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Abstract: In this paper, we develop fuzzy, possibilistic hypothesis tests for testing crisp hypotheses
for a distribution parameter from crisp data. In these tests, fuzzy statistics are used, which are
produced by the possibility distribution of the estimated parameter, constructed by the known from
crisp statistics confidence intervals. The results of these tests are in much better agreement with
crisp statistics than the ones produced by the respective tests of a popular book on fuzzy statistics,
which uses fuzzy critical values. We also present an error that we found in the implementation of the
unbiased fuzzy estimator of the variance in this book, due to a poor interpretation of its mathematical
content, which leads to disagreement of some fuzzy hypotheses tests with their respective crisp ones.
Implementing correctly this estimator, we produce test statistics that achieve results in hypotheses
tests that are in much better agreement with the results of the respective crisp ones.

Keywords: fuzzy hypothesis tests; unbiased fuzzy estimator of the variance; possibility of rejection
or acceptance

1. Introduction

Testing statistical hypotheses is a main branch of inferential statistics (see [1]). A
statistical hypothesis is an assertion about a parameter of the probability distribution of a
random variable.

After the introduction of the notion of fuzzy sets by Zadeh [2], many approaches have
been proposed for fuzzy hypothesis testing, using fuzzy set theory (see [3]).

The problem of testing hypotheses with fuzzy data was analyzed for the first time
in [4] and in the sequel in [5,6], where the author extended both Neyman–Pearson and
Bayes theories to this framework (in [5]) and worked on the same problem in the context of
fuzzy decision problems (in [6]).

Fuzzy hypothesis testing with crisp data is presented in [7] in the sense of Neyman–
Pearson, using the extension principle and γ-cuts, where fuzzy critical regions are intro-
duced, leading to a fuzzy conclusion, as well as in [8,9], where the author provides new
definitions for the probability of type I and type II errors and presented the best test for
the one-parameter exponential family. The problem of testing fuzzy hypotheses when the
observations are crisp is also studied in [10], where the authors give new definitions for
the probability of type I and type II errors and prove a version of the Neyman–Pearson
Lemma. They also study the problem of testing hypotheses from a Bayesian point of view
for which the observations are ordinary and the hypotheses are fuzzy (see [11]).

In [12], testing hypotheses about the mean of a fuzzy random variable is introduced.
This approach is applicable to practical situations where either the observed data or the
hypotheses are fuzzy (formalized in linguistic terms). These fuzzy tests result in a fuzzy
decision for the acceptance or rejection of the null hypotheses with a degree of confidence
between 0 and 1. They are generalizations of the classical tests, so that they are reduced
to the classical tests if both the data and the parameters are crisp. Fuzzy hypothesis tests
are also developed in [13–15] for cases in which the available data are fuzzy and in [16],
where the authors propose fuzzy hypothesis testing for a proportion with crisp data as the
exact generalized one-tailed hypergeometric test with fuzzy hypotheses. Fuzzy hypothesis
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testing in the framework of the randomized and non-randomized hypergeometric test for
a proportion is presented in [17].

In [18], the fuzzy p-value concept is used for testing hypotheses with fuzzy data and
in [19] it is generalized on the basis of Zadeh’s probability measure of fuzzy events [2]
for testing fuzzy hypotheses with crisp data. In [20], a fuzzy p-value is obtained, using
fuzzy test statistics constructed by fuzzy estimators for cases in which both the data and
the hypotheses are crisp.

Two different ways of making inference from set-valued data are presented in [21]. A
detailed review on possibilistic interpretations of statistical tests (where hypotheses and/or
data are fuzzy) and statistical decisions is presented in [22,23] and a comprehensive review
with regard to statistical properties of different approaches for calculating fuzzy p-values,
in [24].

In [25], the authors demonstrate how to accomplish a fuzzy test with fuzzy data and
fuzzy formulated hypotheses and discuss the defuzzification of fuzzy test decisions by
means of the signed distance method. In [26], the author reviews and compares the R
packages “FPV” and “Fuzzy.p.value” for hypothesis testing in fuzzy environments by
using the fuzzy p-value for decision making.

In [27], the authors systematically review the literature, identifying papers proposing
advances in fuzzy hypothesis testing and its applications. Then, they look at each contained
paper through the lens of the key research questions.

In [28,29], fuzzy hypotheses testing is developed for cases in which both the data and
the hypotheses are crisp. This approach uses fuzzy critical values and fuzzy test statistics
constructed by fuzzy estimators produced by a set of confidence intervals. So, the null
hypothesis H0 is rejected or not at a certain significance level, comparing a fuzzy statistic
Ũ constructed by a proper fuzzy estimator with fuzzy critical values C̃Vi, created using
probabilistic concepts. In [30], this approach is generalized using fuzzy statistics produced
by non asymptotic fuzzy estimators (see [31]) and a degree of rejection or acceptance of the
null hypothesis.

As it is proved in [32], the possibility distribution (see [2]) induced by confidence
intervals around the mode is identical to the one obtained by the maximal specificity
probability–possibility transformation. Based on this principle, we develop in this paper
possibilistic fuzzy statistical tests of crisp hypotheses, which lead to a possibility of rejection
or acceptance of the null hypothesis for cases in which both the hypothesis and the data
are crisp, whereas the other fuzzy tests (for example, those of [12]) give crisp results when
applied in such cases.

This paper is organized as follows. The next section is concerned with classical hy-
potheses testing. In Section 3, we present the concept of fuzzy estimators and, also, find
out that in the examples of [29,33–35], the unbiased fuzzy estimator of the variance σ̃2

u
introduced in [29] is not implemented as described there and propose its correct imple-
mentation. In Section 4, we develop possibilistic hypothesis tests for cases in which both
the data and the hypotheses are crisp. In Sections 5–7, we present fuzzy hypothesis tests
about the mean and the variance, and compare their results as well as the results of the
respective tests developed in [29,30] with those of crisp statistics (Examples 2 and 3).

2. Classical Hypothesis Testing

In classical crisp statistics, the problem of testing a hypothesis for a parameter θ of
the distribution of a random variable X is deciding whether to reject or accept the null
hypothesis H0 : θ = θ0 at a significance level γ against the alternative hypothesis H1 from
a random sample of observations of X, using a test statistic U, which is evaluated for the
sample observations, resulting in a value u. The space of possible values of U is decom-
posed into a rejection region and its complement, the acceptance region [1]. Depending on
the alternative hypothesis H1, the rejection region has one of the following forms:
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(a) U ≥ uc1, if the alternative hypothesis is H1 : θ > θ0 (one sided test from the right),
where the following is true:

P(U ≥ uc1) = γ (1)

(b) U ≤ uc2, if the alternative hypothesis is H1 : θ < θ0 (one sided test from the left),
where the following is true:

P(U ≤ uc2) = γ (2)

(c) U ≥ uc3 or U ≤ uc4, if the alternative hypothesis is H1 : θ 6= θ0 (two sided test),
where the following is true:

P(U ≥ uc3) =
γ

2
and P(U ≤ uc4) =

γ

2
(3)

and uci are the critical values of the test, which are determined by the distribution of U. So,
H0 is rejected if the value u of the test statistic U is in the rejection region and not rejected if
u is in the acceptance region.

If the value u of the test statistic of a hypothesis test is close to its critical value, then
the crisp test is unstable since a very small change in the sample may lead from rejection
to no rejection of H0 or vice-versa, as shown in Example 1. Using a degree of rejection or
acceptance of H0 (see [30]) the above problem is eliminated.

3. Fuzzy Estimation

The estimation of a parameter of the probability density function (or probability
function of a discrete random variable) of a distribution is one of the main purposes of
inferential statistics.

Let X be a random variable with probability density function (or probability function
for a discrete random variable) f (x; θ), where θ is nan unknown parameter, which has to
be estimated from a random sample of observations X1, X2, . . . , Xn of X. For the estimation
of θ, a statistic U is used (estimator of θ), which is a function of X1, X2, . . . , Xn. For a
specific sample where xi, i = 1, 2, . . . , n are the observed values of Xi, a point estimator
θ0 = u(x1, x2, . . . , xn) for θ is obtained, which is not of high interest since the probability
of this being the required value of θ is zero. A way to estimate θ in the crisp statistics is
to find a (1− β)100% confidence interval for θ in which the value of θ can be found with
probability 1− β. We use β here since α, usually employed for confidence intervals, is
reserved for α-cuts of fuzzy numbers. Usually, β = 0.005 or 0.01 or 0.02 or 0.05 or 0.1 for
99.5%, 99%, 98%, 95% or 90% confidence intervals. Starting arbitrarily with β = 0.01 (we
could begin with 0.001 or 0.005, etc.) and using [θ0, θ0] as the 0% confidence interval, we
have the following confidence intervals:

[θl(β), θr(β)], 0.01 ≤ β ≤ 1

Among other methods, a fuzzy estimation method is proposed in [29], according to
which by placing all the above confidence intervals one on the top of the other, a triangular
shaped fuzzy number θ̃ is constructed, the α−cuts of which are the confidence intervals:

µ
θ̃B
[α] = [θl(α), θr(α)], 0.01 ≤ α ≤ 1

To finish the “bottom” of θ̃ in order to make it a complete fuzzy number, one needs to
drop its graph straight down to complete its α−cuts (see Figure 1). So, a fuzzy estimator θ̃ of
θ is produced from a given sample, the possibility distribution of which are the confidence
intervals of θ

µ
θ̃B
[α] =

{
[θl(α), θr(α)], 0.01 ≤ α ≤ 1

[θl(0.01), θr(0.01)], 0 ≤ α < 0.01
(4)

The fuzzy estimator θ̃ produced in this way contains much more information than just
a single interval estimate.
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Figure 1. Buckley’s fuzzy estimator of the mean µ of a random variable X, which follows normal
distribution with variance σ2 = 2.3, derived from a sample of n = 100 observations with sample
mean x = 5.

For the construction of test statistics used in fuzzy hypothesis testing about an un-
known parameter θ, we use the fuzzy estimator θ̃, the α-cuts of the possibility distribution
of which are the confidence intervals of θ

µ
θ̃
[α] = [θl(α), θr(α)], 0 ≤ α ≤ 1 (5)

since, as proved in [32], this possibility distribution is identical to the one obtained by the
maximal specificity probability–possibility transformation. In order to easily handle the
possibility representation, especially for further computations, the possibility distribution
is restricted to the interval that corresponds to the largest 99% confidence interval for the
considered probability distribution (see [32]).

3.1. Estimation of the Mean of a Normal Variable with Known Variance

If the random variable X follows normal distribution with known variance σ, then
the (1− β)100% confidence interval of the mean µ of X derived from a random sample of
observations of X of size n and sample mean x is [1].[

x− z β
2

σ√
n

, x + z β
2

σ√
n

]
(6)

where z β
2
= Φ−1

(
1− β

2

)
and Φ−1, the inverse distribution function of the standard

normal distribution. So according to (6), the α-cuts of the possibility distribution of the
fuzzy estimator µ̃ of mean are as follows (see [29,30]):

µµ̃[α] =

[
x− z α

2

σ√
n

, x + z α
2

σ√
n

]
, 0 ≤ α ≤ 1 (7)

where
zα = Φ−1(1− α) (8)

Implementing (7), we get the fuzzy estimator µ̃ of Figure 2.
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Figure 2. The possibility distribution of the fuzzy estimator µ̃ of the mean µ of a random variable
X, which follows normal distribution with variance σ2 = 2.3 derived from a sample of n = 100
observations with sample mean x = 5.

3.2. Estimation of the Mean of a Random Variable from a Large Sample (with Unknown Variance)

If the random variable X follows any distribution, then, according to the central limit
theorem (see [1]), the (1− β)100% confidence interval of the mean µ of X derived from
a random sample of observations of X of large size n (n > 30) with sample mean and
variance x and s2 is given by (6), substituting σ with s. So according to (5), the α-cuts of
the possibility distribution of the fuzzy estimator µ̃ of the mean are as follows:

µµ̃[α] =

[
x− z α

2

s√
n

, x + z α
2

s√
n

]
, 0 ≤ α ≤ 1 (9)

where zα is given by (8).

3.3. Estimation of the Variance of a Normal Variable

If the random variable X follows normal distribution, then the (1− β)100% confidence
interval of the variance σ2 of X derived from a random sample of observations of X of size
n and sample variance s2 is as follows [1]: (n− 1)s2

χ2
β
2 ;n−1

,
(n− 1)s2

χ2
1− β

2 ;n−1

 (10)

where (F−1
n−1 the inverse distribution function of the χ2

n−1 distribution)

χ2
1−α;n−1 = F−1

n−1(α)

χ2
α;n−1 = F−1

n−1(1− α) (11)
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So according to (5), the α-cuts of the possibility distribution of the fuzzy estimator of
the variance σ2 are as follows:

µ
σ̃2

b
[α] =

 (n− 1)s2

χ2
α
2 ;n−1

,
(n− 1)s2

χ2
1− α

2 ;n−1

, α ∈ [0, 1] (12)

Therefore, the α-cuts of the fuzzy estimator of the standard deviation σ of X are
as follows:

µσ̃b
[α] =

s

√√√√ (n− 1)
χ2

α
2 ;n−1

, s

√√√√ (n− 1)
χ2

1− α
2 ;n−1

, α ∈ [0, 1] (13)

It can be shown that the above fuzzy estimator σ̃2
b is biased because its core is not at s2.

A fuzzy estimator of a parameter is defined as biased if its core is not at the crisp point
estimator of the parameter.

In [29], an unbiased fuzzy estimator σ̃2
u of the variance σ2 of a normal random variable

is obtained from a sample of size n and variance s2 by putting one above the other for the
following confidence intervals:[

(n− 1)s2

L(λ)
,

(n− 1)s2

R(λ)

]
, 0 ≤ λ ≤ 1 (14)

where

L(λ) = (1− λ)χ2
0.005;n−1 + (n− 1)λ (15)

R(λ) = (1− λ)χ2
1−0.005;n−1 + (n− 1)λ (16)

and (F−1
n−1 the inverse distribution function of the χ2

n−1 distribution)

χ2
1−0.005;n−1 = F−1

n−1(0.005) and χ2
0.005;n−1 = F−1

n−1(0.995)

For a value of λ, the corresponding value of α is as follows [29]:

α = φ(λ) =
∫ R(λ)

0
χ2

n−1(x)dx + 1−
∫ L(λ)

0
χ2

n−1(x)dx (17)

where χ2
n−1(x) the probability density function of the χ2

n−1 distribution. The range of this
one to one and onto function is [0.01, 1]. So, the α−cuts of the correct unbiased fuzzy
estimator σ̃2

u are as follows:

µ
σ̃2

u
[α] =


[
(n− 1)s2

L(λ)
,

(n− 1)s2

R(λ)

]
, λ = φ−1(α) 0.01 ≤ α ≤ 1[

(n− 1)s2

L(0.01)
,

(n− 1)s2

R(0.01)

]
, 0 ≤ α < 0.01

(18)

where the function α = φ(λ) and its inverse λ = φ−1(α) (it gives λ as a function of α) are
implemented numerically.

In the implementation of σ̃2
u of [29], the λ-cuts defined by (14) (instead of its α-cuts of

(18)) are used for the construction of µ
σ̃2

u
and the statistics generated by it.

As illustrated in Figure 3, the shape of the correct implementation (18) of σ̃2
u is

significantly different than the shape of its implementation used in [29] and quite similar
to the shape of the biased estimator σ̃2

b .
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Figure 3. Non-asymptotic fuzzy estimators of the variance σ2: correct unbiased (blue line), biased
(green line), unbiased used in [29] (red line).

4. Possibilistic Statistical Tests of Crisp Hypotheses

We denote by 1 the rejection and by 0 the acceptance of a hypothesis H0 for a pa-
rameter ϑ of the distribution of a random variable X from a sample of n observations
X1, X2, . . . , Xn of X. Hence, a possibilistic test of a crisp hypothesis H0 with alternative H1
is a decision rule, defined as two functions: ϕR(X1, X2, . . . , Xn) : Rn → [0, 1], which gives
the degree in which the observed value u of the test statistic U belongs to the rejection
region (see Section 1) (the possibility of the proposition “u is in the rejection region”),
and ϕA(X1, X2, . . . , Xn) : Rn → [0, 1], which gives the degree in which the observed value
u of the test statistic U belongs to the acceptance region (see Section 1) (the possibility of
the proposition “u is in the acceptance region”).

Using the fuzzy estimator ϑ̃ of ϑ (see Section 2) and interval arithmetics, we derive
the α-cuts of the possibility distribution µŨ of the respective fuzzy test statistic Ũ. So,
the possibilities of rejection or acceptance of H0 are as follows:

(a) For one sided test from the right (alternative hypothesis H1 : θ > θ0), the possibility
of rejection of H0 is equal to the Necessity of Strict Dominance index (see [23,36]).

ϕR(X1, X2, . . . , Xn) = Ness(Ũ > C̃V1) = 1− sup
x,y;x≤y

min{µŨ(x), µC̃V1
(y)} (19)

which represents the necessity that the fuzzy set Ũ strictly dominates the fuzzy set of the
right critical value C̃V1, the membership function of which is as follows:

µC̃V1
(u) =

{
1, u = uc1
0, u 6= uc1

(20)

where uc1 is the critical value of the one sided from the right, defined in (1). So if the core
of Ũ is at the right of uc1, (19) gives the following:

ϕR(X1, X2, . . . , Xn) = 1− µL
Ũ(uc1) = 1− y1 (21)

where µL
Ũ

is the left part of the possibility distribution µŨ and y1 is the ordinate of the point
of intersection of µL

Ũ
with the vertical at uc1.
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The possibility of acceptance of H0 is as follows:

ϕA(X1, X2, . . . , Xn) = Ness(Ũ < C̃V1) = 1− sup
x,y;y≤x

min{µŨ(x), µC̃V1
(y)} (22)

which represents the necessity that the fuzzy set C̃V1 strictly dominates the fuzzy set of Ũ.
So if the core of Ũ is at the left of uc1, (22) gives the following:

ϕA(X1, X2, . . . , Xn) = 1− µR
Ũ(uc1) = 1− y1 (23)

where µR
Ũ

is the right part of the possibility distribution µŨ and y1 is the ordinate of the
point of intersection of µR

Ũ
with the vertical at uc1.

(b) For , the one sided test from the left (alternative hypothesis H1 : θ < θ0), the possibility
of rejection of H0 is equal to the Necessity of Strict Dominance index of C̃V2 to Ũ, where
the membership function of the critical value C̃V2 is as follows (uc2 the critical value of the
one sided from the left defined in (2)):

µC̃V2
(u) =

{
1, u = uc2
0, u 6= uc2

(24)

ϕR(X1, X2, . . . , Xn) = Ness(Ũ < C̃V2) = 1− sup
x,y;y≤x

min{µŨ(x), µC̃V2
(y)} (25)

So if the core of Ũ is at the left of uc2, (25) gives the following:

ϕR(X1, X2, . . . , Xn) = 1− µR
Ũ(uc2) = 1− y2 (26)

where y2 is the ordinate of the point of intersection of the right part µR
Ũ

of the possibility

distribution of Ũ with the vertical at uc2.
The possibility of acceptance of H0 is as follows:

ϕA(X1, X2, . . . , Xn) = Ness(Ũ > C̃V2) = 1− sup
x,y;x≤y

min{µŨ(x), µC̃V2
(y)} (27)

So if the core of Ũ is at the right of uc2, (27) gives the following:

ϕA(X1, X2, . . . , Xn) = 1− µL
Ũ(uc2) = 1− y2 (28)

where y2 is the ordinate of the point of intersection of the left part µL
Ũ

of the possibility

distribution of Ũ with the vertical at uc2.
(c) For the two-sided test (alternative hypothesis H1 : θ 6= θ0), the possibility of rejection

of H0 is equal to the following:

ϕR(X1, X2, . . . , Xn) = Ness(Ũ > C̃V1 or Ũ < C̃V2)

= max
{

Ũ > C̃V1, Ũ < C̃V2

}
(29)

where (uc3 and uc4 are the critical values of the two-sided defined in (3)).

µC̃V1
(u) =

{
1, u = uc3
0, elsewhere

and µC̃V2
(u) =

{
1, u = uc4
0, elsewhere

(30)

So if the core of Ũ is at the right of uc3, (33) gives the following:

ϕR(X1, X2, . . . , Xn) = 1− y1 (31)
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where y1 = µL
Ũ
(uc3) and if it is at the left of uc4, it gives the following:

ϕR(X1, X2, . . . , Xn) = 1− y2 (32)

where y2 = µR
Ũ
(uc4).

The possibility of acceptance of H0 is as follows:

ϕA(X1, X2, . . . , Xn) = Ness(Ũ < C̃V1 and Ũ > C̃V2) (33)

So if the core of Ũ is between uc3 and uc4, (34) gives the following:

ϕA(X1, X2, . . . , Xn) = min{1− y1, 1− y2} (34)

where y1 = µR
Ũ
(uc3) and y2 = µL

Ũ
(uc4) (the ordinates of the point of intersection of the

right part µR
Ũ

of the possibility distribution of Ũ with the vertical at uc3 and of its left part
µL

Ũ
with the vertical at uc4).

If the possibility of the rejection or acceptance of H0 is very low (for example lower
than 0.2), then we cannot make a decision on rejecting or accepting H0.

5. Tests on the Mean of a Normal Distribution with Known Variance or of Any
Distribution from a Large Sample

We test at the significance level γ the null hypothesis H0 : µ = µ0 for the mean µ of a
random variable X, which follows the normal distribution with known variance σ, using a
random sample of observations of X of size n.

In the crisp case, we test H0, using the statistic (see [1]).

Z =
X− µ0

σ/
√

n
(35)

where X is the statistic of the sample mean. It is known that under the null hypothesis
(µ = µ0) Z follows the standard normal distribution N(0, 1), so H0 is rejected from a
given sample:
(a) For the one sided test from the right, if

z0 ≥ zγ, where zγ = Φ−1(1− γ),

(b) For the one sided test from the left, if z0 ≤ −zγ = Φ−1(γ),
(c) For the two sided test, if z0 ≤ −zγ/2 or z0 ≥ zγ/2, where

z0 =
x− µ0

σ/
√

n
(36)

the value of the statistic (35) for the given sample,

zγ/2 = Φ−1
(

1− γ

2

)
(37)

and Φ−1 the inverse distribution function of the standard normal distribution. Meanwhile,
H0 is not rejected if −zγ/2 < z0 < zγ/2.

In the fuzzy case, the test of H0 is based on the fuzzy statistic

Z̃ =
µ̃− µ0

σ/
√

n
, (38)

which is generated by substituting X in (35) with the fuzzy estimator µ̃ of the mean value
for the given sample, the α−cuts of the membership function of which are given by (7).
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From (38), (7) and interval arithmetics follow that the α−cuts of the possibility distri-
bution of the fuzzy statistic Z̃ are as follows:

µZ̃[α] = [Z− zα, Z + zα], α ∈ [0, 1]

Hence, the α−cuts of the possibility distribution of Z̃ for the given sample are
as follows:

µZ̃0
[α] = [z0 − zα, z0 + zα], α ∈ [0, 1] (39)

where z0 the crisp value of the statistic Z for this sample, which is given by (36).
The membership functions of the critical values C̃V1 and C̃V2 of the one-sided tests

are as follows:

µC̃V1
(z) =

{
1, z = Φ−1(1− γ)
0, elsewhere

and µC̃V2
(z) =

{
1, z = Φ−1(γ)
0, elsewhere

(40)

and for the two-sided test,

µC̃V1
(z) =

{
1, z = Φ−1(1− γ

2
)

0, elsewhere
and µC̃V2

(z) =
{

1, z = Φ−1( γ
2
)

0, elsewhere
(41)

Having the α−cuts of the possibility distribution of the fuzzy statistic Z̃0 of (39) and the
critical values C̃V1 and C̃V2, we can evaluate the possibility of the rejection or acceptance
of H0 from (21), (23), (26), (28) for Ũ = Z̃0 and (40) for one sided tests or from (31), (32), (34)
and (41) for the two-sided test.

If the sample is large and X follows any distribution, then in the crisp case, we test H0
using the statistic

Z =
X− µ0

s/
√

n

where X is the statistic of the sample mean and s, the sample standard deviation [1]. It is
known that under the null hypothesis (µ = µ0), Z follows the standard normal distribution
N(0, 1) according to the central limit theorem [1], so H0 is rejected or not by one sided tests,
using (21), (23), (26), (28) for Ũ = Z̃0 given in (39) for the following sample value:

z0 =
x− µ0

s/
√

n
(42)

of the statistic Z or (31), (32), (34) for the two-sided test.

Example 1. We test the null hypothesis H0: µ = 20.2 at significance level γ = 0.05 with
alternative H1: µ 6= 20.2 (two-sided test) for the mean value µ of the temperature X, using the two
large random samples of 50 observations each of the Appendix A (monthly values for selected Greek
weather stations) [37].

The mean and the standard deviation of the first sample are x1 = 17.61 and s1 = 8.96,
so in the crisp test, we evaluate the value of the statistic Z for the first sample from (42):

z0 =
17.61− 20.2
8.96/

√
50

= −2.044

Since
z0 = −2.044 < −z0.05/2 = −z0.025 = −1.96

H0 is rejected by this crisp test.
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For the second sample the mean and variance are x2 = 17.95 and s2 = 8.51, so the
value of the statistic Z in this case is the following:

z0 =
17.95− 20.2
8.51/

√
50

= −1.87

Therefore, since the following is true:

z0 = −1.87 > −z0.05/2 = −z0.025 = −1.96

H0 is not rejected by the crisp test.
Applying the above described two-sided fuzzy test of H0, implementing the possibility

distribution (39) of Z̃0 for the value z0 of (42) and the critical values (41) for the first sample,
we get the results of Figure 4, where the point of intersection of µZ̃0

and µC̃V2
has y0 = 0.94.

So according to (32), the possibility of rejection of H0 is 1− 0.94 = 0.06. Hence, we cannot
make a decision on whether to reject or not H0 from this sample.

Implementing (39) and (41) for the second sample, we take Figure 5, where the point of
intersection of µZ̃0

and µC̃V2
has y0 = 0.95, so according to (34), the possibility of acceptance

of H0 is 1− 0.95 = 0.05. Therefore, we cannot make a decision on whether to reject or not
H0 from this sample.
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Figure 4. The possibility distribution of the fuzzy statistic Z for the test of Example 1 from a sample
with x1 = 17.6.
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Figure 5. The possibility distribution of the fuzzy statistic Z for the test of Example 1 from a sample
with x2 = 17.95.
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Example 2. We test at significance level 0.05 the null hypothesis H0: µ = 11 with alternative H1:
µ 6= 11 (two-sided test) for the mean µ of a random variable X, which follows normal distribution
with variance σ2 = 10.24, using a sample of n = 25 observations with sample mean x = 11.05.

The value of the test statistic (35) is found by (36) to be as follows:

z0 =
11.05− 11√
10.24/

√
25

= 0.08

so the crisp p-value of the test is as follows:

p = 2(1−Φ(0.08)) = 0.94

Therefore, in this case, the crisp test gives acceptance of H0 with a very high p-value
(near to the maximum value, 1).

We apply the above two-sided fuzzy test of H0 implementing (39) and (41). So, we
obtain the results of Figure 6, where the core of Z̃ is between the cores of C̃V1 and the point
of intersection of µZ̃, and µC̃V1

has y1 = 0.04 and of µZ̃ and µC̃V2
has y2 = 0.06. Hence,

according to (34), the possibility of acceptance of H0 is as follows:

ϕA = min(1− y1, 1− y2) = 1− 0.06 = 0.94,

so H0 is accepted by this test with possibility d = 0.94.
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Figure 6. The possibility distribution of the fuzzy statistic Z̃ for the two-sided test of Example 2.

Applying the respective test of [29,30], we get the results of Figure 7, where we see
that the possibility of acceptance of H0 is much lower than 1:

ϕA = 1− y1 = 1− 0.31 = 0.69
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Figure 7. Fuzzy statistic Z̃ and critical values C̃Vi for the respective test of Example 2 in [30].

6. Hypotheses Tests for the Variance of a Normal Distribution

We test at significance level γ the null hypothesis H0 : σ2 = σ2
0 for the variance σ2 of

a normal random variable X, using a random sample of observations of X of size n and
variance s2.

In the crisp case, we test H0, using the test statistic

χ2 =
(n− 1)S2

σ2
0

(43)

where S2 is the sample variance, which follows χ2
n−1 distribution with n− 1 degrees of

freedom under the null hypothesis [1]. H0 is rejected from a given random sample (omitting
in χ2 the implied n1 − 1 degrees of freedom):
(a) For one-sided test from the left (alternative H1 : σ2 < σ2

0 ), if

χ2
0 < χ2

1−γ, where χ2
1−γ = F−1(1− (1− γ)) = F−1(γ) (44)

and F−1 is the inverse distribution function of the χ2
n−1 distribution.

(b) For one-sided test from the right (alternative H1 : σ2 > σ2
0 ), if

χ2
0 > χ2

γ, where χ2
γ = F−1(1− γ) (45)

(c) For two-sided test (alternative H1 : σ2 6= σ2
0 ), if

χ2
0 < χ2

1−γ/2 or χ2
0 > χ2

γ/2, (46)

where
χ2

1−γ/2 = F−1(γ/2) and χ2
γ/2 = F−1(1− γ/2)

and

χ2
0 =

(n− 1)s2

σ2
0

(47)

the crisp value of the statistic (43). Otherwise, H0 is not rejected.
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In the fuzzy case for the test of H0, we use the fuzzy statistic χ̃2 generated by substi-
tuting S2 in (43) with a fuzzy estimator s̃2 of the following variance:

χ̃2 =
(n− 1)s̃2

σ2
0

(48)

Using the α−cuts of the unbiased fuzzy estimator given in (14) and interval arithmetics,
we obtain from (48) the α−cuts of the possibility distribution of the following test statistic:

µ
χ̃2 [α] =

[
(n− 1)χ2

0
L(λ)

,
(n− 1)χ2

0
R(λ)

]
, λ = φ−1(α) (49)

As illustrated in Figures 8 and 9, the shape of this test statistic is significantly different
than the shape of the respective test statistic produced by the implementation of µ

σ̃2
u

used
in [29], which is as expected since the shape of the two implementations (14) and (18) of
µ

σ̃2
u

are different.
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Figure 8. The possibility distribution of the fuzzy statistic χ̃2[α] for the test of H0 of Example 3.

x

40 60 80 100 120 140 160 180 200 220

a
lp

h
a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
0 2

2=2, Buckley‘s unbiased estimator

2

CV
1

CV
2

Figure 9. The possibility distribution of the fuzzy statistic χ̃2[α] and the fuzzy critical values for the
respective test of H0 of Example 3 in [29].
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The membership functions of the critical values C̃V1 and C̃V2 of one-sided tests are
as follows:

µC̃V1
(x) =

{
1, x = F−1(1− γ)
0, elsewhere

and µC̃V2
(x) =

{
1, x = F−1(γ)
0, elsewhere

(50)

and for the two-sided test

µC̃V1
(x) =

{
1, x = F−1

(
1− γ

2

)
0, elsewhere

and µC̃V2
(x) =

{
1, x = F−1

(γ

2

)
0, elsewhere

(51)

where F−1 the inverse distribution function of the χ2 distribution with n − 1 degrees
of freedom.

Having the α−cuts of the possibility distribution of the fuzzy statistic χ2
0 and the

critical values C̃V1 and C̃V2, we can evaluate the possibility of rejection or acceptance of
H0 from (21), (23), (26), (28) for Ũ = χ̃2 and (50) for one sided tests or from (31), (32), (34)
and (51) for two sided test.

Example 3. We test at significance level 0.01 the null hypothesis H0 : σ2 = 2 with alternative
H1 : σ2 6= 2 for the variance of a normal random variable, using a random sample of 101
observations with sample variance s2 = 2.

The crisp test in this case gives acceptance of H0 with the largest possible difference
between the test statistic and the critical values since the p-value is 1 (the test statistic is
exactly in the middle of the no-rejection region), so it is the best case for the acceptance
of H0.

Applying the above fuzzy test, we get the results of Figure 8, where the core of χ̃2

is between the cores of C̃V1 and C̃V2 and the point of intersection of µ
χ̃2 , and µC̃V1

has
y1 = 0.06 and of µ

χ̃2 and µC̃V2
, y2 = 0.03, so according to (34) the possibility of acceptance

of H0 is as follows:

ϕA = Ness
(

χ̃2 < C̃V1, χ̃2 > C̃V2

)
= min(1− 0.06, 1− 0.03) = 0.94.

The respective fuzzy test of H0 of [29] gives the results of Figure 9, where the possibility
of acceptance of H0 is as follows:

ϕA = Ness
(

χ̃2 < C̃V1, χ̃2 > C̃V2

)
= min(1− y1, 1− y2) = 0.44.

and the test of H0 of [30] gives the results of Figure 10, where the possibility of acceptance
of H0 is as follows:

ϕA = Ness
(

χ̃2 < C̃V1, χ̃2 > C̃V2

)
= min(1− 0.17, 1− 0.23) = 0.77.
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Figure 10. The possibility distribution of the fuzzy statistic χ̃2[α] and critical values for the respective
test of H0 of Example 3 in [30].

The results of the fuzzy hypothesis tests proposed in this paper are in much better
agreement with the results of the respective crisp tests than the results of the respective
tests of [29]. This happens because of the following:

(1) The former are based on the correct implementation of σ̃2
u , according to the theory,

whereas the latter contain the error of using λ-cuts instead of α-cuts.
(2) The tests of [29] use fuzzy critical values, which are created using probabilistic concepts.

The above are illustrated by the characteristic case of the hypothesis test of Example 3
in which the crisp value of the test statistic is exactly in the middle of the acceptance region
(p-value = 1), which is the best case of acceptance. As shown in this example, the test,
which uses the implementation of σ̃2

u of [29], gives a significantly lower possibility of
acceptance of H0 (0.44) than the test which uses our implementation of (0.94). So, the latter
is in much better agreement with the crisp statistical tests than the former.

The possibilistic tests developed in this paper are in better agreement with the results
of the respective crisp tests than the results of the tests of [30], which also use the same fuzzy
critical values as [29]. This is illustrated in Examples 2 and 3 in which the crisp value of the
test statistic is exactly in the middle of the acceptance region. As shown in these examples,
the tests of [30] give a significantly lower degree of acceptance of H0 (0.69 for Example 2
and 0.77 for Example 3) than the respective tests of this paper (0.94 for both examples).
So, the latter are in better agreement with the crisp statistical test than the former. This
happens in all relevant examples (statistic in the middle of the acceptance region).

Example 4. We test the null hypothesis H0 : σ2 = 47 at significance level γ = 0.01 with
alternative H1 : µ 6= 47 (two-sided test) for the variance σ2 of the temperature X, using the two
large random samples of 50 observations each of the Appendix A (monthly values for selected Greek
weather stations) [37].

The crisp value of the test statistic (43) for the first sample is found by (47) to be as
follows (the sample variance is 80.28):

χ2
0 =

(50− 1) · 80.28
47

= 83.7

The critical values of this crisp test are (F−1, the inverse distribution function of the
χ2

50−1 distribution).

χ2
1−0.01/2 = F−1

(
0.01

2

)
= 27.25 and χ2

0.01/2 = F−1
(

1− 0.01
2

)
= 78.23
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So since χ2
0 > χ2

0.01/2, H0 is rejected by the crisp test for this sample.
For the second sample (variance s2 = 72.42), the value of the test statistic (43) is found

by (47) to be as follows:

χ2
0 =

(50− 1) · 72.42
47

= 75.5

So since χ2
1−0.01/2 < χ2

0 < χ2
0.01/2, H0 is not rejected by the crisp test for this sample.

Applying the above fuzzy test for the first sample, we get the results of Figure 11,
where the core of χ̃2 is at the right of the core of C̃V1 and their point of intersection has
y2 = 0.78. So according to (31), the possibility of rejection of H0 is as follows:

ϕR = Ness
(

χ̃2 > C̃V1

)
= 1− 0.78 = 0.22.
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Figure 11. The fuzzy statistic χ̃2 for the test of Example 4 for a sample with variance s2 = 82.28.

For the second sample, we get the results of Figure 12, where the core of χ̃2 is between
the cores of C̃V1 and C̃V2 and the point of intersection of χ̃2 and C̃V1 has y1 = 0.93 and of
χ̃2 and C̃V2, y2 = 0. So according to (34), the possibility of acceptance of H0 is as follows:

ϕA = Ness
(

χ̃2 < C̃V1, χ̃2 > C̃V2

)
= min(1− 0.83, 1− 0) = 0.17.

Therefore, we cannot make a decision on accepting H0 from this test.

20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
0

2
=47,  H

1

2
 47,  s

2
=72.42

2

CV
1
,CV

2

Figure 12. The possibility distribution of the fuzzy statistic χ̃2 for the test of Example 4 for a sample
with variance s2 = 72.42.
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7. Hypothesis Tests for the Mean of a Normal Random Variable with
Unknown Variance

We test at significance level γ the null hypothesis H0 : µ = µ0 for the mean value µ of
a random variable X, which follows normal distribution with unknown variance, using a
random sample of observations of X of size n with sample mean and variance x and s2.

In this case, the test statistic is

T =
X− µ0

S/
√

n
(52)

where X and S are the statistics of the sample mean and the standard deviation.
It is known [1] that under the null hypothesis (µ = µ0), T follows t distribution with

n− 1 degrees of freedom. So in the crisp case, H0 is rejected from a given random sample:
(a) For the one sided test from the right (alternative H1 : µ > µ0), if t0 > tγ;n−1, where

t0 =
x− µ0

s/
√

n
(53)

the value of the statistic (52),
tγ;n−1 = F−1

n−1(1− γ) (54)

the critical value of the test and F−1
n−1 is the inverse distribution function of the t distribution

with n− 1 degrees of freedom.
(b) For the one sided test from the left (alternative H1 : µ < µ0), if t0 < −tγ;n−1.
(c) For the two-sided test ( alternative H1 : µ 6= µ0), if t0 < −tγ/2;n−1 or t0 > tγ/2;n−1 while,
if −tγ/2;n−1 < t0 < tγ/2;n−1, then H0 is not rejected.

In the fuzzy case for the test of H0 we use the following fuzzy statistic:

T =
µ− µ0

s/
√

n
(55)

which is generated by substituting X and S in (52) with the fuzzy estimators µ̃ and s̃ of
the mean and standard deviation. The α−cuts of s̃ are given by (13) and (as described
in [29,30]) the α−cuts of the possibility distribution of µ̃ are as follows:

µµ̃[α] =

[
x− tα;n−1

s√
n

, x + tα;n−1
s√
n

]
, α ∈ [0, 1] (56)

From (53), (55), (56), (13) and fuzzy number arithmetics follows that the α−cuts of the
possibility distribution of the fuzzy statistic T̃ are as follows:

µT̃ [α] =


x− µ0 − tα;n−1

s√
n

1√
n

s

√
(n− 1)

χ2
1−α;n−1

,
x− µ0 + tα;n−1

s√
n

1√
n

s

√
(n− 1)
χ2

α;n−1


=

√χ2
1−α;n−1

n− 1
(t0 − tα;n−1) ,

√
χ2

α;n−1

n− 1
(t0 + tα;n−1)

 (57)

where tα = F−1
n−1(1− α).

The membership functions of the critical values C̃V1 and C̃V2 of the one-sided tests
are as follows:

µC̃V1
(x) =

{
1, x = F−1

n−1(1− γ)
0, elsewhere

and µC̃V2
(x) =

{
1, x = F−1

n−1(γ)
0, elsewhere

(58)
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and for the two-sided test,

µC̃V1
(x) =

{
1, x = F−1

n−1

(
1− γ

2

)
0, elsewhere

and µC̃V2
(x) =

{
1, x = F−1

n−1

(γ

2

)
0, elsewhere

(59)

where F−1 is the inverse distribution function of the t distribution with n − 1 degrees
of freedom.

Having the α−cuts (57) of the possibility distribution of the fuzzy statistic T and the
critical values C̃V1 and C̃V2, we can evaluate the possibility of rejection or acceptance of
H0 from (21), (23), (26), (28) for Ũ = T̃ and (58) for one-sided tests or from (31), (32), (34)
and (59) for the two-sided test.

Example 5. We test the null hypothesis H0 : µ = 11 at significance level 0.02 with alternative
H1 : µ 6= 11 (two sided test) for the mean µ of a normal random variable X, using a sample of
n = 25 observations with sample mean and variance x = 10, 9 and s2 = 7.57.

In the crisp case, the value of the statistic (52) is evaluated by (53)

t0 =
10, 9− 11
√

3, 57/
√

25
= 0, 26

so the p−value is p = 2(1− F24(0, 26)) = 0.8, which is much higher than the significance
level γ = 0.02. Hence, H0 is accepted by the crisp test with high p-value (the test statistic is
almost at the center of the acceptance region).

We apply the above two-sided fuzzy test of H0, implementing (57) and (59). So, we
obtain the results of Figure 13, where the core of T̃ is between the cores of C̃V1 and C̃V2 and
the points of intersection of µT̃ and µC̃V1

and of µT̃ and µC̃V2
have y1 = 0.07 and y2 = 0.05.

Hence, according to (34), the possibility of acceptance of H0 is

ϕA = min(1− y1, 1− y2) = 0.93,

so H0 is accepted by this test with possibility d = 0.93.
Applying the respective test of [29,30], we get the results of Figure 14, where we see

that the possibility of acceptance of H0 is as follows:

ϕA = min(1− y1, 1− y2) = 0.69
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Figure 13. The possibility distribution of the fuzzy statistic T for the test of H0 of Example 5.
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Figure 14. The possibility distribution of the fuzzy statistic T and the fuzzy critical values for the
respective test of [15] of H0 of Example 5.

Example 6. We test the null hypothesis H0 : µ = 6 at significance level 0.05 with alternative
H1 : µ 6= 6 (two sided test) for the mean µ of a normal random variable X, using a sample of
n = 25 observations with sample mean and variance x = 4.5 and s2 = 3.66.

In the crisp case, the value of the statistic (52) is evaluated by (53)

t0 =
4.5− 6

√
3, 66/

√
25

= −3.92

so the p−value is p = 2F24(−3.92)) = 6.5× 10−4, which is almost zero. Hence, H0 is
rejected by the crisp test.

We apply the above test implementing (57) and (59). So, we take the results of
Figure 15, where the core of T is at the left of the core of CV2 and the point of intersection
of T and CV2 has y2 = 0.03. Hence, according to (32), the possibility of rejection of H0 is
1− 0.0.3 = 0.97.
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Figure 15. The fuzzy statistic T for the test of Example 6.

Applying the respective test of [30], we get the results of Figure 16, where we see that
the possibility of acceptance of H0 is as follows:

ϕA = min(1− y1, 1− y2) = 1− 0.33 = 0.67
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A similar result with even lower possibility of acceptance is obtained by the respective
test of [29].
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Figure 16. The fuzzy statistic T and the fuzzy critical values for the test of H0 of [30] for Example 6.

8. Conclusions

If the value of the test statistic of a hypothesis is close to a critical value of the test,
then the crisp hypothesis test is unstable since a very small change in the sample may
lead from rejection to no rejection of H0 or vice-versa, as shown in Examples 1 and 4. Our
possibilistic approach, which uses fuzzy estimators for the construction of the test statistic
and a possibility of rejection or acceptance of the null hypothesis H0, gives better results
than the crisp test since it gives us the possibility of rejection or acceptance of H0, as shown
in Examples 1 and 4, where we get a very low possibility of rejection or acceptance of the
null hypothesis, which means “no decision”.

We can also conclude the following:

(1) The use of the fuzzy critical values of [29,30] in hypothesis tests leads to wrong results,
since they are not in good agreement with the crisp tests, which have been known
for nearly one hundred years (Examples 2, 3 and 5). Meanwhile, the possibilistic
fuzzy hypothesis tests developed in this paper give results which are in much better
agreement with the crisp tests.

(2) The use of the implementation of σ̃2
u of [29] in the hypothesis tests leads, also, to wrong

results since they are not in good agreement with the crisp tests (Example 3). Mean-
while, the fuzzy hypothesis tests, which are based on test statistics produced by the
correct implementation of σ̃2

u (taking into consideration the relation a(λ) between the
significance level a and the parameter λ), give results which are in better agreement
with the crisp tests.

We believe that with the help of all the above, new horizons can be opened in the
fuzzy hypothesis testing of several topics, such as the following:

(a) Proportions and difference of proportions, using fuzzy test statistics constructed by
fuzzy estimators produced by confidence intervals with the help of the central limit
theorem, correcting the results of the respective tests of [29,30].

(b) The ratio of variances of two normal random variables, using test statistics constructed

by the correct implementation of σ̃2
u , correcting the respective results produced by

tests which use the wrong implementation of σ̃2
u of [29] or the biased estimator σ̃2

b
of [30].

(c) The regression coefficient β and the predicted value yp(x0) of Y for a given x0 in a
linear regression model Y = a + βx, using fuzzy test statistics constructed by the
fuzzy estimators β̃ and ỹp(x0) produced by the known classical statistics confidence
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intervals, [β̂− ta/2;n−1s
β̂
, β̂− ta/2;n−1s

β̂
] of β (β̂ and s

β̂
the sample regression coeffi-

cient and its standard deviation) and [ŷ− ta/2;n−1sŷ, ŷ− ta/2;n−1sŷ] of yp (ŷ and sŷ
the predicted value of Y for x = x0 from the given sample and its standard deviation).
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Appendix A

Samples of temperature taken from Hellenic national meteorological service [37].

Sample 1

12.14 21.48 20.82 20.96 22.66 20.61 21.5 27.86 27.33 25.75
27.8 29.32 28.52 28.76 28.31 28.1 27.99 27.43 28.8 28.17
29.02 24.55 22.29 23.35 23.37 23.96 5.96 16.54 17.25 17.98
18.78 13.59 10.85 10.82 13.42 15.19 8 5.56 8.66 6.5
10.21 4.87 5.66 3.2 6.2 2.97 4.4 10.19 6.2 6.9

Sample 2

26.4 27.7 28.7 29.63 29.44 29.89 28.15 29.15 29.05 29.34
29.08 29.94 25.66 26.85 24.55 26.09 25.16 22.33 20.11 19.8
20.41 21.97 18.44 17.01 14.54 16.72 18.34 10.88 7.63 12.99
10.35 12.54 6.6 6.61 0.83 6.68 4.43 6.59 11.52 10.18
8.82 8.68 9.1 12.16 12.87 12.43 12.32 15.3 17.47 15.86
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