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Abstract: A variety of strategies are used to construct algorithms for solving equations. However,
higher order derivatives are usually assumed to calculate the convergence order. More importantly,
bounds on error and uniqueness regions for the solution are also not derived. Therefore, the benefits
of these algorithms are limited. We simply use the first derivative to tackle all these issues and study
the ball analysis for two sixth order algorithms under the same set of conditions. In addition, we
present a calculable ball comparison between these algorithms. In this manner, we enhance the
utility of these algorithms. Our idea is very general. That is why it can also be used to extend other
algorithms as well in the same way.

Keywords: Banach spaces; iterative algorithm; Fréchet derivative; attraction basin; local convergence;
convergence ball

1. Introduction

We consider two Banach spaces Y1 and Y2 with an open and convex subset Z ( 6= ∅)
of Y1. Let us denote the set {BL : Y1 → Y2 linear and bounded operators} by L(Y1, Y2).
Suppose X : Z ⊆ Y1 → Y2 is Fréchet derivable. Equations of the kind

X (v) = 0 (1)

are often utilized in science and other applied areas to solve several highly challenging
problems. We should not ignore the fact that solving these equations is a difficult process,
as the solution could only be discovered analytically on rare instances. This is why iterative
processes are generally used for solving these equations. However, it is an arduous task to
develop an effective iterative approach for addressing (1). The classical Newton’s iterative
strategy is most typically employed for this issue. In addition, a lot of studies on higher
order modifications of conventional processes like Newton’s, Jarratt’s, Chebyshev’s, etc. are
presented in [1–15]. Wang et al. [16] presented a sixth order variant of Jarratt’s algorithm,
which adds the evaluation of the function at an additional point in the iteration procedure
of Jarratt’s method [12]. Grau-Sánchez and Gutiérrez [10] by applying Obreshkov-like
techniques described two families of zero-finding iterative approaches. An efficient family
of nonlinear system algorithms is suggested by Cordero et al. [8] using a reduced compo-
sition technique on Newton’s and Jarratt’s algorithm. Sharma et al. [17] composed two
weighted-Newton steps to construct an efficient fourth order weighted-Newton method to
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solve nonlinear systems. Sharma and Arora [18] constructed iterative algorithms of fourth
and sixth convergence order for solving nonlinear systems. Two bi-parametric fourth order
families of predictor-corrector iterative algorithms are discussed in [9]. Newton-like itera-
tive approaches of fifth and eighth rate of convergence are also designed by Sharma and
Arora [19]. Additional studies on other algorithms with their convergence and dynamics
are available in [20–25].

Notice that higher convergence order algorithms using Taylor expansions suffer from
the following problems:

(1’) Higher order derivatives (not on the algorithms) should exist although convergence
may be possible without these conditions.

(2’) We do not know in advance how many iterations should be performed to reach a
certain error tolerance.

(3’) The choice of initial points is limited, since we do not know a convergence ball.
(4’) No information is provided on the uniqueness of v∗.
(5’) Results are limited on the multidimensional Euclidean space.

Hence, there is a need to address these problems. The novelty of our article lies in the
fact that we handle (1’)–(5’) as follows.

(1”) We only use the derivative that actually appears on these algorithms. The convergence
order is recovered again, since we by pass Taylor series, (which require the higher
order derivatives) and use instead the computational order of convergence (COC)
given by

COC =

ln

(
||vn+1−v∗ ||
||vn−v∗ ||

)

ln

(
||vn−v∗ ||
||vn−1−v∗ ||

)
and the approximate computational order of convergence (ACOC) given by

ACOC =

ln

(
||vn+1−vn ||
||vn−vn−1||

)

ln

(
||vn−vn−1||
||vn−1−vn−2||

) .

These formulae use the algorithms (which depend on the first derivative). In the case
of ACOC no knowledge of v∗ is needed.

(2”) We use generalized Lipschitz-type conditions which allow us to provide upper bounds
on ||vn− v∗||which in turn can be used to determine the smallest number of iterations
to reach the error tolerance.

(3”) Under our local convergence analysis a convergence ball is determined. Hence, we
know from where to pick the stater v0 so that convergence to the solution v∗ can
be achieved.

(4”) A uniqueness ball is provided.
(5”) The results are presented in the more general setting of Banach space valued operators.

In this article, to demonstrate our technique, we selected the following sixth conver-
gence order algorithms to expand their utility. However, our technique is so general that it
can be applied on other algorithms [1–26]. We also compare their convergence balls and
dynamical properties. Define algorithms for all n = 0, 1, 2, ..., by
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SM1:

yn = vn − αX ′(vn)
−1X (vn)

tn = vn −
[
− 1

2
I +

9
8
X ′(yn)

−1X ′(vn) +
3
8
X ′(vn)

−1X ′(yn)

]
X ′(vn)

−1X (vn)

vn+1 = tn −
[
− 9

4
I +

15
8

X ′(yn)
−1X ′(vn) +

11
8

X ′(vn)
−1X ′(yn)

]
X ′(yn)

−1X (tn) (2)

SM2:

yn = vn − αX ′(vn)
−1X (vn)

tn = vn −
[

5
8

I +
3
8
(X ′(yn)

−1X ′(vn))
2
]
X ′(vn)

−1X (vn)

vn+1 = tn −
[
− 9

4
I +

15
8

X ′(yn)
−1X ′(vn) +

11
8

X ′(vn)
−1X ′(yn)

]
X ′(yn)

−1X (tn) (3)

For α = 2
3 , these algorithms are described in [26] (see also [11]), where the benefits

over other algorithm are well explained. Conditions on derivatives of the seventh order
and Taylor series expansion have been employed in [11,26] to determine their convergence
rate. Because of such results needing derivatives of higher order, these algorithms are very
difficult to implement, as their utility is reduced although they may converge. In order to
justify this, we have the following function

X (v) =
{

v3 ln(v2) + v5 − v4, if v 6= 0
0, if v = 0

, (4)

where Y1 = Y2 = R and X is defined on Z = [− 1
2 , 3

2 ]. Then, it is crucial to highlight
that X ′′′ is not bounded. Hence, the existing convergence results for methods SM1 and
SM2 based on X (vii) do not work in this scenario, although these algorithms may still
converge with convergence order six. Clearly this is the case, since the conditions in the
aforementioned studies are only sufficient.

The other parts of this work can be summarized as: In Section 2, the main convergence
theorems on the ball convergence of SM1 and SM2 are discussed. Section 3 deals with
comparison of the attraction basins for these procedures. Numerical applications are placed
in Section 4. This study is concluded with final comments in Section 5.

2. Ball Convergence

Our ball convergence analysis is requires the development of some scalar parameters
and functions. Set M = [0, ∞).

Suppose function:

(i) λ0(s)− 1
has a smallest root r0 in M \ {0} for some function λ0 : M → M which is non-
decreasing and continuous. Set M0 = [0, r0).

(ii) U1(s)− 1
has a smallest root ρ1 in M0 \ {0} for some functions λ : [0, 2r0)→ M, λ1 : M0 → M
which are non-decreasing and continuous with U1 : M0 → M defined by

U1(s) =

∫ 1
0 λ((1− θ)s) dθ + |1− α|

∫ 1
0 λ1(θs) dθ

1− λ0(s)
.

(iii) λ0(U1(s)s)− 1
has a smallest root r1 in M0 \ {0}. Set r2 = min{r0, r1} and M1 = [0, r2).

(iv) U2(s)− 1
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has a smallest root ρ2 in M1 \ {0}, where

U2(s) =

∫ 1
0 λ((1− θ)s) dθ

1− λ0(s)

+
3
8

(
3(λ0(s) + λ0(U1(s)s))

1− λ0(U1(s)s)
+

λ0(s) + λ0(U1(s)s)
1− λ0(s)

)
1

1− λ0(s)
.

(v) λ0(U2(s)s)− 1
has a smallest root r3 in M1 \ {0}. Set r = min{r2, r3} and M2 = [0, r).

(vi) U3(s)− 1
has a smallest root ρ3 in M2 \ {0}, where

U3(s) =
[∫ 1

0 λ((1− θ)U2(s)s) dθ

1− λ0(U2(s)s))

+
(λ0(U1(s)s) + λ0(U2(s)s))

∫ 1
0 λ1(θU2(s)s) dθ

(1− λ0(U1(s)s))(1− λ0(U2(s)s))

+
1
8

(
15

(λ0(s) + λ0(U1(s)s))
1− λ0(U1(s)s)

+ 11
(λ0(s) + λ0(U1(s)s))

1− λ0(s)
+ 16

)
×
∫ 1

0 λ1(θU2(s)s) dθ

1− λ0(U1(s)s)

]
U2(s).

The scalar ρ given as
ρ = min{ρk}, k = 1, 2, 3 (5)

shall be shown to be a convergence radius for SM1. Set T = [0, ρ). It is implied by (5) that

0 ≤ λ0(s) < 1, (6)

0 ≤ λ0(U1(s)s) < 1, (7)

0 ≤ λ0(U2(s)s) < 1 (8)

and
0 ≤ Uk(s) < 1 (9)

hold for each s in T.
The notation U(v∗, r) stands for the closure of a ball of radius r > 0 and center v∗ ∈ Y1.

We suppose from now on that v∗ is a simple root of X , scalar functions ”λ” are as given
previously and X : Z → Y2 is differentiable. Further, conditions (C) hold:

(C1) For each v ∈ Z

||X ′(v∗)−1(X ′(v)−X ′(v∗))|| ≤ λ0(||v− v∗||).

Set Z0 = Z ∩U(v∗, r0).
(C2) For each u, v ∈ Z0

||X ′(v∗)−1(X ′(u)−X ′(v))|| ≤ λ(||u− v||)

and
||X ′(v∗)−1X ′(v)|| ≤ λ1(||v− v∗||).

(C3) U(v∗, ρ̃) ⊂ Z for some ρ̃ to be defined later.
(C4) There exists ρ∗ ≥ ρ̃ satisfying

∫ 1

0
λ0(θρ∗) dθ < 1.
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Set Z1 = Z ∩U(v∗, ρ∗).

Next, the main convergence result for SM1 is developed utilizing conditions (C).

Theorem 1. Suppose that the conditions (C) hold for ρ̃ = ρ. Then, iteration {vn} given by
SM1 exists in U(v∗, ρ), stays in U(v∗, ρ) and converges to v∗ provided the initial guess v0 is in
U(v∗, ρ) \ {v∗}. Moreover, we have

||yn − v∗|| ≤ U1(||vn − v∗||)||vn − v∗|| ≤ ||vn − v∗|| < ρ, (10)

||tn − v∗|| ≤ U2(||vn − v∗||)||vn − v∗|| ≤ ||vn − v∗|| (11)

and
||vn+1 − v∗|| ≤ U3(||vn − v∗||)||vn − v∗|| ≤ ||vn − v∗||, (12)

where radius r and functions Uk are as given previously. Furthermore, v∗ is the only zero of X in
the set Z1 given in (C4) is v∗.

Proof. Mathematical induction shall be used to show the existence of iteration {vn} so that
items (10)–(12) hold. Let z ∈ U(v∗, ρ) \ {v∗}. Using (C1), (5) and (6) we get

||X ′(v∗)−1(X ′(z)−X ′(v∗))|| ≤ λ0(||z− v∗||) ≤ λ0(ρ) < 1, (13)

leading to X ′(z)−1 ∈ L(Y2, Y1) by a lemma due to Banach for mappings [5] that are
invertible, and

||X ′(z)−1X ′(v∗)|| ≤
1

1− λ0(||z− v∗||)
. (14)

The iterate y0 exists by (14) for z = v0, and we can write

y0 − v∗ = v0 − v∗ −X ′(v0)
−1X (v0) + (1− α)X ′(v0)

−1X (v0)

= (X ′(v0)
−1X ′(v∗))

×
( ∫ 1

0
X ′(v∗)−1(X ′(v∗ + θ(v0 − v∗))−X ′(v0)) dθ(v0 − v∗)

)
+ (1− α)(X ′(v0)

−1X ′(v∗))(X ′(v∗)−1X (v0)). (15)

Using (5), (9) (for k = 1), (14) (for z = v0), (C2) and (15), we have in turn

||y0 − v∗||

≤
(
∫ 1

0 λ((1− θ)||v0 − v∗||) dθ + |1− α|
∫ 1

0 λ1(θ||v0 − v∗||) dθ)||v0 − v∗||
1− λ0(||v0 − v∗||)

≤ U1(||v0 − v∗||)||v0 − v∗|| ≤ ||v0 − v∗|| < ρ, (16)

showing y0 ∈ U(v∗, ρ) and (10) holds if n = 0. Notice also that X ′(y0)
−1 ∈ L(Y2, Y1), and

t0 exists, so we can write
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t0 − v∗ = v0 − v∗ −X ′(v0)
−1X (v0)

+

(
3
2

I − 9
8
X ′(y0)

−1X ′(v0)−
3
8
X ′(v0)

−1X ′(y0)

)
X ′(v0)

−1X (v0)

= v0 − v∗ −X ′(v0)
−1X (v0)

+
3
8
(4I − 3X ′(y0)

−1X ′(v0)−X ′(v0)
−1X ′(y0))X

′(v0)
−1X (v0)

= v0 − v∗ −X ′(v0)
−1X (v0)

+
3
8
(3X ′(y0)

−1(X ′(y0)−X ′(v0))

+X ′(v0)
−1(X ′(v0)−X ′(y0)))X

′(v0)
−1X (v0). (17)

By (5), (9) (for k = 2), (14) (for z = v0, y0), (16) and (17), we obtain in turn

||t0 − v∗|| ≤
[∫ 1

0 λ((1− θ)||v0 − v∗||) dθ

1− λ0(||v0 − v∗||)

+
3
8

(
3(λ0(||v0 − v∗||) + λ0(||y0 − v∗||))

1− λ0(||y0 − v∗||)

+
λ0(||v0 − v∗||) + λ0(||y0 − v∗||)

1− λ0(||v0 − v∗||)

)
1

1− λ0(||v0 − v∗||)

]
||v0 − v∗||

≤ U2(||v0 − v∗||)||v0 − v∗|| ≤ ||v0 − v∗||, (18)

showing t0 ∈ U(v∗, ρ) and (11) if n = 0. Notice also that X ′(t0)
−1 ∈ L(Y2, Y1), v1 exists,

and we can write

v1 − v∗ = t0 − v∗ −X ′(t0)
−1X (t0) + (X ′(t0)

−1 −X ′(y0)
−1)X (t0)

+

(
5
4

I − 15
8

X ′(y0)
−1X ′(v0)−

11
8

X ′(v0)
−1X ′(y0))X

′(y0)
−1X (t0)

= t0 − v∗ −X ′(t0)
−1X (t0) +X ′(t0)

−1(X ′(y0)−X ′(t0))X
′(y0)

−1X (t0)

+
1
8
(15X ′(y0)

−1(X ′(y0)−X ′(v0))

+ 11X ′(v0)
−1(X ′(v0)−X ′(y0))− 16I)X ′(y0)

−1X (t0). (19)

In view of (5), (9) (for k = 3), (14) (for z = y0, t0), (16), (18) and (19), we have

||v1 − v∗|| ≤
[∫ 1

0 λ((1− θ)||t0 − v∗||) dθ

1− λ0(||t0 − v∗||)

+
(λ0(||y0 − v∗||) + λ0(||t0 − v∗||))

∫ 1
0 λ1(θ||t0 − v∗||) dθ

(1− λ0(||y0 − v∗||))(1− λ0(||t0 − v∗||))

+
1
8

(
15(λ0(||v0 − v∗||) + λ0(||y0 − v∗||))

1− λ0(||y0 − v∗||)

+
11(λ0(||v0 − v∗||) + λ0(||y0 − v∗||))

1− λ0(||y0 − v∗||)
+ 16

)
×
∫ 1

0 λ1((θ||t0 − v∗||) dθ

1− λ0(||y0 − v∗||)

]
||z0 − v∗||

≤ U3(||v0 − v∗||)||v0 − v∗|| ≤ ||v0 − v∗||, (20)

showing v1 ∈ U(v∗, ρ), and (12) if n = 0.
Simply switch v0, y0, t0, v1 by vm, ym, tm, vm+1 in the previous calculations to finish

the induction for items (10)–(12). Then, the estimation

||xm+1 − v∗|| ≤ b||vn − v∗|| < ρ, (21)
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where b = U3(||v0 − v∗||) is in [0, 1) implies vm+1 ∈ U(v∗, ρ) and lim
m→∞

vm = v∗.

Finally, set G =
∫ 1

0 X ′(v∗ + θ(v∗∗ − v∗)) dθ for v∗∗ ∈ Z1 with X (v∗∗) = 0.
By (C1) and (C4), we obtain

||X ′(v∗)−1(G−X ′(v∗))|| ≤
∫ 1

0
λ0(θ||v∗∗ − v∗||) dθ

≤
∫ 1

0
λ0(θρ∗) dθ < 1,

leading to v∗∗ = v∗, since G−1 ∈ L(Y2, Y1) and 0 = X (v∗∗)−X (v∗) = G(v∗∗ − v∗).

Next, the convergence analysis of algorithm SM2 is developed in an analogous fashion.
But this time the functions are:

U1(s) = U1(s),

U2(s) =

∫ 1
0 λ((1− θs)) dθ

1− λ0(s)

+
3
8

((
λ0(s) + λ0(U1(s)s)

1− λ0(U1(s)s)

)2

+ 2
(

λ0(s) + λ0(U1(s)s)
1− λ0(U1(s)s)

))∫ 1
0 λ1(θs) dθ

1− λ0(s)
,

U3(s) =
[∫ 1

0 λ((1− θ)U2(s)s) dθ

1− λ0(U2(s)s))

+
(λ0(U1(s)s) + λ0(U2(s)s))

∫ 1
0 λ1(θU2(s)s) dθ

(1− λ0(U1(s)s))(1− λ0(U2(s)s))

+
1
8

(
15

(λ0(s) + λ0(U1(s)s))
1− λ0(U1(s)s)

+ 11
(λ0(s) + λ0(U1(s)s))

1− λ0(s)
+ 16

)

×
∫ 1

0 λ1(θU2(s)(s)s) dθ

1− λ0(U1(s)s)

]
U2(s)(s).

Suppose functions Uk(s)− 1 have least positive solutions ρk, respectively as before,
and set

ρ = min{ρk}.

Then, under conditions (C) for ρ̃ = ρ, the choice of the Uk functions is justified by
the estimates

||yn − v∗|| ≤ U1(||vn − v∗||)||vn − v∗|| = U1(||vn − v∗||)||vn − v∗||
≤ ||vn − v∗|| < ρ,

tn − v∗ = vn − v∗ −X ′(vn)
−1X (vn)

− 3
8
((X ′(yn)

−1X ′(vn))
2 − I)X ′(vn)

−1X (vn)

= vn − v∗ −X ′(vn)
−1X (vn)

− 3
8
[(X ′(yn)

−1(X ′(vn)−X ′(yn)))
2

+ 2X ′(yn)
−1(X ′(vn)−X ′(yn))]X

′(vn)
−1X (vn),



Algorithms 2021, 14, 207 8 of 17

so

||tn − v∗|| ≤
[∫ 1

0 λ((1− θ)||vn − v∗||) dθ

1− λ0(||vn − v∗||)

+
3
8

((
λ0(||vn − v∗||) + λ0(||yn − v∗||)

1− λ0(||yn − v∗||)

)2

+ 2
λ0(||vn − v∗||) + λ0(||yn − v∗||)

1− λ0(||yn − v∗||)

)∫ 1
0 λ1(θ||vn − v∗||) dθ

1− λ0(||vn − v∗||)

]
||vn − v∗||

≤ U2(||vn − v∗||)||vn − v∗|| ≤ ||vn − v∗||,

vn+1 − v∗ = tn − v∗ −X ′(tn)
−1X (tn) + (X ′(tn)

−1 −X ′(yn)
−1)X (tn)

+

(
5
4

I − 15
8

X ′(yn)
−1X ′(vn)−

11
8

X ′(vn)
−1X ′(yn))X

′(yn)
−1X (tn)

= tn − v∗ −X ′(tn)
−1X (tn) +X ′(tn)

−1(X ′(yn)−X ′(tn))X
′(yn)

−1X (tn)

+
1
8
(15X ′(yn)

−1(X ′(yn)−X ′(vn))

+ 11X ′(vn)
−1(X ′(vn)−X ′(yn))− 16I)X ′(yn)

−1X (tn),

so

||vn+1 − v∗|| ≤
[∫ 1

0 λ((1− θ)||tn − v∗||) dθ

1− λ0(||tn − v∗||)

+
(λ0(||yn − v∗||) + λ0(||tn − v∗||))

∫ 1
0 λ1(θ||tn − v∗||) dθ

(1− λ0(||yn − v∗||))(1− λ0(||tn − v∗||))

+
1
8

(
15(λ0(||vn − v∗||) + λ0(||yn − v∗||))

1− λ0(||yn − v∗||)
(22)

+
11(λ0(||vn − v∗||) + λ0(||yn − v∗||))

1− λ0(||yn − v∗||)
+ 16

)
×
∫ 1

0 λ1((θ||tn − v∗||) dθ

1− λ0(||yn − v∗||)

]
||zn − v∗||

≤ U3(||vn − v∗||)||vn − v∗|| ≤ ||vn − v∗||.

Hence, we arrived at the ball convergence result for SM2.

Theorem 2. Suppose that the conditions (C) hold with ρ̃ = ρ. Then, the conclusions of Theorem 1
hold for SM2 with ρ, Uk, replacing ρ, Uk, respectively.

Remark 1. The continuity assumption

||X ′(v∗)−1(X ′(u)−X ′(v))|| ≤ λ(||u− v||), for all u, v ∈ Z

on X ′ is employed in existing studies. But then, since Z0 ⊆ Z , we have

λ(s) ≤ λ(s), for all s ∈ [0, 2r0).

This is a significant achievement. All results, which are obtained earlier, can be presented in
terms of λ, since ui ∈ Z0. This is a more specific location about vn. This improves the convergence
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radii; tightens the upper error ||vn− v∗|| and produces a better knowledge about v∗. To demonstrate
this, let us take the example X (v) = ev − 1 for Z = U(0, 1). Then, we have

λ0(s) = (e− 1)s < λ(s) = e
1

e−1 s < λ(s) = es,

and using Rheinboldt or Traub [14,15] (for λ0 = λ = λ), we get RTR = 0.081751, previous studies
by Argyros [5] (for λ = λ), RE = 0.108316 and with this study ρ1 = ρ1 = 0.127564, so

ρ1 = ρ1 > RE > RTR.

3. Comparison of Attraction Basins

Comparison of the dynamical qualities of SM1 and SM2 are provided in this section by
employing the tool attraction basin. Suppose M (z) is the notation for a second or higher
degree complex polynomial. Then, the set {z0 ∈ C : zj → z∗ as j → ∞} represents the
attraction basin corresponding to a zero z∗ of M , where {zj}∞

j=0 is formed by an iterative
algorithm with a starting choice z0 ∈ C. Let us select a region E = [−4, 4] × [−4, 4] on
C with a grid of 400× 400 points. To prepare attraction basins, we apply SM1 and SM2
on variety of complex polynomials by selecting every point z0 ∈ E as a stater. The point
z0 remains in the basin of a zero z∗ of a considered polynomial if lim

j→∞
zj = z∗. Then, we

display z0 with a fixed color corresponding to z∗. As per the number of iterations, we
employ the light to dark colors to each z0. Black color is the sign of non-convergence zones.
The terminating condition of the iteration is ||zj − z∗|| < 10−6 with the maximum limit of
300 iterations. We used MATLAB 2019a to design the fractal pictures.

This numerical experiment begins with polynomials M1(z) = z2 − 1 and M2(z) =
z2 − z− 1 of degree two. These polynomials are used to compare the attraction basins for
SM1 and SM2. The results of comparison are displayed in Figures 1 and 2. In Figure 1,
green and pink areas indicate the attraction basins corresponding to the zeros −1 and
1, respectively, of M1(z). The basins of the solutions 1+

√
5

2 and 1−
√

5
2 of M2(z) = 0 are

shown in Figure 2 by applying pink and green colors, respectively. Figures 3 and 4 offer
the attraction basins for SM1 and SM2 associated to the zeros of M3(z) = z3 − 1 and
M4(z) = z3 + (−0.7250 + 1.6500i)z− 0.275− 1.65i. In Figure 3, the basins of the solutions
− 1

2 − 0.866025i, 1 and − 1
2 + 0.866025i of M3(z) = 0 are painted in blue, green and pink,

respectively. The basins for SM1 and SM2 associated to the zeros 1, −1.401440 + 0.915201i
and 0.4014403− 0.915201i of M4(z) are given in Figure 4 by means of green, pink and blue
regions, respectively. Next, we use polynomials M5(z) = z4− 1 and M6(z) = z4− 10z2 + 9
of degree four to compare the attraction basins for SM1 and SM2. Figure 5 provides the
comparison of basins for these algorithms associated to the solutions 1, −i, i and −1 of
M5(z) = 0, which are denoted in yellow, green, pink and blue regions. The basins for
SM1 and SM2 corresponding to the zeros −1, 3, −3 and 1 of M6(z) are demonstrated
in Figure 6 using yellow, pink, green and blue colors, respectively. Moreover, we select
polynomials M7(z) = z5 − 5z3 + 4z and M8(z) = z5 + z of degree five to design and
compare the attraction basins for SM1 and SM2. Figure 7 gives the basins of zeros 0, 2,
−1, −2 and 1 of M7(z) in yellow, magenta, red, green and cyan colors, respectively. In
Figure 8, green, cyan, red, pink and yellow regions illustrate the attraction basins of the
solutions −0.707106− 0.707106i, −0.707106 + 0.707106i, 0.707106 + 0.707106i, 0.707106−
0.707106i and 0, respectively, of M8(z) = 0. Lastly, sixth degree complex polynomials
M9(z) = z6 − 0.5z5 + 11

4 (1 + i)z4 − 1
4 (19 + 3i)z3 + 1

4 (11 + i)z2 − 1
4 (19 + 3i)z + 3

2 − 3i and
M10(z) = z6 + z− 1 are considered. In Figure 9, the attraction basins for SM1 and SM2
corresponding to the zeros 1− i, − 1

2 −
i
2 , − 3

2 i, 1, i and −1 + 2i of M9(z) are given in blue,
yellow, green, magenta, cyan and red colors, respectively. In Figure 10, green, pink, red,
yellow, cyan and blue colors are applied to illustrate the basins related to the solutions
−1.134724, 0.629372− 0.735755i, 0.7780895, −0.451055− 1.002364i, 0.629372 + 0.735755i
and −0.451055 + 1.002364i of M10(z) = 0, respectively. In these Figures 1–10, the roots of
the considered polynomials are displayed using white ∗.
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Figure 1. Attraction basins comparison between SM1 and SM2 related to M1(z).
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Figure 2. Attraction basins comparison between SM1 and SM2 corresponding to M2(z).
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Figure 3. Attraction basins comparison between SM1 and SM2 related to M3(z).
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Figure 4. Attraction basins comparison between SM1 and SM2 corresponding to M4(z).
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Figure 5. Attraction basins comparison between SM1 and SM2 related to M5(z).
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Figure 6. Attraction basins comparison between SM1 and SM2 corresponding to M6(z).
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Figure 7. Attraction basins comparison between SM1 and SM2 related to M7(z).
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Figure 8. Attraction basins comparison between SM1 and SM2 corresponding to M8(z).
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Figure 9. Attraction basins comparison between SM1 and SM2 related to M9(z).
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Figure 10. Attraction basins comparison between SM1 and SM2 corresponding to M10(z).
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4. Numerical Examples

We apply the proposed techniques to estimate the convergence radii for SM1 and SM2
when α = 2

3 .

Example 1. Let us consider Y1 = Y2 = C[0, 1] and Z = U(0, 1). Define X on Z by

X (v)(a) = v(a)− 5
∫ 1

0
ax v(x)3 dx,

where v(a) ∈ C[0, 1]. We have v∗ = 0. In addition, λ0(s) = 7.5s, λ(s) = 15s and λ1(s) = 2. The
values of ρ and ρ are produced by the application of proposed theorems and summarized in Table 1.

Table 1. Comparison of convergence radii for Example 1.

SM1 SM2

ρ1 = 0.022222 ρ1 = 0.022222
ρ2 = 0.023424 ρ2 = 0.021456
ρ3 = 0.006858 ρ3 = 0.006703
ρ = 0.006858 ρ = 0.006703

Example 2. Let Y1 = Y2 = R3 and Z = U(0, 1). Consider X on Z for v = (v1, v2, v3)
t as

X (v) = (ev1 − 1,
e− 1

2
v2

2 + v2, v3)
t

We have v∗ = (0, 0, 0)t. In addition, λ0(s) = (e− 1)s, λ(s) = e
1

e−1 s and λ1(s) = 2. Using
the newly proposed theorems the values of ρ and ρ are calculated and displayed in Table 2.

Table 2. Comparison of convergence radii for Example 2.

SM1 SM2

ρ1 = 0.127564 ρ1 = 0.127564
ρ2 = 0.113416 ρ2 = 0.102805
ρ3 = 0.033574 ρ3 = 0.032642
ρ = 0.033574 ρ = 0.032642

Example 3. Finally, the motivational problem described in the first section is addressed with
v∗ = 1, λ0(s) = λ(s) = 96.662907s and λ1(s) = 2. We apply the suggested theorems to compute
ρ and ρ. These values are shown in Table 3.

Table 3. Comparison of convergence radii for Example 3.

SM1 SM2

ρ1 = 0.002299 ρ1 = 0.002299
ρ2 = 0.002026 ρ2 = 0.001835
ρ3 = 0.000600 ρ3 = 0.000583
ρ = 0.000600 ρ = 0.000583

It is worth noticing that if we stop at the first iterate in both algorithms (i.e., restrict
ourselves to the first substep of Jarratt’s algorithm), then the radius is largest (see ρ1 and
ρ1). Moreover, if we increase the convergence order to four (i.e., consider only the first two
substeps of the algorithms), then the radii get smaller (see ρ2 and ρ2). Furthermore, if we
increase the order to six (i.e., use all the substeps of these algorithms), then, we obtain the
smallest radii (see ρ and ρ). This is expected when the order increases. Concerning the
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corresponding error estimates ||vn − v∗|| we see clearly that fewer iterates are needed to
reach v∗ as order increases. We solved Example 3 with v0 = 0.9993 using these algorithms
and the results are presented in Tables 4 and 5. In addition, we executed four iterations
of these schemes ten times in MATLAB 2019a. Then, we obtained the average elapsed
time and average CPU time (in seconds) for SM1 and SM2 and these values are presented
in Table 6.

Table 4. ||vn − v∗|| for algorithm SM1.

n 1 Substep 2 Substeps 3 Substeps (SM1)

1 2.32× 10−4 1.29× 10−11 3.65× 10−14

2 7.73× 10−5 1.50× 10−42 1.38× 10−65

3 2.58× 10−5 2.74× 10−166 1.06× 10−322

4 8.59× 10−6 3.00× 10−661 2.87× 10−1608

Table 5. ||vn − v∗|| for algorithm SM2.

n 1 Substep 2 Substeps 3 Substeps (SM2)

1 2.32× 10−4 7.12× 10−12 2.01× 10−14

2 7.73× 10−5 7.59× 10−44 3.83× 10−67

3 2.58× 10−5 9.81× 10−172 9.67× 10−331

4 8.59× 10−6 2.73× 10−683 9.96× 10−1649

Table 6. Elapsed time and CPU time comparison between SM1 and SM2.

Algorithm Elapsed Time CPU Time

SM1 3.2925 3.4875
SM2 3.4524 3.6187

5. Conclusions

Major problems appear when studying high convergence order algorithms for solving
equations. One of them is that the order is shown assuming the existence of higher order
derivatives that do not appear on the algorithms. In particular in the case of SM1 ans
SM2 derivatives up to the order seven have been utilized. Hence (see also our example
in the introduction) these derivative restrict the utilization of these algorithms. We also
do not know how many iterates needed to arrive at a prearranged accuracy. Moreover, no
uniqueness of the solution is known about a certain ball. This is not only the case for the
algorithms we studied but all the high convergence algorithms whose convergence order
is shown using Taylor series. That is why we addressed all these concerns in the more
general situation of a Banach space, under generalized continuity conditions and using
only the derivative appearing on these algorithms. Our technique can be applied to extend
the utilization of other algorithms since it is so general. We also present the convergence
ball and dynamical comparison between these schemes.
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