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Abstract: Visual sentiment analysis has become more popular than textual ones in various domains
for decision-making purposes. On account of this, we develop a visual sentiment analysis system,
which can classify image expression. The system classifies images by taking into account six different
expressions such as anger, joy, love, surprise, fear, and sadness. In our study, we propose an
expert system by integrating a Deep Learning method with a Belief Rule Base (known as the BRB-
DL approach) to assess an image’s overall sentiment under uncertainty. This BRB-DL approach
includes both the data-driven and knowledge-driven techniques to determine the overall sentiment.
Our integrated expert system outperforms the state-of-the-art methods of visual sentiment analysis
with promising results. The integrated system can classify images with 86% accuracy. The system
can be beneficial to understand the emotional tendency and psychological state of an individual.

Keywords: visual sentiment analysis; deep learning; CNN; BRBES; integrated framework; uncertainty

1. Introduction

In the modern communication system, people use different social media platforms
(e.g., Facebook, Twitter, Instagram, and Flickr) to express their opinions on various issues
and activities of their daily life. In these platforms, users can share visual content with the
textual one to communicate with others. It is easier to express emotions intuitively through
images [1]. There is a percept that “A picture is worth a thousand words”. From Figure 1, we
can understand how an image can be able to deduce an individual’s sentiment without
any text. In Figure 1a, the cat is in a happy mood as it is enjoying the fruit. On the other
hand, Figure 1b represents the storm forecast. Thus, visual sentiment analysis has become
a part of our daily lives [2].

The accurate prediction of users’ sentiment by using their uploaded images on social
media has become an important research challenge [3,4]. However, the image data may
contain inconsistent data, missing data, or duplicated data which leads to various types
of uncertainty (e.g., ignorance, incompleteness, imprecision, ambiguity, and vagueness).
These uncertainties can obstruct prediction accuracy. For image classification, deep learn-
ing methods are widely used as they can represent the accurate and robust features of
images [5,6]. In addition, to handle different types of uncertainty in image data, the Belief
Rule-Based Expert System (BRBES) is more applicable [7,8]. Since an integrated model
performs better than a stand-alone model [9–11], we propose the integration of a deep learn-
ing method with BRBES to improve the prediction accuracy in visual sentiment analysis.
This is the key contribution of our research work.
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(a) (b)

Figure 1. Sample images of (a) positive and (b) negative sentiment.

As a Deep Learning method can process raw data directly, it is used effectively to
solve various classification and regression problems. However, as a data-driven approach,
it has the limitation of addressing different types of uncertainty [12]. On the contrary,
as a knowledge-driven approach, BRBES can address various types of uncertainty (e.g.,
ignorance, incompleteness, imprecision, ambiguity, and vagueness) [13]. However, it
cannot integrate the associative memory in its inference procedure. For example, we use
multiplication and division operators to calculate the activation weight of a rule in the
BRBES inference framework. However, these provide incorrect activation values of each
rule. To solve this issue, a Deep Neural Network (DNN) model can be used to calculate
the rule activation weight by providing more accurate values. Therefore, as an integrated
framework of the Deep Learning method within the BRBES inference framework, our
proposed system provides the exact value of rule activation weights that results in an
accurate prediction of sentiment under uncertainty.

BRBES is composed of a set of rules and provides results based on those rules.
The rules consist of the antecedent and consequent parts. The antecedent part of a rule
is based on the input, and the consequent part contains the output. Generally, there are
two types of BRBES: one is Conjunctive BRB [14] and another is Disjunctive BRB [15]. The
AND logical operator is utilized to connect each antecedent attribute in the Conjunctive
BRB, where the OR logical operator is used in the Disjunctive one. For the AND logical
operator, Conjunctive BRB takes more time in computation and constitutes a large number
of rules in the rule base. In our experiments, we use the Disjunctive one as it needs less
time for computation and has a low number of rules. We explore a total of eight belief rule
base for BRBES that takes less computational time.

In this paper, we address the following research questions: (1) Why we use the Deep
Learning model for visual sentiment analysis? (2) What is the advantage of utilizing
BRBES in our proposed system? (3) Why and how we combine Deep Learning with
BRBES? We compose the remainder of this paper as follows: Section 2 surveys related
work on visual sentiment analysis. Section 3 provides an overview of our proposed BRB-
DL approach. Section 4 discusses the procedure of experiments. Section 5 reports the
experimental results and evaluation of BRB-DL compared to different models such as
SVM, Naive Bias Classifier, Decision Tree classifier, VGG16, VGG19, and ResNet50. Finally,
Section 6 concludes the paper with some future plans.

2. Related Work

This section presents a literature review on visual sentiment analysis. Siersdorfer and
Hare [16] mainly focused on the bag-of-visual word representation and color distribution
of images. They estimated the polarity of sentiment in images by extracting the discrimi-
native sentiment-related features and deployed a machine learning approach. Machajdik
and Hanbury [17] considered a method that extracted and combined low-level features
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of images. These features were used for emotion classification. They considered awe,
amusement, contentment, excitement as positive emotions and anger, fear, disgust, and
sadness as negative ones.

To generate a large-scale Visual Sentiment Ontology (VSO), Borth et al. [18] represented
a method based on psychological theories and web mining. They proposed SentiBank
that was a visual concept detector library. The research work was tested on a dataset of
807 artistic photographs depicting eight emotions, including amusement, awe, contentment,
excitement, anger, disgust, fear, and sadness. Moreover, Chen et al. [19] introduced
DeepSentiBank for detecting the emotion of an image. Vasavi and Aditi [20] adopted
a Deep Learning approach to predict emotions depicted in images. They conducted their
experiment on a popular Flickr Image Dataset and predicted five emotions of images
including love, happiness, violence, fear, and sadness.

However, there are some data available that contain various kinds of noise. To dimin-
ish the noise of large-scale image data, You et al. [5] offered a progressive CNN (PCNN)
model. In addition, to reduce over-fitting in visual sentiment analysis, Islam and Zhang [4]
adopted the transfer learning approach. In this study, they utilized the hyper-parameters
learned from a Deep Convolutional Neural Network (DCNN). Wang et al. [21] rendered
a visual sentiment analysis framework where an adjective and a noun are jointly learned
by using deep neural networks. To train a visual sentiment classifier, Vadicamo et al. [22]
applied the sentiment polarity of the textual contents and proposed a cross-media learning
approach. In addition, Campos et al. [6] trained an AlexNet model adapted for visual
sentiment prediction.

Fengjiao and Aono [23] considered a merged method where both hand-crafted and
CNN features were incorporated. They employed hand-crafted features to extract the
local visual information and CNN models to get the global visual information. To label
emotions of painting images, Tan et al. [24] proposed a method where the painting features
were considered. They developed a classification model based on VGG16 and ResNet50.
Moreover, Paolanti et al. [25] analyzed the sentiment of social images related to cultural
heritage and compared them among VGG16, ResNet, and Inception models. Recently,
Chowdhury et al. [26] adopted the strategy of the ensemble of transfer learning models
and employed three pre-trained deep CNN models including VGG16, Xception, and Mo-
bileNet. A summary of the prior research on visual sentiment analysis is shown in Table 1.
None of them applied an integrated approach to Deep Learning and BRBES. However,
in our proposed method, we focus on the integration of a Deep Learning method with
a BRBES inference framework. Our proposed method helps to predict the sentiment of
images effectively.

Table 1. Related works.

Reference Description Model Limitation

[4] Proposed a visual sentiment analysis framework
using transfer learning approach. Deep CNN Cannot predict multi-label

multi-class sentiment.

[5] Employed a progressive technique to fine-tune the
deep neural network. Progressive CNN Multimodality models are not applied for

sentiment analysis.

[6] Trained an AlexNet model for visual
sentiment prediction. CaffeNet CNN Other CNN architectures are not used.

[16]
Estimated the sentiment polarity of an image by
extracting the discriminative sentiment
related features.

SentiWordNet Cannot predict multi-label
multi-class sentiment.

[17] Developed a method by extracting and combining
low-level features for image emotion classification.

Naive Bayes
classifier More feasible ground truth is required.

[18] Introduced a visual concept detector library
named SentiBank. Plutchik’s Wheel Aesthetic features and facial expression

features are not used.
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Table 1. Cont.

Reference Description Model Limitation

[19] Proposed DeepSentiBank model based on deep
convolutional neural networks. DeepSentiBank

Cannot incorporate the concept
localization into the
DeepSentiBank model.

[20] Utilized a Deep Learning approach to classify
images in multi-label emotions. Deep CNN Salient regions in images are

not considered.

[21]
Proposed a visual sentiment analysis framework
considering both an adjective and a noun deep
neural networks.

DCAN Cannot focus on automatically
discovering middle-level representation.

[22] Leveraged on a cross-media learning approach to
predict the sentiment polarity of an image. Deep CNN Cannot predict multi-label

multi-class sentiment.

[23]
Proposed a merged method where both
hand-crafted and CNN features
were incorporated.

VGG16 Cannot predict multi-label
multi-class sentiment.

[24] Proposed a classification model based on VGG16
and ResNet50. VGG16, ResNet50 Other models are not considered.

[25] Introduced a deep learning method to estimate the
sentiment of cultural heritage related images.

VGG16, ResNet,
and InceptionV2

Cannot predict multi-label
multi-class sentiment.

[26] Introduced TLEnsemble method by using three
deep CNN models.

VGG16, Xception,
and MobileNet

Cannot predict multi-label
multi-class sentiment.

3. Proposed Framework

In this research, an integrated model of Convolutional Neural Network (CNN) [27]
and Belief Rule Base (BRB) is developed to classify the visual sentiments. The system flow
chart is illustrated in Figure 2.

Figure 2. System flow chart.

From Figure 2, it can be seen that the integrated model first fetches data from the
dataset and send it to the data augmentation section. After augmentation, it is sent to
preprocessing steps. In the preprocessing steps, the image is resized into a 150 × 150 shape.
After that, the RGB image is converted to a Gray Scale image. Then, the processed image
is sent to the CNN model. The result of the CNN model is then fed into the BRB model
which predicts the final sentiment label of the image.
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3.1. Convolutional Neural Network Model

The architecture of the Convolutional Neural Network (CNN) is shown in Figure 3.

Figure 3. CNN model.

According to Figure 3, the model is constituted with five convolution layers where
there are 16, 32, 64, 128, and 256 filters with 2 × 2 kernel size. ReLU activation function is
used in each convolution layer. Mathematically, it can be shown as Equation (1):

Relu(z) = max(0, z). (1)

The input shape of this model is (150, 150, 1), where the first 150 refers to the height of
the input image and the second 150 implies the width of the input image. Finally, 1 signifies
that the image is a Gray Scale image. A max pooling layer with 2× 2 pool size is introduced
in each convolution layer. The max pooling layer decreases the number of total parameters
by selecting the highest value from a rectified feature map. Thus, it can lessen the data
size. Along with the max pooling layer, ReLu, and dropout layer are also included in
each convolution layer. ReLu works for activating the parameters while the dropout layer
deactivates the neurons randomly so that it can avoid overfitting. The global Average
Pooling layer is introduced in the last layer that is perfect for feeding into the dense layer.
Since the model is classifying eight sentiments, the output layer has eight nodes. Therefore,
Softmax is used as an activation function that can be shown as Equation (2):

so f tmax(z) =
ei

∑ ei , (2)

Here, z is the input vector, ei is the standard exponential function of i where i ∈ z.
The input vector z is the output of Fully Connected (FC) layer of the CNN model. The FC
layer produces raw prediction values which are known as logits [28]. Logits are real num-
bers (−∞ to +∞). The softmax activation function turns these logits into the probabilities
of each class.

The Adam optimizer has been used to optimize the integrated model. As a loss
function, Categorical Cross-entropy is used to reduce the validation loss. The architecture
of the CNN model is shown in Table 2.

The input image is an array of pixels. The convolution layer consists of multiple
kernels with multiple weights. The variation of the kernel weight helps to manipulate
different scales of the images. These kernels are used to extract features from the input
image. The features of an image (edges, interest points, etc.) provide very rich information
on the content. When a kernel is slid over the input image, it produces a feature map
for different pixels. This operation is performed based on the weights of the kernel and
the neighboring pixels. This feature map is then passed through the ReLu activation
function, which increases the nonlinearity by converting the negative values to zero of the
feature map. The pooling layer merges the features which are semantically similar into one.
The max pooling layer computes the maximum value from the portion of the feature map
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covered by the pooling layer. For the image segmentation, the layers extract two types of
features (full region feature and foreground feature) for each region. Thus, the convolution
layer and the max pooling layer generate different feature maps for different images. These
feature maps are used to train and validate the model.

Table 2. CNN model architecture.

Content Details

Convolution Layer 5 layers, 16, 32, 64, 128, and 265 filters of size 2 × 2, ReLU,
input shape (150, 150, 1)

Max Pooling Layer 5 layers with pool Size 2 × 2

Dropout Layer 5 layers, Excludes 20% neurons randomly

Global Average Pooling Layer N/A

Output Layer 6 nodes for 6 classes, SoftMax

Optimizer Adam

Callback Function ModelCheckpoint

3.2. Belief Rule-Based Expert System

A belief rule is an extended form of IF THEN rules. It consists of the antecedent
part and consequent part. The antecedent part contains the antecedent attributes and the
consequent part that takes the consequent attributes. Referential values are utilized by the
antecedent attributes and the belief degrees are connected with the consequent attributes.
The relation can be shown as Equation (3):

Rk =

{IF(I1→Qk
1) AND/OR (I2→Qk

2) AND/OR...AND/OR (ITk
→Qk

Tk
),

THEN(O1,β1),(O2,β2),...,(On ,βnk ),

(3)

where I1, I2, . . . , ITk are the antecedent attributes of kth rule (k = 1, 2, . . . , L). Q1, Q2, . . . ,
QTk are the referential values. O1, O2, . . . , On are the referential values of the consequent
attribute and β1, β2, . . . , βn are the belief degree for each referential value, and ∑n

j=1 β jk ≤ 1
where attribute weights are δk1, δk2, . . . , δkTk, and the rule weight is θk.

Generally, the group of belief rules is considered as the Belief Rule Base (BRB). In a
Belief Rule-Based Expert System (BRBES), it helps to generate the initial knowledge base,
and Evidential Reasoning (ER) provides services as an inference engine. Some of the
knowledge representation parameters are rule weight [29], belief degrees [30], and attribute
weight [31]. These are used to identify uncertainty in data. The inference procedure
includes input transformation [32], rule activation [29], belief update [33], and rule aggre-
gation [34]. The working process of a BRBES is shown in Figure 4.

The process of the calculating activation weight, wk, in disjunctive BRB is shown in
Equation (4):

wk =
θk ∑Tk

i=1 αk
i

∑L
k=1(θk ∑Tk

i=1 αk
i )

, (4)

where αi is the matching degree and θk is the rule weight. The process of belief degree
update is shown in Equation (5):

βik = β̄ik ×
∑Tk

t=1(τ(t, k)∑Jt
j=1 αtj)

∑Tk
t=1(τ(t, k))

. (5)
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Figure 4. Working procedure of BRBES.

The original belief degree is represented by the β̄ik, where βik is the updated belief
degree. Rule aggregation is calculated using Equation (6):

β j = µ×
∏L

k=1(wkβ jk + 1− wk ∑N
i=1 βi,k)−∏L

k=1(1− wk ∑N
i=1 βi,k)

1− µ×∏L
k=1(1− wk)

, (6)

µ =
1

∑N
i=1 ∏L

k=1(wkβ jk + 1− wk ∑N
i=1 βi,k)− (N − 1)∏L

k=1(1− wk ∑N
i=1 βi,k)

, (7)

where β j is the ER (Evidential Reasoning) aggregated belief degree. The outputs of the
rule aggregation process are some fuzzy values [7]. The process of calculating the crisp
value [8] from these fuzzy outputs is shown in Equation (8):

z =
N

∑
i=1

u(Si)× βi, (8)

Here, u(Si) is the utility score for each referential value, while βi is ER aggregated
belief degree. Figure 5 illustrates the Belief Rule Base Tree of our experiment. X2 which is a
root node of this tree represents the “Overall Sentiment Score”. In BRB, such node is related
to the consequent attribute of the rule. As mentioned earlier, this consequent attribute
consists of a number of referential values, each associated with belief degree related to
overall sentiment.

Figure 5. BRB tree.
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Considering an output from the CNN model: Anger = 0.0, Fear = 0.0, Joy = 0.0,
Love = 0.0, Sadness = 0.8, and Surprise = 0.2. This output is the input ([0.0, 0.0, 0.0, 0.0, 0.8,
0.2]) for the BRB. Therefore, the matching degrees for this input are shown in Table 3.

Table 3. Matching degree.

∑Tk
i=1 α1

i ∑Tk
i=1 α2

i ∑Tk
i=1 α3

i ∑Tk
i=1 α4

i ∑Tk
i=1 α5

i ∑Tk
i=1 α6

i

0.0 0.0 0.0 0.0 0.8 0.2

Activation weight for this experiment is calculated with Equation (4).
The rule weight (θk) is considered 1 for our experiment [35]. Hence,
w1 = 1 × 0.0

(1 × 0.0) + (1 × 0.0) + (1 × 0.0) + (1 × 0.0) + (1 × 0.8) + (1 × 0.2) = 0.0. The values of all ac-
tivation weight are shown in Table 4.

Table 4. Activation weight.

w1 w2 w3 w4 w5 w6

0.0 0.0 0.0 0.0 0.8 0.2

Equation (5) is used to update the belief degrees. The initial belief degrees
for this experiment are presented in Table 5. Since all antecedent attributes are
used to define this rule base, τ(t, k) = 1 in this experiment [36]. Therefore,
β0,0 = 0.0× 1 × 1 + 1 × 1 + 1 × 1 + 1 × 1 + 1 × 1 + 1 × 1

1 + 1 + 1 + 1 + 1 + 1 = 0.0. In the same process, we have
calculated the value of β0,1 to β5,2. Equations (6) and (7) are used to calculate the aggregated
belief degrees. In this experiment, the calculated aggregated belief degrees for positive,
neutral, and negative are shown in Table 6.

Table 5. Initial belief degrees.

Rule No. Rule Weight
IF THEN (Overall Sentiment Score)

Person’s Sentiment Positive Neutral Negative

1 1 Anger 0.0 0.0 1.0

2 1 Fear 0.0 0.2 0.8

3 1 Joy 1.0 0.0 0.0

4 1 Love 0.8 0.2 0.0

5 1 Sadness 0.0 0.1 0.9

6 1 Surprise 0.9 0.1 0.0

Table 6. Aggregated belief degree.

βPo βNu βNg

0.0 0.16 0.67

3.3. Integrated Framework

Our proposed integrated approach is used to predict the sentiment label and class
of an image. To select an image file from the directory, we use a method named filedia-
log.askopenfilename() from tkinter package. Since the user selects the image from the file
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gallery, the image may not have a specific size all the time. Therefore, this may reduce the
accuracy of the model. Hence, the image is converted to a grayscale image and resized into
a 150 × 150 dimension by performing interpolation to up-size or down-size N-dimensional
images. This operation is done with the help of the default function of the scikit-image [37]
library. After that, the processed image is convoluted by each of the convolution layers
that are used to develop the integrated framework. The filters of each layer create a map
of different features. This map is then sent to the Max-pooling layer to select the greatest
pixel value in a pooling window. The output map of the max pooling layer is delivered to
the trained hidden layers where matrix chain multiplication is performed using optimized
weight. The output is forwarded to the output layer.

The Softmax activation function helps the output layer by calculating the possibility of
an image is allied to a specific class. In our experiment, “Anger”, “Joy”, “Love”, “Surprise”,
“Fear,” and “Sadness” classes are used as the referential values. As the antecedent attribute,
“Sentiment Class” is considered in BRBES. As the corresponding referential value of the
antecedent attribute, the probability of each class is used. Moreover, the consequent
attribute is the “Overall Sentiment Score” with referential values “Positive”, “Neutral”,
and “Negative”.The utility score for these referential values is chosen as “1.0”, “0.5”,
and “0.0”, respectively. The belief rule used for this integrated system is shown in Table 5.
The inference procedure is directed, and the final results are calculated using these belief
rules. The process of calculating matching degree in BRB is shown in Algorithm 1.

Algorithm 1 Process of calculating matching degree.

1: procedure MATCHINGDEGREE

2: utilityScore← {1, 0.5, 0}

3: input← SoftMax()

4: date← length of string

5: relativeWeight← 1

6: sumMatchingDegree← 0

7: i← 0

8: loop:

9: if string(i) < length(date) then

10: matching_degree← pow(input[i], relativeWeight)

11: sumMatchingDegree← sumMatchingDegree+matching_degree

12: goto loop.

13: close;

14: close;

4. Experiments
4.1. Dataset Collection

The proposed CNN model is trained by using the dataset collected from [38]. There
are 5732 image files in six categories including anger, joy, love, surprise, fear, and sadness.
Table 7 presents the statistics of the dataset.

The images are augmented by using image augmentation functions such as rotating,
scaling, flipping, zooming, and shifting bits. Due to the augmentation, the datasets in-
creased from 5732 images to 18,358 images. The larger amount of dataset obtained after
augmentation will help to increase the accuracy. An example of data augmentation is
shown in Figure 6.
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Table 7. Statistics of the applied dataset.

Category No. of Images

Anger 889

Fear 817

Joy 1581

Love 599

Sadness 1375

Surprise 471

Number of Total Images 5732

(a) (b) (c)

Figure 6. Data Augmentation: (a) original; (b) scale; (c) flip.

4.2. Evaluation Measures

Evaluation metrics are used to explain the performance of a model. Hence, our pro-
posed model is evaluated by using the confusion matrix, precision, recall, f1-score, and ac-
curacy. A confusion matrix is known as a particular table layout that helps to visualize the
performance of a classification model. The formation of the confusion matrix is shown in
Figure 7.

Figure 7. Formation of confusion matrix.
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According to Figure 7, the y-axis of the confusion matrix represents the actual val-
ues while the predicted values are represented by the x-axis. The process of calculating
precision, recall, f1-score, and accuracy is shown in Equations (9)–(12):

precision =
TP

TP + FP
, (9)

recall =
TP

TP + FN
, (10)

f 1− score =
2× precision× recall

precision + recall
, (11)

accuracy =
TP + TN

TP + TN + FP + FN
. (12)

4.3. Implementation

The system is developed in Spyder IDE using Python programming language.
The model is trained on the Google Colab cloud system. Various libraries are used for our
experiment, such as Tensorflow, Keras, sklearn, NumPy, matplotlib, nlpaug, etc. In the
backend of the system, Tensorflow is required. Keras develops the model by implementing
some built-in functions, such as activation functions, optimizers, layers, etc. Sklearn library
generates a confusion matrix, modelCheckpoint callback function, etc. In numerical analy-
sis, NumPy library is used. In addition, matplotlib is used for graphical representation,
such as accuracy vs. epoch graph, loss vs. epoch graph, confusion matrix, etc. Nlpaug API
is used for data augmentation.

5. Experimental Results and Evaluation
5.1. Results and Discussion

The learning curve of our model (accuracy and loss graph) is shown in Figure 8a,b.

(a) (b)

Figure 8. Learning curve: (a) Accuracy vs. Epoch; (b) Loss vs. Epoch.

According to Figure 8a,b, the x-axis represents the number of epochs while the y-axis
represents the accuracy and loss, respectively. From Figure 8a, it can be noticed that the
validation accuracy increases from 0.22 to 0.65, and the training accuracy increases from
0.2 to 0.64 after the first 50 epochs. After that, it reaches 0.87 for validation and 0.81 for
training in the last epoch. From Figure 8b, it is seen that the validation loss decreased to
0.9 from 1.99 and the training loss decreased to 0.95 from 2.00 after the first 50 epochs.
After that, it decreased gradually and became 0.4 for validation and 0.55 for training in
the last epoch. The accuracy learning curve follows the upward trend while the loss one
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follows the downward trend. These trends help the model to achieve an average accuracy
of 93.23% for training and 87.17% for testing at the end of the training phase.

The evaluation metrics for this model are shown in Table 8. According to Table 8,
it can be observed that the accuracy of each class is equal to or more than 80%, while the
accuracy of joy and sadness is equal to or more than 90%.

The integrated framework is designed to use real-time validation. For real-time
validation, we first select an image from the local storage. After that, the model calcu-
lates the overall sentiment of the image by analyzing the values of “Positive”, “Neutral”,
and “Negative”. The process of the real-time validation is shown in Figure 9a,b.

Table 8. Evaluation metrics.

Class Precision Recall F1-Score Accuracy

Anger 0.87 0.85 0.86 0.87

Sadness 0.92 0.79 0.85 0.92

Joy 0.95 0.76 0.84 0.94

Love 0.83 0.94 0.88 0.82

Surprise 0.80 0.95 0.87 0.80

Fear 0.86 0.86 0.86 0.85

(a) (b)

Figure 9. Real-time prediction: (a) select an image from directory; (b) sentiment analysis of the
selected image.

We have performed 5-fold cross validation to validate the model performance. From our
previous study [11], we have seen that the deep learning model works better with a 70:20:10
split ratio. Therefore, we split the dataset into a 70:20:10 ratio, where 70% of the total images
are used for training the model, 20% of them are used for validation, and the remaining
10% are used for testing. These images are selected randomly from the dataset. The results
of 5-fold cross validation and the average accuracies along with the standard deviations
are shown in Table 9.
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Table 9. Cross validation.

Fold Training Accuracy Validation Accuracy Testing Accuracy

Fold-1 0.87 0.82 0.85

Fold-2 0.92 0.79 0.82

Fold-3 0.92 0.89 0.87

Fold-4 0.95 0.87 0.86

Fold-5 0.83 0.81 0.88

Highest 0.95 0.89 0.87

Average 0.89 0.84 0.85

Standard Deviation 0.047 0.042 0.023

From Table 9, it can be seen that the highest training accuracy was found in the fourth
fold, which was 0.95. However, the highest validation (0.89) accuracy and testing (0.87)
accuracy were achieved in the third fold.

5.2. Comparison to Different Models

The dataset considered in this research [38] trained by using various machine learning
models (Support Vector Machine, SVM with Hog Features, Decision Tree Classifier, Naive
Bias Classifier) and pre-trained CNN models (VGG16, VGG19, ResNet50). The performance
of the proposed model has been compared against these eight models. Table 10 illustrates
the comparison among these eight models including our proposed model by taking into
account of the performance metrics such as Precision, Recall, F1-Score, and Accuracy.
From the table, it can be observed that our proposed BRB-DL model outperforms eight
models. The reason for this is that the values of Precision, Recall, F1-Score, and Accuracy
of the BRB-DL model are higher than that of eight models.

Table 10. Comparative evaluation of our proposed model against other models.

Model Precision Recall F1-Score Accuracy

SVM 0.54 0.53 0.54 0.53

SVM (Hog) 0.53 0.54 0.53 0.53

Decision Tree
Classifier 0.67 0.67 0.67 0.67

Naive Bias Classifier 0.22 0.19 0.27 0.23

VGG16 0.80 0.81 0.82 0.81

VGG19 0.82 0.82 0.83 0.83

ResNet50 0.81 0.82 0.82 0.82

BRB-DL 0.87 0.86 0.86 0.86

6. Conclusions and Future Direction

The objective of this research is to calculate overall sentiment from six classes of
an image file. We have applied a very effective method for visual sentiment analysis
that integrates a Convolutional Neural Network (CNN) with a Belief Rule-Based Expert
System (BRBES). The CNN model is used to calculate the class-wise prediction probability,
while the BRB triggers some particular rules for estimating the overall sentiment of the
image. This integrated framework can be used to analyze the user’s sentiment of social
media platforms. In addition, this model can help to treat neurologically disorder patients.
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Although the prediction accuracy of each class in our experiment is promising, the model
can be improved by increasing the accuracy of love and surprise classes.

In the future, we have a plan to promote our system by adopting the BRBES-based
adaptive Differential Evolution (BRBaDE) approach [39]. This can improve the prediction
accuracy by using parameter and structure optimization.
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