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Abstract: According to the requirements of point cloud simplification for T-profile steel plate welding
in shipbuilding, the disadvantages of the existing simplification algorithms are analyzed. In this
paper, a point cloud simplification method is proposed based on octree coding and the threshold of
the surface curvature feature. In this method, the original point cloud data are divided into multiple
sub-cubes with specified side lengths by octree coding, and the points that are closest to the gravity
center of the sub-cube are kept. The k-neighborhood method and the curvature calculation are
performed in order to obtain the curvature features of the point cloud. Additionally, the point cloud
data are divided into several regions based on the given adjustable curvature threshold. Finally,
combining the random sampling method with the simplification method based on the regional
gravity center, the T-profile point cloud data can be simplified. In this study, after obtaining the point
cloud data of a T-profile plate, the proposed simplification method is compared with some other
simplification methods. It is found that the proposed simplification method for the point cloud of the
T-profile steel plate for shipbuilding is faster than the three existing simplification methods, while
retaining more feature points and having approximately the same reduction rates.

Keywords: point cloud data; simplification method; curvature feature; data reduction

1. Introduction

At present, the welding of T-profile steel plates (shown in Figure 1) are still completed
manually in ship plants in China. This is costly and labor intensive with low efficiency.
Additionally, the welding quality is often difficult to be guaranteed [1,2]. Therefore, three-
dimensional (3D) laser scanning technology is selected for collecting the data on T-profile
plates, and then industrial robots are used for plate welding based on the obtained point
cloud data [3–5]. The amount of point cloud data collected by 3D laser scanning instruments
is often large and may include a number of redundant points [6]. If the original 3D data
are directly used, then this needs much computing time and resource. Therefore, reducing
the data as much as possible is needed with the consideration of keeping an acceptable
level of accuracy. In this process, the redundant data points and the noise of them should
be removed at an acceptable processing speed [7].

In the past decades, a number of methods have been developed for removing redun-
dant cloud points, which are classified into two categories: mesh-based simplification
and point-based simplification [8–10]. There is a long history of research on mesh-based
simplification methods of point cloud data. For example, in the studies of Hoppe et al.
and Eck et al., when sub-regions of measured surface points are continuous, the pro-
gressive mesh algorithm is suggested to simplify the point cloud [8,11]. Moenning and
Dodgson [12] developed a simplification method of point-sampled geometry without any
prior surface reconstruction, which is considered computationally and memory efficient.
Dey et al. [13] presented an algorithm to decimate the samples to eliminate oversampling,
which can guarantee that the remaining points are sufficient to reconstruct the surface.
Furthermore, informative reviews on point cloud simplification methods can be found
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in the literature [14,15]. As addressed by Zhang [10], it is necessary to construct mesh
using the original point cloud data when mesh-based simplification is used. Thus, a lot of
computational resources are needed by this process of mesh construction.

Figure 1. T-profile steel plate for shipbuilding after welding.

On the other hand, point-based methods have become a focus for research of point
cloud simplification. Yi et al. [16] proposed a point cloud data reduction method based
on curvature and uniform reduction. In this method, the k-nearest neighbors are firstly
established by the bounding box method, and then the curvature in the point cloud region
is determined and classified according to the principle of the curvature reduction method.
More points of the areas with larger curvatures are kept. The simplification method
proposed in the study of Sun [17] is mainly for the surface reconstruction of the ship’s
shell plating. In this study, the point cloud data of the flat area is reduced by the bounding
box method, and the minimum distance algorithm is used for reducing the point cloud
data of the sharp area. Considering the shape of T-profile plates made through welding
in the ship plants, Shao and Xi [18] proposed a point cloud simplification method based
on the combination of octree coding and the surface curvature feature threshold. This
method can preserve the features of the target object and guarantee the processing speed.
Shi et al. [19] presented an adaptive simplification method to reduce the scanned dense 3D
points, and designed an automatic recursive subdivision scheme to remove redundant 3D
points. Whelan et al. [20] presented a dataset simplification method for the RGB-D type
point cloud in terms of two types of segments, including incremental planar segmentation
of a gradually expanding point cloud map and a method for efficient triangulation and
texturing of planar surface segments. Rodriguez et al. [21] developed an algorithm that
can reduce the point cloud with the precision criteria by 99%, and they can still accurately
resolve the geometry of the scanned object after performing this algorithm. Han et al. [22]
proposed a point cloud simplification algorithm with the edge based on the normal vector.
Thus, the distinct features of the edge were preserved.

Based on the data attributes, the point-based simplification methods above can be
further classified into: space subdivision, geometric features, and extra attributes. Consid-
ering the demand for automated T-profile steel plate welding in shipbuilding, a point cloud
simplification algorithm is presented in this paper focused on the simplicity, efficiency and
accuracy requirements of point cloud reduction. The proposed simplification method for
the point cloud data of the T-profile steel plate for shipbuilding includes both the space
subdivision step and geometric features.

The rest of this paper is described as follows. In Section 2, the main procedures of
the proposed simplification method for the point cloud of the T-profile steel plate used
in shipbuilding are given. In Sections 3 and 4, the algorithms included in the proposed
method are described, which are the octree coding algorithm based on the neighborhood
point search, and the point cloud simplification algorithm based on the surface curvature
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feature. The experiment results are given and analyzed in Section 5. Finally, the conclusions
are addressed.

2. Main Procedures of the Proposed Simplification Method

The main procedures of the proposed simplification method for the point cloud are
shown in Figure 2. In order to divide the point cloud into regions, octree coding is used
firstly in this paper. In this step, the bounding box of the original points is constructed,
and this box is divided into multiple sub-cubes with the same side lengths. Thus, the
topological root model of the data point cloud is established. Secondly, the k-neighborhood
search is performed for the points in each sub-cube, and the curvatures as the features of
the point cloud are calculated [23]. Then, after an adjustable curvature threshold is set, the
regions with larger or smaller curvatures can be identified based on the curvature threshold
and the mean curvatures of all sub-cubes. In this study, the regions with smaller curvatures
are the flat regions of the T-profile steel plate, and the regions with larger curvatures are
the welding regions of the T-profile steel plate.

Figure 2. The main procedures of the proposed simplification method.

Next, two different simplification algorithms are used for the regions with smaller
or larger curvatures. For the flat regions of the T-profile steel plate, the random sampling
method is used, which is effective for the reduction of data points. For the welding
regions of the T-profile steel plate, the regional center of gravity simplification algorithm is
selected. The processing speed of the latter method is relatively low. However, most useful
information is retained after data reduction by this method.

The proposed simplification method combines the advantages of the two simplifica-
tion algorithms with the consideration of the points curvature distribution of the T-profile
steel plate. For the T-profile steel plate, the number of the regions with larger curvatures is
obviously far less than those with smaller curvatures. Therefore, the simplification speed
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and the retention of most feature information is ensured in the proposed simplification
method of the point cloud for the T-profile steel plate.

3. Octree Coding Algorithm Based on Neighborhood Point Search

Due to the large amount of the point cloud of the T-profile plate, the time needed is
often long and the search efficiency is low if the k-d tree algorithm is used for dividing
regions [24]. Considering the shortcomings of applying the k-d tree to the neighborhood
search of the T-profile plate point cloud [25,26], the octree coding algorithm is used in this
paper. This is more suitable for dividing the three-dimensional space of the T-profile plate
point cloud in this study. This algorithm is simple, and its search efficiency is relatively
high [27,28].

As shown in Figure 3, in this study we developed a root model based on the topo-
logical relationship of the target object’s point cloud [29,30]. Firstly, when constructing
the bounding box, all the point data is divided into eight sub-cubes with the same size.
Secondly, each sub-cube is equally divided by the recursion method. Finally, the previous
steps are repeated until the smallest side lengths of the sub-cubes are smaller than the
specified point spacing. Since the minimum interval of the scanning point cloud of the
Leica HDS7000 [31] is set as 0.6 mm for the T-profile plate scanning, the specified distance
is set to 4 mm in order to allow 50 to 100 point cloud data to be included in the smallest
sub-cube. Additionally, each sub-cube obtained by the octree coding algorithm is coded
based on its position.

Figure 3. Octree partition space model.

Each sub-cube is represented by a code, and the code corresponds to the root node
under the octree. The sub-cube position in the root model can be represented by the octree
code Q, given as follows

Q = qn−1· · · qm· · · q1q0 (1)

where qm is the number of this node at this level, m ∈ {0, 1, . . . , n − 1}, and it is octal; qm+1
is the node number of qm at the parent level. Therefore, the path from each child node to
the root in the octree can be represented by q0 to qn−1.

The specific steps are as follows:

1. Step (1): Determine the division number of the octree for the point cloud

d0 ∗ 2n≥dmax (2)

where d0 is the known point distance of the point cloud; dmax is the longest side length
of the bounding box; n is the division number of the octree, which is the minimum
integer in Equation (2).

2. Step (2): Determine the encoding of the sub-cubes, at which the point cloud data
points are located. Assume that the data point is P (x, y, z), the spatial index of
the sub-cube is (i, j, k), and Q is the octree coding of the corresponding node. The
relationship among them is represented by Equations (3) to (5)

i = [(x− xmin)/d0]
j = [(y− ymin)/d0]
k = [(z− zmin)/d0]

(3)
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where (xmin, ymin, zmin) is the minimum vertex coordinate of the bounding box cor-
responding to the root node. The procedure converting the index (i, j, k) to binary
representation is as follows

i = i020 + i121 + · · ·+ im2m + · · ·+ in−12n−1

j = j020 + j121 + · · ·+ jm2m + · · ·+ jn−12n−1

k = k020 + k121 + · · ·+ km2m + · · ·+ kn−12n−1
(4)

where im, jm, km ∈ {0,1}, and m ∈ {0,1, . . . , n − 1}.

qm = im + jm21 + km22 (5)

Therefore, the octree encoding corresponding to the cube can be expressed by Equa-
tion (1).

If we assume that the index of a sub-cube after partitioning is (i, j, k), the index of the
26 sub-cubes surrounding it can be represented by (i ± δ, j ± δ, k ± δ) (δ ∈ {0,1}).

After finding the point Pi in the point cloud that is closest to the gravity center of a
sub-cube, 30 points are evenly selected in the sub-cube, ensuring that the point Pi is the
gravity center of the 30 points. The 30 points are also required to cover the sub-cube as
much as possible. Finally, the least square method is used to fit the quadric surface through
the 30 points. The quadratic surface formula is given as follows

Z(x, y) =
0

∑
j=2

(
0

∑
i=j

ci,j−1xi
kyj−i) (6)

where ci,j−1 is the surface parameters.

4. Point Cloud Simplification Algorithm Based on Curvature Feature
4.1. Algorithm of Calculating the Surface Curvature Feature

In the study, the least square method is used for calculating the coefficients of the
fitting surface shown by Equation (7)

Q =
30

∑
k=1

[
0

∑
j=2

(
0

∑
i=j

ci,j−1xi
kyj−i)− zk] (7)

where: xk, yk, zk are the coordinates of the points in the sub-cube.
Then, the coefficients are calculated separately in Equation (7) by making the partial

differential zero
∂Q

∂ci,j−1
=

32

∑
k=1
{[zk−

0

∑
j=2

(
0

∑
i=j

ci,j−1xi
kyj−i)]}xI

kyJ−I
y (8)

As a result, the quadratic equation of the fitting surface is determined.
After obtaining the fitting surface equation, the average curvature of the points is

derived based on the following first-order and second-order partial differentials

Zx =
∂Z
∂x

, Zy =
∂Z
∂y

, Zxx =
∂2Z
∂x2 , Zyy =

∂2Z
∂y2 , Zxy = Zyx =

∂2Z
∂x∂y

(9)

Then, the average curvature of the surface can be expressed as follows

Pi =
1
2
(1 + zy)

2zxx + (1 + zx)zyy − 2zxzyzxy

(1 + z2
x + z2

y)
3
2

(10)
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Based on the steps above, the average curvature Pi of the selected points in the field is
obtained. Finally, the average curvature P of all points in the region is obtained

P =

n
∑

i=1
Pi

n
(11)

The average curvature can show the bending degree of the surface. If the average
curvature of point cloud data within the sub-cube is Pi ≤ P, it can be considered that the
point cloud data in the sub-cube belong to a point with relatively flat distribution, and the
points in the region are simplified by the random sampling method. When Pi ≥ P, the
points are considered as belonging to a dramatically changing region. The regional gravity
algorithm is used for the simplification of the points in the dramatically changing regions.

4.2. Reduction Algorithm Based on the Random Sampling Method

It is considered that the point cloud data in the flat region of the T-profile steel plate is
required to reserve the complete contour features, and the demand for detailed features is
not very large. As a result, the random sampling method is adopted for simplification in
the flat region [32].

First, a random function is established; the function covers the original point cloud
data, then generates random numbers according to the random function and deletes the
corresponding points until the number of remaining point cloud data reaches the preset
number determined by the planned reduction rate. The random sampling algorithm
is simple and easy to implement, and the processing speed is also high. However, the
randomness of the random function is very large. After the original point cloud data are
reduced, some important geometric features are possibly lost.

4.3. Simplification Algorithm Based on the Regional Gravity Center

When the curvature is greater than the given threshold, the simplification algorithm
based on the regional gravity center is applied in the proposed method. In the simplified
algorithm based on the regional center of gravity, more information features can be reserved
than in the random sampling method [33].

Firstly, where the curvature is larger than the threshold, all points in this region are
contained by a cube. Secondly, the cube is divided into a number of small cubes with the
same size. Finally, the mean point (regional gravity center) is calculated in each small cube
and the nearest point to this mean is calculated.

Supposing that there are N points {p1, p2, ...., pN} in the considered box, and there
coordinates are (pix, piy, piz), I = 1, 2, ..., N, then the mean point is marked p. Its coordinates
are (px, py, pz), which are given as follows

px =

(
N
∑

i=1
pix

)
/N

py =

(
N
∑

i=1
piy

)
/N

pz =

(
N
∑

i=1
piz

)
/N

(12)

Then, the distance di, i = 1,2, . . . , N between the point pi (pix, piy, piz) in the sub-cube
and the mean point p can be calculated, given as follows:

di =
√
(pix − px)

2 +
(

piy − py
)2

+ (piz − pz)
2 (13)

The distances between other points and the mean point are also calculated. Finally,
the nearest point to the mean point in the sub-cube is determined. This point is preserved
while deleting other points in the sub-cube. The simplification process is shown in Figure 4.
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Figure 4. Simplification profile based on the regional gravity center.

5. Experimental Results

In this section, the proposed simplification method is verified based on the 3-D
laser scanner and the Matlab of the MathWorks Incorporation. The experimental data
are obtained from the HDS7000 laser scanner of the Leica Geosystems company [31] by
scanning a T-profile steel plate. In the experiment, the data reduction rate is defined as
the ratio of the remaining point cloud data volume to the total point cloud data volume.
The welding zone feature point retention rate is defined as the ratio of the amount of
point cloud data remaining in the weld zone to the total point cloud data volume in the
weld zone.

As shown in Figure 5, the red region has a relatively steep distribution of point cloud,
while the blue region is a region with a relatively flat distribution of point cloud.

Figure 5. Point cloud distribution area of T-profile steel plate.

With the improvement of the reduction rate, the shape of the entire measured object
can still be seen. Comparing the original point cloud data with the reduced data in Figure 6,
it can be seen that the algorithm can reserve the important features for the T-profile steel
plate. The original point cloud data of this experiment are divided into areas with relatively
flat features of the point cloud, which are simplified by the random sampling method. The
experimental results are shown in Figure 6:
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Figure 6. Simplified results with different sample rates.

As can be seen in Figure 6, the smaller the sampling rate is, the fewer point cloud
data points are left. In the flat area, only the complete contour features need to be retained.
Considering the time required by the streamlining and its effect, the random sampling
method is used to select a sampling rate of 50%. The corresponding reduction rate is 49.20%.

For the region where the point cloud distribution is steep, the regional center of gravity
method is simplified. As shown in Figure 7, the point cloud data of the region is better
preserved after the regional center of gravity method is simplified.

As can be seen in Figure 7 and Table 1, the smaller the side length of the set sub-cube
grid is the more detail features are retained but the lower the processing speed is.

Considering the streamlining time and the retention rate of the feature points in the
welding zone, the side length of the sub-cube grid is set to 3 mm when the regional center
of gravity reduction method is adopted.

It can be seen in Figure 8 that the point cloud simplification method based on the
combination of octree coding and the surface feature curvature threshold is used to preserve
important feature points for the welding area of the T-shaped steel plate model. Meanwhile,
the outline of the appearance is still good, which can help to extract the key geometric
feature positions in the next step.

The experimental results of the improved reduced algorithm and the four traditional
reduced algorithms are shown in Table 2. The simplified effect of each algorithm is shown
in Figure 9.



Algorithms 2021, 14, 202 9 of 12

Figure 7. Different simplification effects under the bounding box with different side lengths.

Table 1. Simplified result indicators under different side length bounding boxes.

Name Set Side
Length 2 mm

Set Side
Length 3 mm

Set Side
Length 4 mm

Original point cloud data volume 1534 1534 1534
Remaining point number 913 465 291

Reduction rate of point cloud 59.52% 30.31% 19.36%
Processing time 4.0826 s 1.4228 s 0.8965 s

Figure 8. The effect of point cloud reduction after using this algorithm.
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Table 2. Comparison results for five simplification methods of point cloud data of T-profile plate.

Algorithm Name Algorithm Proposed
in This Paper Bound Box Method Random Sampling

Method

Method Based on
Regional Gravity

Center

Curvature Sampling
Method

Total point cloud
data 37734 37734 37734 37734 37734

Remaining point
number 5545 5517 5514 5517 5581

Reduction rate of
point cloud 14.70% 14.62% 14.61% 14.62% 14.79%

Retention rate of
weld area feature

points
30.31% 10.61% 9.24% 13.25% 12.78%

Processing time 2.9261 s 14.534 s 0.724 s 12.283 s 18.873 s

Figure 9. Five algorithms to simplify the T-profile steel plate.

In order to analyze the performance of the proposed simplification method for the
cloud point of the T-profile steel plate, it is compared with four other simplification methods.
The results are shown in Table 2 and Figure 9, in which the reduction rates of these methods
are kept approximately equal.

Table 2 shows that the processing speeds of the five methods are very different when
the reduction rate of point cloud is about 14%. Processing of the random sampling is
the fastest method. However, due to the random sampling, many feature points may
be lost in the random sampling method, although its required processing time is very
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short. In this experiment, the curvature sampling method has the longest computation
time, which includes the adjacent point searching, the surface fitting, and the curvature
calculation steps.

As shows in Table 2, the processing speed of the proposed simplification method is
lower than the existing random sampling method. On the other hand, the retention of
feature points is better. This is because the octree coding algorithm based on neighborhood
point search is used in the proposed method, and the two different simplification algorithms
are selected for the regions of different curvatures. As a result, the proposed method can
take the advantages of both the random sampling algorithm and the regional center of
gravity simplification algorithm.

6. Conclusions

Considering the use of automatic welding of T-profile plates by robots in the ship-
building process, it is necessary to reduce the point cloud of T-profile plates obtained by
laser scanners. In this paper, a point cloud simplification method based on octree coding
and the threshold of the surface curvature feature is proposed in order to reduce the point
cloud of the T-profile steel plate in shipbuilding. Based on the point cloud characteristics of
the T-profile plate in this study, octree coding is used for dividing the point cloud into sub-
cubes, and then the curvature features are obtained based on the k-neighborhood search
and the curvature calculation. Finally, by combining the two simplification algorithms,
the point cloud data of the T-profile plate can be simplified. Through the experiment
described in this study, it was found that the proposed simplification method is faster than
the other three traditional simplification methods including the bound box method, the
method based on regional gravity center, and the curvature sampling method. When the
reduction rates are approximately the same, the simplification method proposed in this
paper can retain more feature points than the other traditional methods. The proposed
method can combine the advantages of both the random sampling simplification method
and the regional center of gravity simplification method in different curvature regions, and
is able to better preserve the surface characteristics of the T-profile plate under testing.

The study in this paper may be beneficial for shipyards to develop their automatic
welding systems. In the future, further research of the point cloud simplification methods
are needed for automatic welding of different plates with other profiles. In addition, more
point cloud data sets of shipbuilding plates with different profiles will be needed to verify
the proposed method.
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