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Abstract: Modeling traffic distribution and extracting optimal flows in multilayer networks is of the
utmost importance to design efficient, multi-modal network infrastructures. Recent results based on
optimal transport theory provide powerful and computationally efficient methods to address this
problem, but they are mainly focused on modeling single-layer networks. Here, we adapt these results
to study how optimal flows distribute on multilayer networks. We propose a model where optimal
flows on different layers contribute differently to the total cost to be minimized. This is done by
means of a parameter that varies with layers, which allows to flexibly tune the sensitivity to the traffic
congestion of the various layers. As an application, we consider transportation networks, where each
layer is associated to a different transportation system, and show how the traffic distribution varies as
we tune this parameter across layers. We show an example of this result on the real, 2-layer network
of the city of Bordeaux with a bus and tram, where we find that in certain regimes, the presence of
the tram network significantly unburdens the traffic on the road network. Our model paves the way
for further analysis of optimal flows and navigability strategies in real, multilayer networks.

Keywords: optimal transport; networks; multilayer networks; routing optimization

1. Introduction

Investigating how a network operates and assessing an optimal network design in
interconnected networks is a critical problem in several areas [1]. Examples of these
include economics [2], climate systems [3], epidemic spreading [4–6] and transportation
networks [7]. The main challenge of these problems is to account for the various types
of connections that nodes can use to travel through the network efficiently. For example,
in transportation networks, the main application considered here, passengers can travel
using various means of transport within the same journey. The different transportation
modes can operate in significantly different ways [8,9]. For instance, traveling along a rail
network (e.g., by tram or subway) is usually faster than along a road network (e.g., by
car or bus). The rail network is less sensitive to traffic congestion but the road network
has wider coverage and thus allows to reach more destinations. The question is how to
combine all these different features to design optimal networks and predict the optimal
trajectories of passengers.

Multilayer networks [1,10–12] are a powerful tool to study multi-modal transporta-
tion networks [13–15]. Transport in a multilayer network, where layers correspond to
transport modes, is often studied using diffusion or spreading processes [1,16–18]. Many
of these works use shortest-path minimization [14,19–21] as the main method to extract
the passengers’ trajectories. However, this can be a restrictive choice: on one side, this
assumes that different layers share the same cost function to be minimized; on the other
side, shortest-path minimization is not sensitive to traffic congestion and thus, may not
be realistic in certain scenarios. Empirical studies [22] have also indicated that passengers
may not necessarily choose the shortest paths.
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Here, instead, we propose a model that considers more general transport cost min-
imization, based on a regularized version of the Monge–Kantorovich optimal transport
problem [23]. The regularization is obtained via a parameter β that allows to flexibly tune
the cost between settings where traffic is penalized or consolidated. Optimal transport is a
proven, powerful tool to model traffic in networks and optimal network design [24–39].
Recent works [30,40] extended this formalism to a multi-commodity case that properly
accounts for passengers with different origins and destinations. All these studies consider
the case of a single-layer network, i.e., one transportation mode. The existence of multiple
connections on different layers invites a generalization of these recent results of optimal
transport to cope with multilayer networks.

Here, we make this effort and propose a model that uses optimal transport theory to
design optimal multilayer networks and finds optimal path trajectories on them. We show
how such networks operate under various transport costs tuned by β on both synthetic
and real data. We see how the traffic evolves from being more homogeneous to a more
unbalanced traffic distribution when a second layer is present and the cost to travel through
it changes.

In summary, the goal of this work is to propose an efficient optimal transport-based
method for modeling optimal network flows in multilayer networks. Our model finds
optimal flows by naturally incorporating the different nature of transportation modes and is
computationally efficient. While here, we focus on transportation networks, our method is
applicable to a broader set of practical applications involving flows on multilayer networks.

What Makes Multilayer Networks Different Than Single-Layer in Transportation

Having given the broader context for our work, we now highlight the main features
of transport on multilayer networks. The presence of edges between layers (inter-layer
edges) makes a multilayer network fundamentally distinct from a standard single-layer
one, as these edges allow passengers to switch between transportation modes. However,
this is not the only difference. In fact, in a multilayer network, the various layers have
different characteristics. The main one is that the type of transportation cost varies across
layers. For example, the cost to build and maintain the infrastructure differs depending
on the transportation mode, with subway or rail tracks costing more than a road network.
Moreover, the cost assigned to traffic congestion is also different, as road networks are
more sensitive to traffic bottlenecks than rail ones. In addition, the power dissipated differs
depending on the means of transportation, as running a tram generally produces fewer
CO2 emissions than running a bus. All these different features impact the results of an
optimal transport problem, as the network features contributing to the cost function to be
optimized vary with layers, and thus also the optimal solution.

Finally, the network topologies themselves vary with layers [41], as a bus network has
many edges with short lengths, while a rail network tends to have fewer but longer edges.
In addition, the weights assigned to each edge differ based on the layer, which can induce
coupling between layers [42].

2. Materials and Methods
2.1. Multilayer Transportation Networks

In general, a multilayer network is represented as a graph G({Vα}α, {Eα}α, {Eαγ}α,γ),
where Vα and Eα are the set of nodes and edges in layer α, respectively, and Eαγ is the set of
edges between nodes in layer α and nodes in layer γ. Here, α = 1, . . . , L, where L is the
number of layers. We denote with Nα = |Vα| the number of nodes in layer α, and with
Eα = |Eα| the number of edges in layer α, Eαγ = |Eαγ| is the number of edges between
nodes in layer α and γ. Finally, we denote with V0 = ∪αVα the total set of nodes, with
E0 = (∪αEα) ∪ (∪αγEαγ) the total set of edges, and with N0 = |V0| and E0 = |E0|, their
cardinalities. We assume that edges have lengths le > 0, which determine the cost to travel
through them.
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Transportation networks are relevant examples of this type of structure, where nodes
are stations, edges are connections between stations and layers are transportation modes,
for instance, rails or bus routes. A convenient way to represent a multilayer network is
with two tensors [43]: (i) an intra-layer adjacency tensor A with entries Aα

uv = 1 if there is
an edge between nodes u and v in layer α, and 0 otherwise. We refer to this type of edge as
an intra-layer edge; (ii) an inter-layer adjacency tensor Â with entries Âαγ

uv = 1 if there is an
edge between node u in layer α and node v in layer γ, and 0 otherwise. Without loss of
generality, in our applications, we have Âαγ

uv = 0 if u 6= v, meaning that different layers are
connected solely by shared nodes. We refer to edges connecting nodes in different layers
as inter-layer edges. In the case of transportation networks, the main application studied
here, a station could have a bus stop, a train platform and a subway entrance, which allows
passengers to switch between communication modes within the same station. For example,
one can think of an inter-layer edge as the stairs connecting the subway entrance with
the entrance to the train station. Typically, inter-layer edges are, thus, much shorter than
intra-layer edges.

In the case of multilayer networks, we need to be careful with how stations connecting
multiple transportation modes are represented. In fact, if an entry station connects more
than one layer, we may not be able to distinguish in what layer a passenger enters. In other
words, if a node u belongs to more than one layer, i.e., a node uα exists for more than one
value of α, we may not be able to tell whether the passengers entering u entered from uα, uγ

or from any of the other instances of node u in the various layers. To alleviate this problem,
we build auxiliary super nodes u, which do not belong to any layer in particular but instead
connect the various instances of the same node in the various layers together. Specifically,
we remove all the inter-layer edges (uα, uγ) and replace them with auxiliary inter-super
edges (uα, u), connecting all the instances uα of node u with the super node u, as in a star
graph, so that the original edge (uα, uγ) is replaced by a two-edge path {(uα, u), (uγ, u)}.

This auxiliary structure allows the model to allocate in an optimal way the passengers
along the inter-super edges when they enter from a station with connections to more than
one layer, thereby avoiding the selection of arbitrary entrances a priori. This becomes
relevant in applications where the cost to travel along inter-layer edges is non trivial, for
instance, in situations where changing connection impacts the comfort of the passengers.

Moreover, the introduction of super nodes and edges facilitates how we represent
the multilayer network. In fact, by adding these auxiliary super nodes and inter-super
edges, we only need to consider an individual network adjacency matrix A, instead of two
separate tensors. This matrix has entries Auv = 1 if an edge exists between nodes u and v
and 0 otherwise, where a node u can be a node uα in layer α or a super node u. The set of
nodes is then V = V0 ∪ Vsuper, where Vsuper is the set of super nodes, and |Vsuper| = Nsuper
is their number, which corresponds to the number of nodes that belong to more than
one layer. Similarly, the new set of edges is E = (∪αEα) ∪ Esuper, where Esuper is the set
of inter-super edges. The final numbers of nodes and edges are N = |V| = N0 + Nsuper
and E = |E | ≥ E0. Notice that this construction is equivalent to assume that the network
has L + 1 layers, where the extra layer is made of inter-super edges Esuper and all nodes
incident to them (without loss of generality, we assume that all the inter-super edges are
treated equally). We denote it as the super layer and this corresponds to α = L + 1, so that
EL+1 ≡ Esuper. We show an example of this structure in Figure 1.

Finally, we consider a coupling between layers as in [42] that controls how the layers
are linked. Specifically, we multiply the lengths of each edge by a factor wα ∈ [0, 1] that
depends on what layer the edge belongs to. For convenience, we introduce qe ≡ qe(α)
taking values qe = α for each e ∈ Eα and with α = 1, . . . , L + 1. Using this, we define the
resulting length as `e := wqe le. This ensures that edges in different layers can be navigated
differently. If we interpret wα as the inverse of a velocity, then `e is proportional to the time
needed to travel along edge e, which can be seen as an “effective” length. When wα < 1
and wγ = 1, a passenger takes less time to travel along an edge of length le in α than one in
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γ. Typically, `e are small for inter-super edges. Nevertheless, one can tune the cost to travel
along them by tuning wL+1.

Figure 1. Example of multilayer structure. We show an example of a 2-layer network with N = 18
(N1 = 10, N2 = 4 and Nsuper = 4). (Left) adjacency matrix A, colors denote the layer type: blue is
layer 1, red is layer 2 and green is the super layer. (Right) the 2-layer network with layer 1 on the
bottom, layer 2 on top, and the super nodes in between.

2.2. The Model

We consider the formalism of optimal transport theory, and in particular, recent works
that map the setting of solving a standard optimization problem into that of solving a
dynamical system of equations [24–30,40]. Specifically, we model two main quantities
defined on network edges: (i) fluxes Fe of passengers traveling through an edge e; and
(ii) conductivities µe, which are quantities determining the flux passing through an edge
e. Intuitively, the conductivity µe of an edge can be seen as proportional to the size of
the edge e. To keep track of the different routes that passengers have, we consider multi-
commodity formalism as in [40], i.e., we distinguish passengers based on their entry station
a ∈ S , where S ⊆ V is the set of stations where passengers enter, and we denote with
M = |S| the number of passenger types. With this formalism, we have that the fluxes Fe
are M-dimensional vectors, where the entries Fa

e denote a number of passengers of type
a traveling on edge e. The important modeling choice is that the conductivities µe are
shared between passengers, thus they are scalar numbers contributing to the cost for all
passenger types traveling through e. This formalism can be equally applied to both edge
types: intra-layer and inter-super edges.

We assume that fluxes are determined by pressure potentials pa
u defined on nodes

as follows:
Fa

e :=
µe

`e
(pa

u − pa
v), e = (u, v) . (1)

We model the number of passengers entering a station a with a positive real number
ga. For notational convenience, we define a N ×M dimensional matrix of entries ga

u such
that ga

u := 0 if u 6= a, and ga
u := ga if u = a. Similarly, we define with ha

u the number of
passengers of type a exiting at node u. Here, the only constraint is that ha

u = 0 if u = a to
avoid unrealistic situations where passengers entering in one station exit from the same
station. Finally, we define the N×M-dimensional source matrix with entries Sa

u = ga
u − ha

u,
which indicates the number of passengers of type a entering or exiting a station. Notice that
for each a ∈ S we have ∑u Sa

u = 0, meaning the system is isolated, i.e., all the passengers
of a certain type who enter the network also exit.

With this in mind, we enforce mass conservation by imposing Kirchhoff’s law on
nodes. To properly enforce this constraint, we need to consider all the edges, both intra-
layer and inter-layer edges. This can be compactly written by considering the multilayer
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network signed incidence matrix B with entries Bve = 1,−1, 0 if node v ∈ V is the start,
end of edge e ∈ E , or none of them, respectively. With this in mind, Kirchhoff’s law can be
written as follows:

∑
e

BveFa
e = Sa

v, ∀a ∈ S , ∀v ∈ V . (2)

Finally, we assume that the conductivities follow the following dynamics:

µ̇e = µ
βqe
e

∑a∈S (pa
u − pa

v)
2

`2
e

− µe, ∀e ∈ E , (3)

where qe encodes the type of edge, as defined in Section 2.1. The parameter 0 < βqe < 2
is important, as it determines the type of optimal transport problem that we aim to solve,
which we describe in more detail later. Interpreting the conductivities as quantities pro-
portional to the size of an edge, this dynamics enforces a feedback mechanism such that
the edge size increases if the flux through that edge increases, it decreases otherwise. This
feedback mechanism was observed in biological networks, such as the one made by slime
mold Physarum polycephalum [24,44], which adapts its body shape to optimally navigate the
space, searching for food.

The important property of this dynamics is that its stationary solutions minimize a
multilayer transport cost function:

Jβ =
L+1

∑
α=1

∑
e∈Eα

`e||Fe||Γ(βα)
2 , (4)

where Γ(βα) = 2(2− βα)/(3− βα) for all α and the 2-norm is calculated over the M entries
of each Fe. This means that solving the systems of Equations (1)–(3) is equivalent to finding
the optimal trajectories of passengers in a multilayer network, where optimality is given
with respect to the cost in Equation (4). An extended discussion and a formal derivation of
this property can be found in [32,40].

The parameter βqe (taking value βα on layer α) regulates how the fluxes should
distribute in each of the layers. In fact, according to Equation (4), when βα > 1, the fluxes
are encouraged to consolidate into few edges of a layer α, being Γ(βα) < 1, and thus the
cost in Equation (4) is sub-linear. In the opposite scenario, when 0 < βα < 1, we have
that the fluxes are encouraged to distribute over more edges and with lower values in
order to keep traffic congestion low. Finally, when βα = 1, we obtain the shortest path-like
minimization. The consequence of having different βα in different layers is that the optimal
trajectories have different topologies in each of the layers. At the same time, layers are
coupled together, thus the final trajectories are a complex combination of the weights
wα and the βα. We give an example of optimal flows for various combinations of these
parameters in Figure 2.

2.3. The Algorithmic Implementation

The numerical implementation consists of initializing the µe > 0 at random. Then,
one iterates between (i) extracting the pressure potentials (or the fluxes) using Equations (1)
and (2), and (ii) using these to recompute the µe by means of Equation (3), which can be
solved numerically with finite difference discretization. The iteration is repeated until
convergence. In our experiments, we terminate a run of the algorithm when the difference
J(t+1)
β − J(t)β between two successive updates is lower than a threshold (the superscript (t)

is the iteration step). The cost Jβ in Equation (4) is not strictly convex in general, hence
the solution of Algorithm 1 may converge to a local optima. One should then run the
algorithm several times, each time initializing to a different random initial realization of
µe > 0. A possible choice for a final optimal solution is the one that has lower Jβ. We give
the pseudocode for this in Algorithm 1; this is complemented with the block diagram in
Figure 3. Most of the computational effort required by Algorithm 1 is in the solution of
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M linear systems as in Equation (2). In our implementation, this is performed by a sparse
direct solver (UMFPACK), performing a LU decomposition of each column of the right
hand side of Equation (2), and having complexity scaling as O(M N2).

Figure 2. Example of optimal paths. We show an example of optimal paths obtained with: p = 0.2
and (top) w1 = 0.2, (bottom) w1 = 0.8. Values of β1, β2 are those reported on top of each network.
The statistics Gini1 and f2 are those defined in Section 3.1. The width of edges is proportional to the
optimal ||Fe||2. Blue and red edges are for layers 1 and 2, respectively. The two layers are plotted
individually on the rightmost column.

Start

Input: G(V , E), S, βa

Initialize µe :
µe ∼ Uni f (0, 1)

Is
convergence
achieved?

Return: optimal {Fe}

Solve Equation (2)
using Equation (1)

Solve Equation (3)

Stop

yes

no

Figure 3. Block diagram of Algorithm 1. We give a pictorial representation of the pseudocode in
Algorithm 1. Here, rectangular blocks are action blocks, corresponding to the update of a variable,
to an input initialization, or to the output of the fluxes at convergence. Conditional blocks are
diamond-shaped; elliptical blocks denote the start and stop points.



Algorithms 2021, 14, 189 7 of 12

Algorithm 1 Multilayer optimal transport.

1: Input: multilayer network G(V , E), source matrix S, βα

2: Initialize: {µe} (e.g., sampling as i.i.d. µe ∼ Uni f (0, 1))
3: while convergence not achieved do
4: use Equation (1) to solve Kirchhoff’s law as in Equation (2)→ {pa

u}
5: solve the dynamics in Equation (3): {µt

e} → {µt+1
e }

6: end while
7: Return: fluxes {Fe} at convergence, computed using Equation (1)

The resulting {Fe} capture how passengers travel along the network via optimal
trajectories. The norms ||Fe||2 measure the total number of passengers along an edge e.

3. Results
3.1. Results on Synthetic Data

We show how the model works on synthetic data where each layer is planar, to mimic
realistic scenarios of transportation networks in space. We generate 2-layer networks and
the source matrix S as done in [42]. Specifically, we generate one layer by randomly placing
N nodes in the square [0, 1]× [0, 1] and then extract their Delaunay triangulation [45]. We
then select a subset of nodes and use this to build the second layer with an analogous
procedure. An example of this is given in Figure 2. After having constructed the network
topology, we assign entry and exit stations to each node in the network, starting from a
monocentric scenario where all passengers exit from a central station, regardless of their
origin. We then randomly re-assign with a probability p ∈ [0, 1] the exit station of each set
of passengers. When p = 0, all the passengers travel to the city center, while when p = 1,
the destinations are assigned completely at random.

We generate 20 networks with N1 = 100 and N2 = 10, so that layer 1 has, on average,
shorter edges than layer 2. For each sampled network, we take 50 random samples of
S. We consider p ∈ {0.2, 0.8} to study two opposite situations of having a majority or a
minority of the passengers directed to a common central node. Then, we fix w1 = 1 and
vary w2 ∈ {0.2, 0.8} to mimic a scenario where traveling on the second layer is faster.

Overall, with these combinations of parameters, we obtain 2-layer networks that
resemble a road–rail network. With this in mind, we run our model with the following com-
bination of parameters for the dynamics: (β1, β2) ∈ {(0.5, 1.1), (0.5, 1.3), (0.5, 1.5), (1, 1)}.
This is because we expect to penalize traffic congestion in a road network, hence β1 = 0.5. In-
stead, a rail network is less sensitive to traffic but it may cost more to build connections, thus
once should consolidate traffic along fewer edges, hence β2 > 1. The case (β1, β2) = (1, 1)
is used as a baseline for comparison with the shortest path-like optimization.

We measure how passengers distribute along the optimal trajectories to assess how
the network operates under various regimes of w and β. For this, we consider ||Fe||2 and
measure the distribution of this quantity along the edges to see how this varies across
parameters’ values and in each of the two layers. In addition, we calculate the current
flow edge betweenness centrality (FBC) [46], which captures how important an edge is
based on how many passengers travel through it. This is different than the standard
edge betweenness centrality [47] in that it considers random paths connecting two points,
instead of only the shortest paths. We argue that FBC is more appropriate in our case, as the
shortest paths may not be the optimal trajectories where passengers travel. We calculate
the weighted version of FBC, where the edge weight is ||Fe||2, so that the random paths are
more likely to follow edges with higher flux. We use the Gini coefficient Gini ∈ [0, 1] to
characterize the disparity in the flow assignment along edges. We consider the following
definition [48]:

Gini :=
1

2E2 x̄ ∑
r,q
|xr − xq| , (5)
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where r, q denote edges, x is the quantity that we want to measure this coefficient with, and
x̄ = ∑e xe/E is its average value. Here, we use xe = ||Fe||2 and xe = FBCe. When Gini is
close to one, most of the flow passes through few edges, whereas when Gini is small, the
flows are distributed evenly across the edges.

Looking at Figure 4, we see that Gini increases with β2 and thus the network usage
becomes more hierarchical, as expected in this case (we report here results for Gini w.r.t.
the flux, but similar results are observed for FBC, see Figure A1). The exact value of Gini
depends on the travel demand, as for p = 0.2, i.e., when the central node is a destination
in 80% of the journeys, Gini is higher than when p = 0.8. This is because with fewer
destinations, there are also fewer possible path trajectories, and thus more passengers
use the same part of the network. We can also see how Gini decreases for higher w2, i.e.,
when traveling by tram is not much faster than traveling on the road network. Finally, we
can notice the drop in Gini compared to the shortest path-like scenario β1 = β2 = 1. In
this case, the traffic distribution is the most hierarchical, suggesting that possible traffic
congestion can be avoided by setting lower values of β1.

Figure 4. Results on synthetic data. We show the Gini w.r.t. the optimal ||Fe||2 (y axis) vs. β2 (x axis)
for synthetic 2-layer networks generated as in Section 3.1. Blue and red markers denote p = 0.2, 0.8,
respectively, w1 = 1 in all cases, while w2 = 0.2 (left) and w2 = 0.8 (right); β1 = 0.5 in all cases,
except for the case where β2 = 1 for which β1 = 1. This case is the shortest path-like baseline.
Markers are averages over 20 network samples and 50 source matrix samples (for a total of 1000
individual samples).

Our model can be used to simulate traffic distributions under various conditions.
In fact, tuning p, {wα} and {βα}, one can simulate disparate scenarios. For instance, in
Figure 2 we show results for different parameters’ choices on a particular realization of a
2-layer synthetic network. Several conclusions can be drawn from this simple experiment.
For instance, the second layer, which ideally can represent a tram network, is only partially
used when β2 = 1.5. This value encourages traffic to consolidate on fewer main connections,
simulating the scenario where building the rail infrastructure is expensive. Our model
can guide a network manager to decide what edges should be prioritized when designing
the network. In this example, we can distinguish which set of edges are the most utilized.
These are mainly central edges, but the exact set can change depending on the other
parameters. For example, if the travel demand, tuned by p, switches from a monocentric to
a more heterogenous set of entry-exit stations, one of the main central edges changes from
connecting a periphery to the center, to connecting two locations in the periphery.

3.2. Results on Real Data

We illustrate our model on a real 2-layer network of the city of Bordeaux, where the
two layers are the bus and tram, respectively. Data are taken from [49]. We simulate a
monocentric source matrix S, i.e., p = 0.0, to asses the scenario where all the passengers
travel to the city center; however, the results are similar for other values of p (not reported
here). Optimal paths are extracted using our model for β1 = 0.5, β2 = 1.5, w2 = 0.2 and
compared against the case where the tram network is absent. This can be simulated by
setting a high value of w2, so that the cost on the tram edges makes it extremely unlikely to
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use any tram connection (here, we use w2 = 100). We measure the total percentage flux
f2 = ∑e∈E2

||Fe||2/(∑e∈E1
||Fe||1 + ∑e∈E2

||Fe||2) passing through layer 2. Remarkably, in
this scenario, the tram network absorbs f2 = 17% of the total flow of passengers, even
though the tram network contains only E2 = 112 edges, compared to E1 = 2347 bus edges.
This allows to reduce significantly the traffic along the road network, as can be seen in
Figure 5, and the road edges, and, in particular, those parallel to the tram line and close to
the city center get thinner as more passengers use the tram. This also results in a higher
Gini1 = 0.26 (calculated on edges in layer 1 w.r.t. ||Fe||2), compared to the Gini1 = 0.23
when the tram is absent: as the passengers use the tram, they decrease traffic on many road
edges. While the traffic distribution on layer 1 gets more hierarchical (higher Gini1), this
does not necessarily lead to more traffic congestion. In fact, the total percentage flow f1
decreases, as we saw above. Additional plots can be seen in Figure A2.

Figure 5. Example of optimal paths in the city of Bordeaux for a bus and tram network. The paths
are obtained with (left) and without (right) the tram layer. Here, β1 = 0.5 in both cases, while
β2 = 1.5 in the second case. The width of the edges is proportional to the optimal ||Fe||2. The
reported Gini1 coefficient for the bus network (layer 1) is calculated using ||Fe||2. The total percentage
flux f2 = ∑e∈E2

||Fe||2/(∑e∈E1
||Fe||1 + ∑e∈E2

||Fe||2) = 0.17, distributed over E2 = 112 tram edges,
compared to E1 = 2347 bus edges.

4. Discussion

We have presented a model that extracts optimal flows on multilayer networks based
on optimal transport theory. Our models accounts for different contributions from different
layers to the total transport cost by means of a parameter βα. Our modeling choice is
relevant in scenarios where passengers can travel using different transport modalities on
an interconnected transportation network. We have shown how the optimal distribution
of passenger flows on network edges is influenced by different factors. In fact, a complex
combination of the parameter βα on each layer, the coupling between layers and the
distribution of the origin and destination pairs determine how heterogeneous the flow
distributions are inside the various layers. In particular, when βα < 1 in one layer and
βα > 1 in another layer, the network topologies are significantly different in the two layers,
as in one, the traffic is more balanced and distributed along many edges, while in the other,
the traffic is consolidated along a few main arteries. To show the potential of our model,
we considered an application to the 2-layer bus and tram network of Bordeaux, showing
how the presence of the tram changes the traffic distribution on the road network.

5. Conclusions

In this work, we proposed a model that uses optimal transport theory to find optimal
path trajectories on multilayer networks. By means of the regularization parameter βα,
we were able to take into account different contributions from the different layers for the
total transportation cost. We illustrated the model on both synthetic and real data and
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showed how the optimal distribution of passenger flows on network edges is influenced
by different parameters used for the construction of the model (i.e., w, p, βα).

In the absence of real data, we simulated the entry and exit destination of passengers.
However, if travel demands are known, for instance, using mobile data [50], it would be
interesting to investigate the distribution of traffic obtained with our model and compare
it with real usage data as done in [51]. We considered a cost assigned on edges where βα

tunes the impact of traffic on them, but one can generalize this to include penalties on
nodes based on their degrees, as considered in [52]. Our model can be used to extract
the main features of multilayer transportation networks [53] or to study the existence
of several congestion regimes in both synthetic and real data [21] and investigate how
this changes, varying βα. Finally, in our experiments, we fixed the weight of inter-super
nodes to be small. Potentially, one could suitably increase this to account for the cost of
changing transportation modes within a journey and use our model to see how optimal
trajectories change. This would be relevant in scenarios where the passengers’ comfort
contributes to the total transport cost. To facilitate future analysis, we provide an open
source implementation of our code at https://github.com/cdebacco/MultiOT (accessed
on 28 May 2021).
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Appendix A

Figure A1. Additional results on synthetic data. We show the Gini w.r.t. the optimal FBC (top)
and the total percentage flux f2 on layer 2 (bottom) vs. β2 (x axis), for synthetic 2-layer networks
generated as in Section 3.1; w2 = 0.2, 0.8 (left,right), β1 = 0.5 in all cases, except for the case where
β2 = 1, for which β1 = 1. This cases is a shortest path-like baseline. Markers are averages over 20
network samples and 50 source matrix samples.

https://github.com/cdebacco/MultiOT
http://transportnetworks.cs.aalto.fi
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Figure A2. Additional example of optimal paths in the city of Bordeaux for a bus and tram network.
Here p = 0.0, w2 = 0.2, β1, β2 = (0.5, 1.1), (1.0, 1.0) (left,right). The width of the edges is proportional
to the optimal ||Fe||2. Gini1 is calculated w.r.t. to the flux on layer 1; f2 = ∑e∈E2

||Fe||2/(∑e∈E1
||Fe||1 +

∑e∈E2
||Fe||2).
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