of the parameters Σθθ

S/S−1
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are calculated using the estimates from the previous time period. Next (the correction
phase), these ’a priori’ values of the state variables, the vector of the parameters, and the
values of the covariances are corrected using the current observations of the state variables.

The phase of calculating the predicted values of x̂S/S−1 and θ̂S/S−1 is integrated in
the previous steps of the OPTCON2 algorithm. At the end of time period S the predicted
values of x̂S/S−1 = x∗S are calculated and θ̂S/S−1 = θ̂S−1 is known.

The correction phase is reduced to the calculation of the parameter estimates θ̂S/S
and the parameter covariances Σθθ

S/S because the ’corrected’ values of the state variables
xa∗

S = f (xa∗
S−1, xa∗

S , u∗S, θ, zS) + εS are calculated in the previous step of the algorithm or
simply observed. As explained before, the updating procedure is based on the difference
between x∗S = f (xa∗

S−1, x∗S, u∗S, θ̂, zS) and xa∗
S at the end of each time period.

The OPTCON2 algorithm allows us to find an approximate solution of the optimal
control problem using a passive learning strategy. The policy maker uses real observations
in each time period to update his/her knowledge about the stochastic dynamic system.
In many cases it allows him/her to obtain more reliable results (see [30] for a performance
study on optimal control with a passive learning strategy).

3.3. The OPTCON3 Algorithm

In this section we present the detailed description of the OPTCON3 algorithm. As men-
tioned above, the latest version of the OPTCON algorithm includes an active learning
strategy. In the literature this strategy is also called closed-loop, adaptive, or dual control.
The passive learning method in the OPTCON2 algorithm uses current observations to
update the information about the dynamic system. The active learning strategy in OPT-
CON3 actively uses system perturbations to improve the optimal control performance by
reducing the uncertainty in the future.

The procedure for finding the closed-loop solution in the OPTCON3 algorithm is based
on the linear active learning control method in [15]. Similar to the iterative structure in the
OPTCON2 algorithm, the optimization runs in a forward loop (S = 1, . . . , T). However,
in each time period, more information about future measurements is used. To this end
the objective function J (as defined in Equations (3) and (4)) is extended for stochastic
components. We define in each time period Jd as the approximate total cost-to-go with
T − S periods remaining. The approximate cost-to-go is broken down into three terms:
Jd = JD + JC + JP. JD is called deterministic term and incorporates only non-stochastic
components. JC is the cautionary factor that includes the stochastic elements in the current
period. JP is called probing term and captures the effect of dual learning on the uncertainty
in the future periods. JC and JP constitute a separate quadratic minimization problem
constrained by the nonlinear system. The original system needs to be expanded to the
perturbation form δxt. The optimization problem has to be solved for the perturbed system,
where ∆J∗t is the perturbed objective function. Using Taylor expansion of nonlinear system
and Bellman optimization technique, we obtain the solution ∆J∗t as a quadratic function of
δxt−1. The original J∗t can be derived from ∆J∗t . To take uncertain parameters into account,

all the terms and formulas need to be adjusted to the augmented system

 xt
........

θ

.

Next, a schematic structure of the OPTCON3 algorithm is presented. This structure is
visualized in Figure 2.
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Figure 2. Flow chart of OPTCON3.

The optimization is carried out in a forward loop from 1 to T conducting following
procedure in each time period S (S = 1, ..., T). The subproblem from S to T is solved via
the open-loop (OL) strategy (see Figure 1 in Section 3.1). The OL solution (x∗S, u∗S) for the
time period S is fixed. After that the core part of the dual control strategy starts, where
the system is actively perturbed to learn about it in order to minimize the uncertainty
and the objective function values in the future. In the OPTCON3 algorithm a grid search
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method is used (instead of grid search many other methods can be applied, such as gradient
optimization or a more advanced heuristic approach). In the so-called “π-loop” we create a
grid of possible solutions around the existing path (x∗S, u∗S). In each iteration (π = 1, ..., Π),
i.e., in each grid point, the optimal control solution is obtained and evaluated using the
objective function. Inside the π-loop (for each π), the following steps are carried out.

An optimal open-loop solution for the subproblem from S + 1 to T is determined.
Then the OL solution (x∗πS+1, u∗πS+1) for the time period S + 1 is fixed. Next, after some
auxiliary calculations (including, among other, Riccati matrices), the deterministic JD,
cautionary JC, and probing JP terms of the cost-to-go are determined in a forward loop
from S + 1 to T. Once the iteration of the π-loop has been completed, the total approximate
objective function Jd = JD + JC + JP can be obtained. When the search is completed, i.e.,
the approximately optimal path with minJd has been found, the obtained optimal control
in time period S + 1 is carried out by the policy maker. As a result of these controls and the
true dynamic systems the actual values of the state variables can be obtained. This new
information is used by the policy maker to update and to adjust the parameter estimate
θ̂, whereby the Kalman filter is used. Using the updated stochastic parameters, the same
active learning procedure is applied for the remaining time periods from S + 2 to T.

The OPTCON3 algorithm basically uses the technique presented in [13,15] but is
augmented by approximating, in each step, the nonlinear system in a series of linear
systems (iterative procedure as described in Section 3.1).

The following steps (I–IV) of the OPTCON3 algorithm describe how to obtain an
approximately optimal dual control solution to a stochastic problem.

The algorithm needs the following input values (A legitimate question would be how
to obtain the required (tentative) inputs. It obviously depends on the research question.
In the case of some numerical experiments, one can resort to Monte Carlo simulations. In
the case of a real-world application, one can estimate system parameters by an appropriate
method or simply guess some values):

f system function
x0 =

◦
x0 initial values of state variables

(
◦
ut)T

t=1 tentative path of control variables
θ̂0 = θ̂ expected values of system parameters
Σθθ

0 = Σθθ covariance matrix of system parameters
Σεε covariance matrix of system noise
(εt)T

t=1 system noises
(zt)T

t=1 path of exogenous variables
(x̃t)T

t=1 target path for state variables
(ũt)T

t=1 target path for control variables
Wxx, Wux, Wuu weighting matrices of objective function
wu

t , wx
t weighting vectors of objective function

α discount factor of objective function.

As a result of the algorithm, an approximately optimal solution (xa∗
t )T

t=1, (u∗t )
T
t=1 and

the corresponding value of the objective function J∗ are obtained.
Step I: Do the following search steps [1], [2] and [3] for each S = 1, ..., T:
Step I-[1]: Find the OL solution for the subproblem (S, ..., T): apply the procedure

already used in OPTCON1. Fix (x∗S, u∗S).
Step I-[2]: Run a grid search of size Π around (x∗S, u∗S), i.e., perform steps (A)–(G) for

each π = 1, ..., Π:
Step I-2A: Find the OL solution (x∗πt , u∗πt )T

S+1 for the subproblem (S + 1, ..., T).
• The nonlinearity loop is run until the stop criterion is fulfilled (the stop criterion is

fulfilled when the difference between the values of the current and the previous iteration is
smaller than a pre-specified number or the maximum number of iterations is achieved).
As a result the approximately optimal solution (x∗πt , u∗πt )T

S+1 has been found. Then go to
the next step I-2B.

Notes:
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- After several runs of the nonlinearity loop, only the solution (x∗πS+1, u∗πS+1) for the time
period S + 1 will be taken as the optimal (nominal) solution. The calculations of
the pairs (x∗πt′ , u∗πt′ ) for other periods (t′ > S + 1) have to be done again, taking into
account the re-estimated parameters for all periods.

- After linearization the parameter matrices for the linearized system are obtained:
At = (I − Fx

xt)
−1Fx

xt−1
and Bt = (I − Fx

xt)
−1Fx

ut , where Fx
xt , Fx

xt−1
, and Fx

ut are the
derivatives of the system function f with respect to xt, xt−1, and ut respectively.

Step I-2B: Do a backward recursion to obtain auxiliary matrices for calculating com-
ponents of the objective function.

Initialize the following auxiliary matrices for backward recursion:

Hxx
T+1 = On×n, hx

T+1 = On,

Hxθ
T+1 = On×p, Hθθ

T+1 = Op×p.

Calculate the Riccati matrices Kxx
t , Kθx

t , and Kθθ
t and the auxiliary matrices Λxx

t , Λxu
t ,

Λuu
t , λx

t , λu
t , Hxx

t , Hθx
t , Hθθ

t , and hx
t backwards in time from T to S + 1.

Kxx
t = Wxx

t + Hxx
t+1, Kθx

t = Hθx
t+1, Kθθ

t = Hθθ
t+1,

kx
t = hx

t+1 + x′Wxx
t + Wxu

t u + wx
t .

(7)

Λxx
t = (At)′Kxx

t At,

Λux
t = (Bt)′Kxx

t At + Wux
t At,

Λxu
t = (Λux

t )′,

Λuu
t = (Bt)′Kxx

t Bt + 2(Bt)′Wxu
t + Wuu

t .

(8)

λx
t = kx

t At,

λu
t = kx

t Bt + x′Wxu
t + u′Wuu

t + (wu
t )
′. (9)

Hxx
t = Λxx

t −Λxu
t (Λuu

t )−1Λux
t ,

Hθx
t = [D′Kxx

t + Kθx
t ]At − [[D′Kxx

t + Kθx
t ]Bt + DWxu](Λuu

t )−1Λux
t ,

Hθθ
t = D′(Kxx

t D + Kxθ
t ) + Kθx

t D + Kθθ
t − [[D′Kxx

t + Kθx
t ]Bt + DWxu]

×(Λuu
t )−1[Bt[Kxx

t D + Kxθ
t ] + WuxD],

hx
t = λx

t −Λxu
t (Λuu

t )−1λu
t ,

(10)

where D = (I − Fx
xt)
−1Fx

θ .
Fx

θ is the derivative of the system function with respect to θ.
Step I-2C: Calculate the deterministic component of the approximate objective func-

tion JD,S and the cautionary component JC,S:

JD,S = 1
2 [x
∗π
S − x̃S]

′Wxx[x∗πS − x̃S] + [x∗πS − x̃S]
′Wxu[u∗πS − ũS]

+ 1
2 [u
∗π
S − ũS]

′Wuu[u∗πS − ũS]

and

JC,S = 1
2 tr(Hxx

S+1Σxx
S+1/S) + tr(Hθx

S+1Σxθ
S+1/S) +

1
2 tr(Hθθ

S+1Σθθ
S+1/S).

(11)

Step I-2D: Repeat steps [a]–[c] for each j = S + 1, ..., T:
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[a]: Calculate the components JD,j and JC,j:

JD,j =
1
2 [x
∗π
j − x̃j]

′Wxx[x∗πj − x̃j] + [x∗πj − x̃j]
′Wxu[u∗πj − ũj]

+ 1
2 [u
∗π
j − ũj]

′Wuu[u∗πj − ũj]),

JC,j =
1
2 tr(Kxx

j Σξξ).

(12)

[b]: Calculate the matrix Σθθ
j/j:

Σθθ
j/j = Σθθ

j/j−1 − Σθx
j/j−1(Σ

xx
j/j−1)

−1Σxθ
j/j−1 (13)

with
Σxx

j/j−1 = Fx
θ Σθθ

j−1/j−1(Fx
θ )
′ + Σεε

j
and
Σxθ

j/j−1 = (Σθx
j/j−1)

′ = Fx
θ Σθθ

j−1/j−1, Σθθ
j/j−1 = Σθθ

j−1/j−1.
(14)

[c]: Compute the probing component JPj :

JPj =
1
2 tr[Λxu(Λuu)−1ΛuxΣxx

j/j]

+tr[Λxu(Λuu)−1(B′(KxxD + Kxθ) + WuxD)Σθx
j/j]

+ 1
2 tr[((Kθx + D′Kxx)B + D′Wxu)(Λuu)−1

×(B′(KxxD + Kxθ) + WuxD)Σθθ
j/j].

(15)

Step I-2E: Calculate the sum of the deterministic, cautionary, and probing terms over
the periods S, ..., T:

Jd = (JD,S +
T

∑
j=S+1

JD,j) + (JC,S +
T

∑
j=S+1

JC,j) +
T

∑
j=S+1

JPj .

Step I-2F: Take a new control
◦
uS =

◦
u

π+1
S (a new point in the grid search) and go to

step I-2A.
Step I-[3]: Choose an optimal u∗S with minJ = J∗d (u

∗
S). End of grid search. Fix the

corresponding x∗S.
Step II: Calculate the following (a) and (b) for only one time period S:

(a)
Σxx

S/S−1 = Fx
θ Σθθ

S−1/S−1(Fx
θ )
′ + Σεε

S
and
Σxθ

S/S−1 = (Σθx
S/S−1)

′ = Fx
θ Σθθ

S−1/S−1, Σθθ
S/S−1 = Σθθ

S−S/S−1.
(16)

(b)
xa∗

S = f (xa∗
S−1, xa∗

S , u∗S, θ, z) + εS.

Step III: Update the parameter estimates θ̂ and Σθθ
S/S:

θ̂S/S = θ̂S/S−1 + Σθx
S/S−1(Σ

xx
S/S−1)

−1[xa∗
S − x∗S] and x̂S/S = xa∗

S . (17)

Σθθ
S/S = Σθθ

S/S−1 − Σθx
S/S−1(Σ

xx
S/S−1)

−1Σxθ
S/S−1. (18)

Step IV: Set θ̂ = θ̂S/S and Σθθ = Σθθ
S/S, go to Step I and run the procedure for the time

period S + 1.
The OPTCON3 algorithm is finished when S = T and the approximately optimal dual

control and state variables have been found for all periods.
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3.4. Computational Details for the AL Procedure

This subsection includes the technical computations for the AL procedure of the
OPTCON3 algorithm.

The basic tasks are applying Bellman’s principle of optimality, linearization of the
nonlinear system in perturbation form, minimizing the objective function, and inserting
the obtained feedback rule for controls back into the objective function. In this way the
(temporary) components of the optimal objective function can be derived. After that, due
to the stochastic nature of the parameters (θ), all the components have to be adjusted to the

extended system

 xt
........

θ

.

Start with Bellman’s principle of optimality:

J∗T−t = min
ut

E{Lt(xt, ut) + J∗T−(t+1)(xt)}. (19)

The last term of (19) is

J∗T−(t+1)(xt) = min
ut+1

E

{
... min

uT−1
E{

T

∑
j=t+1

Lj(xj, uj)/PT−1}.../Pt+1}
}

,

where Pt = (x̂t/t, Σt/t).
For ∑T

j=t+1 Lj(xj, uj) use the (Taylor) series expansion:

T

∑
j=t+1

Lj(xj, uj) =
T

∑
j=t+1

Lj(xoj, uoj) +
T

∑
j=t+1

(Ljxδxj +
1
2

δx
′
jLjxxδxj

+δx
′
jLjxuδuj + Ljuδuj +

1
2

δu
′
jLjuuδuj),

where Ljx, Lju are the gradients and Ljxx, Ljxu, and Ljuu are the Hessian matrices;
δxj = xj − xoj, δuj = uj − uoj, and (xoj, uoj) is a nominal path.
Thus,

J∗T−(t+1)(xt) = J∗o,T−(t+1)(xt) + ∆J∗T−(t+1)(xt) (20)

and

∆J∗T−(t+1)(xt) = min
ut+1

E{... min
uT−1

E{∑T
j=t+1(Ljxδxj +

1
2 δx

′
jLjxxδxj

+δx
′
jLjxuδuj + Ljuδuj +

1
2 δu

′
jLjuuδuj/PT−1}.../Pt+1)}.

(21)

Next, apply the Taylor expansion to the nonlinear system, i.e., linearize the system
function f in (2) around the reference values:

xt ≈ ft(x̂t−1/t−1, u∗t , xt) + Fxt−1(xt−1 − x̂t−1/t−1) + Fu(ut − u∗t ) + Fxt(xt − x̂t/t) + εt.

This can be rewritten in perturbation form:

δxt = Fxt−1 δxt−1 + Fuδut + Fxt δxt + εt

After transformation

δxt = (I − Fxt)
−1Fxt−1 δxt−1 + (I − Fxt)

−1Fut δut + (I − Fxt)
−1εt. (22)

Thus, (21) and (22) constitute the problem in perturbation form.
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Next, we have to prove that the term (21) can be expressed in the quadratic form as a
function of δxt only.
Assume

∆J∗T−(t+1)(xt) = gt+1 + E{hx
t+1δxt +

1
2

δx
′
tHt+1δxt/Pt+1} (23)

and apply the method of induction. By doing so the parameters g, hx and H are determined.
The next step is to prove that rule (23) is also true for ∆J∗T−j(xt) ∀j.

Start with
J∗T−j = min

uj
E{Lj(xj, uj) + J∗T−(j+1)(xj)}.

By second order expansion we get:

J∗T−j =min
uj

E{Lj(xoj, uoj) + Lxδxj +
1
2

δx
′
jLxxδxj + δx

′
jLxuδuj + Luδuj

+
1
2

δu
′
jLuuδuj + (J∗o,T−(j+1) + ∆J∗T−(j+1))

J∗T−j − Lj(xoj, uoj)− J∗o,T−(j+1) =min
uj

E{Lxδxj +
1
2

δx
′
jLxxδxj + δx

′
jLxuδuj

+ Luδuj +
1
2

δu
′
jLuuδuj + ∆J∗T−(j+1)}

Use Lj(xoj, uoj) + J∗o,T−(j+1) = J∗o,T−j and assumption (23)

J∗T−j − J∗o,T−j =min
uj

E{Lxδxj +
1
2

δx
′
jLxxδxj + δx

′
jLxuδuj + Luδuj

+
1
2

δu
′
jLuuδuj + gj+1 + E{hx

j+1δxj +
1
2

δx
′
jHj+1δxj/Pj+1/Pj}}

Taking expectations over Pj+1 yields

∆J∗T−j := J∗T−j − J∗o,T−j = min
uj

E{(Lx + hx
j+1)δxj +

1
2 δx

′
j(Lxx + Hj+1)δxj

+δx
′
jLxuδuj + Luδuj +

1
2 δu

′
jLuuδuj + gj+1/Pj}.

(24)

Put (22) into (24) and set

Lx + hx
j+1 := kx

j , Lxx + Hj+1 := Kj, HT+1 = 0. (25)

Then by taking expectations over Pj

∆J∗T−j =min
uj

E{kx
j [(I − Fxj)

−1Fxj−1 δxj−1 + (I − Fxj)
−1Fuδuj + (I − Fxj)

−1ε j]

+
1
2
[(I − Fxj)

−1Fxj−1 δxj−1 + (I − Fxj)
−1Fuδuj + (I − Fxj)

−1ε j]
′
Kj

× [(I − Fxj)
−1Fxj−1 δxj−1 + (I − Fxj)

−1Fuδuj + (I − Fxj)
−1ε j]

+ [(I − Fxj)
−1Fxj−1 δxj−1 + (I − Fxj)

−1Fuδuj + (I − Fxj)
−1ε j]

′
Lxuδuj

+ Luδuj +
1
2

δu
′
jLuuδuj + gj+1/Pj−1}
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∆J∗T−j =min
uj

E{kx
j (I − Fxj)

−1Fxj−1 δxj−1 + [kx
j (I − Fxj)

−1Fu + Lu]δuj

+
1
2

δx
′
j−1[F

′
xj−1

((I − Fxj)
−1)

′
Kj(I − Fxj)

−1Fxj−1 ]δxj−1

+ δx
′
j−1[F

′
xj−1

((I − Fxj)
−1)

′
Kj(I − Fxj)

−1Fu + F
′
xj−1

((I − Fxj)
−1)

′
Lxu]δuj

+
1
2

δu
′
j[F
′
u((I − Fxj)

−1)
′
Kj(I − Fxj)

−1)Fu + 2F
′
u((I − Fxj)

−1)
′
Lxu + Luu]δuj

+
1
2

ε
′
j((I − Fxj)

−1)
′
Kj(I − Fxj)

−1ε j + gj+1/Pj−1}.

The terms which are higher than second order are dropped here.
Then use the following notations:

λx := kx
j [(I − Fxj)

−1Fxj−1

λu := kx
j [(I − Fxj)

−1Fu + Lu

Λxx := F
′
xj−1

((I − Fxj)
−1)

′
Kj(I − Fxj)

−1Fxj−1

Λxu := F
′
xj−1

((I − Fxj)
−1)

′
Kj(I − Fxj)

−1Fu + F
′
xj−1

((I − Fxj)
−1)

′
Lxu

Λuu := F
′
u((I − Fxj)

−1)
′
Kj(I − Fxj)

−1)Fu + 2F
′
u((I − Fxj)

−1)
′
Lxu + Luu

ξ j := (I − Fxj)
−1ε j

(26)

and get

∆J∗T−j = min
uj

E{λxδxj−1 + λuδuj +
1
2 δx

′
j−1Λxxδxj−1 + δx

′
j−1Λxuδuj

+ 1
2 δu

′
jΛ

uuδuj +
1
2 ξ
′
jKjξ j + gj+1/Pj−1}.

(27)

Apply the rule E(x′Ax) = x̂′Ax̂ + tr(AΣxx) and take expectations over Pj−1:

∆J∗T−j = min
uj

E{λxδx̂j−1/j−1 + λuδuj + gj+1 +
1
2 δx̂

′
j−1/j−1Λxxδx̂j−1/j−1

+δx̂
′
j−1/j−1Λxuδuj +

1
2 δu

′
jΛ

uuδuj +
1
2 tr(ΛxxΣxx

j/j−1) +
1
2 tr(KjΣξξ)},

(28)

where E(ξ) = 0.
Next, minimize the objective function ∆J∗T−j with respect to δuj:

∆J∗T−j
δuj

= λu + δx̂
′
j−1/j−1Λxu + δu

′
jΛ

uu = 0

δuj = −(Λuu)−1(λu + Λxuδx̂j−1/j−1)

(29)

Put rule (29) into (27):

∆J∗T−j = E{λxδxj−1 + λu[−(Λuu)−1(λu + Λxuδx̂j−1/j−1)] +
1
2 δx

′
j−1Λxxδxj−1

+δx
′
j−1Λxu[−(Λuu)−1(λu + Λxuδx̂j−1/j−1)] +

1
2 [−(Λuu)−1(λu + Λxuδx̂j−1/j−1)]

′
Λuu

×[−(Λuu)−1(λu + Λxuδx̂j−1/j−1)] +
1
2 ξ
′
Kjξ + gj+1}

∆J∗T−j = E{gj+1 + (λx + Λxu(Λuu)−1λu)δxj−1 − 1
2 λu(Λuu)−1λu + 1

2 δx
′
j−1Λxxδxj−1

+ 1
2 x̂
′
j−1/j−1Λxu(Λuu)−1Λux x̂j−1/j−1 − δx

′
j−1Λxu(Λuu)−1Λuxδx̂j−1/j−1 +

1
2 ξ
′
Kjξ}
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Define
Λxu(Λuu)−1Λux := Ωxx. (30)

Note that 1
2 ξ
′
Kjξ = 1

2 [E(ξ)KjE(ξ) + tr(KjΣξξ)] = 1
2 tr(KjΣξξ) because E(ξ) = 0. Moreover

E{δx
′
j−1Ωxxδx̂j−1/j−1} = δx̂j−1/j−1Ωxxδx̂j−1/j−1. Thus,

∆J∗T−j = gj+1 − 1
2 λu(Λuu)−1λu + 1

2 tr(KjΣξξ) + E{(λx + Λxu(Λuu)−1λu)δxj−1

+ 1
2 δx

′
j−1Λxxδxj−1} − 1

2 δx̂j−1/j−1Ωxxδx̂j−1/j−1.

Use the following rule:

E{δxj−1Ωxxδxj−1} = x̂j−1/j−1Ωxxδx̂j−1/j−1 + tr(ΩxxΣxx)
⇒ x̂j−1/j−1Ωxxδx̂j−1/j−1 = E{δxj−1Ωxxδxj−1} − tr(ΩxxΣxx)

and get

∆J∗T−j = gj+1 − 1
2 λu(Λuu)−1λu + 1

2 tr(KjΣξξ) + E{(λx + Λxu(Λuu)−1λu)δxj−1

+ 1
2 δx

′
j−1Λxxδxj−1} − 1

2 (E{δxj−1Ωxxδxj−1} − tr(ΩxxΣxx))

= gj+1 − 1
2 λu(Λuu)−1λu + 1

2 tr(KjΣξξ) + tr(ΩxxΣxx)

+E{(λx + Λxu(Λuu)−1λu)δxj−1 +
1
2 δx

′
j−1(Λ

xx −Ωxx)δxj−1}.

Defining

hx
j := λx + Λxu(Λuu)−1λu, Hj := Λxx −Ωxx := Λxx −Λxu(Λuu)−1Λux (31)

and
gj = gj+1 −

1
2

λu
j (Λ

uu)−1λu
j +

1
2

tr(KjΣ
ξξ
j/j + ΩxxΣxx

j ),

we get
∆J∗T−j = gj + E{hx

j δxj−1 +
1
2 δx

′
j−1Hjδxj−1}. (32)

This shows that ∆J∗T−j is a quadratic function of δxj−1.

QED

Next, using the results of [31] we find the solution of the g recursion:

gj = gj+1 −
1
2

λu
j (Λ

uu)−1λu
j +

1
2

tr(KjΣ
ξξ
j/j + ΩxxΣxx

j ).

Let us define a deterministic term Mj = 1
2 λu

j (Λ
uu)−1λu

j and a stochastic term

Nj =
1
2 tr(KjΣ

ξξ
j/j + ΩxxΣxx

j ), so that gj = gj+1 − Mj + Nj. By working backwards from
period T the following can be shown:

gT−j = gT−j+1 −∑T
i=T−j Mi + ∑T

s=T−j Ni and gT+1 = 0. (33)

Next, solve it partially for the stochastic term Nj. For that define γj = γj+1 − Mj with
γT+1 = 0.
Using again the backward recursion get the equation:

γT−j = γT−j+1 −
T

∑
i=T−j

Mi = −
T

∑
i=T−j

Mi.
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Put it into (33) and get

gT−j = γT−j +
T

∑
i=T−j

Ni

or in general

gj+1 = γj+1 +
T

∑
i=j+1

Ni.

Thus

gj+1 = γj+1 +
1
2

T

∑
i=j+1

tr(KiΣ
ξξ
i−1/i−1 + ΩxxΣxx

i−1) (34)

and
γj = γj+1 −

1
2

λu
j−1(Λ

uu)−1λu
j−1.

Use the fact that ∆J∗T−(t+1) and ∆J∗t+1 are equivalent; thus put (34) into (32) for t + 1:

∆J∗t+1 = γt+1 +
1
2

(
T

∑
i=t+1

tr(KiΣξξ + ΩxxΣxx)

)
+ E{hx

t+1δxt +
1
2

δx
′
tHt+1δxt/Pt}. (35)

Then

J∗t+1(xt) = J∗o,t+1 + ∆J∗t+1 = Co,t+1 + γj+1 +
1
2 (∑

T
i=t+1 tr(KiΣξξ + ΩxxΣxx))

+E{hx
t+1δxt +

1
2 δx

′
tHt+1δxt/Pt},

(36)

where Co,t+1 = ∑T
i=t+1 Lt+1(xo,t+1, uo,t+1).

J∗t = min
ut

Et−1{Lt(xt, ut) + J∗t+1(xt)}

= min
ut

E{Lt(xt, ut) + Co,t+1 + γt+1 +
1
2 (∑

T
i=t+1 tr(KiΣξξ + ΩxxΣxx))

+E{hx
t+1δxt +

1
2 δx

′
tHt+1δxt/Pt/Pt−1}}

(37)

E{hx
t+1δxt/Pt−1} = 0 and

E{ 1
2 δx

′
tHt+1δxt/Pt−1} = 1

2 δx̂
′
t/t−1Ht+1δx̂t/t−1 +

1
2 tr(Ht+1Σxx

t/t−1) =
1
2 tr(Ht+1Σxx

t/t−1).

Then
J∗t =: J∗t,d = min

ut
Et−1{Lt(xt, ut) + Co,t+1 + γt+1

+ 1
2

(
∑T

i=t+1 tr(KiΣ
ξξ
i/i + ΩxxΣxx

i/i)
)
+ 1

2 tr(Ht+1Σxx
t/t−1)}.

(38)

This objective function can be split into three parts:
deterministic:

JD,t = Lt(xt, ut) + Co,t+1 + γt+1, (39)

cautionary:

Jc,t =
1
2

(
T

∑
i=t

tr(KiΣ
ξξ
i/i)

)
+

1
2

tr(Ht+1Σxx
t/t−1), (40)

probing:

Jp,t =
1
2

T

∑
i=t+1

tr(ΩxxΣxx
i/i). (41)



Algorithms 2021, 14, 181 16 of 22

In this way the optimal control problem is solved and the components of the objective function
are found. However, these are not the final results. In the next step, the stochastic parameters
have to be taken into account, i.e., the extension of the system has to be considered.

3.5. Extension of the System

Recall that the algorithm deals with a quadratic criterion function when the param-
eters of the system equations are unknown. One technique to incorporate the uncertain
parameters is to treat the random parameters as additional state variables.

Thus, apply the equations of the objective function to the system

Ψt =

[
xt
θt

]
.

Then

Lt(Ψt, ut) =
1
2 [(xt − x̃t)′

...0]

 Wxx ... 0
· · · · · ·

0
... 0


 (xt − x̃t)

· · ·
0



+[(xt − x̃t)′
...0]

 Wxu

. . .
0

[ut − ũt] +
1
2 [ut − ũt]′Wuu[ut − ũt]

(42)

and

ft(Ψt, ut) =

[
f x(Ψt, ut)
f θ(Ψt, ut)

]
=

[
f (xt, xt−1, ut, θt)

Iθt−1

]
. (43)

In order to calculate the adjusted components of the objective function (especially (40) and
(41)) we need the terms H and Ω.
First, we calculate the adapted ΩΨΨ using Definition (30):

ΩΨΨ = ΛΨu(Λuu)−1ΛuΨ = [FΨt−1((I − FΨt)
−1)′Kt(I − FΨt)

−1Fu

+ FΨt−1((I − FΨt)
−1)′LΨu](Λuu)−1[Fu((I − FΨt)

−1)′Kt(I − FΨt)
−1FΨt−1

+ L′Ψu((I − FΨt)
−1)′FΨt−1 ]

=

([
(Fx

xt−1
)′ Fθ

xt−1

(Fx
θt−1

)′ Fθ
θt−1

][
((I − Fx

xt)
−1)′ 0

((I − Fx
xt)
−1Fx

θt
)′ I

][
Kxx Kxθ

Kθx Kθθ

]

×
[

((I − Fx
xt)
−1)′ (I − Fx

xt)
−1Fx

θt
0 I

][
Fx

u
Fθ

u

]
+

[
Fx

xt−1
Fθ

xt−1

Fx
θt−1

Fθ
θt−1

]

×
[

(I − Fx
xt)
−1 0

(I − Fx
xt)
−1Fx

θt
I

][
Lxu
0

])
(Λuu)−1

([
F′u 0

][ (I − Fx
xt)
−1 0

(I − Fx
xt)
−1Fx

θt
I

]

×
[

Kxx Kxθ

Kθx Kθθ

][
(I − Fx

xt)
−1 (I − Fx

xt)
−1Fx

θt
0 I

][ Fx
xt−1

Fx
θt−1

Fθ
xt−1

Fθ
θt−1

]

+
[

Lux 0
][ (I − Fx

xt)
−1 (I − Fx

xt)
−1Fx

θt
0 I

][ Fx
xt−1

Fx
θt−1

Fθ
xt−1

Fθ
θt−1

])
, (44)

where

I − FΨt =

(
I 0
0 I

)
−
(

Fx
xt Fx

θt
Fθ

xt Fθ
θt

)
=

(
I 0
0 I

)
−
(

Fx
xt Fx

θt
0 0

)

=

(
I − Fx

xt (−Fx
θt
)

0 I

) (45)
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and

(I − FΨt)
−1 =

(
(I − Fx

xt)
−1 (I − Fx

xt)
−1Fx

θt
0 I

)
. (46)

We know that Fθ
xt−1

= 0, Fx
θt−1

= 0, Fθ
θt−1

= I, and Lxu = Wxu. Then we get

ΩΨΨ =

([
(Fx

xt−1
)′(I − Fx

xt)
−1 0

((I − Fx
xt)
−1Fx

θt
)′ I

][
Kxx Kxθ

Kθx Kθθ

][
(I − Fx

xt)
−1Fx

ut
0

]
+

[
(Fx

xt−1
)′(I − Fx

xt)
−1 0

((I − Fx
xt)
−1Fx

θt
)′ I

][
Wxu

0

])
(Λuu)−1

×
([

(Fx
ut)
′(I − Fx

xt)
−1 0

][ Kxx Kxθ

Kθx Kθθ

]
×
[

(I − Fx
xt)
−1Fx

xt−1
(I − Fx

xt)
−1Fx

θt
0 I

]
+
[

Wux 0
][ (I − Fx

xt)
−1Fx

xt−1
(I − Fx

xt)
−1Fx

θt
0 I

])
.

(47)

Define
D = (I − Fx

xt)
−1Fx

θt
. (48)

Then using A = (I − Fx
xt)
−1Fx

xt−1
and B = (I − Fx

xt)
−1Fx

ut we get the following:

ΩΨΨ =

([
A′ 0
D′ I

][
KxxB
KθxB

]
+

[
A′Wxu

D′Wxu

])
(Λuu)−1

×
([

B′Kxx BKxθ
][ A D

0 I

]
+

[
Wux A
WuxD

])
=

[
(A′KxxB + A′Wxu)

(D′KxxB + KθxB + D′Wxu)

]
(Λuu)−1

×
[
(B′Kxx A + Wux A) (B′KxxD + B′Kxθ + WuxD)

]
=:
[

ψ1 ψ2
ψ3 ψ4

]
.

(49)

Use the definition Λxu = A′KxxB + A′Wxu and get the following:

ψ1 = Λxu(Λuu)−1Λux,
ψ2 = Λxu(Λuu)−1(B′KxxD + B′Kxθ + WuxD),
ψ3 = (D′KxxB + KθxB + D′Wxu)(Λuu)−1Λux,
ψ4 = (D′KxxB + KθxB + D′Wxu)(Λuu)−1(B′KxxD + B′Kxθ + WuxD).

For the calculation of H we need the term ΛΨΨ:

ΛΨΨ = (FΨt−1)
′((I − FΨt)

−1)′Kt(I − FΨt)
−1FΨt

=

(
A′ 0
D′ I

)(
Kxx Kxθ

Kθx Kθθ

)(
A D
0 I

)

=

(
A′Kxx A A′(KxxD + Kxθ)

(D′Kxx + Kθx)A D′(KxxD + Kxθ) + (KθxD + Kθθ)

)
.

(50)

Now we can calculate the term H for the extended system:

HΨΨ = ΛΨΨ −ΛΨu(Λuu)−1ΛuΨ = ΛΨΨ −ΩΨΨ
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HΨΨ
t =

(
Hxx Hxθ

Hθx Hθθ

)
t

(51)

Thus,

Hxx = Λxx −Λxu(Λuu)−1Λux

Hxθ = A′(KxxD + Kxθ)−Λxu(Λuu)−1(B′KxxD + B′Kxθ + WuxD)

Hθθ = D′(KxxD + Kxθ) + (KθxD + Kθθ)

−(D′KxxB + KθxB + D′Wxu)(Λuu)−1(B′KxxD + B′Kxθ + WuxD).

(52)

After that we go back to the components of the objective function. According to (41) we
need to calculate the term ΩΨΨΣΨΨ

t/t .

ΩΨΨΣΨΨ
t/t =

(
ψ1 ψ2
ψ3 ψ4

)(
Σxx Σxθ

Σθx Σθθ

)
t/t

=

(
ψ1Σxx

t/t + ψ2Σθx
t/t ψ1Σxθ

t/t + ψ2Σθθ
t/t

ψ3Σxx
t/t + ψ4Σθx

t/t ψ3Σxθ
t/t + ψ4Σθθ

t/t

)
.

(53)

Thus,
Jp,t =

1
2 ∑T

j=t+1 tr(ΩΨΨΣΨΨ
j/j ) =

1
2 (∑

T
j=t+1 tr[Λxu(Λuu)−1ΛuxΣxx

j/j])

+tr[Λxu(Λuu)−1(B′(KxxD + Kxθ) + WuxD)Σθx
j/j]

+ 1
2 tr[((Kθx + (D)′Kxx)B + (D)′Wxu)(Λuu)−1

×(B′(KxxD + Kxθ) + WuxD)Σθθ
j/j].

(54)

Next we calculate JC,t. According to (40) we need to calculate tr(KΨΨ
j Σξξ

j/j−1) and

tr(HΨΨ
t+1Σxx

t/t−1):

tr(KΨΨ
j Σξξ

j/j) = tr

[(
Kxx Kxθ

Kθx Kθθ

)
j

(
Σξξ 0

0 0

)
j/j

]
= tr(Kxx

j Σξξ
j/j) (55)

tr(HΨΨ
t+1Σxx

t/t−1) = tr

[(
Hxx Hxθ

Hθx Hθθ

)
t+1

(
ΣxxΣxθ

ΣθxΣθθ

)
t/t−1

]

= tr(Hxx
t+1Σxx

t/t−1 + Hxθ
t+1Σθx

t/t−1) + tr(Hθx
t+1Σxθ

t/t−1 + Hθθ
t+1Σθθ

t/t−1)

= tr(Hxx
t+1Σxx

t/t−1) + 2tr(Hθx
t+1Σxθ

t/t−1) + tr(Hθθ
t+1Σθθ

t/t−1).

(56)

Thus,

Jc,t =
1
2
[

T

∑
i=j

tr(Kxx
i Σξξ

i/i)] +
1
2

tr(Hxx
t+1Σxx

t/t−1) + tr(Hθx
t+1Σxθ

t/t−1) +
1
2

tr(Hθθ
t+1Σθθ

t/t−1). (57)
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Under the assumption γ = 0 (Kendrick (1981), Appendix J) the deterministic term is

JD,t = Lt(Ψt, ut) + Co,t+1 + γj+1 = Lt(xt, ut) + ∑T
j=t+1(Lj(xoj, uoj))

= 1
2 (xt − x̃t)′Wxx(xt − x̃t) + (xt − x̃t)′Wxu(ut − ũt)

+ 1
2 (ut − ũt)′Wuu(ut − ũt) + ∑T

j=t+1[(xot − x̃t)′Wxx(xot − x̃t)

+(xot − x̃t)′Wxu(uot − ũt) +
1
2 (uot − ũt)′Wuu(uot − ũt)],

(58)

where (xot, uot) = (x∗t , u∗t ) is a nominal path.
In order to calculate the components of the objective function we need to determine

one more term, KΨΨ
t .

Use KΨΨ
t = LΨΨ + HΨΨ

t+1

KΨΨ
t =

(
Kxx Kxθ

Kθx Kθθ

)
t
=

(
Lxx Lxθ

Lθx Lθθ

)
t
+

(
Hxx Hxθ

Hθx Hθθ

)
t+1

=

(
Wxx 0

0 0

)
t
+

(
Hxx Hxθ

Hθx Hθθ

)
t+1

,

Kxx
t = Wxx

t + Hxx
t+1,

Kxθ
t = Hxθ

t+1,
Kθx

t = Hθx
t+1,

Kθθ
t = Hθθ

t+1,

(59)

where Hxx
T+1 = On×n, Hxθ

T+1 = On×p, Hθx
T+1 = Op×n, Hθθ

T+1 = Op×p.
Use the linearized system, i.e., apply:
A = (I − Fx

xt)
−1Fx

xt−1
, B = (I − Fx

xt)
−1Fx

ut , Lu = x′Wxu + u′Wuu + (wu)′

Luu = Wuu
t and Lxu = Wxu

t
to (26) and obtain variables as used in Step I-2B in Section 3.3:

Λxx
t = (At)′Kxx

t At,

Λux
t = (Bt)′Kxx

t At + Wux
t At,

Λxu
t = (Λux

t )′,

Λuu
t = (Bt)′Kxx

t Bt + 2(Bt)′Wxu
t + Wuu

t ,

(60)

λx
t = kx

t At,

λu
t = kx

t Bt + x′tW
xu
t + u′tW

uu
t + (wu)′.

(61)

4. Computational Aspects

In this paper we concentrate on mathematical details of the OPTCON algorithm.
However, it is important to mention the computational characteristics of this algorithm. In
order to show computational time and accuracy we used two different models: the MacRae
model and the ATOPT model. As it would go beyond the scope of the present paper, we
do not discuss these models and their economic interpretation (see detailed descriptions
in [18]) but provide computational details of applying different versions of the OPTCON
algorithm. We compared four different optimization strategies: deterministic solution
(det), stochastic open-loop solution (OL) as described in Section 3.1, stochastic passive
learning solution (OLF) as described in Section 3.2, and stochastic active learning solution
(AL) as described in Section 3.3. In the case of the active learning strategy, a grid search
with 100 grid points for each control variable was applied (see parameter Π in Step-I-[2] in
Section 3.3). All calculations were performed on a Windows 10 computer with 16 GB RAM.
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The OPTCON algorithm is programmed in MATLAB (MATLAB R2020a); the MATLAB
computer code is available on request.

The MacRae model is a simple linear model with one state and one control variable.
One parameter is stochastic and the optimal control was calculated for two periods only.
Table 1 summarizes the computational performance of the OPTCON algorithm for the
MacRae model. In the case of a linear-quadratic deterministic optimal control framework
convergence can be shown analytically. This is true for the MacRae model, at least for the
deterministic and the OL case. Moreover, as a check for the special case of a linear system,
we compared the results of OPTCON with those of the same model calculated by available
software and found them to be the same apart from round-off errors.

Table 1. Computational aspects of optimal control for the MacRae model

Method Computational Time Convergence 1

det 0.024879 sec. 2
OL 0.036867 sec. 2

OLF 0.134725 sec. 2
AL 0.771425 sec. 2

1 The number of iterations for convergence is available for the deterministic and OL solution techniques. In the
case of the OLF and AL solution techniques the number of iterations for S = 1 is given, as this is the optimization
for the whole planing horizon.

The ATOPT model is a small nonlinear model consisting of three equations, one
control variable, and two stochastic parameters. The optimal control is calculated for five
periods. Table 1 summarizes the computational performance of the OPTCON algorithm for
the MacRae model. Table 2 summarizes the computational performance of the OPTCON
algorithm for the ATOPT model.

Table 2. Computational aspects of optimal control for the ATOPT model

Method Computational Time Convergence

det 0.148106 sec. 15
OL 0.134021 sec. 7

OLF 0.265504 sec. 7
AL 15.726499 sec. 7

5. Concluding Remarks

In this paper, we described the OPTCON algorithm for the approximately optimal con-
trol of stochastic processes under a quadratic objective function. For systems with complete
information, either deterministic or stochastic with known statistical characteristics of the
disturbances, the open-loop version of OPTCON1 is suitable. OPTCON2 assumes partial
information, in particular uncertain parameters of the system, with passive storage of in-
formation accruing during the control horizon, i.e., not used for control purposes. If active
storage of information is possible, the dual control policy of OPTCON3 is appropriate. All
three versions of OPTCON were programmed first in C# and then in MATLAB. We have
applied OPTCON1 to various economic policy problems ([32,33], among others); Monte
Carlo experiments with OPTCON2 and OPTCON3 have also yielded satisfactory results
in terms of computing time. The results of approximately optimal policies were also as
expected from the point of view of the economic problems under consideration. Due to the
numerical nature of the algorithm, we cannot prove convergence in general; however, no
problems of non-convergence have occurred so far. For future research, more applications
are desirable to gain more insight into the different policies resulting from the various
assumptions about the information structure of adaptive stochastic policy problems.
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