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Abstract: Since January 2020, the outbreak of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has affected the whole world, producing a respiratory disease that can become severe
and even cause death in certain groups of people. The main method for diagnosing coronavirus
disease 2019 (COVID-19) is performing viral tests. However, the kits for carrying out these tests
are scarce in certain regions of the world. Lung conditions as perceived in computed tomography
and radiography images exhibit a high correlation with the presence of COVID-19 infections. This
work attempted to assess the feasibility of using convolutional neural networks for the analysis of
pulmonary radiography images to distinguish COVID-19 infections from non-infected cases and
other types of viral or bacterial pulmonary conditions. The results obtained indicate that these
networks can successfully distinguish the pulmonary radiographies of COVID-19-infected patients
from radiographies that exhibit other or no pathology, with a sensitivity of 100% and specificity
of 97.6%. This could help future efforts to automate the process of identifying lung radiography
images of suspicious cases, thereby supporting medical personnel when many patients need to be
rapidly checked. The automated analysis of pulmonary radiography is not intended to be a substitute
for formal viral tests or formal diagnosis by a properly trained physician but rather to assist with
identification when the need arises.
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1. Introduction

Since January 2020, the outbreak of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has affected the entire world, with devastating consequences. Infection with
SARS-CoV-2 causes a respiratory disease that triggers a wide range of reactions among
the infected, from asymptomatic infections to severe disease and death. No vaccinations
or treatments are yet known as of October 2020. The disease is mainly spread through
droplets of saliva or the nasal discharge of an infected person. Thus far, it has exhibited a
high rate of transmission.

Although it is not clear whether the disease can be spread during the pre-symptomatic
stage, its reproductive number is estimated to be around 2.5, surpassing that of influenza
and other better-known viruses. Moreover, the fatality rate also appears to be much higher
than that of seasonal influenza, especially in elderly people and people with certain existing
physical conditions. This makes it especially difficult to confine and control how it spreads
across multiple regions in the world. As of June 2020, the disease had spread to more than
200 countries, producing more than 6 million cases and 430,000 deaths [1].

Since the outbreak started, there have been multiple research efforts attempting to
provide answers to the many questions concerning the virus and containing its spread.
These questions include how long SARS-CoV-2 remains viable on different surfaces [2],
the effects of temperature on how the virus spreads [3,4], whether or not it can be transmit-
ted by asymptomatic people [5], how it affects the cardiovascular system [6], and whether
or not certain substances are appropriate for treating the disease [7]. The authors of [8]
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provide a comprehensive survey of the various research efforts that have been taking place
in the last few months.

On the other hand, since coronavirus disease 2019 (COVID-19) is a new viral disease,
presumably no one had immunity and most people are considered susceptible to infection,
leaving very high numbers of suspicious cases that need to be diagnosed. In the context
of the pandemic and a generalized fear of being infected or spreading the disease, many
people with symptoms such as cough, fever, sneezing, or throat pain presume that they
might be infected and approach medical centers for medical diagnosis. Furthermore,
in many buildings with public access, such as airports, new protocols for allowing entrance
have been established. For instance, in many countries, if one has even a slight fever, one is
considered to be potentially infected with COVID-19 and hence not allowed into shopping
centers or municipal buildings.

In this scenario, medical personnel must determine whether a person is really infected
or not as soon as possible in order to (1) take proper care of the infected person and
(2) prevent the further dissemination of the disease. This necessitates methods that can
diagnose the disease or at least provide more indicators that help to determine the actual
medical condition of the person presumably infected with COVID-19. Based on these
indicators, medical staff can determine whether a suspicious case deserves to be considered
highly likely to be infected (which requires special care and treatment) or whether it can be
dismissed as a potential COVID-19 infection.

Many techniques based on machine learning have been proposed for controlling the
disease. These techniques solve various problems related to recognizing if a person is
wearing a facemask [9,10], non-contact sensing for COVID-19 [11], the automatic detection
of the disease [12–16], the prediction of the number of infected cases [17], and optimizing
the process of the admission of COVID-19 patients to hospitals [18].

The main method used to formally diagnose COVID-19 consists of viral tests. Samples
from an individual’s respiratory system (such as swabs from the inside of the nose) are
examined to determine whether the patient is currently infected with SARS-CoV-2 [19,20].
Some of these tests can provide results in a matter of hours, whereas other tests must
be sent to a laboratory for analysis, providing results in a few days. These tests tend to
be costly and can consume a significant amount of resources for certain populations or
countries [21]. Moreover, due to the worldwide situation, these tests are scarce in many
countries, making it difficult to conduct them on a wider scale. Hence, they cannot always
be performed upon the recognition of the first symptom suggesting potential infection
with COVID-19.

Since COVID-19 generates a respiratory disease that mainly affects the lungs, medical
staff usually resort to the use of visual images of the lungs using computed tomography (CT)
and X-rays (RX) to assess the medical conditions of their patients. People with respiratory
diseases usually exhibit distinct marks in their lungs that can be spotted by a trained eye. These
marks exhibit different patterns according to the type of disease affecting the patient [22–25].

In cases where a person exhibits fever or any other symptom and viral tests are difficult
to perform, the analysis of CT scans or RX images can provide strong support to confirm or
refute the hypothesis that someone is infected with COVID-19. Nonetheless, as previously
stated, highly trained personnel are required to provide accurate interpretations of the
aforementioned images and diagnose whether or not the patient is infected with COVID-19.

This rationale leads to the question of whether or not we can train machines that
can interpret images to identify patients with COVID-19. The same question holds for
other pulmonary diseases, but due to the pandemic being ongoing (as of June 2020), we
mainly aim to detect the aforementioned disease. It is highly important to emphasize
that it is by no means implied that a machine-obtained interpretation of a pulmonary
image can be a substitute for a more comprehensive diagnosis made by a highly trained
physician. However, this technique could eventually be used to help medical personnel to
quickly obtain an indication of whether the symptoms of a given patient imply infection
with COVID-19.
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Related Work

There have recently been many remarkable efforts to exploit machine learning tools
to facilitate the analysis of images for the diagnosis of COVID-19. These efforts include
initiatives to collect worldwide images and make them public [26–30] as well as attempts
to automate the analysis of CT scans or lung X-ray images. Mazzilli et al. [15] developed a
method for automatically evaluating lung conditions using CT scans to determine COVID-
19 infection. Their method is based on individually optimized Hounsfield unit (HU)
thresholds. Alshazly et al. [16] investigated the practicality of using deep learning models
trained on chest CT images to detect COVID-19 efficiently. In [31], the authors offer a
review of techniques from the image processing field that are being used extensively to
identify COVID-19 in CT and RX images. Guo et al. [32] employed machine learning
tools to predict the infectivity of COVID-19. In [33], a forecasting model for predicting
the spread of COVID-19 is proposed. The studies [34–36] focus on training convolutional
neural networks (CNNs) to detect COVID-19 in CT chest scans.

Artificial neural networks (ANNs) are biologically inspired algorithms that mimic the
computational aspects of the human brain. They contain multiple connected computational
units (resembling individual neurons) that transmit and receive information according to
specific rules, rules that dictate the operation modes of the networks. CNNs are one type of
ANN that have been proven to be very powerful for computer vision applications [37,38].
In recent years, a new class of ANNs named spiking neural networks (SNNs) has also
been intensively investigated because of their promising computational capabilities [39,40].
However, the generic and effective training methods for these networks still remain cum-
bersome and, therefore, their fields of application are much more specific than those of their
predecessors. CNN algorithms have the advantage that they can be run very efficiently on
standard computers that are equipped with graphics processing units, without the need to
use dedicated platforms based on neuromorphic systems [41,42].

Generally speaking, CT scans can be more accurate for revealing lung conditions and
diagnosing related diseases than RX images. However, CT scans can be almost one order
of magnitude more expensive than their RX counterparts, and they also take much longer
complete (about 40 min) than X-ray imaging, which can be completed in about 5 min.
Moreover, CT scanners are scarce in certain regions of the world, whereas radiography
systems are much more common [43]. Therefore, there is also great motivation to explore
the feasibility of automatically identifying COVID-19 in RX images. The main aim of this
work was to contribute evidence that supports the following hypothesis: Deep learning can
be used to recognize COVID-19 infections from lung X-ray images.

Duran-Lopez et al. [12] developed a deep-learning-based system called COVID-XNet,
which preprocesses chest X-ray images and then classifies them as normal or COVID-19-
infected. Bourouis et al. [13] proposed using a Bayesian classifier framework to classify
chest X-ray images as either infected or normal. Features are extracted from segmented
lungs and then modeled using a proposed mixture model; finally, the Bayesian classifier
is applied to perform the classification. Alam et al. [14] combined/fused two types of
features (early fusion) and then used them to train a VGGNet classifier for the detection of
COVID-19 from chest X-ray images. The fused features were extracted from X-ray images
using a histogram-oriented gradient (HOG) and convolutional neural networks (CNNs).
Narin et al. [44] analyzed the performance of three CNN models—ResNet50, InceptionV3,
and Inception ResNetV2—for detecting COVID-19 from RX pulmonary images. However,
only 50 COVID-19-positive and 50 COVID-19-negative images were used in the study.
Farooq et al. [45] also used a ResNet50 CNN trained with the COVID-Net dataset [26]
to distinguish COVID-19 from bacterial pneumonia, non-COVID-19 viral pneumonia,
and normal cases. Since the original set had only 68 COVID-19-positive images, they had
to perform significant data augmentation. Due to the scarcity of available images, in [46]
a capsule network model is proposed for examining lung RX images. In [47], the authors
developed a CNN architecture that leverages the projection–expansion–extension design.
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Zebin et al. [48] implemented three CNN-based classifiers for pulmonary radiogra-
phies by using VGG16, ResNet50, and EfficientNetB0 as backbones. In [49], based on the
pre-trained AlexNet CNN, a relief feature selection mechanism is implemented that is then
used with a support vector machine to perform the classification. Goel et al. [50] proposed
a CNN, named OptCoNet, whose hyperparameters were optimized using the grey wolf
optimizer (GWO) algorithm. In [51], a ResNet CNN architecture was utilized to derive
three different classifiers, which were then assembled to obtain a more accurate classifier.
Jain et al. [52] compared three architectures of CNNs for the classification of pulmonary
radiographies into three classes: normal, COVID-19, and other pneumonia.

In this work, we collected images from all the relevant sources that we could find [26,28,29,53–55].
Since the number of available images has been continually increasing, we have added more
and more images to our model but also had to discard a significant number of them due to
constraints that will be elaborated on in Section 2.

Pneumonia can occur due to several different causes. It can be caused by bacteria
or viruses, and there are even multiple types of viral pneumonia. Hence, we intended to
train our model to distinguish cases of COVID-19 from cases of any other viral or bacterial
disease. Consequently, we had to procure a set of images that, in addition to images of
COVID-19 infection, also included images of bacterial infections, viral infections (other
than COVID-19), and no infection. We collected images from all relevant open access
sources that we found until November 2020. These sources can be found in [26,28,53–55]
and were used among many other similar publications [12–14,48–52].

It is worth mentioning that, in general, these efforts are still in the research stage
and not yet intended as production models ready for clinical diagnosis. In order to attain
that level, many more properly labeled images should be made available for training
and testing. We are working continuously to improve them as new data become avail-
able. However, the main goal of this work was to illustrate the process and feasibility
of developing serious classifiers of X-ray images to indicate the existence of COVID-19
infection. Another goal of this work was to compare the performance of two renowned
CNN architectures, VGG16 [56] and Xception [57]. The main contribution of this article
consists of the description of two CNN-based classifiers that can distinguish pulmonary
radiographies that include COVID-19-infected lungs from those that do not. Our novel
classifiers exhibit a performance comparable to that found in other similar state-of-the-art
studies [12–14,48–52]. In fact, our classifiers even slightly outperform some of these others
in certain metrics.

The remainder of this paper is structured as follows. Section 2 describes the image
collection and preparation processes as well as the architecture of the convolutional neural
network implemented for the classifier. Section 3 elaborates on the obtained results and
discusses potential directions for improvement. Finally, Section 4 presents our main highlights
and observations about this work.

2. Materials and Methods

This work aimed to develop algorithms that could determine whether pulmonary
radiography images belong to people infected with COVID-19. To this end, we made use
of artificial neural networks (ANNs). ANNs are computing algorithms that are somewhat
inspired by biological neural networks. Generally speaking, ANNs constitute sequences
of mathematical operations that are applied to given inputs, yielding corresponding out-
puts. These mathematical operations are usually deterministic, meaning that in a given
neural network, the same input will always yield the same output. These mathematical
operations are defined in terms of numerical parameters, usually referred to as weights.
The weights characterize how the preliminary results obtained at each step in the network
are propagated forward during the sequence of operations.

There are multiple types of neural network, mainly differing in terms of the sequences
and types of mathematical operations performed on their inputs. Among them, convo-
lutional neural networks (CNNs) constitute a specific type that is well suited for image
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processing and computer vision. CNNs implement sequences of convolutional operations
on their input images, represented by tensors, to extract the most relevant features that
characterize the images. CNNs may have thousands of weights. Unlike spiking neural
networks, CNNs do not take into consideration the signal propagation—i.e., signals are
assumed to propagate instantaneously across the network.

In order to use CNNs for image classification, one should determine what weights
are optimal for the classification problem at hand. Determining the optimal weights of
a CNN is analogous to computing the optimal coefficients of a polynomial function for
best fitting. This process is known as training. In order to train a CNN such that it can
detect whether pulmonary radiography exhibits signs of COVID-19, several radiographies
from COVID-19-infected and uninfected people should be collected. These images will
be used with their corresponding labels (infected or uninfected) to adjust the weights of a
CNN (the training process). As a result, the network can properly classify new images as
COVID-19-infected or uninfected. More details are provided in the following.

2.1. Image Collection

The search for and collection of a high number of images is a key process in these
studies. In order to obtain a classifier model that can be generalized well for unseen images,
we need to procure sufficient images for training and learning the distinct features that
characterize any targeted label. By generalizing well, we mean that it can properly classify
images that were not used in the training process.

There is no conclusive answer as to how many images are required to develop a model
of this type. However, if it performs satisfactorily on the testing set, assuming that the set
is sufficiently representative of the many possible RX pulmonary images, we can expect
that it will perform satisfactorily with other unseen images.

Since lung infections can have multiple causes (not only COVID-19), it is necessary to
endow the model with the ability to distinguish COVID-19 infections from other illnesses.
Hence, it was necessary to include cases of other possible conditions within the training and
testing sets. Great effort was made to obtain as many good-quality images as possible of
various types of pathologies. Figures 1 and 2 illustrate samples of pulmonary radiographies
of uninfected and COVID-19-infected patients, respectively.

Figure 1. Pulmonary radiography of an uninfected person.
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Figure 2. Pulmonary radiography of a person infected with COVID-19.

Since the outbreak is quite recent, there are few publicly available sources of images.
However, there are a few highly valuable initiatives to make images publicly available
through repositories for practitioners. The images used in this work were extracted from the
following sources: [26,28,29,53–55]. Table 1 lists the number of images extracted from each
source. The first column denoted as “Ref.” indicates the reference from which the images were
retrieved. The second column shows the number of images that were initially downloaded
from the mentioned source. We opted to constrain the geometry of the images used in our
developments (this is elaborated on in Section 2.2). The third column of Table 1 states the
number of retrieved images that satisfied the imposed constraints. Finally, the fourth column,
named “Label Details”, enumerates the labels associated with the used images.

Table 1. Labels of the collected images and sample counts.

Ref. Num. of
Retrieved Images

Images Satisfying
Size Constraints Label Details

[28,29] 542 217

168 images labeled as “COVID-19”
12 images labeled as “No Finding”
3 images labeled as “Legionella”
6 images labeled as “SARS (no COVID-19)”
6 images labeled as “Pneumocystis”
6 images labeled as “Streptococcus”
1 image labeled as “Chlamydophila”
3 images labeled as “Escherichia Coli”
5 images labeled as “Klebsiella”
2 images labeled as “Pneumonia”
3 images labeled as “Varicella”
1 image labeled as “Lipoid”
1 image labeled as “Influenza”

[26] 55 15
9 images labeled as “COVID-19”
1 image labeled as “No Finding”
5 images labeled “Unclassified”
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Table 1. Cont.

Ref. Num. of
Retrieved Images

Images Satisfying
Size Constraints Label Details

[53] 238 11
2 images labeled as “COVID-19”
6 image labeled as “No Finding”
3 images labeled “Unclassified”

[54] 5906 151

18 images labeled as “COVID-19”
100 images labeled as “No Finding”
21 images labeled as “Bacteria”
12 images labeled as “Other Viruses”

[55] 2683 2683
205 images labeled as “COVID-19”
1341 image labeled as “No Finding”
1137 images labeled as “Pneumonia”

2.2. Image Preprocessing

Not every image we found could be used in this work. A couple of constraints were
imposed in an attempt to obtain a solid classifier. Firstly, not every image found in the
repositories was an X-ray radiograph. Some of them were computed tomograms, and since
this work only aimed to develop a classifier for RX, the CT images were removed from the
collected set. Three types of views were found among the RX images: posterior–anterior
(PA), anterior–posterior (AP), and lateral views. Among the images found, the number
of lateral views was much lower than the number of AP and PA ones. Moreover, lateral
views are usually less useful for diagnosis. Therefore, we discarded the lateral views and
pursued the construction of a classifier that handles only PA and AP views.

In general, convolutional neural networks (and other types of neural networks) require
inputs of a fixed and predefined size. However, among the collected PA and AP images,
there were images of multiple sizes and aspect ratios AR = h/w, where h is the height of
the image and w denotes its width, both measured by their numbers of pixels. Therefore,
the images had to be resized to a common size for appropriate usage. If images with
different original aspect ratios are resized to a common aspect ratio, at least one will
necessarily lose its initial AR. This might affect the appearance of distinct features that
might indicate the presence of COVID-19. Hence, we tried to avoid significant changes
in the aspect ratios with respect to their original values. We decided to use images that
originally had square (or almost square) shapes—i.e., an equal number of pixels for the
width and height. Since we resized the images into square ones, in order to avoid the
images becoming highly distorted, we selected only images whose original aspect ratios
were very close to 1: 0.95 ≤ AR ≤ 1.05. These images were resized to a new width
and height of h = w = 400 pixels each. We picked the value of h = w = 400 because,
among the images that satisfied the constraint on AR, there were many good-quality
images with a h and w both larger than 400 (in this statement, the quality that we refer to is
a quality assessed visually, avoiding blurred images, images with too many annotations,
or images where the lungs appeared significantly shifted from the center). In order to avoid
expanding the images, possibly generating pixelation and misleading information, we only
allowed images whose sizes could be maintained or reduced. Hence, images that initially
did not satisfy the constraint on the aspect ratio or that had at least one dimension smaller
than 400 pixels were removed from the set.

Lastly, to achieve more robust results in every iteration of the training process, the im-
ages were rotated by random angles of up to 5 degrees clockwise or counterclockwise.
Figure 3 illustrates the whole process sequence.
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Yes

No

Yes

Trash

Figure 3. Schematic view of the entire process from data collection to testing.

2.3. Distribution of Samples in the Training and Testing Sets

The total number of usable images was 3077 (summing up the third column of Table 1),
with the labels given according to Table 1. However, we opted to keep a dataset with
similar numbers of COVID-19-positive and -negative cases to avoid biasing the training
process. According to Table 1, there were 402 positive cases, and we randomly picked 400
“No Finding” cases, 200 “Pneumonia” cases, and 35 cases with infections that were neither
“COVID-19” nor “Pneumonia”. In total, we selected 1037 images, which were split into a
testing and a training set. The former consisted of 200 images that were carefully balanced
in number with the following distribution:

• 65 images labeled as “COVID-19”;
• 63 images labeled as “Pneumonia”;
• 63 images labeled as “Normal”;
• 2 images labeled as “SARS (no COVID-19)”;
• 1 image labeled as “Legionella”;
• 2 images labeled as “Pneumocystis”;
• 2 images labeled “Streptococcus”;
• 1 image labeled as “Escherichia coli”;
• 1 images labeled as “Klebsiella”;
• 1 image labeled as “Varicella”;
• 1 image labeled as “Lipoid”.
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The other 837 images constituted the training set. Within the training set, 200 images
were used as the validation set. In order to assess the robustness of the training process,
a cross-validation-like process was performed. Every network was trained multiple times,
each with a different random split for training and validation. After every training process,
the obtained performance was measured in a previously unseen testing set, yielding a
similar performance for every training process. These results are described in Section 3.

2.4. Convolutional Neural Network Based on the VGG16 Architecture

This work implemented two different CNN architectures for the sake of comparison.
Firstly, we implemented a convolutional neural network based on the VGG16 architecture.
This architecture was proposed by the Visual Geometry Group at the University of Ox-
ford, who won the ILSVRC (ImageNet) competition in 2014 [58], and has since become
widely used owing to its excellent performance. It was described in the seminal work
by Simonyan and Zisserman [56] and, since then, has been implemented in a variety of
applications [59–61]. A schematic view of the architecture of this CNN is presented in
Figure 4.

Figure 4. Schematic diagram of the VGG16 CNN architecture. Credit: https://neurohive.io/en/
popular-networks/vgg16/ (accessed on 15 November 2020).

In the original implementation, the input of the first convolutional layer has a fixed size
of 224× 224 and is of RGB type. The image is processed through an array of 13 successive
convolutional layers with max pooling layers between every two or three convolutional
layers, as displayed in Figure 4. A total of 3× 3 convolutional filters are used in every
convolutional layer, with a stride of 1 pixel and a padding of 1 pixel. Spatial pooling is
performed in a total of five max-pooling layers. The max pooling is performed through
windows of 2× 2 pixels with a stride of 2 pixels. After the convolutional layers, there are
three dense layers with 4096 nodes each, followed by a final softmax layer. The hidden
layers are built with rectified linear unit (ReLU) activation functions.

In this work, the VGG16 network was implemented using the Keras API [62]. Keras is
a programming interface for Tensorflow, which is a Google open source library for machine
learning applications [63]. Keras has a built-in implementation of the VGG16 network
that allows for image sizes different from the original configuration of 224× 224 pixels,
which allowed us to define a model for an image size of 400× 400. Keras also enables
the user to remove the three fully connected layers at the end of the network that the
original version of VGG16 has. In this work, these layers were removed, and the output
of the convolutional layers was passed through an average-pool-type filter with a size of
2 pixels by 2 pixels. Subsequently, a single fully connected layer of 64 nodes was added

https://neurohive.io/en/popular-networks/vgg16/
https://neurohive.io/en/popular-networks/vgg16/
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with the ReLU activation function and, finally, a two-node output layer with the softmax
activation was added [64]. Note that, although we trained the CNN to distinguish images
of lungs infected with COVID-19 from images of lungs with other pathologies, the pursued
classifications were still binary: either infected with COVID-19 or not.

In this implementation, the weights that were optimized were those of the fully
connected layers, while the pre-trained weights of the convolutional layers remained
at their original values [56]. The weights were optimized by using the built-in Adam
optimizer [65], for which the learning rate lr was scheduled as lr(k) = 0.001/(1 + d · k),
where k is the iteration number and d = 0.00002857142. Finally, the used loss function J
was “binary cross-entropy”, which is defined in Equation (1), where yi denotes the label of
the observation i, ŷi indicates the predicted value for the observation i, and N represents
the number of observations in a given batch. For this architecture, the model was initially
trained for 35 epochs with a batch size of eight observations, although at about epoch 25,
steady-state values of the loss function were attained.

J = − 1
N

N

∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi) (1)

For the implementation of this CNN, the mean of the tensors corresponding to ev-
ery image in the training set was subtracted from every tensor in both the training and
testing sets.

2.5. Convolutional Neural Network Based on the Xception Architecture

Another architecture assessed in this work is Xception. Xception was developed at
Google by F. Chollet. It is based on the concept of “inception modules” and is endowed with
36 convolutional layers for feature extraction [57]. This architecture seems very promising,
since it outperformed other precedent networks with a similar number of parameters on
large datasets such as ImageNet [58] and another Google internal dataset denoted by JFT.

Like VGG16, this architecture can be also implemented through the Keras frame-
work [66]. In its default implementation, the size of the input images is 299 pixels ×
299 pixels, and it has 3 channels. However, disabling the default top layer of this CNN
makes the use of different image sizes possible. We opted to disable the default top layer to
keep the same input size of 400 pixels× 400 pixels (as used in Section 2.4) and replaced the
disabled layer with another top fully connected layer of 64 nodes.

In the resulting architecture, the image is processed through an array of 14 blocks of
successive convolutional layers. Each block is composed differently, combining depthwise
separable convolutional layers with ReLU activation functions and 3× 3 layers of max
pooling. As with the previous architecture (Section 2.4), the output of the convolutional
layers was passed through an average-pool-type filter with a size of 2 pixels by 2 pixels
and the last fully connected layer of 64 nodes with the ReLU activation function. Likewise,
the output layer had two nodes with softmax activation.

The weights that were optimized were those of the fully connected layers, while the
weights of the convolutional layers were set as those pre-trained on the ImageNet set.
The weights were optimized using the Adam optimizer [65] with the learning rate lr and
the loss function J , as specified in Section 2.4. For this architecture, the model was trained
for 25 epochs, with a batch size of 30 observations. For the implementation of this CNN,
the intensity of every pixel in the input images was rescaled to lie in the interval [0, 1].

3. Results and Discussion

Both CNNs were trained and tested on the same sets. As previously described,
the training process was run multiple times. Each time, the total training set (834 images)
was randomly split into 200 images for validation and 634 images for training. After every
training process, the performance of the obtained CNN was evaluated using the testing set.
The obtained results were very similar for all the experiments, providing an indication of
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the robustness of the training process. Tables 2 and 3 display the obtained performance for
each of the conducted experiments for each CNN architecture.

Table 2. Performance obtained across the 10 experiments for the VGG16-based CNN.

Sensitivity Specificity F1

Experiment 1 95.4% 97.6% 95.4%
Experiment 2 96.9% 97.6% 96.1%
Experiment 3 94.2% 100% 97.0%
Experiment 4 96.7% 99.2% 97.7%
Experiment 5 97.0% 100% 98.5%
Experiment 6 96.9% 98.4% 96.9%
Experiment 7 96.9% 97.6% 96.1%
Experiment 8 96.9% 98.4% 96.9%
Experiment 9 92.9% 100% 96.3%
Experiment 10 96.9% 97.6% 96.1%

Table 3. Performance obtained across the 10 experiments for the Xception-based CNN.

Sensitivity Specificity F1

Experiment 1 100% 97.6% 97.7%
Experiment 2 95.6% 100% 97.7%
Experiment 3 97.0% 99.2% 97.7%
Experiment 4 97.0% 100% 98.5%
Experiment 5 95.6% 100% 97.7%
Experiment 6 95.4% 97.6% 95.4%
Experiment 7 97.0% 99.2% 97.7%
Experiment 8 96.6% 93.9% 91.9%
Experiment 9 97.0% 100% 98.5%
Experiment 10 96.9% 98.4% 96.9

The following paragraphs elaborate on the results of Experiment 1 for both CNNs.
Figure 5 illustrates the progress regarding the prediction capability of the VGG16 CNN
as the training advanced. It can be seen that, after 15 epochs of training, the loss function
attained a steady value of J ∼ 0.1. Likewise, the accuracy computed over the testing set
was around 94%.

Examining the distributions of the VGG16 CNN predictions over the original labels
reveals the following for one of the aforementioned ten experiments. There were originally
65 cases labeled as “COVID-19”, of which 62 (95.4%) were predicted as such and 3 were
wrongly identified as false negatives. On the other hand, out of the 63 cases labeled as
“Pneumonia”, only 1 (1.6%) was wrongly predicted as COVID-19, whereas the other 62 were
properly classified as no COVID-19. With respect to the 63 test cases labeled as “Normal”,
2 (3.2%) were wrongly identified as COVID-19, while 61 were properly determined as
no COVID-19. For this analysis, we grouped all the other 11 cases as “Others”, which
should be properly predicted as no COVID-19. The idea of incorporating the latter images
grouped as “Others”, as well as pneumonia images, into the testing set was to explore the
performance of the classifier with images of lungs affected by diseases other than COVID-
19. However, the number of pulmonary images in the group “Others” was considerably
smaller than the number of images of lungs infected with COVID-19 or pneumonia; hence,
they were grouped together.



Algorithms 2021, 14, 183 12 of 24

Figure 5. Evolution of the training of VGG16 CNN.

Out of the 11 testing set images grouped as “Others”, 6 were wrongly predicted as
COVID-19 and the other 5 were properly classified as no COVID-19. Since there were only
26 of these images in the training set, perhaps the classifier could not properly learn to
distinguish them from cases of COVID-19. This would support our first hypothesis that
the number of cases of these types in the training set was not sufficient for appropriate
training to develop the ability to classify them as no COVID-19. Figure 6 illustrates the
distribution of the results, which is also summarized in the confusion matrices in Table 4
(including cases labeled as “Others”) and Table 5 (excluding cases labeled as “Others”).
Note that the confusion matrices present only two categories, where the positive category
refers to cases of COVID-19 infection while the negative category refers to all cases that
were not COVID-19-positive.

Figure 6. Distribution of the classification results.

Table 4. Confusion matrix for the entire testing set: CNN VGG16.

Pred. Positive Pred. Negative

True Positive 62 3
True Negative 9 128
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Table 5. Confusion matrix for the testing set without the cases labeled as “Others”: CNN VGG16.

Pred. Positive Pred. Negative

True Positive 62 3
True Negative 3 123

Based on the aforementioned numbers and considering only the groups “COVID-
19”, “Pneumonia”, or “Normal” for the detection of COVID-19, the following statistics
were obtained:

• Sensitivity (Recall) , TP
TP+FN = 62

65 = 95.4%;
• Specificity , TN

TN+FP = 123
126 = 97.6%;

• F1 , 2·TP
2·TP+FP+FN = 95.4%.

where TP, TN, FP, and FN denote the number of true positive, true negative, false positive,
and false negative cases, respectively. Recall that positive and negative refer to COVID-19-
positive (infected) and COVID-19-negative (uninfected) cases.

The Xception CNN performed slightly better than the VGG16 architecture. The re-
spective confusion matrices are displayed in Tables 4 and 6. Comparing Tables 4 and 6, it is
observed that the Xception-based CNN did not produce any false negative case and, conse-
quently, every positive case was classified as such. The VGG16-based CNN yielded three
false negative cases. False negative cases indicate people who are classified as uninfected
when they are actually infected; keeping this number as low as possible is thus crucial to
avoid misleading treatments. In this sense, considering the tests conducted in this work,
Xception looks more promising. This is reflected in the sensitivity statistic, which jumped
from 95.4% for VGG16 to 100% for Xception. Regarding the classification of the actual
negative cases, the proportion of tests correctly classified was very similar in both cases.

Table 7 yields the following statistics for the Xception CNN (disregarding cases that
were not “COVID-19”, “Pneumonia”, or “Normal”):

• Sensitivity (Recall) = 65
65 = 100%;

• Specificity = 123
126 = 97.6%;

• F1 = 2·TP
2·TP+FP+FN = 97.7%.

The progress attained during the training process is depicted in Figure 7.

Table 6. Confusion matrix for the entire testing set: CNN Xception.

Pred. Positive Pred. Negative

True Positive 65 0
True Negative 10 127

Table 7. Confusion matrix for the testing set without the cases labeled as “Others”: CNN Xception.

Pred. Positive Pred. Negative

True Positive 65 0
True Negative 3 123

Regarding the architectures of the Xception and VGG16 networks, it is worth mentioning
that they differ in terms of the number of parameters each CNN has. The Xception-based CNN
consisted of a total of 25,580,266 parameters, 4,718,786 of which were trainable. By contrast,
the VGG16-based CNN had 15,894,530 parameters, only 1,179,842 of which were trainable.
Roughly speaking, this provides an indication that the Xception architecture implemented
herein had a better capacity to learn to classify the images than the VGG16 version.

Duran-Lopez et al. [12] developed a deep-learning-based system called COVID-XNet,
which preprocesses chest X-ray images and then classifies them as normal or infected with
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COVID-19. To train their systems, they used a total of 6926 images, with 5541 images
for training and 1385 images for validation. The COVID-XNet system achieved a 92.53%
sensitivity and 96.33% specificity. These values are lower than those obtained by our model,
given that our model was trained using a much smaller training set.

Figure 7. Evolution of the training of the Xception CNN.

Alam et al. [14] extracted HOG and CNN features from X-ray images and then fused
them to train a VGGNet classifier for COVID-19 detection. They used a total of 5090 images,
with 4072 images for training and 1018 images for testing. The proposed model achieved a
sensitivity of 93.65% and a specificity of 95.7%. Again, these values are lower than those
obtained by our model, given that our model was trained using a much smaller training
set. Additionally, it is worth mentioning that fusing more features will generally result in
better performance, as shown in our previous work [67]. This conclusion somewhat limits
the contribution of the work proposed by Alam et al. [14].

In [44], the authors compared the performance of three CNN models: ResNet50,
InceptionV3, and Inception ResNetV2. ResNet50 clearly outperformed the other two models.
It attained a mean value for sensitivity of 96%, a mean value for specificity of 100%, and a
mean value for F1 of 98%. These values are very similar to those obtained in this study.
However, in this work, we used a total of 1037 images, with 200 images for the testing set,
while they used a total of 100 images for both the training and testing sets. In [45], they
pursued a four-category classification (Bacterial Pneumonia, Viral Pneumonia (other than
COVID-19), Normal (uninfected), and COVID-19), but for the sake of this analysis, we
mapped their results onto either COVID-19-positive or COVID-19-negative cases (including
every case that was not COVID-19). Again, the obtained results are very similar to those
obtained in this paper. However, those results were obtained on a dataset including 68
COVID-19 cases, with only eight of them in the testing set. Performing a similar comparison
with [47] and grouping their classification results into COVID-19-positive and negative,
a sensitivity of 91%, specificity of 99.5%, and F1 = 94.8% would be obtained.

In [48], three different architectures of CNNs were analyzed for the detection of
COVID-19, with the performance being evaluated in terms of accuracy, which is defined as

Accuracy ,
TP + TN

TP + TN + FP + FN
.
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The accuracy values achieved by each architecture are 90%, 94.3%, and 96.8%. In [50–52],
the obtained accuracy values were 97.78%, 95.5%, and 97%, respectively. All of these values
are comparable to the ones presented in this work. The obtained accuracy levels herein are
97% for the VGG-16-based architecture and 98.4% for the Xception-based architecture.

Bourouis et al. [13] proposed a Bayesian classifier framework to classify chest X-ray
images as infected or normal. They applied their proposed framework on three different
datasets and achieved the highest accuracy (90.33%) using the largest dataset, called CXR-
Pneumonia. This dataset contains 5856 images, of which 5216 images are used for training,
16 images for validation, and 624 images for testing. Their obtained accuracy is much lower
than the accuracy we achieved using the Xception-based architecture (98.4%). Note that
our model was trained using a much smaller training set.

The results presented in this paper, as well as those presented in the papers cited,
suggest that, with sufficient training, it is actually feasible to develop CNN-based classifiers
with which to categorize PA and AP X-ray lung images as infected with COVID-19 or
not infected. This is one of the most relevant conclusions that should be drawn from this
work. Note that the obtained classifiers depend upon the labeled images used for training.
Images of people infected with COVID-19 in the very early stages of the disease might have
been labeled as negative despite actually being positive. Cases such as these can therefore
be misclassified as negative. Hence, it is important to point out that the high potential
of these methods resides in their ability to detect cases where the condition of the lungs
affected by the disease is such that the pulmonary images exhibit visual characteristics
typical for COVID-19-positive cases.

Finally, it is worth mentioning that, once the model was trained, the time it took to
classify ten images in a row was measured as approximately 270 milliseconds on a laptop
with 16 GB of RAM and an Intel Core i7 vPro 8th Generation CPU. Hence, considering the
infrastructure required for running these types of models, this shows that our method is
feasible and affordable for any medical institution. Our annotated codes can be found at [68].

Explainability of the Classification Models

With the models derived and exhibiting good classification metrics, we intended to
visualize what triggers a trained model to classify a given image as COVID-19-positive or
negative. This question is in the context of explainability and interpretability analysis. Trained
CNNs (and other deep learning models in general) are frequently perceived as “black box”
operators that map inputs (images) onto predicted labels. However, practitioners often do
not exactly understand what specific features in the image induced the model to classify
the image under a given category.

Identifying these features constitutes an important step in the debugging process,
which should ensure that the model has learned to look at the pixels (features) that convey
the appropriate information to classify the image. It might occur that, in the training
process, a model trained to associate certain patterns with the labels can actually mislead
the classification process. For instance, one can train a model to distinguish images with
cats labeled as “CATS” from images with dogs labeled as “DOGS”. If the images with
cats were all obtained outside on sunny days and the images with dogs were all taken
indoors, the model could wrongly learn that blue skies should be associated with the label
“CATS” and that the lack of blue skies should be linked to the label “DOGS”. If the testing
set was obtained from the same set of images—i.e., the testing images of cats also have
blue skies and the images of dogs are indoors—the model will likely correctly classify
the cats as “CATS”, but only because of the blue skies rather than because of the cats
shown in the images. Likewise, it will classify images with dogs as “DOGS” due to the
features pertaining to the indoor environment. However, in this case, the same model
would probably classify an image of a dog walking in a park on a sunny day as “CATS”.

Therefore, it is important to confirm that the features (pixels) that a given model
actually uses to classify images are appropriate. Several approaches have been developed
for this purpose [69–71]. In this work, we applied an approach called GradientExplainer to
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compute the so-called Shapley Additive exPlanations (SHAP) scores [71–75]. Given an image
with its associated prediction, for each feature in the image, a SHAP score constitutes a
measurement of the influence of having a certain value in that feature on the obtained
prediction in comparison to the prediction that would be made if that feature took some
baseline value. Features with high positive SHAP are features that increase the probability
of making such a prediction, whereas negative SHAP scores reduce the probability of
classifying the image as such. In other words, the areas of an image with a concentration of
high SHAP values constitute areas that convey relevant information to the classification
model. Using [74], we implemented this technique to find the most relevant pixels in some
of the classified images.

Figures 8 and 9 display four original pulmonary radiographs—two of patients diag-
nosed with COVID-19 and two of uninfected people. Each of these images was properly
predicted with the derived classifier. For each of these images, the corresponding SHAP
values were computed, and the results are illustrated in Figures 10–13.

Figure 8. Examples of radiography images of patients infected with COVID-19 (positive examples).

Figure 9. Examples of radiography images of patients not infected with COVID-19 (negative examples).

The top plots in Figures 10–13 depict a representation of the input to layer number
10 of the CNN. The mid-positions in the illustrations of Figures 10 and 11 reveal clouds
of magenta points with high SHAP values that indicate the locations of the most relevant
pixels for classifying images as COVID-19-positive. Accordingly, if these images were
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to be classified as COVID-19-negative or NORMAL, these areas would attain very low
SHAP values, which is illustrated in the bottom images in Figures 10 and 11. Note the
side color bar that indicates the mapping from colors to SHAP values. According to the
color bar marked as “SHAP Value”, the more intense the magenta color is, the higher the
SHAP scores are and the influence that those pixels had in the classification. Hence, clouds
with a high density of magenta points reveal zones in the image that convey significant
information used by the classifier.

Figure 10. SHAP scores for the image displayed in Figure 8 [left].
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Figure 11. SHAP scores for the image displayed in Figure 8 [right].

On the other hand, Figures 12 and 13 show the SHAP values computed for the cases of
Figure 9, which were classified as NORMAL. In these cases, the mid plots show the zones
of magenta pixels that convey relevant information for classifying the images as NORMAL.
Accordingly, if these images were classified as images of lungs infected with COVID-19,
these same zones would attain very low SHAP values, as illustrated in the bottom plots of
Figures 12 and 13.
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Figure 12. SHAP scores for the image displayed in Figure 9 [left].
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Figure 13. SHAP scores for the image displayed in Figure 9 [right].

By observing the middle plots of Figures 10–13, many colored points can be noticed in
various sectors of the images. For instance, in Figure 10, clusters of magenta points (higher
SHAP values) are found in the upper half of the right lung (as seen by the reader) and in
the central areas of the left lung. Likewise, in Figure 13, there are high concentrations of
relevant pixels in the bottom parts of the lungs. In general, we identified that clusters of
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pixels with relevant information were found within the areas of the lungs, as should be
expected for the detection of pulmonary diseases from lung images.

4. Conclusions

This work has shown that building a deep learning classifier that can distinguish pul-
monary radiography images of patients exhibiting COVID-19 infection from radiography
images of patients not infected with COVID-19 is highly feasible. Moreover, patients with
other conditions such as non-COVID-19 pneumonia can be properly identified if sufficient
cases are used in the training.

Compared to work with similar aims, the CNN architectures analyzed in this work
exhibited very high performance metrics. Our work, along with many other studies (using
similar metrics), has clearly proven that the development of CNN-based classifiers for
production stages appears to be highly feasible.

These classifiers are not intended to act as a substitute for formal diagnosis by physi-
cians. They are meant to assist medical personnel in cases where viral tests are scarce and
the number of suspected cases is so high that the visual inspection of every radiograph
might generate a bottleneck in the process.

This research constitutes the initial steps in the development of classifiers that could
be released to production stages. It is needless to say that further training and testing with
images from many more sources are required.

Funding: This research was funded by the University Agency for Graduate Studies and Scientific
Research and the Deanship of Scientific Research at Qassim University.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author would like to thank the editor and anonymous reviewers for spend-
ing their valuable time reviewing and strengthening his paper. In addition, the author would like to
express his deepest appreciation to A. Lynn Abbott and Kadir Aşkın Peker for their endless valu-
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