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Abstract: In view of the characteristics of the guidance, navigation and control (GNC) system of
the lunar orbit rendezvous and docking (RVD), we design an auxiliary safety prediction system
based on the human–machine collaboration framework. The system contains two parts, including
the construction of the rendezvous and docking safety rule knowledge base by the use of machine
learning methods, and the prediction of safety by the use of the base. First, in the ground semi-
physical simulation test environment, feature extraction and matching are performed on the images
taken by the navigation surveillance camera. Then, the matched features and the rendezvous and
docking deviation are used to form training sample pairs, which are further used to construct the
safety rule knowledge base by using the decision tree method. Finally, the safety rule knowledge
base is used to predict the safety of the subsequent process of the rendezvous and docking based
on the current images taken by the surveillance camera, and the probability of success is obtained.
Semi-physical experiments on the ground show that the system can improve the level of intelligence
in the flight control process and effectively assist ground flight controllers in data monitoring and
mission decision-making.

Keywords: rendezvous and docking; visual navigation; human–machine collaboration; safety prediction

1. Introduction

As the only natural satellite of the Earth, the importance of the Moon to the Earth
and mankind is self-evident. The Cislunar environment is a promising location for space
exploration. Apollo carried out eight crewed manual lunar orbital rendezvous and docking
missions, in which human intelligence played an important role in rendezvous monitoring
and docking [1]. Space rendezvous and docking technology refers to the technology in
which the chaser spacecraft and the target spacecraft meet at a certain position on the same
orbit at a certain time, and then are structurally connected. Compared with traditional
rendezvous and docking relying on ground control, autonomous rendezvous and docking
can reduce the work intensity of ground personnel, eliminate the influence of signal delay
and avoid external interference. Autonomous rendezvous and docking mean that the two
spacecraft rely on their own navigation, guidance and control systems to complete the entire
process of rendezvous and docking without the intervention of personnel on the ground
or in the spacecraft [2,3]. An autonomous rendezvous requires the formulation of high-
precision, high-reliability and high-safety rendezvous strategies, and higher requirements
for the performance and intelligence of the guidance, navigation and control system [4–6].
The composition of an autonomous rendezvous and docking system is shown in Figure 1.

The guidance, navigation and control for close operations of spacecraft has always
been a hot research topic in the field of space technology. For example, Bucci et al. [7] and
Bucchioni et al. [8] focused their attention on approaches to rendezvous in lunar Near Rec-
tilinear Halo Orbits (NRHO). Colagrossi et al. [9] designed a GNC system for 6 degrees of
freedom (6DOF) coupled Cislunar rendezvous and docking. Research on the Orion vehicle
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has also been conducted [10,11]. There are many rendezvous and docking strategies. In the
close-range phase, the glideslope trajectory is known as a simple approaching trajectory
complying to safety constrains, and the common approach directions are known as V-bar
and R-bar [12,13]. Techniques such as sliding mode control [14], artificial potential func-
tion [15], genetic algorithms [16], searching strategy [17] and model predictive control [18]
are all involved in the research field of rendezvous and docking. In this paper, we design
an auxiliary system to predict the safety level of the rendezvous and docking process.

Figure 1. Autonomous rendezvous and docking system.

In the control process of the ground flight for autonomous rendezvous and docking
missions in the third phase of lunar exploration, by drawing lessons the idea of solving
the problem of scale ambiguity in the relative pose estimation of non-cooperative targets
with the combination of monocular camera and LIDAR [19], we perform feature matching,
extraction and target classification on the target image captured by the surveillance camera
on the chaser. We design an auxiliary prediction system for engineering applications, which
can improve the intelligent level of flight control, effectively assist ground personnel in
data monitoring and mission decision-making and increase the mission success rate.

The remainder of this paper is organized as follows. In Section 2, we clarify the
mission objectives, and analyze the needs and difficulties. In Section 3, we propose a
framework for the autonomous judgment of human–machine collaboration safety and give
the system’s function division and design scheme. Section 4 describes the experimental
verification of the system. Section 5 is the conclusion.

2. Mission Objectives and Characteristics
2.1. Mission Objectives

During rendezvous and docking in the lunar orbit, the navigation surveillance camera
configured on the chaser is used to monitor and observe the rendezvous and docking
process of the two spacecraft. After entering the phase of ground measurement and control,
we use surveillance cameras to perform target imaging, feature points extraction, tracking
and matching and safety prediction. To accomplish the mission, the following problems
need to be solved:

1. Image feature detection and matching in uncertain environments. It needs to use
image information to capture the target and extract related feature points, and further
calculate the relative position and attitude of the two spacecraft;

2. Safety prediction and judgment of the docking process. It needs to construct a
knowledge base for safety judgments, predict the possible docking process in the
current pose and evaluate the probability of successful docking;

3. Visualized data to assist flight controllers in carrying out status analysis and mission
decision-making. It is not only necessary to output the rendezvous safety judgment
result, but also to visually display the safety judgment basis and criteria.
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2.2. Mission Characteristics

The space rendezvous and docking optical navigation uses the cooperative target
vision measurement method to obtain the relative position and attitude between the target
coordinate system and the chaser [20,21], and the calculation method is the linear trans-
formation method or the space rear intersection method [22]. The literature [23,24] shows
that to extract features and recognize the target in a space environment, the uncertainty
and influencing factors come from the following three aspects: imaging noise, geometric
distortion and scene complexity. The imaging noise can be tested on the ground to find an
appropriate image filtering and denoising algorithm [25,26].

Geometric distortion is a key issue that affects measurement accuracy. Taking into
account the changes in the imaging environment before and after launch, this distortion is
difficult to accurately calibrate on the ground. It needs to be adaptively calibrated according
to the structure information of the imaging target during the measurement process, which
can overcome the effects of distortion to some extent [23].

How to distinguish the target from the complex and changeable background is an
important issue in the research of target recognition. The scene of the space target is rela-
tively simple, and there is a clear distinction between the foreground and the background.
However, the scale and posture of the space target in the scene vary greatly. During the
process of rendezvous and docking, the distance of the target in the scene can vary from
several thousand kilometers to less than 1 m [27], and the brightness of the target is affected
by the direction of the sun, the direction of sight, the normal direction of the target surface
and self-occlusion, resulting in a wide range of uneven brightness changes [2]. On the other
hand, due to the constraints of factors such as space environment, power consumption
and volume, the devices and processors that make up the computing platform on the
spacecraft are highly reliable but have low operating frequencies. In order to meet the
real-time nature of the control system, there are very high requirements for the efficiency
of image processing and analysis algorithms [4].

3. Human–Machine Collaborative Self-Judgment Framework for Safety of RVD
3.1. System Framework Design

The self-judgment process for rendezvous and docking safety is divided into the
following two parts: safety knowledge base construction and safety prediction.

The purpose of the safety knowledge base construction is to learn the knowledge
base. In addition, the generation of training samples is mainly based on the 6DOF relative
position and attitude data generated using the relative dynamics model of the spacecraft.
The self-judgment framework for the safety of the rendezvous and docking is shown in
Figure 2. We first establish the attitude dynamics model of the multi-body spacecraft and
dynamics model of the lunar orbit [28]. Then, under each relative position and attitude,
an image sequence is generated according to the internal parameters of the camera and
the mechanical structure of the docking surface of the target. After feature selection and
matching, a set of rules that can be used for training a decision tree of the safety knowledge
base can be obtained. Finally, we can obtain the safety judgment knowledge base by
training the decision tree.

The purpose of safety prediction is to predict the safety level of the rendezvous and
docking process. In the process of safety prediction, the features of the images taken by
the camera are matched with the simulated image’s features. After the feature matching is
manually evaluated, if there are more than six feature points forming an effective match,
these features and the safety knowledge base are used to judge the safety level of the
rendezvous and docking.
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Figure 2. Self-judgment framework for safety of RVD.

3.2. Feature Selection and Matching of the Target Image

It can be seen from Figure 2 that the feature extraction and selection of the target image
is a key issue in system design. The surveillance camera is a monocular uncalibrated visible
light camera. Since the surveillance camera is used to monitor the target, it should meet
the requirements of imaging the entire target at a relatively long distance, and imaging
notable regions at medium and short distances. The resolution of the camera affects the
image clarity, the position error of extracted features and ultimately affects the accuracy of
pose information and safety prediction. A low resolution will greatly affect the accuracy
of the results. The field of view of the camera determines the closest distance to image
the entire target or some notable regions of the target. A small field of view will make the
proposed method inapplicable at a close range. Thus, based on the test environment, we
set the camera resolution to 2048 × 2048, pixel size to 5.5 µm × 5.5 µm, focal length to
20 mm, field of view to 20◦ × 20◦ and frame rate to 10 FPS. During the imaging process,
it can be self-calibrated according to the known structure model of the measured target.
The target relative working distance is 30~0.3 m, and the speed is 0.3 m/s. Due to the
limitation of the depth of field, the camera cannot clearly image the target at a distance
of 20 m. Therefore, it is difficult to ensure the matching accuracy through the traditional
method of extracting points, lines and surfaces.

In this regard, this paper divides the feature extraction, matching and application
process on the target image into the following steps:

1. Manually select several positions on the mechanical structure model of the end face
of the target. These positions have precise coordinates on the mechanical structure
drawing and can be extracted using the Scale-Invariant Feature Transform (SIFT)
features [29];

2. Convert the position specified on the mechanical structure drawing to the (sub) pixel
position on the simulated image by using the rotation matrix and displacement vector
generated by the dynamics model;
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3. Extract the SIFT features from the real images collected in the test environment and
the simulated images, and form feature point pairs;

4. In the construction stage of the safety knowledge base, the features on the images
collected by the surveillance cameras are clustered, and the feature cluster centers
are matched with the features on the simulated images. Then, the matching results
are manually detected, and the false matches are deleted. Since the safety level
corresponding to the simulated image can be obtained from the dynamics model,
the label for the manually detected features can be obtained, which is the same as
the matched simulated image. With the features and label, we can construct several
training samples. Then, decision tree methods are used to construct a knowledge
base. An example of the feature points is shown in Figure 3;

5. In the test stage, we first collect images using the surveillance camera, and then extract
features and cluster them. After that, we manually detect the number of clusters and
the degree of feature aggregation within the cluster and select the cluster centers.
Finally, we obtain the safety level by inputting the filtered cluster centers into the
decision tree.

Figure 3. The feature points that are detected and matched by using feature clustering when the
chaser approaches the target (The picture is mosaic-processed).

We select the cluster centers of the features manually and input them into the decision
tree. The selection is based on the manually selected notable positions on the target. Due to
the specific characteristics of space missions, we can manually select some easily identified
positions on the target. In this way, we can easily find the corresponding positions on the
target image. The disadvantage of this kind of manual selection is that we need to find
notable positions for each specific mission. However, due to the specific characteristics
of space missions, manual point selection will not be a frequent task. The advantage is
that we only need the image as the input in our model and do not need other data that are
measured by specific devices.

3.3. Safety Judgment Knowledge Base

The construction of the safety judgment knowledge base includes two steps, namely,
the classification of safety levels and the training of decision trees.

3.3.1. The Classification of Safety Levels

The spacecraft dynamics model is used to generate the simulated trajectory sequence
and the deviation of the rendezvous and docking result. The deviation of the rendezvous
and docking result includes three displacement deviations and three attitude angle devia-
tions. Assuming that these six random variables obey the normal distribution of different
parameters, the six deviations are set to four levels according to the standard deviation
of their distribution. We obtain 1500 sets of simulated rendezvous and docking deviation
results by using the spacecraft dynamics model to simulate the rendezvous and docking
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process 1500 times. Figures 4 and 5 show the deviation of displacement in the x direction
and the rotation angle as examples. Each blue cross represents the deviation of one simula-
tion result. The mean and standard deviation of each deviation are shown in Table 1. In the
table, ex, ey and ez denote the deviations of the movements in the direction of x, y and z,
respectively, and e∅, eθ and eϕ denote the deviations of precession angle, nutation angle
and rotation angle, respectively.

Figure 4. x deviation of rendezvous and docking results and distribution of ±σ, ±2σ, ±3σ.

Figure 5. Rotation angle deviation of rendezvous and docking results and distribution of
±σ, ±2σ, ±3σ.
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Table 1. Statistics of 6 degrees of freedom deviations from 1500 sets of rendezvous and docking
results of spacecraft dynamics simulation.

6-DOF Deviations Mean Standard Deviation

ex 0.452 m 0.010 m
ey 0.371 m 0.007 m
ez 0.019 m 0.007 m
e∅ 0.021◦ 0.400◦

eθ 0.008◦ 0.393◦

eϕ 0.239◦ 0.201◦

The safety level of the one deviation of the rendezvous and docking result is calculated
by the following equation:

l =


1
2
3
4

µ − σ ≤ e ≤ µ + σ
µ − 2σ ≤ e < µ − σ, µ + σ < e ≤ µ + 2σ

µ − 3σ ≤ e < µ − 2σ, µ + 2σ < e ≤ µ + 3σ
others

(1)

where e is the deviation, µ denotes the mean and σ denotes the standard deviation. The
final safety level of the rendezvous and docking is obtained by taking the maximum value
of safety levels for the 6DOF deviations, as follows:

L = max
(

lex , ley , lez , le∅ , leθ
, leϕ

)
. (2)

where lex , ley , lez , le∅ , leθ
and leϕ denote the safety level for x, y and z, and e∅, eθ and eϕ

deviations, respectively.

3.3.2. Training of Decision Trees

We first extract features (F1,1, · · · , Fi,j, · · · , F1,tn) from the simulated RGB image se-
quence

(
I1,1, · · · , Ii,j, · · · , I1,tn

)
generated by using the spacecraft dynamics simulation

model, and also obtain the deviation of the rendezvous and docking result corresponding
to this sequence. Here, Ii,j denotes the simulated image at time j in the i-th rendezvous
and docking experiment. Then, we convert the deviation into a safety level by using
Equation (1). Thus, we can obtain the sample by treating the safety level as a label. After
simulating several times, the generated samples are finally used to train the decision tree.
In the real rendezvous and docking experiment, after capturing the image of the docking
surface of the target using the security surveillance camera installed on the chaser, we
extract the features and use the safety judgment knowledge base to determine the safety
level corresponding to the current state.

The safety judgment knowledge base is constructed using an Ordinary Binary Classifi-
cation Tree (OBCT). The sample set is divided into a training set (90%) and a validation set
(10%), and a cross-validation technique is used as the stopping criterion in the training of
the decision tree. The algorithm flow of the training of the decision tree is shown in Figure 6.
We continuously select the best features to split the node until the average classification
error of all validation sets is minimized. Finally, we obtain a decision tree with a depth of
50. During training, the maximum entropy impurity reduction (information gain) strategy
is used to select the optimal feature components. The entropy impurity at node N of the
decision tree is i(N), and the information gain obtained by selecting features Fi,j is ∆i(N),
as follows:

i(N) = −∑
j

P
(

Lj
)
log2P

(
Lj
)

(3)

∆i(N) = i(N)− PLi(NL)− (1 − PL)i(NR) (4)
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where P
(

Lj
)

indicates the frequency of samples belonging to the category Lj at the node
N in the total number of samples, NL and NR are the left and right child node of N,
respectively, i(NL) and i(NR) are the corresponding impurities, and PL is the probability
that the tree grows from N to NL when the feature Fi,j is selected.

Figure 6. Decision tree training algorithm process.

After training the decision tree, we further generate a test set of 150 samples and show
the confusion matrix in Table 2. The classification error on this test set is 6%.

Table 2. The confusion matrix of the test set.

Confusion Matrix L = 1 L = 2 L = 3 L = 4

L = 1 86 3 0 0
L = 2 2 32 3 0
L = 3 0 0 17 1
L = 4 0 0 0 6

4. System Verification Process

The nine-degrees-of-freedom turntable system is used to simulate the approaching
process of the two spacecraft at a relative distance of 30 m to 0.3 m. The setup of the
experimental system is shown in Figure 7.

Figure 7. Diagram of a semi-physical experiment system.

The target docking surface model is installed on the target platform, and the camera is
installed on the chaser platform. The image signal is transmitted to the control computer
through the optical transceiver, and the control computer encapsulates the received video
data in real time by simulating the flight control network protocol and then uses the
local area network to forward it to the auxiliary prediction computer. In addition, in the
experiment, the incident angle of sunlight under the real lunar orbit is simulated, and a
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solar simulator with a three-degrees-of-freedom servo is used to generate parallel light to
illuminate the entire target plane.

The data display and human–computer interaction interface is shown in Figure 8. The
data display areas show the trajectories of the target in different views. When a rendezvous
and docking operation ends (regardless of whether it ends normally or abnormally), the
6DOF rendezvous and docking deviations are obtained, and a sample is also generated. In
the process of rendezvous and docking, the mathematical simulator outputs six degrees
of freedom at each moment. According to the small hole imaging model and the internal
parameters of the camera, a simulated image Ii,j is generated from the mechanical model
of the target end face. Fi,j is then obtained by extracting features from Ii,j. By using
Equation (2), the rendezvous and docking deviations are mapped to a safety level. With
the features and the corresponding safety level, we can construct the training samples
to train the decision tree. The whole process realizes the transformation from image
Ii,j to rendezvous and docking safety level L. At the test experiments, the surveillance
camera takes an image of the target, as shown on the left side of Figure 8, and the decision
tree predicts the safety level of the rendezvous and docking, which is displayed in text
in Figure 8. The four safety levels mean “Normal”, “Early Warning”, “Warning” and
“Abnormal”, respectively. In order to visually display the real-time status of the rendezvous
and docking, the position of the target is shown in Figure 8 in different views with a
red cross.

Figure 8. Data display and human–computer interaction interface.

A nine-degrees-of-freedom turntable is used to run 50 sets of rendezvous and docking
trajectories, and the results of safety judgments using the above methods are shown in
Table 3.

Table 3. Safety verification test results of a nine-degrees-of-freedom turntable rendezvous and docking.

Number of Test L = 1 L = 2 L = 3 L = 4

50 45(90.0%) 2(4.0%) 3(6.0%) 0(0%)

5. Conclusions

This paper designs an auxiliary prediction system for the lunar orbit autonomous
rendezvous and docking process based on a human–machine collaboration framework. It
can use the monitoring camera telemetry information in the flight control phase to capture
the characteristics of the target and track the target, and to identify the relative relationship
between the chaser and the target, analyze whether the relative position and attitude of
the spacecraft meet the safety range of docking and assist in predicting the safety of the
docking process.
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The relevant ground experiments show that the system can intuitively and compre-
hensively indicate the relative relationship between two spacecraft, improve the human–
machine collaboration effect in the flight control phase and effectively assist the ground
flight controller of the GNC system in status analysis and mission decision-making.
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